
Sensu Go

Contents
Release Notes

Get Started with Sensu

Platforms and Distributions

Commercial Features

Sensu Plus

Observability Pipeline
Entities

Entities Reference
Auto-register and Deregister Entities
Monitor External Resources

Events
Events Reference

Schedule
Agent Reference
Backend Reference
Checks Reference
Hooks Reference
Metrics Reference
Rule Templates Reference
Service Components Reference
Subscriptions Reference
Tokens Reference
Business Service Monitoring SDK
Augment Event Data
Collect Prometheus Metrics
Collect Service Metrics
Monitor Business Services
Monitor Server Resources

Filter
Event Filters Reference
Sensu Query Expressions Reference
Reduce Alert Fatigue
Route Alerts

Transform
Mutators Reference

Process
Handlers Reference
Pipelines Reference
Silencing Reference
Sumo Logic Metrics Handlers Reference
TCP Stream Handlers Reference
Aggregate StatsD Metrics
Create Handler Templates
Plan Maintenance Windows
Populate Metrics in InfuxDB
Send Data to Sumo Logic
Send Email Alerts
Send PagerDuty Alerts
Send Slack Alerts

Operations
Monitoring as Code
Deploy Sensu

Hardware Requirements
Install Sensu
Deployment Architecture
Confguration Management
Generate Certifcates
Secure Sensu
Secure PostgreSQL
Run a Sensu Cluster
Reach Multi-cluster Visibility
Scale with Enterprise Datastore
Datastore Reference
Etcd Replicators Reference

Control Access
Confgure SSO Authentication
Use API Keys
Create a Read-only User
Create Limited Service Accounts
AD Reference
LDAP Reference
OIDC Reference
API Keys Reference
Namespaces Reference
RBAC Reference

Maintain Sensu

Upgrade Sensu
Migrate from Sensu Core and Sensu Enterprise
Tune Sensu
Troubleshoot
License Reference

Monitor Sensu
Log Sensu Services
Monitor Sensu with Sensu
Health Reference
Ready Reference
Tessen Reference

Manage Secrets
Use Secrets Management
Secrets Reference
Secrets Providers Reference

Guides Index

Sensuctl CLI
Create and Manage Resources
Back Up and Recover Resources
Filter Responses
Set Environment Variables
Use sensuctl with Bonsai

Web UI
View and Manage Resources
Search in the Web UI
Confgure the Web UI
Build Business Service Monitoring
Searches Reference
Web UI Confguration Reference

Sensu Catalog
Confgure Integrations in the Sensu Catalog
Build a Private Catalog
Catalog Integrations Reference
Catalog API

API
Core API

core/v2/apikeys
core/v2/assets
core/v2/checks
core/v2/cluster
core/v2/clusterrolebindings
core/v2/clusterroles

core/v2/entities
core/v2/events
core/v2/flters
core/v2/handlers
core/v2/hooks
core/v2/mutators
core/v2/namespaces
core/v2/pipelines
core/v2/rolebindings
core/v2/roles
core/v2/silenced
core/v2/tessen
core/v2/users

Enterprise APIs
enterprise/authentication/v2
enterprise/bsm/v1
enterprise/federation/v1
enterprise/pipeline/v1
enterprise/prune/v1alpha
enterprise/searches/v1
enterprise/secrets/v1
enterprise/store/v1
enterprise/web/v1

Other APIs
/auth
/health
/license
/metrics
/ready
/version

Reference Index

Plugins
Assets Reference
Plugins Reference
Install Plugins
Use Assets to Install Plugins
Featured Integrations

Ansible
Chef
EC2
Elasticsearch
Email
Graphite

InfuxDB
Jira
OpenTSDB
PagerDuty
Prometheus
Puppet
Rundeck
SaltStack
ServiceNow
Slack
Sumo Logic
TimescaleDB
Wavefront

Learn Sensu
Concepts and Terminology
Live Demo

Learn about licensing

Sensu is a complete solution for monitoring and observability at scale.
Sensu Go is designed to give you
visibility into everything you care about: traditional server closets, containers, applications, the cloud,
and more.

Take a tour or click any element in the Sensu observability pipeline to jump to it.

Sensu is an agent-based observability tool that you install on your organization’s infrastructure.
The
Sensu backend gives you a fexible, automated pipeline to flter, transform, and process alerts and
metrics.

Sensu Go is operator-focused and developer-friendly and integrates with popular monitoring and
observability tools.
Deploy Sensu Go for on-premises and public cloud infrastructures, containers, bare
metal, or any other environment.

https://docs.sensu.io/sensu-go/latest/commercial/
http://localhost:1313/images/observability-pipeline.png

Get started now and feel the #monitoringlove.

Filtered, context-rich alerts that improve incident response

Get meaningful alerts when and where you need them so you can reduce alert fatigue and speed up
incident response.
Sensu gives you full control over your alerts with fexible event flters, check hooks
for context-rich notifcations, reporting, observation data handling, and auto-remediation.

Extend functionality and integrate with existing workfows
with the Sensu Catalog

Use the Sensu Catalog, the online marketplace for monitoring and observability integrations, to fnd
and install integrations directly in your browser.

Sensu’s open architecture integrates with the tools and services you already use, like Ansible, Amazon
EC2, InfuxDB, Kubernetes, PagerDuty, Saltstack, and Sumo Logic.
The Sensu Catalog also includes
standard system checks and metrics collectors.

To start integrating Sensu with your existing workfows, read the Sensu Catalog documentation, check
out our featured integrations, search for plugins in Bonsai, the Sensu asset hub, or write your own
Sensu plugins in any language.

Automate with agent registration-deregistration and check
subscriptions

Sensu agents automatically register and deregister themselves with the Sensu backend so you can
collect observation data about ephemeral infrastructure without getting overloaded with alerts.

Instead of setting up traditional one-to-one entity-to-check mapping, use Sensu’s subscriptions to
make sure your entities automatically run the appropriate checks for their functionality.

Built-in support for industry-standard tools

Know what’s going on everywhere in your system.
Sensu supports industry-standard metric formats like
Nagios performance data, Graphite plaintext protocol, InfuxDB line protocol, OpenTSDB data

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://bonsai.sensu.io/

specifcation, Prometheus Exposition Text Format, and StatsD metrics.
Use the Sensu agent to collect
metrics alongside check results, then use the Sensu observability pipeline to route observation data to
a time-series database like InfuxDB.

Intuitive API with command line and web interfaces

The Sensu API and the sensuctl command-line tool allow you (and your internal customers) to
create checks, register entities, manage confguration, and more.
The Sensu web UI provides a unifed
view of your entities, checks, and events, as well as a user-friendly silencing tool.

Commercial software based on open core

Sensu Go is a commercial product, based on an open source core that is freely available under a
permissive MIT License and publicly available on GitHub.
Learn about our commercial support
packages and features designed for observability at scale.

Sensu Go is the latest version of Sensu, designed to be portable, straightforward to deploy, and
friendly to containerized and ephemeral environments.
Sensu Inc. released Sensu Go OSS as open
source in 2017, and it is now a part of Sumo Logic Inc. (SUMO).

Sensu is a comprehensive monitoring and observability solution for enterprises, providing complete
visibility across every system, every protocol, every time — from Kubernetes to bare metal.

https://www.github.com/sensu/sensu-go/blob/main/LICENSE/
https://www.github.com/sensu/sensu-go/
https://sensu.io/support
https://sensu.io/support

Sensu Go release notes
6.8.2 release notes

6.8.1 release notes

6.8.0 release notes

6.7.5 release notes

6.7.4 release notes

6.7.3 release notes

6.7.2 release notes

6.7.1 release notes

6.7.0 release notes

6.6.6 release notes

6.6.5 release notes

6.6.4 release notes

6.6.3 release notes

6.6.2 release notes

6.6.1 release notes

6.6.0 release notes

6.5.5 release notes

6.5.4 release notes

6.5.3 release notes

6.5.2 release notes

6.5.1 release notes

6.5.0 release notes

6.4.3 release notes

6.4.2 release notes

6.4.1 release notes

6.4.0 release notes

6.3.0 release notes

6.2.7 release notes

6.2.6 release notes

6.2.5 release notes

6.2.4 release notes

6.2.3 release notes

6.2.2 release notes

6.2.1 release notes

6.2.0 release notes

6.1.4 release notes

6.1.3 release notes

6.1.2 release notes

6.1.1 release notes

6.1.0 release notes

6.0.0 release notes

5.21.5 release notes

5.21.4 release notes

5.21.3 release notes

5.21.2 release notes

5.21.1 release notes

5.21.0 release notes

5.20.2 release notes

5.20.1 release notes

5.20.0 release notes

5.19.3 release notes

5.19.2 release notes

5.19.1 release notes

5.19.0 release notes

5.18.1 release notes

5.18.0 release notes

5.17.2 release notes

5.17.1 release notes

5.17.0 release notes

5.16.1 release notes

5.16.0 release notes

5.15.0 release notes

5.14.2 release notes

5.14.1 release notes

5.14.0 release notes

5.13.2 release notes

5.13.1 release notes

5.13.0 release notes

5.12.0 release notes

5.11.1 release notes

5.11.0 release notes

5.10.2 release notes

5.10.1 release notes

5.10.0 release notes

5.9.0 release notes

5.8.0 release notes

5.7.0 release notes

5.6.0 release notes

5.5.1 release notes

5.5.0 release notes

5.4.0 release notes

5.3.0 release notes

Versioning

Sensu Go adheres to semantic versioning using MAJOR.MINOR.PATCH release numbers, starting at
5.0.0.
MAJOR version changes indicate incompatible API changes.
MINOR versions add backward-
compatible functionality.
PATCH versions include backward-compatible bug fxes.

Upgrading

Read the upgrade guide for information about upgrading to the latest version of Sensu Go.

6.8.2 release notes

October 6, 2022 — The latest release of Sensu Go, version 6.8.2, is now available for download.

Sensu Go 6.8.2 includes logging improvements with the addition of check names for failed check
execution requests. We also added a label to events with a truncated check output and now
automatically restart the agent on Windows platforms after failures. The 6.8.2 patch release also
modifes the keepalive startup logic and fxes a number of web UI issues in the Entities and
confguration resource pages.

Read the upgrade guide to upgrade Sensu to version 6.8.2.

IMPROVEMENTS:

5.2.1 release notes

5.2.0 release notes

5.1.1 release notes

5.1.0 release notes

5.0.1 release notes

5.0.0 release notes

When check output is truncated due to the max_output_size confguration, the events the
check produces will include a sensu.io/output_truncated_bytes label.

Agent log messages now include the check name when a check execution request fails.

https://semver.org/spec/v2.0.0.html
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

FIXES:

6.8.1 release notes

September 13, 2022 — The latest release of Sensu Go, version 6.8.1, is now available for download.

Sensu Go 6.8.1 includes web UI fxes for OIDC refresh token expiry and information displayed on the
Entities page, as well as a change in how check subdue begin and end times are evaluated.

On Windows platforms, the Sensu Agent service now automatically restarts after failures.

(Commercial feature) In the web UI, restored the silence function on the Entities page.

(Commercial feature) In the web UI, resource pages now automatically refresh after creating
resources.

(Commercial feature) The web UI now displays pipeline defnitions under the RAW tab on
individual pipeline resource pages.

(Commercial feature) In the web UI, corrected the link to the entity reference in the Edit Entity
modal.

(Commercial feature) In the web UI, errors displayed when deleting and re-adding an asset
from asset page have been addressed.

(Commercial feature) In the web UI, fxed the validation for resource names and array felds to
prevent crashes.

(Commercial feature) In the web UI, the confguration resource pages now show an empty list
instead of an endless loading indicator for users who do not have the required permissions.

(Commercial feature) In the web UI, fxed a bug that could cause a crash when an authorized
user does not have an explicitly set username.

(Commercial feature) In the web UI, temporarily disabled saved searches on Entity, Services,
Silences, and Check pages.

(Commercial feature) In the web UI, fxed a bug that prevented individual resource pages from
displaying annotations and labels on initial page load.

(Commercial feature) In the web UI, when users do not have the required permissions to
perform a specifc action, the action’s button is now disabled with a tooltip to explain the
reason.

Modifed keepalive startup so that etcd lease errors will not cause sensu-backend crashes.

Read the upgrade guide to upgrade Sensu to version 6.8.1.

FIXES:

6.8.0 release notes

August 29, 2022 — The latest release of Sensu Go, version 6.8.0, is now available for download.

Sensu Go 6.8.0 delivers a mix of new features, valuable improvements, and helpful fxes. The new
/ready API endpoint provides information about backend readiness, and the api-serve-wait-time and
agent-serve-wait-time backend confguration options can help prevent instability during sensu-backend
startup. The web UI now includes dedicated resource pages for assets, pipelines, role-based access
control (RBAC) resources, and secrets. Plus, the resource pages now include details that give you
more information about your resources at a glance. We’ve also fxed bugs that could cause backend
crashes or result in incorrect event.check.issued values and improved prioritization to prevent
keepalive event creation storms.

Read the upgrade guide to upgrade Sensu to version 6.8.0.

NEW FEATURES:

IMPROVEMENTS:

(Commercial feature) In the web UI, OIDC refresh token requests now properly invoke the sign-
in dialog instead of causing an HTTP 404 Not Found error.

(Commercial feature) In the web UI, the entity list no longer displays the values of redacted
labels.

Check subdues are now evaluated as half-open intervals so that they are inclusive of the begin
time and +1-second exclusive of the end time. Previously, subdue periods were evaluated as
closed intervals and were exclusive of the begin and end times. This change prevents
unintended gaps between subdues.

Added the api-serve-wait-time and agent-serve-wait-time backend confguration options.
Use
api-serve-wait-time to delay serving API requests and agent-serve-wait-time to delay accepting
agent connections after starting the backend.

Added the /ready API endpoint to provide HTTP GET access to information about whether a
Sensu instance is ready to serve API requests and accept agent connections.

(Commercial feature) The web UI now includes resource pages for assets, pipelines, role-

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

FIXES:

6.7.5 release notes

August 10, 2022 — The latest release of Sensu Go, version 6.7.5, is now available for download.

Sensu Go 6.7.5 upgrades the graphql-go/graphql library to address CVE-2022-37315 in which a
malicious actor may craft a query that can crash the backend instance.

Read the upgrade guide to upgrade Sensu to version 6.7.5.

IMPROVEMENTS

6.7.4 release notes

July 15, 2022 — The latest release of Sensu Go, version 6.7.4, is now available for download.

Sensu Go 6.7.4 upgrades the Go version to 1.17.12.

based access control (RBAC) resources, and secrets.

(Commercial feature) In the web UI, resource pages now render resources in an infnite list,
with a total row count provided at the bottom-right of the list.

(Commercial feature) The resource pages in the web UI now display additional information
about each resource, such as subscriptions, labels, API versions, and command attribute
values.

(Commercial feature) In the web UI, the system information modal now displays the name of
the connected Sensu backend.

Eventd now prioritizes keepalive events over other events to help prevent keepalive event
creation storms and mass agent disconnects.

(Commercial feature) When the event.check.issued attribute has a null value, the event detail
page in the web UI now displays N/A instead of December 31, 1969 .

Fixed a bug that could cause a sensu-backend crash if the BackendIDGetter encountered etcd
client unavailability.

Upgraded graphql-go/graphql to remediate CVE-2022-37315.

https://nvd.nist.gov/vuln/detail/CVE-2022-37315
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
https://nvd.nist.gov/vuln/detail/CVE-2022-37315

Read the upgrade guide to upgrade Sensu to version 6.7.4.

IMPROVEMENTS

6.7.3 release notes

July 7, 2022 — The latest release of Sensu Go, version 6.7.3, is now available for download.

Sensu Go 6.7.3 includes fxes for the Sensu Catalog sort order and web UI notifcations, as well a
database issue that could cause backends to crash.
We also fxed bugs that affected business service
monitoring (BSM) service components and removed limits on Active Directory (AD) and Lightweight
Directory Access Protocol (LDAP) searches.
This patch release includes a change in how agents
execute check requests to prevent check execution still in progress failures.

Read the upgrade guide to upgrade Sensu to version 6.7.3.

IMPROVEMENTS

FIXES

Upgraded Go version from 1.17.6 to 1.17.12.

(Commercial feature) Added supported packages for the Sensu backend, Sensu agent, and
sensuctl for RHEL 9.

(Commercial feature) When using the business service monitoring (BSM) feature, service
component metadata is now included in the check scope of events the service component
generates.
Also fxed a bug that could cause BSM service component queries to retrieve events
that do not match the specifed query expressions.

(Commercial feature) Removed a database constraint that could cause backends to crash
when running agents on hosts that have many addresses associated with a single network
interface.

(Commercial feature) Active Directory (AD) and Lightweight Directory Access Protocol (LDAP)
searches are no longer limited to 1000 results.

(Commercial feature) In the web UI, Sensu Catalog integrations are now listed alphabetically.

(Commercial feature) In the web UI’s automated Sensu Plus setup dialog, the value in the
Source URL feld is no longer truncated.

(Commercial feature) In the web UI, pop-up notifcations at the bottom of the page are no

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-events/events/#check-scope
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-events/events/#check-scope
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/web-ui/sensu-catalog/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/sensu-plus/
http://localhost:1313/sensu-go/6.7/commercial/

6.7.2 release notes

May 12, 2022 — The latest release of Sensu Go, version 6.7.2, is now available for download.

Sensu Go 6.7.2 includes a fx for sensu-backend stability and adds an active poller for PostgreSQL
confg changes.
We’ve also improved the Sensu Plus modal in the web UI.

Read the upgrade guide to upgrade Sensu to version 6.7.2.

IMPROVEMENTS

FIXES

longer obscured by other content.

To prevent check execution still in progress failures, agents will no longer execute
check requests with issued timestamps that are equal to or older than the issued timestamp for
the last executed check request with the same check name.

(Commercial feature) In the web UI, the Sensu Plus modal dialog now directs users who
already have a Sumo Logic account to follow the instructions to manually set up Sensu Plus.

(Commercial feature) In the web UI, the Sensu Plus post-setup modal dialog now indicates
success when you use the Copy button to copy the Source URL.

(Commercial feature) Added supported packages for the Sensu backend, Sensu agent, and
sensuctl for Ubuntu 22.04.

Added the etcd-unsafe-no-fsync backend confguration option, which makes it possible to run
sensu-backend with an embedded etcd node for testing and development without placing too
much load on the fle system.

Upgraded etcd version from 3.5.2 to 3.5.4.

(Commercial feature) Fixed a bug that could cause a backend crash when pruning
SumoLogicMetricsHandler and TCPStreamHandler resource types.

(Commercial feature) Implemented an active poller for PostgreSQL confguration changes.

The correct round robin scheduler source (“etcd” or “postgres”) is now printed in events and
logs.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/commercial/

6.7.1 release notes

April 28, 2022 — The latest release of Sensu Go, version 6.7.1, is now available for download.

Sensu Go 6.7.1 delivers several improvements and fxes in the Sensu Catalog, along with an update to
cron scheduler logging. We’ve also included fxes for data races in schedulerd and agentd.

Read the upgrade guide to upgrade Sensu to version 6.7.1.

IMPROVEMENTS

FIXES

6.7.0 release notes

April 21, 2022 — The latest release of Sensu Go, version 6.7.0, is now available for download.

Sensu Go 6.7.0 includes a number of new features, improvements and fxes, including Sensu Go’s
newest feature, the Sensu Catalog. The Catalog is a marketplace within the Sensu web UI that
facilitates new user onboarding and deploying production-ready monitoring in minutes. Sensu Go 6.7.0
also includes metric threshold evaluation, keepalive pipelines, and check subdues. We’ve improved
the onboarding workfow for Sensu Plus so you can seamlessly transmit Sensu observability data to
Sumo Logic, added support for arrays of strings and objects in the sensu.CheckDependencies Sensu
query expression, added an attribute to the GlobalConfg specifcation, and more. Bug fxes in Sensu
Go 6.7.0 include adding pipelines within the event.check object, correcting TCP stream handler
max_connections behavior, and detecting ARM platform accurately.

Read the upgrade guide to upgrade Sensu to version 6.7.0.

(Commercial feature) Updated install button styling and improved text padding and margins for
integration details and confguration dialog icons in the Sensu Catalog.

(Commercial feature) In the Sensu Catalog, the integrations list is now sorted alphabetically.

The cron scheduler now logs that it is stopping before it begins the process of stopping.

(Commercial feature) In the Sensu Catalog, fxed an issue that prevented the overwrite function
from properly overwriting existing resources.

Fixed several data races in schedulerd.

Mitigated a data race in agentd sessions.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/web-ui/sensu-catalog/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/web-ui/sensu-catalog/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/web-ui/sensu-catalog/#duplicate-integrations-and-existing-resources

NEW FEATURES:

IMPROVEMENTS:

(Commercial feature) Added the Sensu Catalog, an online marketplace for monitoring and
observability integrations that allows you to fnd, confgure, and install integrations directly from
the Sensu web UI.

Added metric threshold evaluation to provide real-time alerts based on the metrics your Sensu
checks collect.

Added the keepalive-pipelines agent confguration option, which allows you to specify
pipelines for processing keepalive events.

Added the check subdues attribute, which you can use to schedule alert-free periods of time
directly in check defnitions.

(Commercial feature) For Sensu Plus setup, Sensu now automatically creates a Sumo Logic
account and confgures an HTTP Logs & Metrics Source for customers who start the process
from the Sensu web UI.

(Commercial feature) Markdown formatting is now supported for the signin_message attribute
value in the GlobalConfg specifcation.

(Commercial feature) Added the serialization_format attribute to the GlobalConfg specifcation,
which you can use to specify the default format for resource defnitions in the web UI (YAML or
JSON).

(Commercial feature) Added the license_expiry_reminder attribute to the GlobalConfg
specifcation, which you can use to specify the number of days before license expiration to
begin displaying the license expiration banner in the web UI.

(Commercial feature) Business service monitoring (BSM) now uses the PostgreSQL round
robin Ring V2 implementation, even if the enable_round_robin attribute is set to false in
the PostgresConfg defnition.

(Commercial feature) Added the sensu_go_etcd_cluster_leases metric to the backend
metrics log to track the count of current etcd leases for debugging.

(Commercial feature) Added logging for TCP stream handler events.

The sensu.CheckDependencies Sensu query expression now supports arrays of strings and
arrays of objects.

On backend startup, Sensu now creates the sensu-system namespace and a backend entity
to log secrets provider errors and help prevent spamming the event bus with backend events.

For connections with faulty TLS confgurations, error log entries now include a source

http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/web-ui/sensu-catalog/
http://localhost:1313/sensu-go/6.7/web-ui/
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-schedule/metrics/#metric-threshold-evaluation
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-schedule/agent/#keepalive-pipelines
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-process/#keepalive-pipelines
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-schedule/checks/#subdues
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-schedule/checks/#subdues
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/sensu-plus/
http://localhost:1313/sensu-go/6.7/web-ui/
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/web-ui/webconfig-reference/#sign-in-message
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/web-ui/webconfig-reference/#serialization_format
http://localhost:1313/sensu-go/6.7/web-ui/view-manage-resources/#view-resource-data-in-the-web-ui
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/web-ui/webconfig-reference/#license_expiry_reminder
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-schedule/business-service-monitoring/
http://localhost:1313/sensu-go/6.7/operations/deploy-sensu/datastore/#round-robin-postgresql
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-schedule/backend/#platform-metrics-logging
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-process/tcp-stream-handlers/
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-filter/sensu-query-expressions/#sensucheckdependencies-custom-function
http://localhost:1313/sensu-go/6.7/operations/control-access/namespaces/#default-namespaces
http://localhost:1313/sensu-go/6.7/operations/control-access/namespaces/#default-namespaces
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-entities/entities/#backend-entities

FIXES:

6.6.6 release notes

February 16, 2022 — The latest release of Sensu Go, version 6.6.6, is now available for download.

Sensu Go 6.6.6 includes several web UI fxes for GraphQL queries. This patch release also contains
fxes for the PostgreSQL event store, including improving retry logic when the event store is
unavailable, as well as not reverting to etcd as a fallback event store.

Read the upgrade guide to upgrade Sensu to version 6.6.6.

IMPROVEMENTS

FIXES

property that lists the corresponding agent’s IP address and port to identify which agent
generated each log entry for troubleshooting.

Increased the default values for the backend confguration options etcd-election-timeout (from
1000 to 3000) and etcd-heartbeat-interval (from 100 to 300).

Upgraded etcd version from 3.5.0 to 3.5.2 .

(Commercial feature) Fixed a bug that could cause pipeline resources to hang when using a
TCP stream handler whose max_connections attribute is set to greater than zero.

In events, event.check objects now include any pipelines specifed in the check confguration.

Socket handlers that are interrupted by an error mid-write will no longer cause a sensu-
backend panic.
Also, socket handlers will now respect their timeout settings after the initial
connection is established.

Fixed a bug that prevented accurate ARM version detection for sensu-agent.

(Commercial feature) In the web UI, added error type to GraphQL metrics to help track down
slow queries.

(Commercial feature) When the PostgreSQL provider is confgured with “strict: true”, the
provider will attempt to connect to an unavailable PostgreSQL server indefnitely instead of
reverting to etcd as an event store after three failed connection attempts.

(Commercial feature) When the PostgreSQL provider is confgured to use strict mode, the
provider confrms whether the current user has CREATE privileges within the current schema,

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-schedule/backend/#etcd-election-timeout
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-schedule/backend/#etcd-heartbeat-interval
http://localhost:1313/sensu-go/6.7/commercial/
http://localhost:1313/sensu-go/6.7/observability-pipeline/observe-process/tcp-stream-handlers/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/latest/operations/deploy-sensu/datastore/#strict-attribute
http://localhost:1313/sensu-go/6.6/commercial/

6.6.5 release notes

February 3, 2022 — The latest release of Sensu Go, version 6.6.5, is now available for download.

Sensu Go 6.6.5 includes several web UI improvements to reduce cluster load and adds a message to
clarify web UI search results for the events and entities pages. This patch release also fxes bugs in
round robin scheduling and the PostgreSQL confguration watcher and removes outdated language in
an interactive-mode prompt for sensu-backend upgrade.

Read the upgrade guide to upgrade Sensu to version 6.6.5.

IMPROVEMENTS

FIXES

not the current database.

(Commercial feature) The PostgreSQL provider now respects context cancellation and will fail
immediately when users issue a termination signal.

(Commercial feature) Fixed an issue where metrics would not be recorded when an error
occurred.

(Commercial feature) In the web UI, fxed an issue with GraphQL queries where an offset of >=
500 couldn’t be used when paging through entities.

(Commercial feature) When using PostgreSQL, queries for multiple entity states are now more
effcient.

(Commercial feature) In the web UI, if a search reaches the limit for the events or entities page,
the results count at the bottom-right corner of the page now indicates that the total number of
matches exceeds the number of results listed.

(Commercial feature) In the web UI, several changes help reduce cluster load: federated
clusters now query remote clusters in parallel; GraphQL resolvers are no longer invoked if the
query deadline has already been reached; and we improved the performance of GraphQL
queries to the local cluster.

(Commercial feature) Fixed a bug in round robin scheduling that could delay notifcation routing
after creating or updating business service monitoring (BSM) service components.

(Commercial feature) Fixed a bug in the PostgreSQL confguration watcher that could prevent
bsmd from being reenabled after an update.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/web-ui/search/#events-and-entities-search-limits
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/

6.6.4 release notes

January 26, 2022 — The latest release of Sensu Go, version 6.6.4, is now available for download.

Sensu Go 6.6.4 includes a number of bug fxes, security improvements, and a new metric,
sensu_go_event_metric_points_processed .
Fixes in this patch release will help prevent backend

crashes when PostgreSQL is taken offine and keep backend entity rows from flling up the entities
table.
The 6.6.4 patch release also includes several improvements to further secure the web UI.

Read the upgrade guide to upgrade Sensu to version 6.6.4.

IMPROVEMENTS

FIXES

(Commercial feature) In the web UI, fxed a bug that could result in graphql-go nullifcation of
entity.status values greater than math.MaxInt32.

Removed Sensu Go 5.x-specifc language in the confrmation prompt for sensu-backend
upgrade in interactive mode.

Resolved unpredictable ringv2 behavior when identical subscriptions are created from different
contexts.

(Commercial feature) In the web UI, added the X-Frame-Options header to tell browsers the
web application cannot be loaded within an iframe to prevent tailored click-jacking attacks.

(Commercial feature) In the web UI, added the HSTS header if TLS has been confgured to
ensure that the browser loads the application and its requisite assets with a secure connection.

(Commercial feature) In the web UI, added the X-Content-Type-Options nosniff header so that
browsers respect the given Content-Type header when loading content referenced by a script
tag.

Added the sensu_go_event_metric_points_processed counter metric and included it in
Tessen reporting.

(Commercial feature) Fixed bugs in business service monitoring (BSM) and round robin
scheduling to prevent missed check executions when PostgreSQL round robin scheduling is
enabled.

(Commercial feature) Fixed a bug that could cause sensu-backend to crash if PostgreSQL was
taken offine and restarted.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
http://localhost:1313/sensu-go/6.6/commercial/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
http://localhost:1313/sensu-go/6.6/commercial/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/

6.6.3 release notes

December 16, 2021 — The latest release of Sensu Go, version 6.6.3, is now available for download.

Sensu Go 6.6.3 includes improvements to reduce load on clusters and support cluster recovery, as
well as a backend confguration option for specifying the internal etcd client log level. Fixes in this
patch release will help prevent backend crashes when keepalive leases are revoked and when the
backend cannot write to the event log fle. In addition, this patch fxes issues that could result in a
leaked etcd lease and keep the backend from terminating correctly.

Read the upgrade guide to upgrade Sensu to version 6.6.3.

IMPROVEMENTS

(Commercial feature) Fixed a bug that could cause ephemeral backend entity rows to fll up the
entities table in PostgreSQL.

(Commercial feature) BSM event selectors can no longer select events outside the service
component namespace.

(Commercial feature) In the web UI, fxed a bug the prevented HTTP requests from being
properly cancelled after a context deadline (timeout) was exceeded.

Fixed a bug that could cause the backend to crash if a pipeline references a non-existent
handler.

(Commercial feature) In the web UI, the default polling interval on the entities page is now 30
seconds to help reduce load on clusters. Search results for entities are limited to the frst 500
matching entities. Also, the web UI response time and memory usage is substantially improved
when opening the entities page in the default state (loading the frst page of results, with no
search flter applied).

(Commercial feature) In the web UI, for instances that use etcd for event storage, search
results for events are limited to 25,000 matching events.

Added the etcd-client-log-level confguration option for setting the log level of the etcd
client used internally within sensu-backend.

The agentd daemon now starts up after all other daemons, which improves cluster recovery
after the loss of a backend.

When using external etcd (the no-embed-etcd backend confguration option is set to true),
sensu-backend now crashes when its daemons do not stop within 30 seconds, which can
happen due to an intentional shutdown or when database unavailability triggers an internal
restart.
When using embedded etcd, sensu-backend will still try to avoid crashing to prevent

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/web-ui/view-manage-resources/#manage-entities
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/observability-pipeline/observe-schedule/backend/#etcd-client-log-level

FIXES

6.6.2 release notes

December 8, 2021 — The latest release of Sensu Go, version 6.6.2, is now available for download.

The Sensu Go 6.6.2 patch release includes improvements in PostgreSQL health check queries and
memory consumption for events and entities pages in the web UI. This release also fxes a web UI
issue that provided incorrect links for cluster-wide resources.

Read the upgrade guide to upgrade Sensu to version 6.6.2.

IMPROVEMENTS

FIXES

6.6.1 release notes

member corruption.

New agent sessions no longer result in a leaked etcd lease.

sensu-backend now prints a warning and continues instead of crashing when it cannot write to
the specifed event-log-fle.

Fixed a bug that could cause a crash when keepalive leases are revoked on another backend
or by an etcd operator.

Fixed an issue that could prevent sensu-backend from terminating correctly.

Proxy entity state is now created when it is missing and a matching entity confg already exists.

(Commercial feature) Changed the SQL operation for PostgreSQL health check queries to
reduce query cost.

(Commercial feature) In the web UI, removed Related Entities from individual pages for events
and entities to eliminate the substantial memory consumption required to construct the list.

(Commercial feature) In the web UI, fxed an issue that provided incorrect links for cluster-wide
resources. No web UI pages can show events across all namespaces.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/

November 29, 2021 — The latest release of Sensu Go, version 6.6.1, is now available for download.

This patch release removes a debugging log entry; adds cron library error information to validation
errors for Check and CheckConfg resources; and fxes a web UI bug that expanded the clear silences
dialog to the entire frame. In addition, Sensu now sets event timestamps when events are resolved via
sensuctl or the web UI.

Read the upgrade guide to upgrade Sensu to version 6.6.1.

IMPROVEMENTS

FIXES

6.6.0 release notes

November 25, 2021 — The latest release of Sensu Go, version 6.6.0, is now available for download.

This release introduces PostgreSQL event store sorting as well as web UI improvements like support
for ANSI color codes and a warning message when editing resources on a cluster with an older version
than the gateway cluster. Sensu Go 6.6.0 also adds a label to logged metrics to help identify the
backend that generated the metrics, logs connection errors along with context errors, and fxes a bug
that could cause a backend crash in case of etcd client unavailability.

Read the upgrade guide to upgrade Sensu to version 6.6.0.

IMPROVEMENTS

To provide additional context, errors returned by the cron library are now included with the
errors Sensu returns when validating Check and CheckConfg resources.

Removed a debugging log entry that could cause logs to grow too big, too quickly.

(Commercial feature) In the web UI, the dialog window for clearing silences no longer expands
to the entire frame.

Sensu now sets event timestamps when you resolve events with sensuctl or in the web UI.

(Commercial feature) The web UI color themes are updated, and the default theme now uses
cyan for elements like the left navigaton menu and breadcrumb navigation text.

(Commercial feature) In the web UI, users now receive a warning message when they try to
add or edit resources on an cluster that is running an older Sensu backend version than the

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/

FIXES

6.5.5 release notes

November 22, 2021 — The latest release of Sensu Go, version 6.5.5, is now available for download.

The Sensu Go 6.5.5 patch release adds two backend confguration options for confguring the API and
web UI HTTP servers’ write timeouts and three new GraphQL duration metrics for the metrics log. This
release also delivers several bug fxes, including fxes for sensu-backend and sensu-agent panics and
failed keepalive lease grant operations.

Read the upgrade guide to upgrade Sensu to version 6.5.5.

IMPROVEMENTS

gateway cluster.

(Commercial feature) The web UI now supports ANSI color codes, which improves check
output readability when it includes color.

(Commercial feature) Added support for sorting for the PostgreSQL event store. In addition,
GraphQL can now use the PostgreSQL event store to sort events and get the total event count.

Logged metrics now include a backend label. This makes it possible to associate metrics from
the metrics log fle with the backend they were generated on.

Sensu no longer applies zero values for etcd confguration options. This prevents overwriting
the etcd-provided default values with null, zero, slice, or empty values.

When sensu-go cannot connect to etcd, the connection error is now logged along with context
errors.

Fixed a bug that could cause sensu-backend to crash if the BackendIDGetter encounters etcd
client unavailability.

Added the api-write-timeout and dashboard-write-timeout backend confguration options.
These
options allow you to confgure the timeout for the respective HTTP servers’ response writes,
which is helpful when requests might take more than a few seconds to complete.

Added graphql_duration_seconds, graphql_duration_seconds_sum, and
graphql_duration_seconds_count to the metrics log. Also added objectives (0.5, 0.9, 0.99) to
the graphql_duration_seconds metric.

Added Prometheus metrics for tracking lease operations, with labels for operation type and

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/commercial/
http://localhost:1313/sensu-go/6.6/observability-pipeline/observe-schedule/backend/#platform-metrics-logging
http://localhost:1313/sensu-go/6.6/observability-pipeline/observe-schedule/backend/#datastore-and-cluster-configuration
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/backend/#api-write-timeout
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/backend/#dashboard-write-timeout
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/backend/#platform-metrics-logging

FIXES

6.5.4 release notes

October 30, 2021 — The latest release of Sensu Go, version 6.5.4, is now available for download.

This patch releases and updates the sensu-go core/api module.

Read the upgrade guide to upgrade Sensu to version 6.5.4.

FIXES

6.5.3 release notes

October 29, 2021 — The latest release of Sensu Go, version 6.5.3, is now available for download.

This patch adds the 6.5.2 metrics to the metrics log, fxes bugs in validation for environment variables
in JavaScript mutators and asset expansion error handling, and vendors the correct version of sensu-
go.

Read the upgrade guide to upgrade Sensu to version 6.5.3.

IMPROVEMENTS

status, and added sensu_go_lease_ops to the metrics log.

Updated the assets, pipeline, and eventd duration metrics added in Sensu Go 6.5.2 to use
milliseconds for consistency with other duration metrics.

Updated the /version API so that responses refect the versions of external etcd clusters based
on the frst available etcd endpoint.

Fixed a bug that could cause sensu-backend and sensu-agent to panic due to concurrent
websocket writes.

Sensu no longer logs an error when one side of a websocket tries to close a previously closed
connection.

Sensu now retries keepalive lease grant operations that fail due to rate limiting.

Released and updated the sensu-go core/api module.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/backend/#platform-metrics-logging

FIXES

6.5.2 release notes

October 28, 2021 — The latest release of Sensu Go, version 6.5.2, is now available for download.

The Sensu Go 6.5.2 patch release adds a number of metrics to provide more information about event
handling and asset fetching and extraction.
In addition, this patch makes operating system environment
variables accessible with JavaScript mutators and omits an extraneous attribute that appeared in web
UI resource data.

Read the upgrade guide to upgrade Sensu to version 6.5.2.

IMPROVEMENTS

Added the Sensu Go 6.5.2 eventd, pipeline, and asset metrics to the metrics log to facilitate
troubleshooting.

(Commercial feature) Vendored the correct version of sensu-go.

Fixed a bug in API validation that rejected JavaScript mutators that use environment variables
available in the environment rather than defned in the mutator env_vars attribute.

Fixed a bug that prevented asset expansion errors from being handled.

For JavaScript mutators, you can now list the names of any environment variables that are
available in your environment (in addition to defning environment variables) in the env_vars
attribute.
This allows you to transform events with metatdata from the Sensu environment, which
is useful for downstream processing and fltering when sending Sensu event data for further
processing.

Added sensu_go_event_handler_duration_sum and sensu_go_event_handler_duration_count
and added status and event_type labels to the sensu_go_event_handler_duration metric.
These updates allow you to determine whether an event was handled successfully.

Added summary metrics for pipelined and pipeline operations to provide insight into how time is
spent when pipelined and a pipeline resource handles an event:

sensu_go_pipelined_message_handler_duration

sensu_go_pipeline_duration

sensu_go_pipeline_resolve_duration

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/backend/#platform-metrics-logging
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-transform/mutators/#env-vars-attribute
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-transform/mutators/#env-vars-attribute

FIXES

6.5.1 release notes

October 20, 2021 — The latest release of Sensu Go, version 6.5.1, is now available for download.

This patch fxes several issues in the web UI and adds Prometheus counters for pipeline workfow
handler processing.

Read the upgrade guide to upgrade Sensu to version 6.5.1.

IMPROVEMENTS

sensu_go_pipeline_flter_duration

sensu_go_pipeline_mutator_duration

sensu_go_pipeline_handler_duration

Added summary metrics for eventd to provide insight into how time is spent when eventd
handles an event:

sensu_go_eventd_create_proxy_entity_duration

sensu_go_eventd_update_event_duration

sensu_go_eventd_bus_publish_duration

sensu_go_eventd_liveness_factory_duration

sensu_go_eventd_switches_alive_duration

sensu_go_eventd_switches_bury_duration

Added two metrics to provide insight into how time is spent when an asset is fetched and
extracted:

sensu_go_asset_fetch_duration

sensu_go_asset_expand_duration

(Commercial feature) Fixes a bug in the web UI that added a __virtual attribute in the
resource data for confguration resources.

Added Prometheus counters for pipeline workfow handler processing:

sensu_go_handler_requests: Number of processed handler requests

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/6.5/web-ui/view-manage-resources/#view-resource-data-in-the-web-ui

FIXES

6.5.0 release notes

October 13, 2021 — The latest release of Sensu Go, version 6.5.0, is now available for download.

This release includes a number of improvements, specifcally exciting new capabilities in the
observability pipeline and a major simplifcation to how “pipelines” are confgured. Sensu Go 6.5.0
introduces a new frst-class Pipeline resource for defning logical pipeline workfows composed of
flters + mutators + handlers. We’re also introducing new streaming handler types: a
TCPStreamHandler with TLS support and a SumoLogicMetricsHandler for seamless integration with
the Sumo Logic Continuous Intelligence platform. Enhancements in the web UI include a completely
overhauled confguration management system (with new views for the Checks, Filters, Handlers, and
Mutators pages) and behind-the-scenes improvements that pave the way for even more new
confguration management capabilities in future releases. Read the full release notes below for all the
details!

Read the upgrade guide to upgrade Sensu to version 6.5.0.

NEW FEATURES:

sensu_go_handler_requests_total: Total number of handler requests invoked

(Commercial feature) Fixed a bug that could result in an error when listing entities with the
PostgreSQL store enabled.

(Commercial feature) In the web UI, fxed an issue with the native date and time picker that
could cause problems when creating silences.

(Commercial feature) In the web UI, fxed a bug that prevented users from editing service
components.

(Commercial feature) In the web UI, fxed the redirect for deleting entities so that it returns
users to the Entities page rather than loading a 404 page for the deleted entity’s details.

(Commercial feature) Added Sensu Plus, a built-in integration you can use to transmit your
Sensu observability data to Sumo Logic via the Sumo Logic HTTP Logs and Metrics Source.

(Commercial feature) Added support for Sumo Logic metrics handlers and TCP stream
handlers. The enterprise/pipeline/v1 API endpoints provide HTTP access for retrieving and
confguring Sumo Logic metrics handlers and TCP stream handlers.

(Commercial feature) You can now view resource data for events, entities, and confguration

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/6.5/sensu-plus/
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-process/sumo-logic-metrics-handlers/
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-process/tcp-stream-handlers/
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-process/tcp-stream-handlers/
http://localhost:1313/sensu-go/6.5/api/core/pipelines/
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/6.5/web-ui/view-manage-resources/#view-resource-data-in-the-web-ui

IMPROVEMENTS:

resources like checks and handlers directly in the web UI.

(Commercial feature) In the web UI, you can execute individual checks on demand either
according to existing subscriptions or on specifc agents by adding and removing subscriptions
without making changes to the saved check subscriptions.

(Commercial feature) Added Prometheus metrics for TCP stream handlers:

sensu_go_tcp_stream_handler_events: Total number of events handled by the TCP
stream handler

sensu_go_tcp_stream_handler_errors: Total number of errors produced by the TCP
stream handler

sensu_go_tcp_stream_handler_latency: Distribution of handler latencies, in
milliseconds, for the TCP stream handler

sensu_go_tcp_stream_handler_connection_acquisition_latency: Distribution of
connection acquisition latencies (how long it takes to acquire a connection from the
connection pool), in milliseconds, within the TCP stream handler

New pipelines resource allows you to specify event flters, mutators, and handlers in a single
workfow instead of listing flters and mutators in handler defnitions. You can reference
pipelines in your check defnitions. The /pipelines API endpoint provides HTTP access for
retrieving pipeline data and confguring pipelines, and you can use sensuctl to manage
pipelines. Upgrade your Sensu agents to Sensu Go 6.5.0 to use pipelines resources.

JavaScript mutators are now available. JavaScript mutators are evaluated by the Otto
JavaScript VM as JavaScript programs, which enables greater throughput at scale than pipe
mutators.

Check defnitions now include the pipelines attribute for specifying pipeline resources to use for
the check’s observability events.

Added platform metrics logging to log core Sensu metrics in InfuxDB Line Protocol format,
along with the disable-platform-metrics , platform-metrics-log-fle , and platform-
metrics-logging-interval backend confguration options for managing the platform metrics
logging feature.

Event logging is no longer a commercial-only feature.

You can now set sensuctl environment variables for a single sensuctl command or with
sensuctl confgure.

Added environment variables SENSU_BACKEND_ETCD_CLIENT_USERNAME and
SENSU_BACKEND_ETCD_CLIENT_PASSWORD for connecting to external etcd via username and

password authentication instead of certifcate authentication. There are no corresponding

http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/6.5/web-ui/view-manage-resources/#execute-checks-on-demand
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-process/pipelines/
http://localhost:1313/sensu-go/6.5/api/enterprise/pipeline/
http://localhost:1313/sensu-go/6.5/api/enterprise/pipeline/
http://localhost:1313/sensu-go/6.5/sensuctl/create-manage-resources/#manage-resources
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-transform/mutators/#javascript-mutators
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/checks/#pipelines-attribute
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/backend/#platform-metrics-logging
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/backend/#event-logging
http://localhost:1313/sensu-go/6.5/sensuctl/environment-variables/#set-environment-variables-for-a-single-command
http://localhost:1313/sensu-go/6.5/sensuctl/environment-variables/#set-environment-variables-with-sensuctl-configure
http://localhost:1313/sensu-go/6.5/operations/deploy-sensu/cluster-sensu/#authenticate-with-username-and-password-for-external-etcd
http://localhost:1313/sensu-go/6.5/operations/deploy-sensu/cluster-sensu/#authenticate-with-username-and-password-for-external-etcd

SECURITY:

FIXES:

6.4.3 release notes

September 1, 2021 — The latest release of Sensu Go, version 6.4.3, is now available for download.

This patch fxes a deadlock in the event log writer.

Read the upgrade guide to upgrade Sensu to version 6.4.3.

FIXES:

command line fags — these confguration options must be set via environment variables.

You can now add an API key when you initialize the backend to make automated cluster setup
and deployment more straightforward.

Events now include the name of the agent that processed the event in the processed_by
attribute to help you determine which agent processed an event executed by a proxy check
request or a POST request to the events API.

Added the ignore-already-initialized backend confguration option, which you can use
to suppress the “already initialized” response and return an exit code 0 if a cluster has already
been initialized.

Upgraded Go version from 1.16.5 to 1.17.1.

Migrated dgrijalva/jwt-go to golang-jwt/jwt to address a vulnerability that would allow attackers
to bypass intended access restrictions in situations. Read CVE-2020-26160 for more
information.

Sensuctl env now properly lists SENSU_API_KEY and SENSU_TIMEOUT as options for
exporting environment variables. In addition, sensuctl command exec now properly adds the
SENSU_API_KEY and SENSU_TIMEOUT variables to the command’s environment.

Fixed a bug that could cause a crash when running the backend on darwin/arm64 and
compressing a wrapped resource.

Fixed a bug that could result in an etcd error if the number of silences in a given transaction
exceeded etcd’s default maximum number of operations per transaction.

(Commercial feature) Fixed a bug that caused a deadlock in the event log writer.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/backend/#add-api-key-for-initialization
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-events/events/#processedby-attribute
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-events/events/#processedby-attribute
http://localhost:1313/sensu-go/6.5/observability-pipeline/observe-schedule/backend/#ignore-already-initialized
https://github.com/dgrijalva/jwt-go
https://github.com/golang-jwt/jwt
https://nvd.nist.gov/vuln/detail/CVE-2020-26160
http://localhost:1313/sensu-go/6.5/sensuctl/environment-variables/#export-environment-variables-with-sensuctl-env
http://localhost:1313/sensu-go/6.4/commercial/
http://localhost:1313/sensu-go/6.4/observability-pipeline/observe-schedule/backend/#event-logging

6.4.2 release notes

August 31, 2021 — The latest release of Sensu Go, version 6.4.2, is now available for download.

This patch adds a backend confguration attribute that allows parallel event log encoding, as well as
two summary metrics for the /metrics API endpoint.

Read the upgrade guide to upgrade Sensu to version 6.4.2.

FIXES:

IMPROVEMENTS:

6.4.1 release notes

August 25, 2021 — The latest release of Sensu Go, version 6.4.1, is now available for download.

This patch includes fxes that improve forward- and backward-compatibility for backends and prevent
sensuctl cluster member-list crashes, as well as changes to the default log levels for webd, the

API, and the sensu-agent.

Read the upgrade guide to upgrade Sensu to version 6.4.1.

FIXES:

(Commercial feature) Added the event-log-parallel-encoders backend confguration
attribute, which allows you to indicate whether Sensu should use parallel JSON encoders for
event logging instead of the default (a single JSON encoding worker). This fxes a bottleneck in
the event logging feature.

Added sensu_go_agentd_event_bytes and sensu_go_store_event_bytes summary metrics to
the /metrics API endpoint. sensu_go_agentd_event_bytes tracks the sizes of events, in bytes,
received by agentd on the backend. sensu_go_store_event_bytes tracks event sizes, in bytes,
received by the etcd store on the backend.

(Commercial feature) For LDAP confgurations, the allowed_groups attribute is omitted if not
populated.
This change improves backend reliability with older versions of federation and
sensuctl.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.4/commercial/
http://localhost:1313/sensu-go/6.4/observability-pipeline/observe-schedule/backend/#event-log-parallel-encoders
http://localhost:1313/sensu-go/6.4/api/other/metrics/
http://localhost:1313/sensu-go/6.4/commercial/

IMPROVEMENTS:

6.4.0 release notes

June 28, 2021 — The latest release of Sensu Go, version 6.4.0, is now available for download.

The latest release of Sensu Go, version 6.4.0, is now available for download. This release includes a
number of feature improvements and important bug fxes. We upgraded the embedded etcd from
version 3.3 to 3.5 for improved stability and security. The sensu-backend init command now
supports a wait fag, which indicates that the backend should repeatedly try to establish a
connection to etcd until it is successful – fantastic news for Kubernetes users who want to bootstrap
new Sensu Go clusters with external etcd! Check timeout also now works properly on Windows hosts:
the Sensu Go agent can terminate check sub-processes on check execution timeout. This release
fxes a bug that prevented deregistration events from working. There’s something for everyone in this
release!

Read the upgrade guide to upgrade Sensu to version 6.4.0.

NEW FEATURES:

Fixed a bug to prevent sensuctl cluster member-list crashes when the etcd response
header is nil.

Fixed a sensu-backend init regression that returned exit status 0 if the store was already
initialized.

Sensu Go OSS can now be built on darwin/arm64.

(Commercial feature) The default webd log level is now warn .

The default log level for the Sensu API and sensu-agent is now warn (instead of info).

The sensu-backend now reports when it is ready to process events at the warn level.

You can now create resources with felds that are unknown to Sensu.
This change improves
forward-compatibility with newer Sensu backends.

(Commercial feature) In the web UI, the system information modal now includes license
expiration information, accessed via the CTRL . keyboard shortcut, for users with the
appropriate permissions.

(Commercial feature) Added page-specifc confguration options and a custom sign-in message
attribute for the web UI.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.4/commercial/
http://localhost:1313/sensu-go/6.4/observability-pipeline/observe-schedule/agent/#log-level
http://localhost:1313/sensu-go/6.4/commercial/
http://localhost:1313/sensu-go/6.4/commercial/
http://localhost:1313/sensu-go/6.4/web-ui/webconfig-reference/#page-preferences-attributes
http://localhost:1313/sensu-go/6.4/web-ui/webconfig-reference/#sign-in-message
http://localhost:1313/sensu-go/6.4/web-ui/webconfig-reference/#sign-in-message

IMPROVEMENTS:

FIXES:

6.3.0 release notes

May 26, 2021 — The latest release of Sensu Go, version 6.3.0, is now available for download.

Added binary-only distribution for macOS arm64.

Added etcd-log-level backend confguration option for setting the log level for the embedded
etcd server.

Added wait fag for the sensu-backend init command, which indicates the backend
should repeatedly try to establish a connection to etcd until it is successful.

The timeout fag for sensu-backend init is now treated as a duration instead of seconds
(example duration format is 10s for 10 seconds or 5m for 5 minutes).
Values less than 1
second and integer values will be interpreted as seconds.

Added sensu_go_keepalives Prometheus metric to count keepalive statuses over time and
help identify instability due to keepalive failure.

Upgraded Go version from 1.13.15 to 1.16.5 .

Upgraded etcd version from 3.3.22 to 3.5.0 .
As a result, 6.4.0 is not backward-
compatible with previous Sensu versions.
Read the upgrade instructions for details about
creating a full etcd database backup before you upgrade to Sensu Go 6.4.0.
Also, in etcd 3.5,
some Prometheus metric names changed.
Read the etcd documentation for details.

(Commercial feature) Selector statements that begin with quotes no longer cause an error if
they follow the && operator.

(Commercial feature) Fixed a bug that allowed PostgresConfg resources to include a
namespace attribute.
Also, invalid PostgresConfg resources can no longer be created.

Fixed a bug that resulted in OK keepalive status after shutting down the agent.

Fixed a bug in role-based access control (RBAC) that caused incorrect HTTP API statuses and
web UI crashes when role bindings referred to missing roles.
The API now returns status 403

with a message to explain that the referenced role is missing.

Fixed a bug that prevented deregistration events from validating due to empty
event.check.subscriptions arrays.

Fixed a bug that caused Windows agents to handle command timeouts improperly.

http://localhost:1313/sensu-go/6.4/platforms/#macos
http://localhost:1313/sensu-go/6.4/observability-pipeline/observe-schedule/backend/#etcd-log-level
http://localhost:1313/sensu-go/6.4/observability-pipeline/observe-schedule/backend/#initialization-timeout-and-wait-flags
http://localhost:1313/sensu-go/6.4/observability-pipeline/observe-schedule/backend/#initialization-timeout-and-wait-flags
http://localhost:1313/sensu-go/6.4/operations/maintain-sensu/upgrade/#upgrade-to-sensu-go-640-from-any-previous-version
https://etcd.io/docs/v3.5/metrics/etcd-metrics-latest.txt
http://localhost:1313/sensu-go/6.4/commercial/
http://localhost:1313/sensu-go/6.4/commercial/

This release includes several new features, enhancements, bug fxes, and usability improvements.
Construct a top-level business service-centric view for distributed infrastructure and applications with a
preview of Business Service Monitoring! Rate-limit Sensu Go agent transport connections without
using a separate load balancer. Use an API key to authenticate sensuctl, which is handy when
automating Sensu Go confguration (for example CI pipelines) and other actions (like ad hoc check
execution requests). The 6.3.0 release also improves the PostgreSQL store batching capabilities,
raising the event processing throughput ceiling for most deployments. Check out the release notes
below for more details — there’s so much to love about this release!

Read the upgrade guide to upgrade Sensu to version 6.3.0.

NEW FEATURES:

IMPROVEMENTS:

(Commercial feature) Added business service monitoring (BSM) to provide high-level visibility
into the current health of any number of business services, with a built-in aggregate check rule
template.

(Commercial feature) Added support for agent transport rate limiting via agent-burst-limit

and agent-rate-limit backend confguration options.

(Commercial feature) Added the event-log-buffer-wait backend confguration option,
which allows you to specify how long the event logger will wait for the writer to consume events
from the buffer when the buffer is full.

Added the entity class service, which represents a business service for the business service
monitoring (BSM) feature.

(Commercial feature) The agent transport health API endpoint repsonse now includes
PostgreSQL health information.

(Commercial feature) Added the poll_interval default preferences attribute to the
GlobalConfg resource so administrators can adjust how often the web UI pages poll for new

data.

(Commercial feature) In the web UI, some form felds now include examples of valid values.

Added the --api-key global fag for sensuctl commands. Use this fag with sensuctl
commands to bypass username/password authentication.

Logs for JavaScript flter evaluation errors now include more context.

Concatenated YAML fles now support carriage return and line feed (CRLF).

Removed extraneous shell auto-completion suggestions for sensuctl.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/business-service-monitoring/
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/rule-templates/#built-in-rule-template-aggregate
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/rule-templates/#built-in-rule-template-aggregate
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/backend/#agent-burst-limit
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/backend/#agent-rate-limit
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-entities/#service-entities
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/api/other/health/#get-health-data-for-your-agent-transport
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/web-ui/webconfig-reference/#default-preferences-attributes
http://localhost:1313/sensu-go/6.3/web-ui/webconfig-reference/#default-preferences-attributes
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/sensuctl/#global-flags

FIXES:

6.2.7 release notes

April 1, 2021 — The latest release of Sensu Go, version 6.2.7, is now available for download.

This patch includes fxes for potential deadlocks in metricsd and agentd and crashes in the scheduler
and tessend as well as for a bug that calculated build information for every keepalive.

Read the upgrade guide to upgrade Sensu to version 6.2.7.

FIXES:

6.2.6 release notes

March 25, 2021 — The latest release of Sensu Go, version 6.2.6, is now available for download.

(Commercial feature) Migrated the PostgreSQL event store from github.com/lib/pq to
github.com/jackc/pgx so that PostgreSQL batching works properly.

(Commercial feature) In the web UI, error messages are now visible in dark mode.

Fixed a bug that could cause the scheduler to crash when using round robin checks.

Fixed a bug that calculated build information for every keepalive in OSS builds.

SIGHUP no longer triggers an internal restart.

(Commercial feature) Fixed a potential deadlock in metricsd that could occur when performing
an
internal restart.

Fixed a potential deadlock in agentd due to the unit test timing out in the build pipeline.

Fixed a bug that could cause the scheduler to crash when using round robin checks.

Fixed a bug that calculated build information for every keepalive in OSS builds.

Fixed a potential crash in tessend that could occur if the ringv2.Event.Value has a zero
length.

Fixed a bug that allowed some etcd watchers to try to process watch events that contain invalid
pointers.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.2/commercial/

This patch fxes a bug that allowed PostgreSQL round robin scheduling to use a separate PostgreSQL
connection for each subscription and improves the validation for POST/PUT requests for enterprise
API endpoints.

Read the upgrade guide to upgrade Sensu to version 6.2.6.

FIXES:

6.2.5 release notes

February 2, 2021 — The latest release of Sensu Go, version 6.2.5, is now available for download.

This patch fxes a bug regarding the event occurrences_watermark property.
This bug interfered with
the property’s expected behavior when using event flters like the popular fatigue check flter.

Read the upgrade guide to upgrade Sensu to version 6.2.5.

FIXES:

6.2.4 release notes

January 28, 2021 — The latest release of Sensu Go, version 6.2.4, is now available for download.

This patch fxes a bug that prevented federation/v1.Cluster from appearing in the response for
sensuctl describe-type all and resolves a web UI performance issue for PostgreSQL users.

Read the upgrade guide to upgrade Sensu to version 6.2.4.

(Commercial feature) Fixed a bug that allowed PostgreSQL round robin scheduling to use a
separate PostgreSQL connection for each subscription. PostgreSQL round robin scheduling
now uses exactly one extra PostgreSQL connection.

(Commercial feature) Improved the validation for POST/PUT requests for enterprise API
endpoints. Sensu now checks the type and namespace in the request body against the type
and namespace in the request URL.

(Commercial feature) Fixed a bug that prevented occurrences_watermark from incrementing
for non-zero events when using the PostgreSQL datastore.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/

FIXES:

6.2.3 release notes

January 21, 2021 — The latest release of Sensu Go, version 6.2.3, is now available for download.

This patch fxes two bugs: one that could prevent the agent-managed-entity confguration option
from working properly and one that caused sensuctl dump output to include events from all
namepaces rather than the specifed namespace.

Read the upgrade guide to upgrade Sensu to version 6.2.3.

FIXES:

6.2.2 release notes

January 14, 2021 — The latest release of Sensu Go, version 6.2.2, is now available for download.

This patch fxes bugs that prevented PostgreSQL round robin scheduling from working properly.

Read the upgrade guide to upgrade Sensu to version 6.2.2.

FIXES:

(Commercial feature) federation/v1.Cluster now appears in the sensuctl describe-
type all response.

(Commercial feature) Fixed a performance issue that affected the web UI when using the
PostgreSQL datastore.

Fixed a bug that prevented the agent-managed-entity confguration attribute from working
properly when no labels are defned.

Fixed a bug where sensuctl dump output included events from all namespaces the user had
access permissions for rather than events from only the specifed namespace.

(Commercial feature) Fixed a bug that could improperly enable PostgreSQL round robin
scheduling after creating a PostgreSQL confguration.

(Commercial feature) Fixed a bug that prevented PostgreSQL round robin scheduling if the

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/agent/#agent-managed-entity
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/

6.2.1 release notes

January 11, 2021 — The latest release of Sensu Go, version 6.2.1, is now available for download.

This patch fxes bugs that could prevent users from enabling PostgreSQL after upgrading from 5.x or
confguring agent labels and annotations with fags. In addition, sensuctl prune hook and
sensuctl prune check now work as expected and users can no longer edit agent-managed entities

in the web UI.

Read the upgrade guide to upgrade Sensu to version 6.2.1.

FIXES:

6.2.0 release notes

December 17, 2020 — The latest release of Sensu Go, version 6.2.0, is now available for download.

The latest release of Sensu Go, version 6.2.0, is now available for download! Sensu Go 5.x and
confguration management users rejoice: this release adds support for agent local confguration (that
is, agent.yml) managed entities! Agent entities may now be managed exclusively by their agents when
sensu-agent is started with the new agent-managed-entity confguration option. This makes it

more straightforward to migrate from Sensu Go 5.x to 6.x, as existing agent entity management
workfows like Puppet will just work with the new option enabled! Note that you will not be able to edit

namespace and check names were more than 63 characters long, combined.

(Commercial feature) Fixed a bug that prevented users from enabling PostgreSQL as the event
store after upgrading from 5.x.

(Commercial feature) The sensuctl prune hook and sensuctl prune check
subcommands now work as expected.

(Commercial feature) In the web UI, fxed a bug that allowed users to edit Sensu agent-
managed entities.

Fixed a bug that generated a small amount of extra etcd or PostgreSQL traffc upon keepalive
failure.

In silenced entries, the expire feld now represents the confgured number of seconds until
the entry should be deleted rather than the entry’s remaining duration.

Labels and annotations are now confguration options for sensu-agent.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-entities/entities/#manage-agent-entities-via-the-agent
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-entities/entities/#manage-agent-entities-via-the-agent
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/agent/#agent-configuration-options

agent-managed entities via the backend REST API or web UI.

Sensu Go 6.2.0 includes signifcant feature enhancements such as PostgreSQL backend round robin
check scheduling for increased reliability and consistency, an updated format for silenced entry dates
and durations in sensuctl tabular-format output, and a /health API endpoint for agent WebSocket
transport status. This release delivers important bug fxes like consistently using event_id in logs
and eliminating the sensuctl error when Vault provider SSL certifcates do not exist on the local
system. Also, enterprise/prune/v1alpha no longer requires cluster-wide permissions; users with limited
permissions can put it to use in their namespaces!

Read the upgrade guide to upgrade Sensu to version 6.2.0.

NEW FEATURES:

IMPROVEMENTS:

(Commercial feature) Added support for the memberof attribute for the LDAP authentication
provider.

(Commercial feature) Added the ability to exclude resource types when using sensuctl prune
with the –omit fag.

(Commercial feature) Added support for round robin scheduling on PostgreSQL instead of
etcd.

(Commercial feature) Added support for OIDC authentication via sensuctl confgure.

Entities may now be managed exclusively by their agents when sensu-agent is started with the
agent-managed-entity confguration attribute.

The /metrics API endpoint now exposes build information as a Prometheus metric.

Added /health API endpoint to agent WebSocket transport.

Checks now include the scheduler attribute, which Sensu automatically populates with the
type of scheduler that schedules the check.

Events now include the sequence attribute, which the Sensu agent automatically sets at
startup and increments by 1 at every successive check execution or keepalive event.

Added support for using environment variables to defne the confguration fle paths for the
Sensu agent (SENSU_CONFIG_FILE) and backend (SENSU_BACKEND_CONFIG_FILE).

(Commercial feature) Refactored entity limiter to ensure that warning messages about
approaching a license’s entity or entity class limit are now only displayed for users with
create or update permissions for the license.

(Commercial feature) The [enterprise/prune/v1alpha API] endpoints194 and the sensuctl

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/operations/control-access/ldap-auth/
http://localhost:1313/sensu-go/6.2/operations/control-access/ldap-auth/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/sensuctl/create-manage-resources/#sensuctl-prune-flags
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/operations/deploy-sensu/datastore/#round-robin-postgresql
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/sensuctl/#first-time-setup-and-authentication
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-entities/entities/#manage-agent-entities-via-the-agent
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/agent/#agent-managed-entity
http://localhost:1313/sensu-go/6.2/api/other/metrics/
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/checks/#scheduler-attribute
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/checks/#scheduler-attribute
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-events/events/#sequence-attribute
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-events/events/#sequence-attribute
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/api/enterprise/prune/
http://localhost:1313/sensu-go/6.2/sensuctl/create-manage-resources/#prune-resources

FIXES:

6.1.4 release notes

December 16, 2020 — The latest release of Sensu Go, version 6.1.4, is now available for download.

This patch fxes a bug that could cause a crash in the backend API, addresses a case where agents
do not honor HTTP proxy environment variables, and improves the error message reported by the
agent when asset checksums do not match expectations.

Read the upgrade guide to upgrade Sensu to version 6.1.4.

FIXES:

interface now require less-broad permissions.

Adjusted the format for silenced entry dates and durations in sensuctl tabular-format output.
For all silenced entries, the begin date is now listed in RFC 3339 format. For silenced entries
that have not begun, the list displays the expiration date in RFC 3339 format. For silenced
entires with no expiration date, the list displays -1 . For silenced entries that have begun, the
list displays the duration (for example, 1m30s).

Sensuctl and sensu-backend now ask users to retype their passwords when creating a new
password in interactive mode.

(Commercial feature) Sensuctl no longer produces an error when SSL certifcates for the Vault
provider do not exist on the local system.

Logs now consistently use event_id rather than event_uuid .

Sensuctl commands that only contain subcommands now exit with status code 46 when no
arguments or incorrect arguments are given.

The sensuctl dump command now includes a description.

Sensuctl command descriptions now have consistent capitalization.

Use of the confg-fle fag is no longer order-dependent.

Fixed a bug that could cause a panic in the backend core/v2/entities API.

The agent asset fetching mechanism now respects HTTP proxy environment variables when
trusted-ca-fle is confgured.

When an asset artifact retrieved by the agent does not match the expected checksum, the

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/sensuctl/create-manage-resources/#prune-resources
http://localhost:1313/sensu-go/6.2/commercial/

6.1.3 release notes

November 9, 2020 — The latest release of Sensu Go, version 6.1.3, is now available for download.

This patch fxes a bug that caused event updates to fail with an error about a null value in the
occurrences column.
This bug only affects Sensu instances that use PostgreSQL as the event store.

Read the upgrade guide to upgrade Sensu to version 6.1.3.

FIXES:

6.1.2 release notes

October 28, 2020 — The latest release of Sensu Go, version 6.1.2, is now available for download.

This patch release resolves a backend and agent crash related to JavaScript execution.

Read the upgrade guide to upgrade Sensu to version 6.1.2.

FIXES:

6.1.1 release notes

October 22, 2020 — The latest release of Sensu Go, version 6.1.1, is now available for download.

This patch release includes a number of bug fxes that affect proper hook handling with sensuctl

prune and sensuctl dump , entity creation via sensuctl create , form validation for subscription
names in the web UI, and permissions for PATCH requests, among other fxes.

logged error now includes the size of the retrieved artifact and more clearly identifes the
expected and actual checksums.

(Commercial feature) For instances that use PostgreSQL as the event store, fxed a bug that
caused event updates to fail with an error message about a null value in the occurrences
column.

Fixed a bug related to JavaScript execution that could cause a crash in the backend and agent.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.1/commercial/

Read the upgrade guide to upgrade Sensu to version 6.1.1.

FIXES:

6.1.0 release notes

October 5, 2020 — The latest release of Sensu Go, version 6.1.0, is now available for download.

This release delivers signifcant performance and stability gains, feature enhancements, and several
bug fxes. The web UI is now much snappier, and its search is redesigned with an improved syntax
and suggestions! Monitor even more services and infrastructure when using the PostgreSQL store:
batched Sensu event writes and improved indexing allows a single Sensu Go deployment to process
and query more data than ever before. If you’re using Prometheus client libraries to instrument your
applications, the Sensu Go agent can now scrape and enrich those metrics! And if you’re collecting
metrics in other formats like Nagios PerfData, you can use the new output metric tags feature to enrich
those metrics too! The sensuctl prune command also received some love, and it now loads and prunes
confguration resources from multiple fles!

Read the upgrade guide to upgrade Sensu to version 6.1.0.

(Commercial feature) sensuctl prune now properly handles hooks when pruning resources.

(Commercial feature) Fixed a bug that returned incorrect != results for label selectors when
no labels were defned.

(Commercial feature) In the web UI, fxed a bug that could cause a GraphQL no claims error
when a user’s access token was no longer valid instead of displaying the sign-out dialog
window.

(Commercial feature) In the web UI, form validation for subscription names now matches
allowed values.

Fixed a bug that prevented sensu-agent from shutting down correctly.

Entities are now properly created using sensuctl create .

Per-entity subscriptions now persist with PATCH requests.

Any user with update permissions for a resource can now make PATCH requests for that
resource.

HookConfg can now be exported via sensuctl dump . Also, sensuctl dump now properly
logs API errors.

eventd errors now include additional context for debugging.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/sensuctl/create-manage-resources/#prune-resources
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/control-access/rbac/#rule-attributes
http://localhost:1313/sensu-go/6.1/operations/control-access/rbac/#rule-attributes
http://localhost:1313/sensu-go/6.1/sensuctl/back-up-recover/

NEW FEATURES:

IMPROVEMENTS:

(Commercial feature) Added support for custom secrets engine paths in Vault secrets.

(Commercial feature) In the web UI, added new search functionality, with improved syntax and
suggestions.

(Commercial feature) Added strict attribute to the PostgresConfg type to help debug
incorrect confgurations and database permissions.

(Commercial feature) Added batch_buffer , batch_size , and batch_workers attributes
to the PostgresConfg type so operators can optimize PostgreSQL latency and throughput.

(Commercial feature) Added TLS confguration to the cluster resource so you can specify
additional CA certifcates and insecure mode.

(Commercial feature) Added a types query parameter for listing authentication providers and
secrets providers via the API.

(Commercial feature) Added the Sensu SaltStack Enterprise Handler for launching
SaltStack
Enterprise Jobs for automated remediation.

(Commercial feature) The Alpine-based Docker image now has multi-architecture support with
support for the linux/386, linux/amd64, linux/arm64, linux/arm/v6, linux/arm/v7, linux/ppc64le,
and linux/s390x platforms.

The backend confguration option api-request-limit is now available to confgure the
maximum API request body size (in bytes).

In the REST API, most confguration resources now support the PATCH method for making
updates.

Added new handler and check plugins: Sensu Go Elasticsearch Handler, Sensu Rundeck
Handler, and Sensu Kubernetes Events Check.

(Commercial feature) Improved logging for OIDC authentication providers. Also added
disable_offine_access OIDC spec attribute, which provides a workaround for authorization

servers that do not support the offine_access scope.

(Commercial feature) Added indexed feld and label selectors to the PostgreSQL event store to
improve performance for PostgreSQL event store queries with feld and label selectors.

Added Prometheus transformer for extracting metrics from check output using the Prometheus
Exposition Text Format.

Added the output_metric_tags attribute for checks so you can apply custom tags to enrich

http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/manage-secrets/secrets-management/#use-hashicorp-vault-for-secrets-management
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/web-ui/search/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#strict-attribute
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#strict-attribute
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/api/enterprise/authproviders/#authproviders-get-specification
http://localhost:1313/sensu-go/6.1/api/enterprise/secrets/#providers-get-specification
http://localhost:1313/sensu-go/6.1/commercial/
https://bonsai.sensu.io/assets/sensu/sensu-saltstack-handler
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/observability-pipeline/observe-schedule/backend/#api-request-limit
http://localhost:1313/sensu-go/6.1/api/
https://bonsai.sensu.io/assets/sensu/sensu-elasticsearch-handler
https://bonsai.sensu.io/assets/sensu/sensu-rundeck-handler
https://bonsai.sensu.io/assets/sensu/sensu-rundeck-handler
https://bonsai.sensu.io/assets/sensu/sensu-kubernetes-events
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/control-access/oidc-auth/#oidc-spec-attributes
http://localhost:1313/sensu-go/6.1/operations/control-access/oidc-auth/#oidc-spec-attributes
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/observability-pipeline/observe-schedule/checks#output-metric-tags
http://localhost:1313/sensu-go/6.1/observability-pipeline/observe-schedule/checks#output-metric-tags

FIXES:

6.0.0 release notes

August 10, 2020 — The latest release of Sensu Go, version 6.0.0, is now available for download.

metric points produced by check output metric extraction.

A warning is now logged when you request a dynamic runtime asset that does not exist.

The trusted CA fle is now used for agent, backend, and sensuctl asset retrieval.

Per-entity subscriptions (such as entity:entityName) are always available for agent entities,
even you remove subscriptions via the core/v2/entities API endpoints.

Updated the Sensu TimescaleDB Handler to write tags as a JSON object instead of an array of
objects, which facilitates tags queries.

Updated the Sensu Go Data Source for Grafana plugin to support using API keys, fetching
resources from all namespaces, using Sensu’s built-in resposne fltering, grouping aggregation
results by attribute, and number of other improvements.

(Commercial feature) Fixed a bug in sensuctl dump that allowed polymorphic resources
(e.g., secrets providers and authentication providers) to dump other providers of the same type.

(Commercial feature) Check output is no longer truncated in the event log fle when the max
output size is set and the PostgreSQL event store is enabled.

(Commercial feature) Sensuctl prune now handles multi-fle/multi-url input correctly.

(Commercial feature) Fixed a bug where PostgreSQL errors could cause the backend to panic.

(Commercial feature) Fixed a bug where PostgreSQL would refuse to store event with a
negative check status.

The backend will no longer start if the web UI TLS confguration is not fully specifed.

The agent entity is now included in data passed to the stdin for the command process.

Improved check scheduling to prevent stale proxy entity data when using cron or round robin
schedulers.

Fixed a bug that resulted in incorrect entity listings for agent entities created via the API instead
of sensu-agent.

When downloading assets, Sensu now closes the response body after reading from it.

Fixed a crash in the backend and agent related to JavaScript execution.

https://bonsai.sensu.io/assets/sensu/sensu-timescaledb-handler
https://github.com/sensu/grafana-sensu-go-datasource
https://github.com/sensu/grafana-sensu-go-datasource/releases/tag/1.1.0
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/

With Sensu Go 6.0.0, you can control everything through the API. You can still use confguration
management tools to bootstrap agent entities, but you don’t need to! Our new agent entity
management feature via the backend confguration API nearly eliminates the need for external (or out-
of-band) confguration management for Sensu, which allows you to manage agent entity subscriptions
and automate the discovery of system facts without updating agent local confguration fles. Run a
sensuctl command, click a button in the web UI, or execute a custom check plugin!

Read the upgrade guide to upgrade Sensu to version 6.0.0.

BREAKING CHANGES FOR SENSU 6.0:

NEW FEATURES:

The database schema for entities has changed.
As a result, after you complete the steps to
upgrade to Sensu 6.0 (including running the sensu-backend upgrade command), you will not
be able to use your database with older versions of Sensu.

For Sensu Go instances built from source, the web UI is now a standalone product — it is no
longer included with the Sensu backend.
Visit the Sensu Go Web repository for more
information.

After initial creation, you cannot change your sensu-agent entity confguration by modifying
the agent’s confguration fle.

(Commercial feature) Sensu now logs a warning when secrets cannot be sent to an agent
because mTLS is not enabled.

(Commercial feature) Added JavaScript functions sensu.EventStatus , sensu.FetchEvent ,
and sensu.ListEvents to the flter execution environment so you can now query the Sensu
event store for other events within the flter namespace.

(Commercial feature) Docker-only Sensu now binds to the hostname of containers instead of
localhost . Docker images now set their own default values for environment variables
SENSU_AGENT_API_URL , SENSU_BACKEND_API_URL ,
SENSU_BACKEND_ETCD_INITIAL_CLUSTER , SENSU_BACKEND_ETCD_ADVERTISE_CLUSTER ,
SENSU_BACKEND_ETCD_INITIAL_ADVERTISE_PEER_URLS ,
SENSU_BACKEND_ETCD_LISTEN_CLIENT_URLS , and ETCD_LISTEN_PEER_URLS .

(Commercial feature) Added Linux packages for 386; armv5, armv6, and armv7; MIPS hard
foat, MIPS LE hard foat, and MIPS 64 LE hard foat; ppc64le; and s390x architectures.
Review
the supported platforms page for a complete list of Sensu’s supported platforms.

(Commercial feature) Added Sensu query expression sensu.CheckDependencies .

Added binary-only distributions for FreeBSD armv5 , armv6 , and armv7 and Linux
ppc64le and s390x .

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.0/operations/maintain-sensu/upgrade/#upgrade-to-sensu-go-60-from-a-5x-deployment
http://localhost:1313/sensu-go/6.0/platforms/#build-from-source
https://github.com/sensu/web
https://github.com/sensu/web
http://localhost:1313/sensu-go/6.0/observability-pipeline/observe-entities/entities/#create-and-manage-agent-entities
http://localhost:1313/sensu-go/6.0/observability-pipeline/observe-entities/entities/#create-and-manage-agent-entities
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/observability-pipeline/observe-filter/filters/#build-event-filter-expressions-with-javascript-execution-functions
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/platforms/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/observability-pipeline/observe-filter/sensu-query-expressions/#sensucheckdependencies
http://localhost:1313/sensu-go/6.0/platforms/#build-from-source

IMPROVEMENTS:

FIXES:

Added the is_silenced Boolean attribute to the event.Check object to indicate whether the
event was silenced at the time it was processed.

(Commercial feature) Added support for the memberOf attribute in Active Directory (AD).

(Commercial feature) Added more descriptive information for errors in the federated web UI.

The dead and handleUpdate methods in keepalived now use EntityConfg and
EntityState respectively.

The dead() and createProxyEntity() methods in eventd now use corev3.EntityConfg
and corev3.EntityState .

Agent entity updates now ignore state-related felds.

You can now manage Sensu agent confguration via the HTTP API.

For sysvinit services, Sensu now passes users’ secondary groups (that is, groups other than
the Sensu user group) to chroot , which gives the Sensu agent and backend access to the
fle access writes that are granted to the secondary groups.

Output of sensuctl asset add now includes help for using the runtime asset.

For role bindings and cluster role bindings, subjects.name values can now include unicode
characters, and roleRef.type and subjects.type values are now automatically
capitalized.

Improved logging for the agent WebSocket connection.

Improved the wording of the secret provider error message.

Fewer keys in etcd are now stored for agents.

Keepalive and round robin scheduling leases are now dealt with more effciently.

Upgraded Go version from 1.13.7 to 1.13.15.

Upgraded etcd version from 3.3.17 to 3.3.22.

(Commercial feature) Label selectors now work as expected with multiple requirements for
events.

(Commercial feature) Fixed an issue that prevented broken secrets providers from surfacing
their errors.

(Commercial feature) Fixed a bug for PostgreSQL datastores that could prevent GraphQL from
retrieving all pages when fetching events in a namespace with more than 1000 total events,

http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/operations/control-access/rbac/#subjects-specification
http://localhost:1313/sensu-go/6.0/operations/control-access/rbac/#roleref-specification
http://localhost:1313/sensu-go/6.0/operations/control-access/rbac/#subjects-specification
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/

5.21.5 release notes

March 25, 2021 — The latest release of Sensu Go, version 5.21.5, is now available for download.

The Sensu 5.21.5 patch release improves the validation for POST/PUT requests for enterprise API
endpoints.

Read the upgrade guide to upgrade Sensu to version 5.21.5.

FIXES:

5.21.4 release notes

March 9, 2021 — The latest release of Sensu Go, version 5.21.4, is now available for download.

resulting in an unexpected error.

(Commercial feature) Fixed a bug that could cause the backend to panic in case of
PostgreSQL errors.

Sensu now logs and returns and error if it cannot fnd a mutator.

Errors produced in the agent by assets, check validation, token substitution, and event
unmarshaling are logged once again.

The User-Agent header is now set only upon on new client creation rather than upon each
request.

When the Sensu agent cannot parse the proper CA certifcate path, Sensu logs this in the error
message.

Fixed a bug where highly concurrent event fltering could result in a panic.

Fixed a bug where nil labels or annotations in an event fltering context would require you to
explicitly check whether the annotations or labels are undefned.
With this fx, labels and
annotations are always defned (although they may be empty).

Fixed the log entry feld for the check’s name in schedulerd.

(Commercial feature) Improved the validation for POST/PUT requests for enterprise API
endpoints. Sensu now checks the type and namespace in the request body against the type
and namespace in the request URL.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/5.21/commercial/

This patch release fxes a bug that caused the SIGHUP signal to restart the sensu-backend.

Read the upgrade guide to upgrade Sensu to version 5.21.4.

FIXES:

5.21.3 release notes

October 14, 2020 — The latest release of Sensu Go 5, version 5.21.3, is now available for download.

This patch release includes a few fxes to improve stability and correctness.

Read the upgrade guide to upgrade Sensu to version 5.21.3.

FIXES:

5.21.2 release notes

August 31, 2020 — The latest release of Sensu Go, version 5.21.2, is now available for download.

This patch release includes two fxes: one for PostgreSQL errors that could cause the backend to
panic and one to ensure that failed check events are written to the event log fle.

Read the upgrade guide to upgrade Sensu to version 5.21.2.

FIXES:

Fixed a bug that caused the SIGHUP signal used for log rotation to restart the sensu-backend.

Fixed a bug where HTTP connections could be left open after downloading assets.

Fixed a bug where event flter or asset flter execution could cause a crash.

(Commercial feature) Fixed a bug where PostgreSQL would refuse to store event with a
negative check status.

(Commercial feature) Fixed a bug where PostgreSQL errors could cause the backend to panic.

Failed check events are now written to the event log fle.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/backend/#log-rotation
http://localhost:1313/sensu-go/5.21/commercial/
http://localhost:1313/sensu-go/5.21/commercial/

5.21.1 release notes

August 5, 2020 — The latest release of Sensu Go, version 5.21.1, is now available for download.

This patch release includes fxes for a web UI crash when interacting with namespaces that contain
1000 or more events and regressions in logging various agent errors as well as an enhancement that
provides additional context to WebSocket connection errors logged by the backend.

Read the upgrade guide to upgrade Sensu to version 5.21.1.

IMPROVEMENTS:

FIXES:

5.21.0 release notes

June 15, 2020 — The latest release of Sensu Go, version 5.21.0, is now available for download.

The latest release of Sensu Go, version 5.21.0, is now available for download! This release delivers
several enhancements and fxes. The most signifcant enhancements involve user management: you
can now generate a password hash, specify the resulting hash in your user defnitions without having
to store cleartext passwords, and create and update these users using sensuctl create . You can
also reset user passwords via the backend API. We also tuned Sensu Go agent logging and changed
the default log level from warning to info. Plus, we crushed a number of nasty bugs: checks confgured
with missing hooks can no longer crash the agent, proxy check request errors do not block scheduling
for other entities, and more!

Read the upgrade guide to upgrade Sensu to version 5.21.0.

NEW FEATURES:

Backend log messages related to connection errors on the agent WebSocket API now provide
more context about the error.

Fixed a potential web UI crash when fetching events in namespace with 1000 or more events.

Fixed a regression that prevented errors produced in the agent by assets, check validation,
token substitution, or event unmarshaling from being logged.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

IMPROVEMENTS:

FIXES:

5.20.2 release notes

May 26, 2020 — The latest release of Sensu Go, version 5.20.2, is now available for download.

This patch release adds username to the API request log to help operators with troubleshooting and
user activity reporting, as well as validation for subjects in role-based access control (RBAC) role
binding and cluster role binding.
Release 5.20.2 also temporarily disables process discovery so we can
investigate and resolve its performance impact on the backend (increased CPU and memory usage).

Read the upgrade guide to upgrade Sensu to version 5.20.2.

NEW FEATURES:

(Commercial feature) Added entity count and limit for each entity class in the tabular title in the
response for sensuctl license info (in addition to the total entity count and limit).

(Commercial feature) Added Linux amd64 OpenSSL-linked binaries for the Sensu agent and
backend, with accompanying require-fps and require-openssl confguration options for
the agent and backend.

Added sensuctl user hash-password command to generate password hashes.

Added the ability to reset passwords via the backend API and sensuctl user reset-

password .

Changed the default log level for sensu-agent to info (instead of warn).

The password verifcation logic when running sensuctl user change-password is now
included in the backend API rather than sensuctl.

Errors in publishing proxy check requests no longer block scheduling for other entities.

Using the --chunk-size fag when listing namespaces in sensuctl now works properly.

The agent no longer immediately exits in certain scenarios when components are disabled.

Fixed a bug that could cause a GraphQL query to fail when querying a namespace that
contained event data in excess of 2 GB.

The API request log now includes the username.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.21/commercial/
http://localhost:1313/sensu-go/5.21/operations/maintain-sensu/license/#view-entity-count-and-entity-limit
http://localhost:1313/sensu-go/5.21/commercial/
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/agent/#fips-openssl
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/backend/#fips-openssl
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/agent/#log-level
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/agent/#log-level

FIXES:

5.20.1 release notes

May 15, 2020 — The latest release of Sensu Go, version 5.20.1, is now available for download.

This patch release includes a bug fx that affects the web UI federated homepage gauges when using
the PostgreSQL datastore and several fxes for the data displayed in the web UI entity details.

Read the upgrade guide to upgrade Sensu to version 5.20.1.

FIXES:

5.20.0 release notes

May 12, 2020 — The latest release of Sensu Go, version 5.20.0, is now available for download.

This release delivers several new features, substantial improvements, and important fxes. One
exciting new feature is agent local process discovery to further enrich entities and their events with
valuable context. Other additions include a web UI federation view that provides a single pane of glass

(Commercial feature) Process discovery in the agent is temporarily disabled.

The system’s libc_type attribute is now properly populated for Ubuntu entities.

Single-letter subscriptions are now allowed.

Subjects are now validated in RBAC role binding and cluster role binding.

Sensuctl command assets can now be retrieved and installed from Bonsai.

(Commercial feature) Fixes a bug that prevented the federated homepage in the web UI from
retrieving the keepalive and event gauges when PostgreSQL was confgured as the event
datastore.

(Commercial feature) The memory_percent and cpu_percent processes attributes are now
properly displayed in the web UI.

In the web UI, the entity details page no longer displays foat type (which applies only for MIPS
architectures). Also on entity details pages, the system’s libc type is now listed and process
names are no longer capitalized.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/agent/#discover-processes
http://localhost:1313/sensu-go/5.20/sensuctl/sensuctl-bonsai/#extend-sensuctl-with-commands
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-entities/entities/#processes-attributes
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/web-ui/

for all of your Sensu Go clusters and token substitution for assets. And Windows users rejoice! This
release includes many Windows agent fxes, as well as agent log rotation capabilities!

Read the upgrade guide to upgrade Sensu to version 5.20.0.

NEW FEATURES:

IMPROVEMENTS:

(Commercial feature) Added a processes feld to the system type to store agent local
processes for entities and events and a discover-processes option to the agent
confguration options to populate the processes feld in entity.system if enabled.

(Commercial feature) Added a new resource, GlobalConfg , that you can use to customize
your web UI confguration.

(Commercial feature) Added metricsd to collect metrics for the web UI and the metrics-
refresh-interval backend confguration option for setting the interval at which Sensu should
refresh metrics.

(Commercial feature) Added process and additional system information to the entity details
view in the web UI.

(Commercial feature) Added a PostgreSQL metrics suite so metricsd can collect metrics about
events stored in PostgreSQL.

(Commercial feature) Added entity class limits to the license.

Added check hook output to event details page in the web UI.

Added the sensuctl describe-type command to list all resource types.
The sensuctl describe-

type command deprecates sensuctl dump --types .

Added annotations and labels as backend confguration options.

Added token substitution for assets.

Added event.is_silenced and event.check.is_silenced feld selectors.

Added Edition and GoVersion felds to version information. In commercial distributions,
the Edition version attribute is set to enterprise

Added ability to confgure the Resty HTTP timeout. Also, sensuctl now suppresses messages
from the Resty library.

(Commercial feature) The web UI homepage is now a federated view.

You can now increment the log level by sending SIGUSR1 to the sensu-backend or sensu-
agent process.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-entities/entities/#processes-attributes
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-entities/entities/#processes-attributes
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/agent/#agent-configuration-options
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/agent/#agent-configuration-options
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/webconfig-reference/
http://localhost:1313/sensu-go/5.20/web-ui/webconfig-reference/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/backend/#metrics-refresh-interval
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/backend/#metrics-refresh-interval
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/operations/maintain-sensu/license/#entity-limit
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/sensuctl/create-manage-resources/#supported-resource-types
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/backend/#configuration-summary
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/tokens/#manage-assets
http://localhost:1313/sensu-go/5.20/api#field-selector
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/operations/maintain-sensu/troubleshoot/#increment-log-level-verbosity

FIXES:

5.19.3 release notes

May 4, 2020 — The latest release of Sensu Go, version 5.19.3, is now available for download.
This is a
patch release with many improvements and bug fxes, including a fx to close the event store when the
backend restarts, a global rate limit for fetching assets, and fxes for goroutine leaks. Sensu Go 5.19.3
also includes several web UI updates, from fxes to prevent crashes to new color-blindness modes.

Read the upgrade guide to upgrade Sensu to version 5.19.3.

FIXES:

License metadata now includes the current entity count and license entity limit.

In the web UI, users will receive a notifcation when they try to delete an event without
appropriate authorization.

The Windows agent now has log rotation capabilities.

Notepad is now the default editor on Windows rather than vi.

(Commercial feature) Database connections no longer leak after queries to the cluster /health
API.

In the web UI, any leading and trailing whitespace is now trimmed from the username when
authenticating.

The web UI preferences dialog now displays only the frst fve groups a user belongs to, which
makes the sign-out button more accessible.

In the web UI, the deregistration handler no longer appears as undefned on the entity details
page.

You can now escape quotes to express quoted strings in token substitution templates.

The Windows agent now accepts and remembers arguments passed to service run and
service install .

The Windows agent now synchronizes writes to its log fle, so the fle size will update with every
log line written.

The Windows agent now logs to both console and log fle when you use service run .

The event store now closes when the backend restarts, which fxes a bug that allowed
Postgres connections to linger after the backend restarted interally.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.20/api/other/license/#get-the-active-license-configuration
http://localhost:1313/sensu-go/5.20/operations/maintain-sensu/license/#view-entity-count-and-entity-limit
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/backend/#log-rotation
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/tokens/#token-substitution-with-quoted-strings

IMPROVEMENTS:

The etcd event store now returns exact matches when retrieving events by entity (rather than
prefxed matches).

sensu-backend init now logs any TLS failures encountered during initialization.

sensuctl logout now resets the TLS confguration.

env_vars values can now include the equal sign.

Error logs now include underlying errors encountered when fetching an asset.

The log level is now WARNING when an asset is not installed because none of the flters
match.

Fixes a bug in the web UI that could cause labels with links to result in a crash.

Fixes a bug in the web UI that could cause the web UI to crash when using an unregistered
theme.

Fixes a bug that could cause the backend to crash.

Fixes a bug in multi-line metric extraction that appeared in Windows agents.

Fixes an authentication bug that restarted the sensu-backend when agents disconnected.

Fixes a bug that meant check state and last_ok were not computed until the second
instance of the event.

Fixes a bug that caused messages like “unary invoker failed” to appear in the logs.

Fixes several goroutine leaks.

Fixes a bug that caused the backend to crash when the etcd client received the error
“etcdserver: too many requests.”

In the web UI, color-blindness modes are now available.

In the web UI, labels and annotations with links to images will now be displayed inline.

Adds a global rate limit for fetching assets to prevent abusive asset retries, which you can
confgure with the assets-burst-limit and assets-rate-limit confguration options for
the agent and backend.

Adds support for restarting the backend via SIGHUP.

Adds a timeout fag to sensu-backend init .

Deprecated fags for sensuctl silenced update subcommand have been removed.

http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/observability-pipeline/observe-schedule/agent/#assets-burst-limit
http://localhost:1313/sensu-go/5.19/observability-pipeline/observe-schedule/backend/#backend-configuration-options

5.19.2 release notes

April 27, 2020 — The latest release of Sensu Go, version 5.19.2, is now available for download.
This
patch release adds two database connection pool parameters for PostgreSQL so you can confgure
the maximum time a connection can persist before being destroyed and the maximum number of idle
connections to retain.
The release also includes packages for Ubuntu 19.10 and 20.04.

Read the upgrade guide to upgrade Sensu to version 5.19.2.

FIXES:

IMPROVEMENTS:

5.19.1 release notes

April 13, 2020 — The latest release of Sensu Go, version 5.19.1, is now available for download.
This is
a patch release with a number of bug fxes, including several that affect keepalive events, as well as an
addition to the help response for sensu-backend start and sensu-agent start : the default path
for the confguration fle.

Read the upgrade guide to upgrade Sensu to version 5.19.1.

FIXES:

(Commercial feature) Adds SQL database connection pool parameters max_conn_lifetime

and max_idle_conns to store/v1.PostgresConfg132.

Sensu packages are now available for Ubuntu 19.10 (Eoan Ermine) and 20.04 (Focal Fossa).
Review the supported platforms page for a complete list of Sensu’s supported platforms and
the installation guide to install Sensu packages for Ubuntu.

(Commercial feature) Fixed a bug that caused the PostgreSQL store to be enabled too late
upon startup, which caused keepalive bugs and possibly other undiscovered bugs.

Keepalives now fre correctly when using the PostgreSQL event store.

Keepalives can now be published via the HTTP API.

sensu-agent no longer allows confguring keepalive timeouts that are shorter than the
keepalive interval.

Eventd no longer mistakes keepalive events for checks with TTL.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/platforms/
http://localhost:1313/sensu-go/5.19/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.19/commercial/

5.19.0 release notes

March 30, 2020 — The latest release of Sensu Go, version 5.19.0, is now available for download.
This
release is packed with new features, improvements, and fxes, including our frst alpha feature:
declarative confguration pruning to help keep your Sensu instance in sync with Infrastructure as Code
workfows.
Other exciting additions include the ability to save and share your fltered searches in the
web UI, plus a new matches substring match operator that you can use to refne your fltering results!
Improvements include a new created_by feld in resource metadata and a foat_type feld that
stores whether your system uses hard foat or soft foat.
We’ve also added agent and sensuctl builds for
MIPS architectures, moved Bonsai logs to the debug level, and added PostgreSQL health
information to the /health API payload.

Read the upgrade guide to upgrade Sensu to version 5.19.0.

NEW FEATURES:

IMPROVEMENTS:

Keepalives now generate a new event universally unique identifer (UUID) for each keepalive
failure event.

Agents now correctly reset keepalive switches on reconnect, which fxes a bug that allowed
older keepalive timeout settings to persist.

Token substitution templates can now express escape-quoted strings.

The REST API now uses a default timeout of 3 seconds when querying etcd health.

Pipe handlers now must include a command.

The response for sensu-backend start --help and sensu-agent start --help now
includes the confguration fle default path.

The system’s libc_type attribute is now populated on Alpine containers.

(Commercial feature) In the web UI, you can now save, recall, and delete fltered searches.

(Commercial feature) Added the matches substring matching operator for API response,
sensuctl, and web UI fltering selectors.

(Commercial feature) Added agent and sensuctl builds for Linux architectures: mips ,
mipsle , mips64 , and mips64le (hard foat and soft foat).

(Commercial feature) Sensu now automatically applies the sensu.io/managed_by label to
resources created via sensuctl create for use in the sensuctl prune alpha feature.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.19/observability-pipeline/observe-process/handlers/#pipe-handler-command
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/search/#save-a-filtered-search
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/api/#response-filtering
http://localhost:1313/sensu-go/5.19/sensuctl/filter-responses
http://localhost:1313/sensu-go/5.19/web-ui/search/
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/sensuctl/create-manage-resources#prune-resources
http://localhost:1313/sensu-go/5.19/sensuctl/create-manage-resources#prune-resources

FIXES:

5.18.1 release notes

March 10, 2020 — The latest release of Sensu Go, version 5.18.1, is now available for download.
This
release fxes bugs that caused SQL migration failure on PostgreSQL 12, nil pointer panic due to OICD
login, and sensu-backend restart upon agent disconnection.
It also includes a reliability improvement —
a change to use the gRPC client rather than the embedded etcd client.

Read the upgrade guide to upgrade Sensu to version 5.18.1.

FIXES:

(Commercial feature) The health endpoint now includes PostgreSQL health information.

Resource metadata now includes the created_by feld, which Sensu automatically populates
with the name of the user who created or last updated each resource.

The agent now discovers entity libc type, VM system, VM role, and cloud provider.

System type now includes the foat_type feld, which stores the foat type the system is using
(hard foat or soft foat).

The Bonsai client now logs at the debug level rather than the info level.

The store can now create wrapped resources.

Tessen now collects the type of store used for events (etcd or postgres) and logs
numbers of authentication providers, secrets, and secrets providers. Tessen data helps us
understand how we can improve Sensu, and all Tessen transmissions are logged locally for
complete transparency.

Fixed a bug where event.Check.State was not set for events passing through the pipeline
or written to the event log.

Fixed a bug that allowed the agent to connect to a backend using a nonexistent namespace.

Fixed a bug that allowed subscriptions to be empty strings.

Corrected the HTTP status codes for unauthenticated and permission denied errors in the
REST API.

Fixed a bug where check history was incorrectly formed when using the PostgreSQL event
store.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/operations/monitor-sensu/health/
http://localhost:1313/sensu-go/5.19/operations/monitor-sensu/tessen/

5.18.0 release notes

February 25, 2020 — The latest release of Sensu Go, version 5.18.0, is now available for download.
This release delivers a number of improvements to the overall Sensu Go experience.
From automatic
proxy entity creation to unique Sensu event IDs, it’s now much easier to use and troubleshoot your
monitoring event pipelines!
If you’re working behind an HTTP proxy, you can now manage remote
Sensu Go clusters, as sensuctl now honors proxy environment variables (for example,
HTTPS_PROXY).
This release also includes a number of fxes for usability bugs, making for the most
polished release of Sensu Go yet, so go ahead and give it a download!

Read the upgrade guide to upgrade Sensu to version 5.18.0.

IMPROVEMENTS:

(Commercial feature) Fixed a bug that caused SQL migrations to fail on PostgreSQL 12.

(Commercial feature) Fixed a bug where OIDC login could result in a nil pointer panic.

Changed to using the gRPC client (rather than the embedded etcd client) to improve reliability
and avoid nil pointer panics triggered by shutting down the embedded etcd client.

The Sensu backend no longer hangs indefnitely if a fle lock for the asset manager cannot be
obtained. Instead, the backend returns an error after 60 seconds.

Fixed a bug that caused sensu-backend to restart when agents disconnected.

Fixed a bug where the backend would panic on some 32-bit systems.

The event.entity.entity_class value now defaults to proxy for POST /events
requests.

If you use the core/v2/events API to create a new event with an entity that does not already
exist, the sensu-backend will automatically create a proxy entity when the event is published.

Sensuctl now accepts Bonsai asset versions that include a prefx with the letter v (for
example, v1.2.0).

The /version API now retrieves the Sensu agent version for the Sensu instance.

Log messages now indicate which flter dropped an event.

Sensu now reads and writes initializationKey to and from EtcdRoot, with legacy support
(read-only) as a fallback.

Sensu will now check for an HTTP response other than 200 OK response when fetching
assets.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.18/commercial/
http://localhost:1313/sensu-go/5.18/commercial/
http://localhost:1313/sensu-go/5.18/api/core/events/#create-a-new-event
http://localhost:1313/sensu-go/5.18/api/core/events/

FIXES:

5.17.2 release notes

February 19, 2020 — The latest release of Sensu Go, version 5.17.2, is now available for download.
This release fxes a bug that could prevent commercial features from working after internal restart.

Read the upgrade guide to upgrade Sensu to version 5.17.2.

FIXES:

5.17.1 release notes

January 31, 2020 — The latest release of Sensu Go, version 5.17.1, is now available for download.
This release fxes a web UI issue that cleared selected flters when sorting an event list and a bug that
prevented certain .tar assets from extracting.
It also includes sensuctl confguration improvements.

Read the upgrade guide to upgrade Sensu to version 5.17.1.

Updated Go version from 1.13.5 to 1.13.7.

(Commercial feature) Label selectors and feld selectors now accept single and double quotes
to identify strings.

Fixed a bug that prevented wrapped resources from having their namespaces set by the
default sensuctl confguration.

Fixed a bug that prevented API response fltering from working properly for core/v2/silenced
API endpoints.

Improved event payload validation for the core/v2/events API so that events that do not match
the URL parameters on the /events/:entity/:check endpoint are rejected.

Sensuctl now supports the http_proxy , https_proxy , and no_proxy environment
variables.

The auth/test endpoint now returns the correct error messages.

Fixed a bug that could cause commercial HTTP routes to fail to initialize after an internal
restart, preventing commercial features from working.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.18/commercial/
http://localhost:1313/sensu-go/5.18/api#label-selector
http://localhost:1313/sensu-go/5.18/api#field-selector
http://localhost:1313/sensu-go/5.18/api/#response-filtering
http://localhost:1313/sensu-go/5.18/api/core/events/
http://localhost:1313/sensu-go/5.18/api/other/auth/#authtest-get
http://localhost:1313/sensu-go/5.18/api/other/auth/#authtest-get

IMPROVEMENTS:

FIXES:

5.17.0 release notes

January 28, 2020 — The latest release of Sensu Go, version 5.17.0, is now available for download.
This is a signifcant release, with new features, improvements, and fxes!
We’re ecstatic to announce the
release of secrets management, which eliminates the need to expose sensitive information in your
Sensu confguration.
When a Sensu component such as a check or handler requires a secret (like a
username or password), Sensu will be able to fetch that information from one or more external secrets
providers (for example, HashiCorp Vault) and provide it to the Sensu component via temporary
environment variables.
Secrets management allows you to move secrets out of your Sensu
confguration, giving you the ability to safely and confdently share your Sensu confgurations with your
fellow Sensu users!
This release also includes per-entity keepalive event handler confguration, a
sought-after feature for users who have migrated from Sensu 1.x to Sensu Go.

Read the upgrade guide to upgrade Sensu to version 5.17.0.

NEW FEATURES:

IMPROVEMENTS:

Asset names may now include capital letters.

Running the sensuctl confgure command now resets the sensuctl cluster confguration.

When you use --trusted-ca-fle to confgure sensuctl, it now detects and saves the
absolute fle path in the cluster confguration.

(Commercial feature) When a silencing entry expires or is removed, it is also removed from the
silences view in the web UI.

Fixed a bug that prevented .tar assets from extracting if they contain hardlinked fles.

In the web UI, sorting an event list view no longer clears the selected flters.

(Commercial feature) Added HTTP API for secrets management, with Sensu’s Env secrets
provider and support for HashiCorp Vault secrets management. The secrets provider resource
is implemented for checks, mutators, and handlers.

Added the keepalive-handlers agent confguration option to specify the keepalive handlers
to use for an entity’s events.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/api/enterprise/secrets/

FIXES:

5.16.1 release notes

December 18, 2019 — The latest release of Sensu Go, version 5.16.1, is now available for download.
This release fxes a performance regression that caused API latency to scale linearly as the number of
connected agents increased and includes a change to display the sensu_go_events_processed
Prometheus counter by default.

(Commercial feature) Upgraded the size of the events auto-incremented ID in the PostgreSQL
store to a 64-bit variant, which allows you to store many more events and avoids exhausting
the sequence.

(Commercial feature) Initialization via sensu-backend init is now implemented for Docker.

(Commercial feature) UPN binding support has been re-introduced via the
default_upn_domain confguration attribute.

In the web UI, labels that contain URLs are now clickable links.

Added event.entity.name as a supported feld for the feldSelector query parameter.

In the web UI, users with implicit permissions to a namespace can now display resources within
that namespace.

Explicit access to namespaces can only be granted via cluster-wide RBAC resources.

You can now omit the namespace from an event in HTTP POST /events requests.

Added support for the --format fag in the sensuctl command list subcommand.

(Commercial feature) Fixed a bug where the event check state was not present when using the
PostgreSQL event store.

(Commercial feature) Agent TLS authentication does not require a license.

Fixed a memory leak in the entity cache.

Fixed a bug that prevented sensuctl entity delete from returning an error when
attempting to delete a non-existent entity.

In the web UI, fxed a bug that duplicated event history in the event timeline chart.

sensuctl command assets installed via Bonsai now use the sensuctl namespace.

Fixed a bug where failing check TTL events could occur if keepalive failures had already
occurred.

http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/observability-pipeline/observe-schedule/backend/#docker-initialization
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui
http://localhost:1313/sensu-go/5.17/api/#field-selector
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui
http://localhost:1313/sensu-go/5.17/operations/control-access/rbac/#cluster-wide-resource-types
http://localhost:1313/sensu-go/5.17/api/core/events/#events-post
http://localhost:1313/sensu-go/5.17/sensuctl/sensuctl-bonsai/#list-commands
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui

Read the upgrade guide to upgrade Sensu to version 5.16.1.

IMPROVEMENTS

FIXES:

5.16.0 release notes

December 16, 2019 — The latest release of Sensu Go, version 5.16.0, is now available for download.
This is another important release, with many new features, improvements, and fxes.
We introduced an
initialization subcommand for new installations that allows you to specify an admin username and
password instead of using a pre-defned default.
We also added new backend confguration options to
help you take advantage of etcd auto-discovery features and agent confguration options you can use
to defne a timeout period for critical and warning keepalive events.

New web UI features include a switcher that makes it easier to switch between namespaces in the
dashboard, breadcrumbs on every page, OIDC authentication in the dashboard, a drawer that replaces
the app bar to make more room for content, and more.

We also fxed issues with sensuctl dump and sensuctl cluster health , installing sensuctl
commands via Bonsai, and missing namespaces in keepalive events and events created through the
agent socket interface.

Read the upgrade guide to upgrade Sensu to version 5.16.0.

IMPORTANT:

NEW FEATURES:

The sensu_go_events_processed Prometheus counter now initializes with the success
label so the count is always displayed.

The performance regression introduced in 5.15.0 that caused API latency to scale linearly as
the number of connected agents increased is fxed.

For Debian- and RHEL-family installations, the backend is no longer seeded with a default
admin username and password.
Users will need to run ‘sensu-backend init’ on every new
installation and specify an admin username and password.

(Commercial feature) Users can now authenticate with OIDC in the dashboard.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#initialization
http://localhost:1313/sensu-go/5.16/commercial/

IMPROVEMENTS:

FIXES:

(Commercial feature) Label selectors now match the event’s check and entity labels.

Added a new confguration option, etcd-client-urls , to use with sensu-backend when it is
not operating as an etcd member.
The confguration option is also used by the new sensu-

backend init subcommand.

Added the ‘sensu-backend init’ subcommand.

Added the etcd-discovery and etcd-discovery-srv confguration options to sensu-
backend, which allow users to take advantage of the embedded etcd’s auto-discovery features.

Added the keepalive-critical-timeout confguration option to defne the time after which
a critical keepalive event should be created for an agent and the keepalive-warning-
timeout confguration option, which is an alias of keepalive-timeout for backward
compatibility.

(Commercial feature) The entity limit warning message is now displayed less aggressively and
the warning threshold is proportional to the entity limit.

A new switcher in the web UI makes it easier to switch namespaces in the dashboard.
Access
the new component from the drawer or with the shortcut ctrl+k.
For users who have many
namespaces, the switcher now includes fuzzy search and improved keyboard navigation.

In the web UI, replaced the app bar with an omnipresent drawer to increase the available
space for content. Each page also now includes breadcrumbs.

In the Sensu documentation, links now point to the version of the product being run instead of
the latest, which may be helpful when running an older version of Sensu.

sensuctl dump help now shows the correct default value for the format fag.

Installing sensuctl commands via Bonsai will now check for correct labels before checking if the
asset has 1 or more builds.

Listing assets with no results now returns an empty array.

Fixed a panic that could occur when creating resources in a namespace that does not exist.

Fixed an issue where keepalive events and events created through the agent’s socket interface
could be missing a namespace.

Fixed an issue that could cause ‘sensuctl cluster health’ to hang indefnitely.

(Commercial feature) The agent.yml.example fle shipped with Sensu Agent for Windows
packages now uses DOS-style line endings.

http://localhost:1313/sensu-go/5.16/commercial/
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#initialization
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/agent/#keepalive-configuration
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/agent/#keepalive-configuration
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/agent/#keepalive-configuration
http://localhost:1313/sensu-go/5.16/commercial/
http://localhost:1313/sensu-go/5.16/web-ui/
http://localhost:1313/sensu-go/5.16/web-ui/
http://localhost:1313/sensu-go/5.16/
http://localhost:1313/sensu-go/5.16/commercial/

5.15.0 release notes

November 19, 2019 — The latest release of Sensu Go, version 5.15.0, is now available for download.
This is a signifcant release for a number of reasons.
The changes to licensing make 100% of Sensu
Go’s commercial features available for free to all users, up to your frst 100 entities!
This release also
includes the long-awaited cluster federation features, supporting multi-cluster authentication, RBAC
policy replication, and a single pane of glass for your Sensu monitoring data!
We added support for API
keys, making it easy to integrate with the Sensu API (you no longer need to manage JWTs).
In addition,
the 5.15.0 release includes support for sensu-backend environment variables and bug fxes that
improve error logging for mutator execution and fap detection weighting for checks.

Read the upgrade guide to upgrade Sensu to version 5.15.0.

IMPORTANT:
Sensu’s free entity limit is now 100 entities.
All commercial features are available for free
in the packaged Sensu Go distribution for up to 100 entities.
You will receive a warning when you
approach the 100-entity limit (at 75%).

If your Sensu instance includes more than 100 entities, contact us to learn how to upgrade your
installation and increase your limit.
Read the blog announcement for more information about our usage
policy.

NEW FEATURES:

SECURITY:

(Commercial feature) Added support for federation replicators and the federation cluster
registration API and the ability to view resources across clusters in the federation in the web UI.

(Commercial feature) Added MSI and NuGet builds for sensuctl. Also, MSI and NuGet
installations now add the bin directory to the system PATH on Windows.

(Commercial feature) Added HTTP DELETE access for the license management API.

Added the APIKey resource, with HTTP API support for POST, GET, and DELETE and
sensuctl commands to manage the APIKey resource.

Added support for using API keys for API authentication.

Added support for sensuctl commands to install, execute, list, and delete commands from
Bonsai or a URL.

Added support for sensu-backend service environment variables.

Added support for timezones in check cron strings.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.15/commercial/
https://sensu.io/contact/
https://sensu.io/blog/one-year-of-sensu-go/
http://localhost:1313/sensu-go/5.15/commercial/
http://localhost:1313/sensu-go/5.15/api/enterprise/federation/
http://localhost:1313/sensu-go/5.15/api/enterprise/federation/
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.15/commercial/
http://localhost:1313/sensu-go/5.15/sensuctl/
http://localhost:1313/sensu-go/5.15/commercial/
http://localhost:1313/sensu-go/5.15/api/other/license/
http://localhost:1313/sensu-go/5.15/operations/control-access/apikeys/
http://localhost:1313/sensu-go/5.15/operations/control-access/use-apikeys/#sensuctl-management-commands
http://localhost:1313/sensu-go/5.15/api/#authenticate-with-an-api-key
http://localhost:1313/sensu-go/5.15/sensuctl/sensuctl-bonsai#extend-sensuctl-with-commands
http://localhost:1313/sensu-go/5.15/observability-pipeline/observe-schedule/checks
http://localhost:1313/sensu-go/5.15/observability-pipeline/observe-schedule/checks
http://localhost:1313/sensu-go/5.15/observability-pipeline/observe-schedule/checks

IMPROVEMENTS:

FIXES:

5.14.2 release notes

November 4, 2019 — The latest release of Sensu Go, version 5.14.2, is now available for download.
This release includes an etcd upgrade, fxes that improve stability and performance, and a Sensu Go
package for RHEL 8.

Read the upgrade guide to upgrade Sensu to version 5.14.2.

IMPROVEMENTS:

FIXES:

(Commercial feature) Removed support for UPN binding without a binding account or
anonymous binding, which allows Sensu to effectively refresh claims during access token
renewal.

You can now use colons and periods in all resource names (except users).

Added better error logging for mutator execution.

Fixed the order of fap detection weighting for checks.

Fixed the pprof server so it only binds to localhost.

Moved corev2.BonsaiAsset to bonsai.Asset and moved
corev2.OutdatedBonsaiAsset to bonsai.OutdatedAsset .

Upgraded etcd to 3.3.17.

Added build package for RHEL 8 (el/8).

Sensu Go now uses serializable event reads, which helps improve performance.

As a result of upgrading etcd, TLS etcd clients that lose their connection will successfully
reconnect when using the no-embed-etcd confguration option.

Check TTL and keepalive switches are now correctly buried when associated events and
entities are deleted. As a result, Sensu now uses far fewer leases for check TTLs and
keepalives, which improves stability for most deployments.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.15/commercial/

5.14.1 release notes

October 16, 2019 — The latest release of Sensu Go, version 5.14.1, is now available for download.
This release adds Prometheus gauges for check schedulers and fxes several bugs, including a bug
discovered in 5.14.0 that prevented OIDC authentication providers from properly loading on start-up.

Read the upgrade guide to upgrade Sensu to version 5.14.1.

NEW FEATURES:

FIXES:

5.14.0 release notes

October 8, 2019 — The latest release of Sensu Go, version 5.14.0, is now available for download.
This
release includes feature additions like two new confguration options for backends using embedded
etcd and a new SemVer feld in entity resources.
In addition, this release includes enhanced TLS
authentication support and bug fxes that restore check execution after a network error and enable
round robin schedule recovery after quorum loss.

Read the upgrade guide to upgrade Sensu to version 5.14.0.

NEW FEATURES:

Corrected a minor UX issue in interactive flter commands in sensuctl.

Added Prometheus gauges for check schedulers.

(Commercial feature) Sensuctl will not incorrectly warn of entity limits for unlimited licenses.

(Commercial feature) oidc authentication providers will now properly load on start-up.

When opening a Bolt database that is already open, sensu-agent will not hang indefnitely.

Running sensuctl dump for multiple resource types with the output format as YAML will not
result in separators being printed to stdout instead of the specifed fle.

Fixed a crash in sensu-backend (panic: send on closed channel).

The web UI now includes an error dialog option that allows users to wipe the application’s

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/sensuctl/back-up-recover/
http://localhost:1313/sensu-go/5.14/web-ui/

IMPROVEMENTS:

FIXES:

persisted state (rather than having to manually wipe their local/session storage).
This can help in
the rare case that something in the persisted state is leading to an uncaught exception.

The web UI now respects the system preference for operating systems with support for
selecting a preferred light or dark theme.

sensuctl dump can now list the types of supported resources with sensuctl dump --
types .

The entity resource now includes the sensu_agent_version feld, which refects the Sensu
Semantic Versioning (SemVer) version of the agent entity.

There are two new advanced confguration options for sensu-backend using embedded etcd:
etcd-heartbeat-interval and etcd-election-timeout .

(Commercial feature) Added support for mutual TLS authentication between agents and
backends.

(Commercial feature) Added support for CRL URLs for mTLS authentication.

(Commercial feature) Support agent TLS authentication is usable with the sensu-backend.

In the web UI, feedback is directed to Discourse rather than the GitHub repository’s Issues
page to facilitate discussion about feature requests.

In the web UI, when a user lands on a page inside a namespace that no longer exists or they
do not have access to, the drawer opens to that namespace switcher to help clarify next steps.

Updated Go version from 1.12.3 to 1.13.1.

(Commercial feature) sensuctl on Windows can now create Postgres resources.

(Commercial feature) Fixed a bug that resulted in event metrics being ignored when using the
Postgres store.

Fixed a bug that caused checks to stop executing after a network error.

Fixed a bug that prevented sensuctl create with stdin from working.

Splayed proxy checks are executed every interval (instead of every interval + interval *
splay_coverage).

Proxy entity labels and annotations are now redacted in the web UI as expected.

Fixed a bug in the ring that prevented round robin schedules from recovering after quorum
loss.

http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.13/observability-pipeline/observe-entities/entities/
http://localhost:1313/sensu-go/5.14/observability-pipeline/observe-schedule/backend/#advanced-configuration-options
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/operations/deploy-sensu/secure-sensu/#optional-configure-sensu-agent-mtls-authentication
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/commercial/

5.13.2 release notes

September 19, 2019 — The latest release of Sensu Go, version 5.13.2, is now available for download.
This is a stability release that fxes a bug for users who have the PostgreSQL event store enabled.

Read the upgrade guide to upgrade Sensu to version 5.13.2.

FIXES:

5.13.1 release notes

September 10, 2019 — The latest release of Sensu Go, version 5.13.1, is now available for download.
This is a stability release with bug fxes for multi-build asset defnitions causing a panic when no
matching flters are found.

Read the upgrade guide to upgrade Sensu to version 5.13.1.

FIXES:

Updated web UI so that unauthorized errors emitted while creating silences or resolving events
are caught and a notifcation is presented to communicate what occurred.

Web UI does not report internal errors when a user attempts to queue an ad hoc check for a
keepalive.

Fixed a bug in the web UI that may have prevented users with appropriate roles from resolving
events, queuing checks, and creating silenced entries.

Asset builds are not separated into several assets unless the the tabular format is used in
sensuctl asset list .

The ‘fag accessed but not defned’ error is corrected in sensuctl asset outdated .

Metrics handlers now correctly receive metric points when the postgresql event store is
enabled.

Multi-build asset defnitions with no matching flters will no longer cause a panic.

Fixed the oidc authentication provider resource.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.14/web-ui/

5.13.0 release notes

September 9, 2019 — The latest release of Sensu Go, version 5.13.0, is now available for download.
This is one of the most user-friendly releases yet!
Sensuctl now integrates with Bonsai, the Sensu asset
hub, making it easier than ever to fetch and use countless Sensu monitoring plugins and integrations.
Additionally, sensuctl now supports loading resource confguration fles (for example, checks) from
directories and URLs.
But that’s not all!
Sensuctl now provides a subcommand for exporting its
confguration and API tokens to your shell environment.
Use sensuctl to provide cURL and custom
scripts with fresh API access information!

Read the upgrade guide to upgrade Sensu to version 5.13.0.

NEW FEATURES:

FIXES:

5.12.0 release notes

August 26, 2019 — The latest release of Sensu Go, version 5.12.0, is now available for download.
There are some exciting feature additions in this release, including the ability to output resources to a
fle from sensuctl and more granular control of check and check hook execution with an agent allow list.
Additionally, this release includes the ability to delete assets and more stability fxes around watcher
functionality.

Sensuctl now integrates with Bonsai, the Sensu asset hub.
Run a single sensuctl command to
add an asset to your Sensu cluster (for example, sensuctl asset add sensu/sensu-
pagerduty-handler:1.1.0).
Check for outdated assets (new releases available) with the
outdated subcommand (for example, sensuctl asset outdated).

Sensuctl now supports the env subcommand for exporting sensuctl confguration and API
tokens to your shell environment (for example, eval $(sensuctl env)).

Sensuctl now supports loading multiple resource confguration fles (for example, checks and
handlers) from directories!
Sensuctl can also load a fle using a URL (for example, sensuctl

create -r -f ./checks and sensuctl create -f https://my.blog.ca/sensu-
go/check.yaml).

Sensuctl interactive check create and update modes now have none for the metric output
format as the frst highlighted option instead of nagios-perfdata .

Fixed a bug where silences would not expire on event resolution.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

Read the upgrade guide to upgrade Sensu to version 5.12.0.

IMPORTANT:

Due to changes in the release process, Sensu binary-only archives are now named following the
pattern sensu-go_5.12.0_$OS_$ARCH.tar.gz , where $OS is the operating system name and
$ARCH is the CPU architecture.
These archives include all fles in the top level directory.
Read the

installation guide for the latest download links.

NEW FEATURES:

IMPROVEMENTS:

SECURITY:

Operators can now authenticate to Sensu via OpenID Direct Connect (OIDC) using sensuctl.
Read the authentication documentation for details.

Added sensu-agent and sensuctl binary builds for FreeBSD.

Added sensuctl dump command to output resources to a fle or stdout, making it easier to back
up your Sensu backends.

Agents can now be confgured with a list of executables that are allowed to run as check and
hook commands.
Read the agent reference for more information.

Assets now support defning multiple builds, reducing the number of individual assets needed
to cover disparate platforms in your infrastructure.

(Commercial feature) Namespaces listed in both the web UI and sensuctl are now limited to the
namespace to which the user has access.

Hooks now support the use of assets.

The event.check.name feld has been added as a supported feld selector.

Both the API and sensuctl can now be used to delete assets.

The use of ProtoBuf serialization/deserialization over WebSocket can now be negotiated
between agent and backend.

Web UI performance has been improved for deployments with many events and entities.

The resource caches can now rebuild themselves in case of failures.

Event and entity resources can now be created via the API without an explicit namespace.
The
system will refer to the namespace in the request URL.

Event and entity resources can now be created via the API using the POST verb.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.2/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.2/sensuctl/#global-flags
http://localhost:1313/sensu-go/5.12/observability-pipeline/observe-schedule/agent/#allow-list
http://localhost:1313/sensu-go/5.9/commercial/

FIXES:

KNOWN ISSUES:

5.11.1 release notes

July 18, 2019 — The latest release of Sensu Go, version 5.11.1, is now available for download.
This is
a stability release with bug fxes for UPN format binding token renewal and addition of agent
heartbeats and confgurable WebSocket connection negotiation.

Read the upgrade guide to upgrade Sensu to version 5.11.1.

FIXES:

To prevent writing sensitive data to logs, the backend no longer logs decoded check result and
keepalive payloads.

Tabular display of flters via sensuctl now displays && or || as appropriate for inclusive and
exclusive flters, respectively.

Requesting events from the GET /events/:entity API endpoint now returns events only for
the specifed entity.

Running sensuctl confg view without confguration no longer causes a crash.

Creating an entity via sensuctl with the --interactive fag now prompts for the entity name
when it is not provided on the command line.

Check hooks with stdin: true now receive actual event data on stdin instead of an empty
event.

Some issues with check scheduling and updating have been fxed by refactoring the backend’s
watcher implementation.

Authentication via OIDC is not yet supported in the web UI.

Deleting an asset will not remove references to said asset.
It is the operator’s responsibility to
remove the asset from the runtime_assets feld of the check, hook, flter, mutator, or handler.

Deleting an asset will not remove the tarball or downloaded fles from disk.
It is the operator’s
responsibility to clear the asset cache if necessary.

Fixed access token renewal when UPN format binding was enabled.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

5.11.0 release notes

July 10, 2019 — The latest release of Sensu Go, version 5.11.0, is now available for download.
There
are some exciting feature additions in this release, including the ability to delete resources from
sensuctl and manage flter and mutator resources in the web UI.
Additionally, this release includes bug
fxes for proxy checks and enhanced performance tuning for the PostgreSQL event store.

Read the upgrade guide to upgrade Sensu to version 5.11.0.

NEW FEATURES:

IMPROVEMENTS:

The agent now sends heartbeats to the backend to detect network failures and reconnect more
quickly.

The default handshake timeout for the WebSocket connection negotiation was lowered from 45
to 15 seconds and is now confgurable.

The Sensu web UI now includes a flters page that displays available event flters and flter
confguration.

(Commercial feature) Manage your Sensu event flters from your browser: Sensu’s web UI now
supports creating, editing, and deleting flters.

The Sensu web UI now includes a mutators page that displays available mutators and mutator
confguration.

(Commercial feature) Manage your Sensu mutators from your browser: Sensu’s web UI now
supports creating, editing, and deleting mutators.

Sensuctl now includes the sensuctl delete command, letting you use resource defnitions
to delete resources from Sensu in the same way as sensuctl create .
Read the sensuctl
reference for more information.

Assets now include a headers attribute to include HTTP headers in requests to retrieve
assets, allowing you to access secured assets.
Read the asset reference for examples.

Sensu agents now support the disable-assets confguration option, allowing you to disable
asset retrieval for individual agents.
Read the agent reference for examples.

Sensu binary-only distributions are now available as zip fles.

(Commercial feature) The Active Directory authentication provider now supports the
default_upn_domain attribute, letting you appended a domain to a username when a domain

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.11/web-ui/
http://localhost:1313/sensu-go/5.11/commercial/
http://localhost:1313/sensu-go/5.11/web-ui/
http://localhost:1313/sensu-go/5.11/web-ui/
http://localhost:1313/sensu-go/5.11/commercial/
http://localhost:1313/sensu-go/5.11/web-ui/
http://localhost:1313/sensu-go/5.11/sensuctl/create-manage-resources/#delete-resources
http://localhost:1313/sensu-go/5.11/sensuctl/create-manage-resources/#delete-resources
http://localhost:1313/sensu-go/5.11/plugins/assets#asset-example-minimum-required-attributes
http://localhost:1313/sensu-go/5.11/observability-pipeline/observe-schedule/agent/#disable-assets
http://localhost:1313/sensu-go/5.11/versions/
http://localhost:1313/sensu-go/5.11/commercial/
http://localhost:1313/sensu-go/5.11/operations/control-access/ad-auth/

FIXES:

5.10.2 release notes

June 27, 2019 — The latest release of Sensu Go, version 5.10.2, is now available for download.
This is
a stability release with a bug fx for expired licenses.

is not specifed during login.

(Commercial feature) The Active Directory authentication provider now supports the
include_nested_groups attribute, letting you search nested groups instead of just the top-

level groups of which a user is a member.

The sensuctl confg view command now returns the currently confgured username.
Read
the sensuctl reference for examples.

The Sensu API now returns the 201 Created response code for POST and PUT requests
instead of 204 No Content .

The Sensu backend now provides advanced confguration options for buffer size and worker
count of keepalives, events, and pipelines.

Sensu Go now supports Debian 10.
For a complete list of supported platforms, visit the
platforms page.

The web UI now returns an error when attempting to create a duplicate check or handler.

Silenced entries are now retrieved from the cache when determining whether an event is
silenced.

The Sensu API now returns an error when trying to delete an entity that does not exist.

The agent WebSocket connection now performs basic authorization.

The core/v2/events API now correctly applies the current timestamp by default, fxing a
regression in 5.10.0.

Multiple nested set handlers are now fagged correctly, fxing an issue in which they were
fagged as deeply nested.

Round robin proxy checks now execute as expected in the event of updated entities.

The Sensu backend now avoids situations of high CPU usage in the event that watchers enter
a tight loop.

Due to incompatibility with the Go programming language, Sensu is incompatible with RHEL 5.
As a result, RHEL 5 has been removed as a supported platform for all versions of Sensu Go.

http://localhost:1313/sensu-go/5.11/commercial/
http://localhost:1313/sensu-go/5.11/operations/control-access/ad-auth/
http://localhost:1313/sensu-go/5.11/sensuctl/#view-sensuctl-config
http://localhost:1313/sensu-go/5.11/api/
http://localhost:1313/sensu-go/5.11/observability-pipeline/observe-schedule/backend/#advanced-configuration-options
http://localhost:1313/sensu-go/5.11/platforms/
http://localhost:1313/sensu-go/5.11/platforms/

Read the upgrade guide to upgrade Sensu to version 5.10.2.

FIXES:

5.10.1 release notes

June 25, 2019 — The latest release of Sensu Go, version 5.10.1, is now available for download.
This is
a stability release with key bug fxes for proxy checks and entity deletion.

Read the upgrade guide to upgrade Sensu to version 5.10.1.

FIXES:

5.10.0 release notes

June 19, 2019 — The latest release of Sensu Go, version 5.10.0, is now available for download.
There
are some exciting feature additions in this release, including the ability to perform advanced fltering in
the web UI and use PostgreSQL as a scalable event store.
This release also includes key bug fxes,
most notably for high CPU usage.

Read the upgrade guide to upgrade Sensu to version 5.10.0.

NEW FEATURES:

Sensu now handles expired licenses as expected.

The proxy_requests entity_attributes are now all considered when matching entities.

Events are now removed when their corresponding entity is deleted.

(Commercial feature) The Sensu web UI now includes fast, predictive fltering for viewing
checks, entities, events, handlers, and silences, including the ability to flter based on custom
labels.
Select the flter bar and start building custom views using suggested attributes and
values.
For more information, read the web UI docs.

Free Sensu instances can now delete entities in the web UI entities page.
Read the web UI docs
to get started using the Sensu web UI.

(Commercial feature) Sensu now supports using an external PostgreSQL instance for event
storage in place of etcd.
PostgreSQL can handle signifcantly higher volumes of Sensu events,

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/commercial/
http://localhost:1313/sensu-go/5.10/web-ui/search/
http://localhost:1313/sensu-go/5.10/web-ui/
http://localhost:1313/sensu-go/latest/commercial/

IMPROVEMENTS:

FIXES:

5.9.0 release notes

May 28, 2019 — The latest release of Sensu Go, version 5.9.0, is now available for download.
There
are some exciting feature additions in this release, including the ability to log raw events to a fle
(commercial feature) and view event handlers in the web UI.

letting you scale Sensu beyond etcd’s storage limits.
Read the datastore reference for more
information.

Sensu now includes a cluster ID API endpoint and sensuctl cluster id command to return
the unique Sensu cluster ID.
Read the core/v2/cluster API endpoint docs for more information.

The sensuctl create command now supports specifying the namespace for a group of
resources at the time of creation, allowing you to replicate resources across namespaces
without manual editing.
Read the sensuctl reference for more information and usage examples.

Sensu cluster roles can now include permissions to manage your Sensu license using the
license resource type.
Read the RBAC reference to create a cluster role.

The web UI now displays up to 100,000 events and entities on the homepage.

Sensu now optimizes scheduling for proxy checks, solving an issue with high CPU usage when
evaluating proxy entity attributes.

The Sensu API now validates resource namespaces and types in request bodies to ensure
RBAC permissions are enforced.

Check state and total_state_change attributes now update as expected based on check
history.

Incident and entity links in the web UI homepage now navigate to the correct views.

The web UI now displays non-standard cron statements correctly (for example, @weekly).

On sign-in, the web UI now ensures that users are directed to a valid namespace.

In the web UI, code block scrollbars now display only when necessary.

The web UI now displays the handler timeout attribute correctly.

When editing resources, the web UI now fetches the latest resource prior to editing.

The web UI now handles array values correctly when creating and editing resources.

http://localhost:1313/sensu-go/5.10/operations/deploy-sensu/datastore/
http://localhost:1313/sensu-go/5.10/api/core/cluster/#the-clusterid-API-endpoint
http://localhost:1313/sensu-go/5.10/sensuctl/create-manage-resources/#create-resources-across-namespaces
http://localhost:1313/sensu-go/5.10/operations/control-access/rbac/#assigning-group-permissions-across-all-namespaces

Read the upgrade guide to upgrade Sensu to version 5.9.0.
If you’re upgrading a Sensu cluster from
5.7.0 or earlier, read the instructions for upgrading a Sensu cluster from 5.7.0 or earlier to 5.8.0 or
later.

NEW FEATURES:

IMPROVEMENTS:

FIXES:

5.8.0 release notes

May 22, 2019 — The latest release of Sensu Go, version 5.8.0, is now available for download.
This is
mainly a stability release with bug fxes and performance improvements.
Additionally, we have added
support for confgurable etcd cipher suites.

The Sensu web UI now includes a handlers page that displays available event handlers and
handler confguration.
Read the web UI docs to get started using the Sensu web UI.

(Commercial feature) Manage your Sensu event handlers from your browser: Sensu’s web UI
now supports creating, editing, and deleting handlers.
Read the web UI docs to get started using
the Sensu web UI.

(Commercial feature) Sensu now supports event logging to a fle using the event-log-fle
and event-log-buffer-size confguration options.
You can use this event log fle as an input
source for your favorite data lake solution.
Read the backend reference for more information.

The Sensu web UI now includes simpler, more effcient fltering in place of fltering using Sensu
query expressions.

Sensu packages are now available for Ubuntu 19.04 (Disco Dingo). Review the supported
platforms page for a complete list of Sensu’s supported platforms and the installation guide to
install Sensu packages for Ubuntu.

The occurrences and occurrences_watermark event attributes now increment as
expected, giving you useful information about recent events.
Read the events reference for an
in-depth discussion of these attributes.

The /silenced/subscriptions/:subscription and /silenced/checks/:check API
endpoints now return silences by check or subscription.

Sensu now handles errors when seeding initial data, avoiding a panic state.

http://localhost:1313/sensu-go/5.9/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.9/operations/maintain-sensu/upgrade/#upgrade-sensu-clusters-from-570-or-earlier-to-580-or-later
http://localhost:1313/sensu-go/5.9/operations/maintain-sensu/upgrade/#upgrade-sensu-clusters-from-570-or-earlier-to-580-or-later
http://localhost:1313/sensu-go/5.9/web-ui/
http://localhost:1313/sensu-go/5.9/commercial/
http://localhost:1313/sensu-go/5.9/web-ui/
http://localhost:1313/sensu-go/5.9/commercial/
http://localhost:1313/sensu-go/5.9/observability-pipeline/observe-schedule/backend/#event-logging
http://localhost:1313/sensu-go/5.9/platforms/
http://localhost:1313/sensu-go/5.9/platforms/
http://localhost:1313/sensu-go/5.9/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.9/observability-pipeline/observe-events/events/#occurrences-and-occurrences-watermark

Read the upgrade guide to upgrade Sensu to version 5.8.0.

IMPORTANT:

IMPROVEMENTS:

FIXES:

KNOWN ISSUES:

To upgrade to Sensu Go 5.8.0, Sensu clusters with multiple backend nodes must be shut down
during the upgrade process.
Read the upgrade guide for more information.

The sensuctl command line tool now supports the --chunk-size fag to help you handle
large datasets.
Read the sensuctl reference for more information.

Sensu backends now support the etcd-cipher-suites confguration option, letting you
specify the cipher suites that can be used with etcd TLS confguration.
Read the backend
reference for more information.

The Sensu API now includes the /version API, returning version information for your Sensu
instance.
Review the API docs for more information.

Tessen now collects the numbers of events processed and resources created, giving us better
insight into how we can improve Sensu.
As always, all Tessen transmissions are logged for
complete transparency.
Read the Tessen reference for more information.

Sensu licenses now include the entity limit attached to your Sensu licensing package.
Read the
license management docs to learn more about entity limits.

Sensu backends now perform better at scale using increased worker pool sizes for events and
keepalives.

The maximum size of the etcd database and etcd requests is now confgurable using the
etcd-quota-backend-bytes and etcd-max-request-bytes backend confguration options.

These are advanced confguration options requiring familiarly with etcd.
Use with caution.
Read
the backend reference for more information.

Most Sensu resources now use ProtoBuf serialization in etcd.

Events produced by checks now execute the correct number of write operations to etcd.

API pagination tokens for the core/v2/users and core/v2/namespaces API endpoints now work
as expected.

Keepalive events for deleted and deregistered entities are now cleaned up as expected.

http://localhost:1313/sensu-go/5.8/operations/maintain-sensu/upgrade/#upgrade-sensu-clusters-from-570-or-earlier-to-580-or-later
http://localhost:1313/sensu-go/5.8/operations/maintain-sensu/upgrade/#upgrade-sensu-clusters-from-570-or-earlier-to-580-or-later
http://localhost:1313/sensu-go/5.8/sensuctl/create-manage-resources/#handle-large-datasets
http://localhost:1313/sensu-go/5.8/observability-pipeline/observe-schedule/backend/#etcd-cipher-suites
http://localhost:1313/sensu-go/5.8/observability-pipeline/observe-schedule/backend/#etcd-cipher-suites
http://localhost:1313/sensu-go/5.8/api/other/version/
http://localhost:1313/sensu-go/5.8/operations/monitor-sensu/tessen/
http://localhost:1313/sensu-go/5.8/operations/maintain-sensu/license/
http://localhost:1313/sensu-go/5.8/observability-pipeline/observe-schedule/backend/#advanced-configuration-options

5.7.0 release notes

May 9, 2019 — The latest release of Sensu Go, version 5.7.0, is now available for download.
This is
mainly a stability release with bug fxes.
Additionally, we have added support for Windows packages
and updated our usage policy.

Read the upgrade guide to upgrade Sensu to version 5.7.0.

IMPROVEMENTS:

FIXES:

5.6.0 release notes

April 30, 2019 — The latest release of Sensu Go, version 5.6.0, is now available for download.
We
have added some exciting new features in this release, including API fltering and the ability to create
and manage checks through the web UI with the presence of a valid license key.

Read the upgrade guide to upgrade Sensu to version 5.6.0.

NEW FEATURES:

Auth tokens may not be purged from etcd, resulting in a possible impact to performance.

The Sensu agent for Windows is now available as an MSI package, making it easier to install
and operate.
Read the installation guide and the agent reference to get started.

Sensu now enforces resource separation between namespaces sharing a similar prefx.

The sensuctl cluster commands now output correctly in JSON and wrapped JSON
formats.

The API now returns an error message if label and feld selectors are used without a license.

(Commercial feature) Manage your Sensu checks from your browser: Sensu’s web user
interface now supports creating, editing, and deleting checks.
Read the web UI docs to get
started using the Sensu web UI.

(Commercial feature) The Sensu web UI now includes an option to delete entities.

(Commercial feature) Sensu now supports resource fltering in the Sensu API and sensuctl

https://discourse.sensu.io/t/introducing-usage-limits-in-the-sensu-go-free-tier/1156/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.7/operations/deploy-sensu/install-sensu/#install-sensu-agents
http://localhost:1313/sensu-go/5.7/observability-pipeline/observe-schedule/agent/
http://localhost:1313/sensu-go/5.7/api/#response-filtering
http://localhost:1313/sensu-go/5.6/commercial/
http://localhost:1313/sensu-go/5.6/web-ui/
http://localhost:1313/sensu-go/5.6/commercial/
http://localhost:1313/sensu-go/5.6/commercial/

IMPROVEMENTS:

FIXES:

5.5.1 release notes

April 17, 2019 — The latest release of Sensu Go, version 5.5.1, is now available for download.
This is a
stability release with key bug fxes, including addressing an issue with backend CPU utilization.
Additionally, we have added support for honoring the source attribute for events received via agent
socket.

Read the upgrade guide to upgrade Sensu to version 5.5.1.

IMPROVEMENTS:

command line tool.
Filter events using custom labels and resource attributes, such as event
status and check subscriptions.
Review the API docs and sensuctl reference for usage
examples.

(Commercial feature) Sensu’s LDAP and Active Directory integrations now support mutual
authentication using the trusted_ca_fle , client_cert_fle , and client_key_fle
attributes.
Read the guide to confguring an authentication provider for more information.

(Commercial feature) Sensu’s LDAP and Active Directory integrations now support connecting
to an authentication provider using anonymous binding.
Read the LDAP and Active Directory
binding confguration docs to learn more.

the /health API response now includes the cluster ID.

The sensuctl cluster health and sensuctl cluster member-list commands now
include the cluster ID in tabular format.

You can now confgure labels and annotations for Sensu agents using command line fags.
For
example: sensu-agent start --label example_key="example value" .
Read the agent
reference for more examples.

The Sensu web UI now displays the correct checkbox state when no resources are present.

Sensu agents now support annotations (non-identifying metadata) that help people or external
tools interacting with Sensu.
Read the agent reference to add annotations in the agent
confguration fle.

The agent socket event format now supports the source attribute to create a proxy entity.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.6/api/#response-filtering
http://localhost:1313/sensu-go/5.6/sensuctl/#filter-responses
http://localhost:1313/sensu-go/5.6/commercial/
http://localhost:1313/sensu-go/5.6/operations/control-access/
http://localhost:1313/sensu-go/5.6/commercial/
http://localhost:1313/sensu-go/5.6/operations/control-access/ldap-auth/#ldap-binding-attributes
http://localhost:1313/sensu-go/5.6/operations/control-access/ad-auth/#ad-binding-attributes
http://localhost:1313/sensu-go/5.6/api/other/health/
http://localhost:1313/sensu-go/5.6/observability-pipeline/observe-schedule/agent/#general-configuration
http://localhost:1313/sensu-go/5.6/observability-pipeline/observe-schedule/agent/#general-configuration
http://localhost:1313/sensu-go/5.5/observability-pipeline/observe-schedule/agent/#general-configuration
http://localhost:1313/sensu-go/5.5/observability-pipeline/observe-schedule/agent/#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets

FIXES:

5.5.0 release notes

April 4, 2019 — The latest release of Sensu Go, version 5.5.0, is now available for download.
This
release has some key bug fxes and additions, including the introduction of Tessen into Sensu Go.
For
more information, read Sean Porter’s blog post on Tessen.

Read the upgrade guide to upgrade Sensu to version 5.5.0.

NEW FEATURES:

IMPROVEMENTS:

FIXES:

5.4.0 release notes

March 27, 2019 — The latest release of Sensu Go, version 5.4.0, is now available for download.
This
release has some very exciting feature additions, including the introduction of our new homepage.
It
also includes support for API pagination to handle large datasets more effciently and agent buffering
for robustness in lower-connectivity situations, along with key bug fxes.

Read the upgrade guide to upgrade Sensu to version 5.4.0.

Sensu 5.5.1 is built with Go version 1.12.3.

Backends now reinstate etcd watchers in the event of a watcher failure, fxing an issue causing
high CPU usage in some components.

Tessen, the Sensu call-home service, is now enabled by default in Sensu backends.
Read the
Tessen docs to learn about the data that Tessen collects.

Sensu now includes more verbose check logging to indicate when a proxy request matches an
entity according to its entity attributes.

The Sensu web UI now displays silences created by LDAP users.

The web UI now uses a secondary text color for quick-navigation buttons.

https://sensu.io/blog/announcing-tessen-the-sensu-call-home-service/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.5/operations/monitor-sensu/tessen/

NEW FEATURES:

IMPROVEMENTS:

FIXES:

The Sensu dashboard now includes a homepage designed to highlight the most important
monitoring data, giving you instant insight into the state of your infrastructure.
read the web UI
docs for a preview.

The Sensu API now supports pagination using the limit and continue query parameters,
letting you limit your API responses to a maximum number of objects and making it easier to
handle large datasets.
Read the API overview for more information.

Sensu now surfaces internal metrics using the /metrics API.
Read the /metrics API
documentation for more information.

Sensu now lets you specify a separate TLS certifcate and key to secure the dashboard.
Read
the backend reference to confgure the dashboard-cert-fle and dashboard-key-fle
options, and check out the guide to securing Sensu for the complete guide to making your
Sensu instance production-ready.

The Sensu agent events API now queues events before sending them to the backend, making
the agent events API more robust and preventing data loss in the event of a loss of connection
with the backend or agent shutdown.
Read the agent reference for more information.

The backend now processes events without persisting metrics to etcd.

The core/v2/events API POST and PUT endpoints now add the current timestamp to new
events by default.

The core/v2/users API endpoints now return a 404 response code if a username cannot be
found.

The sensuctl command line tool now correctly accepts global fags when passed after a
subcommand fag (for example, --format yaml --namespace development).

The sensuctl handler delete and sensuctl flter delete commands now correctly
delete resources from the currently confgured namespace.

The agent now terminates consistently on SIGTERM and SIGINT.

In the event of a loss of connection with the backend, the agent now attempts to reconnect to
any backends specifed in its confguration.

The dashboard now handles cases in which the creator of a silence is inaccessible.

The dashboard event details page now displays “-” in the command feld if no command is

http://localhost:1313/sensu-go/5.4/web-ui/
http://localhost:1313/sensu-go/5.4/web-ui/
http://localhost:1313/sensu-go/5.4/api/#pagination
http://localhost:1313/sensu-go/5.4/api/other/metrics/
http://localhost:1313/sensu-go/5.4/api/other/metrics/
http://localhost:1313/sensu-go/5.4/observability-pipeline/observe-schedule/backend/#web-ui-configuration
http://localhost:1313/sensu-go/5.4/operations/deploy-sensu/secure-sensu/
http://localhost:1313/sensu-go/5.4/observability-pipeline/observe-schedule/agent/#events-post

5.3.0 release notes

March 11, 2019 — The latest release of Sensu Go, version 5.3.0, is now available for download.
This
release has some very exciting feature additions and key bug fxes.
Active Directory can be confgured
as an authentication provider (commercial feature).
Additionally, round robin scheduling has been fully
re-implemented and is available for use.

Read the upgrade guide to upgrade Sensu to version 5.3.0.

NEW FEATURES:

IMPROVEMENTS:

SECURITY:

associated with the event.

Round robin check scheduling lets you distribute check executions evenly over a group of
Sensu agents.
To enable round robin scheduling, set the round_robin check attribute to
true .
Read the checks reference for more information.

Sensu now provides commercial support for using Microsoft Active Directory as an external
authentication provider.
Read the authentication guide to confgure Active Directory, and check
out the getting started guide for more information about commercial features.

The dashboard now features offine state detection and displays an alert banner if the
dashboard loses connection to the backend.

The agent socket event format now supports the handlers attribute, giving you the ability to
send socket events to a Sensu pipeline.
Read the agent reference to learn more about creating
and handling monitoring events using the agent socket.

Assets now feature improved download performance using buffered I/O.

The sensuctl CLI now uses a 15-second timeout period when connecting to the Sensu
backend.

The dashboard now includes expandable confguration details sections on the check and entity
pages.
You can now use the dashboard to review check details like command, subscriptions,
and scheduling as well as entity details like platform, IP address, and hostname.

Sensu Go 5.3.0 fxes all known TLS vulnerabilities affecting the backend, including increasing
the minimum supported TLS version to 1.2 and removing all ciphers except those with perfect

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.3/observability-pipeline/observe-schedule/checks#spec-attributes
http://localhost:1313/sensu-go/5.3/commercial/
http://localhost:1313/sensu-go/5.3/operations/control-access/
http://localhost:1313/sensu-go/5.3/commercial/
http://localhost:1313/sensu-go/5.3/observability-pipeline/observe-schedule/agent/#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets

FIXES:

5.2.1 release notes

February 11, 2019 — The latest release of Sensu Go, version 5.2.1, is now available for download.
This is a stability release with a key bug fx for proxy check functionality.

Read the upgrade guide to upgrade Sensu to version 5.2.1.

FIXES:

5.2.0 release notes

February 7, 2019 — The latest release of Sensu Go, version 5.2.0, is now available for download.
This
release has a ton of exciting content, including the availability of our frst enterprise-only features.
For

forward secrecy.

Sensu now enforces uniform TLS confguration for all three backend components: apid ,
agentd , and dashboardd .

The backend no longer requires the trusted-ca-fle confguration option when using TLS.

The backend no longer loads server TLS confguration for the HTTP client.

Sensu can now download assets with download times of more than 30 seconds without timing
out.

The agent now communicates entity subscriptions to the backend in the correct format.

Sensu no longer includes the edition confguration attribute or header.

DNS resolution in Alpine Linux containers now uses the built-in Go resolver instead of the glibc
resolver.

The sensuctl user list command can now output yaml and wrapped-json formats
when used with the --format fag.

The dashboard check details page now displays long commands correctly.

The dashboard check details page now displays the timeout attribute correctly.

Sensu agents now execute checks for proxy entities at the expected interval.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

more details on these features, read the blog post about Sensu Go 5.2.0.
Release 5.2.0 also has some
key improvements and fxes: we added support for self-signed CA certifcates for sensuctl, check
output truncation, and the ability to manage silencing from the event details page in our web UI, to
name a few.

Read the upgrade guide to upgrade Sensu to version 5.2.0.

IMPORTANT:

NEW FEATURES:

IMPROVEMENTS:

FIXES:

Due to changes in the release process, Sensu binary-only archives are now named following
the pattern sensu-enterprise-go_5.2.0_$OS_$ARCH.tar.gz , where $OS is the operating
system name and $ARCH is the CPU architecture.
These archives include all fles in the top-
level directory.
Read the installation guide for the latest download links.

Our frst enterprise-only features for Sensu Go: LDAP authentication, the Sensu ServiceNow
handler, and the Sensu JIRA handler.
Read the getting started guide.

Sensu now provides the option to limit check output size or to drop check outputs following
metric extraction. Read the checks reference for more information.

Sensu now includes support for Debian 8 and 9.
Read the installation guide to install Sensu for
Debian.

Sensu’s binary-only distribution for Linux is now available for arm64 , armv5 , armv6 ,
armv7 , and 386 in addition to amd64 .
Read the installation guide for download links.

The Sensu dashboard now provides the ability to silence and unsilence events from the Events
page.

The Sensu dashboard Entity page now displays the platform version and deregistration
confguration.

Sensuctl now supports TLS confguration options, allowing you to use a self-signed certifcate
without adding it to the operating system’s CA store, either by explicitly trusting the signer or by
disabling TLS hostname verifcation.
Read the sensuctl reference for more information.

sensuctl now provides action-specifc confrmation messages, like Created , Deleted , and
Updated .

Check TTL failure events now persist through cluster member failures and cluster restarts.

https://sensu.io/blog/enterprise-features-in-sensu-go/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.2/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.2/operations/control-access/
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler/
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler/
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler/
http://localhost:1313/sensu-go/5.2/commercial/
https://docs.sensu.io/sensu-go/5.2/observability-pipeline/observe-schedule/checks/#check-output-truncation-attributes
http://localhost:1313/sensu-go/5.2/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.2/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.2/sensuctl/#global-flags

5.1.1 release notes

January 24, 2019 — The latest patch release of Sensu Go, version 5.1.1, is now available for
download.
This release includes some key fxes and improvements, including refactored keepalive
functionality with increased reliability.
Additionally, based on community feedback, we have added
support for the Sensu agent and sensuctl for 32-bit Windows systems.

Read the upgrade guide to upgrade Sensu to version 5.1.1.

NEW FEATURES:

IMPROVEMENTS:

SECURITY:

FIXES:

The Sensu backend now correctly handles errors for missing keepalive events.

Token-substituted values are now omitted from event data to protect sensitive information.

Sensu now correctly processes keepalive and check TTL states after entity deletion.

Sensuctl can now run sensuctl version without being confgured.

When disabling users, sensuctl now provides the correct prompt for the action.

Sensu now includes a sensuctl command and API endpoint to test user credentials.
Read the
access control reference and API docs for more information.

The Sensu agent and sensuctl tool are now available for 32-bit Windows.
Read the installation
guide for instructions.

Keepalive events now include an output attribute specifying the entity name and time last sent.

The Sensu backend includes refactored authentication and licensing to support future
enterprise features.

Sensu 5.1.1 is built with Go version 1.11.5.
Go 1.11.5 addresses a security vulnerability that
affects TLS handshakes and JWT tokens.
Read the CVE for more information.

Keepalive events now continue to execute after a Sensu cluster restarts.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.1/operations/control-access/rbac/#test-and-change-user-passwords
http://localhost:1313/sensu-go/5.1/api/other/auth/
http://localhost:1313/sensu-go/5.1/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.1/operations/deploy-sensu/install-sensu/
https://nvd.nist.gov/vuln/detail/CVE-2019-6486/

5.1.0 release notes

December 19, 2018 — The latest release of Sensu Go, version 5.1.0, is now available for download.
This release includes an important change to the Sensu backend state directory as well as support for
Ubuntu 14.04 and some key bug fxes.

Read the upgrade guide to upgrade Sensu to version 5.1.0.

IMPORTANT:

NEW FEATURES:

IMPROVEMENTS:

When requested, on-demand check executions now correctly retrieve asset dependencies.

Checks now maintain a consistent execution schedule after updates to the check defnition.

Proxy check request errors now include the check name and namespace.

When encountering an invalid line during metric extraction, Sensu now logs an error and
continues extraction.

Sensuctl now returns an error when attempting to delete a non-existent entity.

Sensuctl now removes the temporary fle it creates when executing the sensuctl edit
command.

The Sensu dashboard now recovers from errors correctly when shutting down.

The Sensu dashboard includes better visibility for buttons and menus in the dark theme.

NOTE: This applies only to Sensu backend binaries downloaded from s3-us-west-
2.amazonaws.com/sensu.io/sensu-go , not to Sensu RPM or DEB packages.

For Sensu backend binaries, the default state-dir is now /var/lib/sensu/sensu-
backend instead of /var/lib/sensu .
To upgrade your Sensu backend binary to 5.1.0, make
sure your /etc/sensu/backend.yml confguration fle specifes a state-dir .
Read the
upgrade guide for more information.

Sensu agents now include trusted-ca-fle and insecure-skip-tls-verify confguration
options, giving you more fexibility with certifcates when connecting agents to the backend over
TLS.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.1/operations/maintain-sensu/upgrade/#upgrade-sensu-backend-binaries-to-510
http://localhost:1313/sensu-go/5.1/observability-pipeline/observe-schedule/agent/

FIXES:

5.0.1 release notes

December 12, 2018 — Sensu Go 5.0.1 includes our top bug fxes following last week’s general
availability release.

Read the upgrade guide to upgrade Sensu to version 5.0.1.

FIXED:

5.0.0 release notes

Sensu now includes support for Ubuntu 14.04.

The Sensu backend now successfully connects to an external etcd cluster.

SysVinit scripts for the Sensu agent and backend now include correct run and log paths.

Once created, keepalive alerts and check TTL failure events now continue to occur until a
successful event is observed.

When querying for an empty list of assets, sensuctl and the Sensu API now return an empty
array instead of null.

The sensuctl create command now successfully creates hooks when provided with the
correct defnition.

The Sensu dashboard now renders status icons correctly in Firefox.

The Sensu backend can now successfully connect to an external etcd cluster.

The Sensu dashboard now sorts silences in ascending order, correctly displays status values,
and reduces shuffing in the event list.

Sensu agents on Windows now execute command arguments correctly.

Sensu agents now correctly include environment variables when executing checks.

Command arguments are no longer escaped on Windows.

Sensu backend environments now include handler and mutator execution requests.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

December 5, 2018 — We’re excited to announce the general availability release of Sensu Go!
Sensu
Go is the fexible monitoring event pipeline written in Go and designed for container-based and hybrid-
cloud infrastructures.
Check out the Sensu blog for more information about Sensu Go and version 5.0.

For a complete list of changes from Beta 8-1, review the Sensu Go changelog.
This page will be the
offcial home for the Sensu Go changelog and release notes.

To get started with Sensu Go:

Install Sensu Go.

Get started monitoring server resources.

https://sensu.io/blog/sensu-go-is-here/
https://www.github.com/sensu/sensu-go/blob/main/CHANGELOG.md#500---2018-11-30
http://localhost:1313/sensu-go/5.0/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.0/observability-pipeline/observe-schedule/monitor-server-resources/

Get started with Sensu

Sensu Go is the fexible observability pipeline designed for container-based and multi-cloud
infrastructures.

Sensu is available as packages, Docker images, and binary-only distributions.
You can install the
commercial distribution or build Sensu from source.

Install the commercial distribution of Sensu Go

Sensu’s supported platforms include Debian- and RHEL-family distributions and Windows.

Learn Sensu

Watch this video for a 10-minute introduction to Sensu Go:

Install Sensu Go with a commercial package and get started for free

Learn about Sensu’s commercial features — all commercial features are available for free in
the packaged Sensu Go distribution up to an entity limit of 100

Find the Sensu architecture that best meets your needs

Discover, confgure, and install monitoring and observability integrations in the Sensu Catalog
and explore hundreds of dynamic runtime assets for deploying plugins in Bonsai, the Sensu
asset hub

Migrate from Sensu Core and Sensu Enterprise to Sensu Go

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://bonsai.sensu.io/

We recommend these resources for learning more about Sensu:

Explore monitoring at scale with Sensu Go

Sensu offers support packages for Sensu Go as well as commercial licenses designed for monitoring
at scale.

Build Sensu from source (OSS)

Sensu Go’s core is open source software, freely available under an MIT License.

Follow the self-guided Sensu Go Workshop and create your frst observability pipeline

Try a live demo of the Sensu web UI

Sign up for our step-by-step Learn Sensu email course

Join the Sensu Community Forum on Discourse

Contact the sales team for a personalized demo and free trial of commercial features at scale

Activate your Sensu commercial license

Compare OSS and commercial features

Visit Sensu Go on GitHub

Build from source

https://github.com/sensu/sensu-go-workshop#overview
https://sensu.io/learn
https://discourse.sensu.io/
https://sensu.io/contact?subject=contact-sales
https://sensu.io/features/compare
https://github.com/sensu/sensu-go/
https://www.github.com/sensu/sensu-go/blob/main/README.md#building-from-source

Supported platforms and distributions

Sensu is available as packages, Docker images, and binary-only distributions.
We recommend installing
Sensu with one of our supported packages, Docker images, or confguration management integrations.
Sensu downloads are provided under the Sensu commercial license.

Supported packages

This page lists supported packages for the most common platforms.
Supported packages are available
from sensu/stable on packagecloud and the Sensu downloads page.

Sensu backend

RHEL family
6, 7, 8, 9

Debian 8, 9, 10, 11 Ubuntu 14.04
16.04, 18.04, 18.10
19.04, 19.10, 20.04
22.04

amd64

arm64

ppc64le

Sensu agent

RHEL
family
6, 7, 8, 9

Debian
8, 9, 10, 11

Ubuntu
14.04
16.04

Windows 7
and later

Windows
Server
2008 R2

NOTE: The sensu/stable repository on packagecloud includes packages for every platform Sensu
supports, in addition to packages for the common platforms listed on this page.

https://sensu.io/licenses
https://packagecloud.io/sensu/stable/
https://sensu.io/downloads
https://packagecloud.io/sensu/stable/

18.04
18.10
19.04
19.10
20.04
22.04

and later

amd64

386

armv5

armv6

armv7

ppc64le

s390x

Sensuctl command line tool

RHEL
family
6, 7, 8, 9

Debian
8, 9, 10, 11

Ubuntu
14.04
16.04
18.04
18.10
19.04
19.10
20.04
22.04

Windows 7
and later

Windows
Server
2008 R2
and later

amd64

386

armv5

armv6

armv7

ppc64le

s390x

Docker images

Docker images that contain the Sensu backend and Sensu agent are available for Linux-based
containers.

Image Name Base

sensu/sensu Alpine Linux

sensu/sensu-rhel Red Hat Enterprise Linux

Binary-only distributions

Sensu binary-only distributions are available in .zip and .tar.gz formats.

Platform Architectures

Linux 386 amd64 arm64 armv5 armv6 armv7
MIPS MIPS LE MIPS 64 MIPS 64 LE ppc64le s390x

Windows 386 amd64

macOS amd64 amd64 CGO arm64

FreeBSD 386 amd64 armv5 armv6 armv7

Solaris amd64

Linux

Sensu binary-only distributions for Linux are available for the architectures listed in the table below.

For binary distributions, we support the following Linux kernels:

https://hub.docker.com/r/sensu/sensu/
https://hub.docker.com/r/sensu/sensu-rhel/

Architecture Formats Architecture Formats

386 .tar.gz | .zip MIPS LE hard foat .tar.gz | .zip

amd64 .tar.gz | .zip MIPS LE soft foat .tar.gz | .zip

arm64 .tar.gz | .zip MIPS 64 hard foat .tar.gz | .zip

armv5 .tar.gz | .zip MIPS 64 soft foat .tar.gz | .zip

armv6 .tar.gz | .zip MIPS 64 LE hard foat .tar.gz | .zip

armv7 .tar.gz | .zip MIPS 64 LE soft foat .tar.gz | .zip

MIPS hard foat .tar.gz | .zip s390x .tar.gz | .zip

MIPS soft foat .tar.gz | .zip ppc64le .tar.gz | .zip

For example, to download Sensu for Linux amd64 in tar.gz format:

Generate a SHA-256 checksum for the downloaded artifact:

The result should match the checksum for your platform:

3.1.x and later for armv5

4.8 and later for MIPS 64 LE hard foat and MIPS 64 LE soft foat

2.6.23 and later for all other architectures

NOTE: The Linux amd64 , arm64 , and ppc64le binary distributions include the agent,
backend, and sensuctl CLI.
Binaries for all other Linux architectures include only the Sensu agent
and sensuctl CLI.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_linux_amd64.tar.gz

sha256sum sensu-go_6.8.2_linux_amd64.tar.gz

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_386.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mipsle-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mipsle-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mipsle-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mipsle-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_arm64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_arm64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips64-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips64-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_armv5.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_armv5.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips64-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips64-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_armv6.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_armv6.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips64le-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips64le-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_armv7.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_armv7.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips64le-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips64le-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_s390x.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_s390x.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_mips-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_ppc64le.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_linux_ppc64le.zip

Federal Information Processing Standard (FIPS) Compliance

Builds that support the Federal Information Processing Standard (FIPS) for Federal Risk and
Authorization Management Program (FedRAMP) compliance are available for Linux amd64 .

Sensu FIPS builds with FIPS-mode confguration options are linked with the FIPS 140-2 validated
cryptographic library.
You can run Red Hat Enterprise Linux (RHEL) with the FIPS-mode kernel option
to enforce FIPS systemwide — Sensu FIPS builds comply with this mode.

Contact Sensu to request builds with FIPS support.

Read Confgure Sensu for FIPS compliance to learn more about Sensu’s FIPS build, including
confguration examples.

Windows

Sensu binary-only distributions for Windows are available for the architectures listed in the table below.

We support Windows 7 and later and Windows Server 2008R2 and later for binary distributions.

Architecture Formats

386 .tar.gz | .zip

amd64 .tar.gz | .zip

For example, to download Sensu for Windows amd64 in zip format:

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_checksums.txt && cat sensu-go_6.8.2_checksums.txt

NOTE: The Windows binary distributions include only the Sensu agent and sensuctl CLI.

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_windows_amd64.zip -OutFile "$env:userprofle\sensu-

https://sensu.io/contact
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_windows_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_windows_386.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_windows_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_windows_amd64.zip

Generate a SHA-256 checksum for the downloaded artifact:

The result should match (with the exception of capitalization) the checksum for your platform:

macOS

Sensu binary-only distributions for macOS are available for the architectures listed in the table below.

We support macOS 10.11 and later for binary distributions.

Architecture Formats

amd64 .tar.gz | .zip

amd64 CGO .tar.gz | .zip

arm64 .tar.gz | .zip

For example, to download Sensu for macOS amd64 in tar.gz format:

go_6.8.2_windows_amd64.zip"

Get-FileHash "$env:userprofle\sensu-go_6.8.2_windows_amd64.zip" -Algorithm SHA256 |

Format-List

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_checksums.txt -OutFile "$env:userprofle\sensu-go_6.8.2_checksums.txt"

Get-Content "$env:userprofle\sensu-go_6.8.2_checksums.txt" | Select-String -Pattern

windows_amd64

NOTE: The macOS binary distributions include only the Sensu agent and sensuctl CLI.

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_darwin_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_darwin_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/cgo/sensu-go-cgo_6.8.2_darwin_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/cgo/sensu-go-cgo_6.8.2_darwin_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_darwin_arm64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_darwin_arm64.zip

Generate a SHA-256 checksum for the downloaded artifact:

The result should match the checksum for your platform:

Extract the archive:

Copy the executable into your PATH:

FreeBSD

Sensu binary-only distributions for FreeBSD are available for the architectures listed in the table below.

We support FreeBSD 11.2 and later for binary distributions.

Architecture Formats

386 .tar.gz | .zip

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_darwin_amd64.tar.gz

shasum -a 256 sensu-go_6.8.2_darwin_amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_checksums.txt && cat sensu-go_6.8.2_checksums.txt

tar -xvf sensu-go_6.8.2_darwin_amd64.tar.gz

sudo cp sensuctl /usr/local/bin/

NOTE: The FreeBSD binary distributions include only the Sensu agent and sensuctl CLI.

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_386.zip

amd64 .tar.gz | .zip

armv5 .tar.gz | .zip

armv6 .tar.gz | .zip

armv7 .tar.gz | .zip

For example, to download Sensu for FreeBSD amd64 in tar.gz format:

Generate a SHA-256 checksum for the downloaded artifact:

The result should match the checksum for your platform:

Solaris

Sensu binary-only distributions for Solaris are available for the architectures listed in the table below.

We support Solaris 11 and later (not SPARC) for binary distributions.

Architecture Formats

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_freebsd_amd64.tar.gz

sha256sum sensu-go_6.8.2_freebsd_amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_checksums.txt && cat sensu-go_6.8.2_checksums.txt

NOTE: The Solaris binary distributions include only the Sensu agent.

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_armv5.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_armv5.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_armv6.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_armv6.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_armv7.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_freebsd_armv7.zip

amd64 .tar.gz | .zip

For example, to download Sensu for Solaris amd64 in tar.gz format:

Generate a SHA-256 checksum for the downloaded artifact.

The result should match the checksum for your platform.

Legacy systems and other platforms

The Sensu Push utility allows you to execute Sensu checks on legacy systems and other platforms
that cannot run the Sensu agent, such as AIX and SPARC Solaris.

You can also use cron to run Sensu checks locally on these systems and forward the results to an
upstream Sensu backend or agent via the Sensu API.

Build from source

Sensu Go’s core is open source software, freely available under an MIT License.
Sensu Go instances
built from source do not include commercial features such as the web UI, single sign-on (SSO)
authentication, and secrets management.
Review the feature comparison matrix to learn more.

To build Sensu Go from source, read the Sensu Go installation instructions on GitHub.
To download
and run the web UI as a separate component, visit the Sensu Go Web GitHub repository.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_solaris_amd64.tar.gz

sha256sum sensu-go_6.8.2_solaris_amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_checksums.txt && cat sensu-go_6.8.2_checksums.txt

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_solaris_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-go_6.8.2_solaris_amd64.zip
https://github.com/sensu/sensu-push
https://sensu.io/features/compare
https://github.com/sensu/sensu-go#installation
https://github.com/sensu/web#roadmap

Mirror packages

To mirror Sensu Go, follow the packagecloud instructions for YUM and APT repository mirroring.
The
sensu/stable packagecloud repository hosts packages for every Sensu Go version.

https://packagecloud.io/sensu/stable/mirror#yum
https://packagecloud.io/sensu/stable/mirror#apt
https://packagecloud.io/sensu/stable/

Get started with commercial features

Sensu Go offers commercial features designed for monitoring and observability at scale.
All commercial
features are available in the offcial Sensu Go distribution, and you can use them for free up to an
entity limit of 100.
If you have more than 100 entities, contact the Sensu sales team for a free trial.

In addition to the summary on this page, we describe commercial features in detail throughout the
documentation.
Watch for this notice to identify commercial features:

Commercial features in Sensu Go

COMMERCIAL FEATURE : Access <feature_name> in the packaged Sensu Go distribution.
For
more information, read Get started with commercial features.

Integrate your Sensu observability pipeline with industry-standard tools like EC2, Jira,
ServiceNow, and Sumo Logic with featured integrations and enterprise-tier dynamic runtime
assets.
Use the built-in Sensu Plus integration to transmit your observability data to Sumo Logic
via the HTTP Logs and Metrics Source.

Find, confgure, and install integrations directly in your browser with the Sensu Catalog,
our online marketplace for monitoring and observability integrations.

Manage resources from your browser: Use the Sensu web UI to manage events and entities
and create, edit, and delete checks, handlers, mutators, silences, and event flters, with a
single pane of glass view.
Create customized global default settings for page size and theme,
page-specifc settings for page size, order, and selector, and sign-in messages.

Control access with single sign-on (SSO) authentication using Lightweight Directory
Access Protocol (LDAP), Active Directory (AD), or OpenID Connect 1.0 protocol (OIDC).

Maintain high-level visibility into the current health of your business services.
Use
business service monitoring (BSM) to monitor your system with a top-down approach that
produces meaningful alerts, prevents alert fatigue, and helps you focus on your core business
services.

Use mutual transport layer security (mTLS) authentication to provide two-way verifcation
of your Sensu agents and backend connections.

Protect your sensitive information with secrets management.
Avoid exposing usernames,
passwords, and access keys in your Sensu confguration by integrating with HashiCorp Vault

https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/contact?subject=contact-sales/
https://bonsai.sensu.io/assets?tiers%5B%5D=4/
https://bonsai.sensu.io/assets?tiers%5B%5D=4/
https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Review a complete comparison of OSS and commercial features.

Contact us for a free trial

Sensu’s commercial features are free for your frst 100 entities.
If your Sensu installation includes more
than 100 entities, contact the Sensu sales team for a free trial of commercial features at scale in Sensu
Go.

Manage your Sensu account and contact support through account.sensu.io.

Get started with commercial features in Sensu Go

If you haven’t already, install the Sensu Go backend, agent, and sensuctl tool and confgure sensuctl.

You will need a commercial license if your Sensu installation includes more than 100 entities.
To
download your commercial license fle:

1. Log in to your Sensu account at account.sensu.io.
2. Click Download license.

or using Sensu’s Env secrets provider.

Manage your monitoring resources across multiple data centers, cloud regions, or
providers and mirror changes to follower clusters with federation.
Federation affords visibility
into the health of your infrastructure and services across multiple distinct Sensu instances
within a single web UI.

Use powerful search capabilities designed for large installations to search Sensu API
responses, sensuctl outputs, and Sensu web UI views using custom labels and a wide range of
resource attributes.
Build event flter expressions with JavaScript execution functions.

Achieve enterprise-scale event handling for your Sensu instance with a PostgreSQL event
store.
Access the PostgreSQL event datastore with the same Sensu web UI, API, and sensuctl
processes as etcd-stored events.
Use Sumo Logic metrics handlers and TCP stream handlers to
provide a persistent connection for transmitting Sensu observability metrics.

Get enterprise-class support: Rest assured that with Sensu support, help is available if you
need it.
Our expert in-house team offers best-in-class support to get you up and running
smoothly.

NOTE: In some cases, you may need to click Generate license before you can download your

https://sensu.io/features/compare
https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/contact?subject=contact-sales/
https://account.sensu.io/
https://account.sensu.io/
https://sensu.io/support/

With the license fle downloaded, you can use sensuctl to activate your commercial license:

Use sensuctl to view your license details at any time:

license.

sensuctl create --fle sensu_license.json

NOTE: For clustered confgurations, you only need to activate your license for one of the backends
within the cluster.

http://localhost:1313/images/go/commercial/license_download.png

Users with permission to create or update licenses can also view license information in the Sensu web
UI by pressing CTRL . to open the system information modal.

These resources will help you use commercial features in Sensu Go:

sensuctl license info

Confgure mTLS authentication for the Sensu agent.

Federate multiple Sensu instances to gain single-pane-of-glass visibility into your infrastructure
and services.

Install plugins with dynamic runtime assets and use our complete catalog of integrations.

Keep sensitive information like passwords and access tokens private with secrets
management.

Set up and manage single sign-on (SSO) authentication providers: Active Directory (AD),
Lightweight Directory Access Protocol (LDAP), and OpenID Connect 1.0 protocol (OIDC).

Use the web UI for a unifed view of your events, entities, and confguration resources along
with user-friendly tools, and create customized page views.

Monitor business services and get high-level visibility into every component in your system.

Search in the web UI or use powerful response fltering in API requests and sensuctl
commands.

Scale your monitoring and observability with Sensu’s enterprise datastore.

Manage your Sensu commercial license

Log in to your Sensu account

Contact Sensu support

https://account.sensu.io/
https://account.sensu.io/support/

Sensu Plus

Sensu Plus is a built-in integration for transmitting your Sensu observability data to the Sumo Logic
Continuous Intelligence Platform™ via a Sumo Logic HTTP Logs and Metrics Source (an endpoint for
receiving data).
In Sumo Logic, you can confgure customized interactive dashboards and analytics
tools to gain better visibility into your Sensu data — read Introducing Sensu Plus for more information.

If you completed Sumo Logic setup in the Sensu web UI, fnish the confguration process to create
the Sensu resources you need to start sending observability event data to Sumo Logic.

If you did not use the Sensu web UI to set up a Sumo Logic account, follow the manual setup process
for Sensu Plus.

Finish confguration after web UI setup

In the Sensu web UI, you already set up a Sumo Logic account and HTTP Logs and Metrics Source
endpoint for receiving data.
To fnish your confguration, you need the SOURCE URL for your endpoint,
which you can copy from the last page in the web UI dialog.

Follow the steps in this section to create a Sensu handler, pipeline, and check to transmit your Sensu
data in Sumo Logic.

Create a handler in Sensu

Create a Sumo Logic metrics handler to send your Sensu observability data to your new Sumo Logic
HTTP Logs and Metrics Source.
Sumo Logic metrics handlers provide a persistent connection to
transmit Sensu observability data, which helps prevent the data bottlenecks you may experience with
traditional handlers.

COMMERCIAL FEATURE : Access Sensu Plus in the packaged Sensu Go distribution.
For more
information, read Get started with commercial features.

NOTE: Sumo Logic metrics handlers only accept metrics events.
To send status events, use the
Sensu Sumo Logic Handler integration instead.

https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source
https://www.sumologic.com/blog/introducing-sensu-plus/

For a Sumo Logic metrics handler, the resource defnition must use the URL for your HTTP Logs and
Metrics Source as the value for the url attribute.

Here is an example Sumo Logic Metrics Handler defnition.
Before you run the command to add this
handler, replace the url example value with the URL for your Sumo Logic HTTP Logs and Metrics
Source:

If you prefer, you can confgure your Sumo Logic HTTP Logs and Metrics Source URL as a secret with

cat << EOF | sensuctl create

type: SumoLogicMetricsHandler

api_version: pipeline/v1

metadata:

 name: sumo_logic_http_metrics

spec:

 url: "https://collectors.sumologic.com/receiver/v1/http/xxxxxxxx"

 max_connections: 10

 timeout: 10s

EOF

TEXT

cat << EOF | sensuctl create

{

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "sumo_logic_http_metrics"

 },

 "spec": {

 "url": "https://collectors.sumologic.com/receiver/v1/http/xxxxxxxx",

 "max_connections": 10,

 "timeout": "10s"

 }

}

EOF

TEXT

Sensu’s Env secrets provider to avoid exposing the URL in your handler defnition.
This example
shows the same defnition with the URL referenced as a secret instead:

cat << EOF | sensuctl create

type: SumoLogicMetricsHandler

api_version: pipeline/v1

metadata:

 name: sumo_logic_http_metrics

spec:

 url: $SUMO_LOGIC_SOURCE_URL

 secrets:

 - name: SUMO_LOGIC_SOURCE_URL

 secret: sumologic_metrics_us1

 max_connections: 10

 timeout: 10s

EOF

TEXT

cat << EOF | sensuctl create

{

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "sumo_logic_http_metrics"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us1"

 }

],

 "max_connections": 10,

 "timeout": "10s"

 }

}

EOF

TEXT

Confgure a pipeline

Sensu pipelines use event flters, mutators, and handlers as the building blocks for event processing
workfows.
With your handler defnition confgured, you’re ready to create a pipeline with a workfow that
references your sumo_logic_http_metrics handler.

To confgure event processing via your sumo_logic_http_metrics handler, add this example pipeline
defnition.
This pipeline includes a workfow with your sumo_logic_http_metrics handler, along with
Sensu’s built-in has_metrics event flter to ensure that the workfow only processes events that contain
metrics:

cat << EOF | sensuctl create

type: Pipeline

api_version: core/v2

metadata:

 name: sensu_to_sumo

spec:

 workfows:

 - name: metrics_to_sumologic

 flters:

 - name: has_metrics

 type: EventFilter

 api_version: core/v2

 handler:

 name: sumo_logic_http_metrics

 type: SumoLogicMetricsHandler

 api_version: pipeline/v1

EOF

TEXT

cat << EOF | sensuctl create

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

TEXT

Add a Sensu check

Your pipeline resource is now properly confgured, but it’s not processing any events because no
Sensu checks are sending events to it.
To get your Sensu observability data fowing through the new
pipeline, add the pipeline by reference in at least one check defnition.

This example check defnition uses the sensu/system-check dynamic runtime asset.
Dynamic runtime
assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

Follow these steps to confgure the required system check:

1. Add the sensu/system-check dynamic runtime asset:

 "name": "sensu_to_sumo"

 },

 "spec": {

 "workfows": [

 {

 "name": "metrics_to_sumologic",

 "flters": [

 {

 "name": "has_metrics",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "sumo_logic_http_metrics",

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1"

 }

 }

]

 }

}

EOF

sensuctl asset add sensu/system-check:0.1.1 -r system-check

https://bonsai.sensu.io/assets/sensu/system-check
https://bonsai.sensu.io/assets/sensu/system-check

2. Update at least one Sensu entity to use the system subscription.
In the following command,
replace <ENTITY_NAME> with the name of the entity on your system.
Then, run:

3. Add the following check defnition:

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

For Subscriptions , type system and press enter.

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: system-check

spec:

 command: system-check

 runtime_assets:

 - system-check

 subscriptions:

 - system

 interval: 10

 timeout: 5

 publish: true

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: sensu_to_sumo

 output_metric_format: prometheus_text

 output_metric_tags:

 - name: entity

 value: "{{ .name }}"

 - name: namespace

 value: "{{ .namespace }}"

 - name: os

 value: "{{ .system.os }}"

 - name: platform

TEXT

 value: "{{ .system.platform }}"

EOF

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "system-check"

 },

 "spec": {

 "command": "system-check",

 "runtime_assets": [

 "system-check"

],

 "subscriptions": [

 "system"

],

 "interval": 10,

 "timeout": 5,

 "publish": true,

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "sensu_to_sumo"

 }

],

 "output_metric_format": "prometheus_text",

 "output_metric_tags": [

 {

 "name": "entity",

 "value": "{{ .name }}"

 },

 {

 "name": "namespace",

 "value": "{{ .namespace }}"

 },

 {

TEXT

This check will collect baseline system metrics in Prometheus format for all entities that include the
system subscription and send the events to Sumo Logic via your sensu_to_sumo pipeline resource.

View your Sensu data in Sumo Logic

During the web UI setup process, Sensu added two custom dashboards as a starting point for viewing
your observability event data.
The two new dashboards will be listed in the Sensu folder in the left-
navigation menu:

 "name": "os",

 "value": "{{ .system.os }}"

 },

 {

 "name": "platform",

 "value": "{{ .system.platform }}"

 }

]

 }

}

EOF

NOTE: Sumo Logic metrics handlers only accept metrics events, so you must use a check that
produces metrics.
If your check produces status events, use the Sensu Sumo Logic Handler
integration to create a traditional Sensu handler rather than the Sumo Logic metrics handler.

Click a dashboard name to view your Sensu observability data.

It may take a few moments for your data to appear in Sumo Logic.
The Sensu Overview and Sensu
Entity Details dashboards will begin to display your data:

http://localhost:1313/images/go/sensu_plus/sensu_dashboards_in_sumo_logic.png
http://localhost:1313/images/go/sensu_plus/sensu_entity_details_dashboard_sumo_logic.png

Manually set up Sensu Plus

This section explains how to set up Sensu Plus manually, without using the Sensu web UI.

First, create a new Sumo Logic account or log in to your existing account.

Then follow the steps below to create a Sumo Logic HTTP Logs and Metrics Source (an endpoint for
receiving data), the Sensu resources that collect and process the data, and two dashboards for
viewing your observability event data in Sumo Logic.

Set up an HTTP Logs and Metrics Source

Create a Sumo Logic HTTP Logs and Metrics Source to collect your Sensu observability data:

1. In the Sumo Logic left-navigation menu, click Manage Data and then Collection.

https://www.sumologic.com/sign-up/?utm_source=sensudocs&utm_medium=sensuwebsite
https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source

2. At the top-right of the Collection tab, click Add Collector.

3. In the Click Selector Type modal window, click Hosted Collector.

http://localhost:1313/images/go/sensu_plus/manage_data_collection.png
http://localhost:1313/images/go/sensu_plus/add_collector.png

4. In the Add Hosted Collector modal window:

Type sensu in the Name feld.

Click Save.

http://localhost:1313/images/go/sensu_plus/hosted_collector_option.png

5. In the Confrm prompt, click OK.

6. Under Cloud APIs, click HTTP Logs & Metrics.

http://localhost:1313/images/go/sensu_plus/add_hosted_collector.png
http://localhost:1313/images/go/sensu_plus/confirm_prompt.png

7. In the HTTP Logs & Metrics form:

Type sensu-http in the Name feld.

Type sensu-events in the Source Category feld.

Click Save.

http://localhost:1313/images/go/sensu_plus/cloud_apis_http_logs_and_metrics.png

8. In the HTTP Source Address prompt, copy the listed URL and click OK.
You will use this URL as
the value for the url attribute in your Sensu handler defnition.

http://localhost:1313/images/go/sensu_plus/http_logs_and_metrics_source.png

Import Sumo Logic dashboards

To view your Sensu observability data in Sumo Logic, you can confgure Sumo Logic dashboards in
any way you wish.
As a starting point, follow these instructions to import two dashboards, Sensu
Overview and Sensu Entity Details:

1. On your Sumo Logic home page, click the Personal tab in the left-navigation menu.
Click the
options icon for the folder where you want to import your Sensu data and select Import.

2. In the Import Content modal window:

Type “Sensu” in the Name feld.

Copy the dashboard confguration JSON (download) and paste it into the JSON feld:

http://localhost:1313/images/go/sensu_plus/http_source_address_url.png
https://help.sumologic.com/Visualizations-and-Alerts/Dashboards
https://service.sumologic.com/ui/#/home
http://localhost:1313/images/go/sensu_plus/personal_folder_import.png
http://localhost:1313/sensu-go/6.8/files/sensu-plus-dashboard-config.json

3. Scroll to the bottom of the Import Content modal window and click Import.
The two new
dashboards will be listed in the Sensu folder in the left-navigation menu:

http://localhost:1313/images/go/sensu_plus/import_content.png

After you create a Sensu handler, pipeline, and check in the next section, you will be able to click a
dashboard name to view your Sensu observability data.

Create Sensu resources

With your dashboards set up, you’re ready to confgure a Sensu handler, pipeline, and check.
To create
the Sensu resources, follow the same instructions as users who started in the web UI:

After you add the check, it may take a few moments for your data to appear in Sumo Logic.
The Sensu
Overview and Sensu Entity Details dashboards will begin to display your data:

Create a handler in Sensu

Confgure a pipeline

Add a Sensu check

http://localhost:1313/images/go/sensu_plus/sensu_dashboards_in_sumo_logic.png

http://localhost:1313/images/go/sensu_plus/sensu_entity_details_dashboard_sumo_logic.png

Sensu Observability Pipeline

Sensu’s observability pipeline is a fexible, automated tool that gives you visibility into every part of
your organization’s infrastructure.

The Sensu agent is a lightweight process that runs on the infrastructure components you want to
observe.
Each agent is represented in Sensu as an entity.
The Sensu backend schedules checks for
agents to run on your infrastructure.
Agents receive check execution requests based on the agent
subscriptions you specify.

The agent runs these checks on your infrastructure to gather observation data about your networking,
compute resources, applications, and more.
Events contain the observation data that your checks
gather, which might include entity status, metrics, or both, depending on your needs and confguration.

The agent sends events to the backend, which flters, transforms, and processes the data in your
events with event flters, mutators, and handlers.

Sensu’s observability pipeline delivers contextualized information and deeper insights so you can take
targeted actions.
For example, Sensu can send entity status data in an email, Slack, or PagerDuty alert
and transport metrics to storage in your Graphite, InfuxDB, or Prometheus databases.

Next or click any element in the pipeline to jump to it.

http://localhost:1313/images/observability-pipeline.png

Entities

Next or click any element in the pipeline to jump to it.

An entity represents anything that needs to be observed or monitored, such as a server, container, or
network switch, including the full range of infrastructure, runtime, and application types that compose a
complete monitoring environment (from server hardware to serverless functions).
Sensu calls parts of
an infrastructure “entities.”

An entity provides the context for observation data in events — what and where the event is from.
The
check and entity names associated with an event determine the event’s uniqueness.
Entities can also
contain system information like the hostname, operating system, platform, and version.

There are four types of Sensu entities: agent, proxy, service, and backend entities.

Agent entities

Agent entities are monitoring agents that are installed and run on every system that needs to be
observed or monitored.
The agent entity registers the system with the Sensu backend service, sends
keepalive messages (the Sensu heartbeat mechanism), and executes observability checks.

Each entity is a member of one or more subscriptions : a list of roles and responsibilities assigned
to the agent entity (for example, a webserver or a database).
Sensu entities “subscribe” to (or watch for)
check requests published by the Sensu backend (via the Sensu transport), execute the corresponding
requests locally, and publish the results of the check back to the transport (to be processed by a Sensu
backend).

http://localhost:1313/images/observability-pipeline-entities.png

This example shows an agent entity resource defnition:

type: Entity

api_version: core/v2

metadata:

 name: i-424242

spec:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 0

 sensu_agent_version: 1.0.0

 subscriptions:

 - web

 system:

 cloud_provider: ""

 libc_type: ""

 network:

 interfaces: null

 processes: null

 vm_role: ""

 vm_system: ""

YML

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "i-424242"

 },

 "spec": {

 "deregister": false,

 "deregistration": {

 },

 "entity_class": "agent",

 "last_seen": 0,

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

JSON

Proxy entities

Proxy entities [formerly known as proxy clients or just-in-time (JIT) clients] allow Sensu to monitor
external resources on systems where you cannot install a Sensu agent, like a network switch or
website.

Proxy entities are dynamically created when an entity does not already exist for a check result.
In this
case, Sensu uses the proxy_entity_name defned in the check to create proxy entities for external
resources.

This example shows a proxy entity resource defnition:

 "web"

],

 "system": {

 "cloud_provider": "",

 "libc_type": "",

 "network": {

 "interfaces": null

 },

 "processes": null,

 "vm_role": "",

 "vm_system": ""

 }

 }

}

type: Entity

api_version: core/v2

metadata:

 labels:

 proxy_type: website

 sensu.io/managed_by: sensuctl

 url: https://docs.sensu.io

 name: sensu-docs

 namespace: default

spec:

YML

 deregister: false

 deregistration: {}

 entity_class: proxy

 last_seen: 0

 sensu_agent_version: ""

 subscriptions: null

 system:

 cloud_provider: ""

 libc_type: ""

 network:

 interfaces: null

 processes: null

 vm_role: ""

 vm_system: ""

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "labels": {

 "proxy_type": "website",

 "sensu.io/managed_by": "sensuctl",

 "url": "https://docs.sensu.io"

 },

 "name": "sensu-docs",

 "namespace": "default"

 },

 "spec": {

 "deregister": false,

 "deregistration": {

 },

 "entity_class": "proxy",

 "last_seen": 0,

 "sensu_agent_version": "",

 "subscriptions": null,

 "system": {

 "cloud_provider": "",

 "libc_type": "",

 "network": {

 "interfaces": null

JSON

Service entities

A service entity represents a business service in business service monitoring (BSM).
Sensu processes
service entity events just like events generated for agent and proxy entities.
You can also use service
entities for proxy check requests and events.

This example shows a service entity resource defnition:

 },

 "processes": null,

 "vm_role": "",

 "vm_system": ""

 }

 }

}

COMMERCIAL FEATURE : Access business service monitoring (BSM), including service entities,
in the packaged Sensu Go distribution.
For more information, read Get started with commercial
features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

type: Entity

api_version: core/v2

metadata:

 name: postgresql

spec:

 entity_class: service

YML

{

 "type": "Entity",

 "api_version": "core/v2",

JSON

Backend entities

A backend entity represents a Sensu backend.
Sensu automatically creates a backend entity for each
backend when it is started and populates the entity with the backend’s system information.
Users cannot
manually create backend entities.

Backends use their own entities to generate events due to error conditions like unavailable
components and services.

This example shows a backend entity resource defnition:

 "metadata": {

 "name": "postgresql"

 },

 "spec": {

 "entity_class": "service"

 }

}

type: Entity

api_version: core/v2

metadata:

 name: 6b6264feda40

 namespace: sensu-system

spec:

 deregister: false

 deregistration: {}

 entity_class: backend

 last_seen: 0

 sensu_agent_version: ''

 subscriptions: null

 system:

 arch: amd64

 cloud_provider: ''

 hostname: 6b6264feda40

 libc_type: glibc

 network:

YML

 interfaces:

 - addresses:

 - 127.0.0.1/8

 name: lo

 - addresses: null

 name: tunl0

 - addresses: null

 name: ip6tnl0

 - addresses:

 - 172.18.0.4/16

 mac: 02:42:ac:12:00:04

 name: eth0

 os: linux

 platform: redhat

 platform_family: rhel

 platform_version: '7.9'

 processes: null

 vm_role: guest

 vm_system: ''

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "6b6264feda40",

 "namespace": "sensu-system"

 },

 "spec": {

 "deregister": false,

 "deregistration": {

 },

 "entity_class": "backend",

 "last_seen": 0,

 "sensu_agent_version": "",

 "subscriptions": null,

 "system": {

 "arch": "amd64",

 "cloud_provider": "",

 "hostname": "6b6264feda40",

 "libc_type": "glibc",

JSON

Usage limits

Sensu’s usage limits are based on entities.

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8"

],

 "name": "lo"

 },

 {

 "addresses": null,

 "name": "tunl0"

 },

 {

 "addresses": null,

 "name": "ip6tnl0"

 },

 {

 "addresses": [

 "172.18.0.4/16"

],

 "mac": "02:42:ac:12:00:04",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "redhat",

 "platform_family": "rhel",

 "platform_version": "7.9",

 "processes": null,

 "vm_role": "guest",

 "vm_system": ""

 }

 }

}

The free limit is 100 entities.
All commercial features are available for free in the packaged Sensu Go
distribution for up to 100 entities.
If your Sensu instance includes more than 100 entities, contact us to
learn how to upgrade your installation and increase your limit. Read the announcement on our blog for
more information about our usage policy.

Commercial licenses may include an entity limit and entity class limits:

For example, if your license has an entity limit of 10,000 and an agent entity class limit of 3,000, you
cannot run more than 10,000 entities (agent and proxy) total.
At the same time, you cannot run more
than 3,000 agents.
If you use only 1,500 agent entities, you can have 8,500 proxy entities before you
reach the overall entity limit of 10,000.

If you have permission to create or update licenses, you will see messages in sensuctl and the web UI
when you approach your licensed entity or entity class limit, as well as when you exceed these limits.
You can also use sensuctl or the /license API to view your overall entity count and limit.

Entity limit: the maximum number of entities of all classes your license includes.
Agent, proxy,
and service entities count toward the overall entity limit.

Entity class limits: the maximum number of a specifc class of entities (agent, proxy, or service)
that your license includes.

https://sensu.io/contact
https://sensu.io/blog/one-year-of-sensu-go

Entities reference

An entity represents anything that needs to be monitored, such as a server, container, or network
switch, including the full range of infrastructure, runtime, and application types that compose a
complete monitoring environment.
Sensu uses agent entities, proxy entities, and service entities.

Sensu’s free entity limit is 100 entities.
All commercial features are available for free in the packaged
Sensu Go distribution for up to 100 entities.
If your Sensu instance includes more than 100 entities,
contact us to learn how to upgrade your installation and increase your limit.

Learn more about entity limits in the license reference.
Read the announcement on our blog for more
information about our usage policy.

Create and manage agent entities

When an agent connects to a backend, the agent entity defnition is created from the information in the
agent.yml confguration fle.
The default agent.yml fle location depends on your operating system.

Agent entity example

This example shows the resource defnition for an agent entity:

type: Entity

api_version: core/v2

metadata:

 name: webserver01

spec:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1542667231

 redact:

 - password

YML

https://sensu.io/contact
https://sensu.io/blog/one-year-of-sensu-go

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:webserver01

 system:

 arch: amd64

 libc_type: glibc

 vm_system: kvm

 vm_role: host

 cloud_provider: null

 processes:

 - name: Slack

 pid: 1349

 ppid: 0

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 1.09932518

 cpu_percent: 0.3263987595984941

 - name: Slack Helper

 pid: 1360

 ppid: 1349

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 0.146866455

 cpu_percent: 0.30897618146109257

 hostname: sensu2-centos

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::26a5:54ec:cf0d:9704/64

 mac: 08:00:27:11:ad:d2

 name: enp0s3

 - addresses:

 - 172.28.128.3/24

 - fe80::a00:27ff:febc:be60/64

 mac: 08:00:27:bc:be:60

 name: enp0s8

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.4.1708

 sensu_agent_version: 1.0.0

 user: agent

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "webserver01"

 },

 "spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu2-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

JSON

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

Manage agent entities via the backend

You can manage agent entities via the backend with sensuctl, the core/v2/entities API endpoints, and
the web UI, just like any other Sensu resource.
This means you do not need to update the agent.yml

confguration fle to add, update, or delete agent entity attributes like subscriptions and labels.

Management via the backend is the default confguration for agent entities.

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "entity:webserver01"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

}

NOTE: If you manage an agent entity via the backend, you cannot modify the agent entity with the
agent.yml confguration fle unless you delete the entity.
In this case, the entity attributes in
agent.yml are used only for initial entity creation unless you delete the entity.

If you delete an agent entity that you modifed with sensuctl, the core/v2/entities API endpoints, or the
web UI, it will revert to the original confguration from agent.yml .
If you change an agent entity’s class
to proxy , the backend will revert the change to agent .

Manage agent entities via the agent

If you prefer, you can manage agent entities via the agent rather than the backend.
To do this, add the
agent-managed-entity confguration option when you start the Sensu agent or set agent-
managed-entity: true in your agent.yml fle.

When you start an agent with the agent-managed-entity confguration option set to true , the
agent becomes responsible for managing its entity confguration.
An entity managed by this agent will
include the label sensu.io/managed_by: sensu-agent .
You cannot update these agent-managed
entities via the Sensu backend REST API.
To change an agent’s confguration, restart the agent.

You can also maintain agent entities based on agent.yml by creating ephemeral agent entities with
the deregister attribute set to true .
With this setting, the agent entity will deregister every time the
agent process stops and its keepalive expires.
When it restarts, it will revert to the original confguration
from agent.yml
You must set deregister: true in agent.yml before the agent entity is created.

Create and manage proxy entities

Proxy entities allow Sensu to monitor external resources on systems where you cannot install a Sensu
agent, like a network switch or website.

You can create proxy entities the same way you would create agent entities, but Sensu can also
dynamically create them when an entity does not already exist for a check result and add them to the
entity store.
In this case, Sensu will use the proxy_entity_name defned in the check to register proxy
entities for your external resources.

Proxy entity registration differs from keepalive-based registration because the registration event
happens while processing a check result instead of a keepalive message.

Modify proxy entities as needed via the backend with sensuctl, the core/v2/entities API endpoints, and
the web UI.

NOTE: If you start an agent with the same name as an existing proxy entity, Sensu will change the
proxy entity’s class to agent and update its system feld with information from the agent

Proxy entity example

This example shows the resource defnition for a proxy entity:

confguration.

type: Entity

api_version: core/v2

metadata:

 name: sensu-docs

spec:

 deregister: false

 deregistration: {}

 entity_class: proxy

 last_seen: 0

 sensu_agent_version: 1.0.0

 subscriptions: null

 system:

 cloud_provider: ""

 libc_type: ""

 network:

 interfaces: null

 processes: null

 vm_role: ""

 vm_system: ""

YML

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs"

 },

 "spec": {

 "deregister": false,

 "deregistration": {

JSON

Checks for proxy entities

Proxy entities allow Sensu to monitor external resources on systems or devices where a Sensu agent
cannot be installed, like a network switch, website, or API endpoint.

You can confgure a proxy check that includes a proxy_entity_name to associate the check results
with a specifc proxy entity.
On the frst check result, if the named proxy entity does not exist, Sensu will
create it.
You can also use proxy checks to monitor multiple proxy entities based on entity attributes
specifed in the check defnition’s proxy_requests attribute.

When you create a proxy check, make sure the check defnition includes a subscription that matches
the subscription of at least one agent entity to defne which agents will run the check.
Proxy entities do
not use subscriptions.

Read Monitor external resources with proxy entities for details about creating proxy checks for one or
more proxy entities.

Proxy entities and round robin scheduling

Proxy entities make round robin check scheduling more useful because they allow you to combine all
round robin events into a single event.
Instead of having a separate event for each agent entity, you

 },

 "entity_class": "proxy",

 "last_seen": 0,

 "sensu_agent_version": "1.0.0",

 "subscriptions": null,

 "system": {

 "cloud_provider": "",

 "libc_type": "",

 "network": {

 "interfaces": null

 },

 "processes": null,

 "vm_role": "",

 "vm_system": ""

 }

 }

}

have a single event for the entire round robin.

If you don’t use a proxy entity for round robin scheduling, you could have several failures in a row, but
each event will only be aware of one of the failures.

If you use a proxy entity without round robin scheduling, and several agents share the same
subscription, they will all execute the check for the proxy entity and you’ll get duplicate results.
When
you enable round robin, you’ll get one agent per interval executing the proxy check, but the event will
always be listed under the proxy entity.

Use proxy entity flters to establish a many-to-many relationship between agent entities and proxy
entities if you want even more power over the grouping.

Create and manage service entities

Service entities are dynamically created entities that Sensu adds to the entity store when a service
component generates an event.
Service entities allow Sensu to monitor business services.

Create and modify service entities via the backend with sensuctl, the core/v2/entities API endpoints,
and the web UI.

Service entity example

This example shows the resource defnition for a service entity:

COMMERCIAL FEATURE : Access business service monitoring (BSM), including service entities,
in the packaged Sensu Go distribution.
For more information, read Get started with commercial
features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

type: Entity

api_version: core/v2

metadata:

 name: postgresql

YML

Backend entities

When a backend starts up, Sensu automatically creates the sensu-system namespace and a new
entity with entity_class: backend .
Sensu populates the backend entity with the backend’s system
information.

The backend uses its own entity to report cluster state errors.
Backend entities can generate events due
to error conditions like unavailable secrets providers or secrets.
Events generated by a sensu-agent
running on the backend host are also associated with the backend entity.

To prevent overloading the event bus with backend events, Sensu generates backend events no more
than every 30 seconds, unless the status changes.
Sensu does not generate keepalive events for
backend entities.

Backend entity example

Here is an example defnition for a backend entity:

spec:

 entity_class: service

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "postgresql"

 },

 "spec": {

 "entity_class": "service"

 }

}

JSON

type: Entity

YML

api_version: core/v2

metadata:

 name: 6b6264feda40

 namespace: sensu-system

spec:

 deregister: false

 deregistration: {}

 entity_class: backend

 last_seen: 0

 sensu_agent_version: ''

 subscriptions: null

 system:

 arch: amd64

 cloud_provider: ''

 hostname: 6b6264feda40

 libc_type: glibc

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 name: lo

 - addresses: null

 name: tunl0

 - addresses: null

 name: ip6tnl0

 - addresses:

 - 172.18.0.4/16

 mac: 02:42:ac:12:00:04

 name: eth0

 os: linux

 platform: redhat

 platform_family: rhel

 platform_version: '7.9'

 processes: null

 vm_role: guest

 vm_system: ''

{

 "type": "Entity",

 "api_version": "core/v2",

JSON

 "metadata": {

 "name": "6b6264feda40",

 "namespace": "sensu-system"

 },

 "spec": {

 "deregister": false,

 "deregistration": {

 },

 "entity_class": "backend",

 "last_seen": 0,

 "sensu_agent_version": "",

 "subscriptions": null,

 "system": {

 "arch": "amd64",

 "cloud_provider": "",

 "hostname": "6b6264feda40",

 "libc_type": "glibc",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8"

],

 "name": "lo"

 },

 {

 "addresses": null,

 "name": "tunl0"

 },

 {

 "addresses": null,

 "name": "ip6tnl0"

 },

 {

 "addresses": [

 "172.18.0.4/16"

],

 "mac": "02:42:ac:12:00:04",

 "name": "eth0"

 }

]

 },

Access backend entities

Only cluster admins have access to the sensu-system namespace and the backend entities it
contains.

If you have cluster admin permissions, you can use sensuctl and the web UI to access backend
entities like other entities.

Cluster admins who have write permissions for the sensu-system namespace can edit only labels
and subscriptions for backend entities.

Backend entities and agent information

Sensu uses the same algorithm to determine backend entity names as the agent uses to determine
entity names.

If a backend and an agent try to create the same entity, the entity class will default to backend .
The
information provided by the backend takes precedence over the information provided by the agent.
The
backend should update backend entities to use information from the backend instead of from the
agent.

Delete a backend entity

Cluster admins can manually delete backend entities with sensuctl or the web UI.

Manage entity labels

 "os": "linux",

 "platform": "redhat",

 "platform_family": "rhel",

 "platform_version": "7.9",

 "processes": null,

 "vm_role": "guest",

 "vm_system": ""

 }

 }

}

Labels are custom attributes that Sensu includes with observation event data that you can use for
response and web UI view searches.
In contrast to annotations, you can use labels to flter API
responses, sensuctl responses, and web UI search views.

Limit labels to metadata you need to use for response fltering and searches.
For complex, non-
identifying metadata that you will not need to use in response fltering and searches, use annotations
rather than labels.

Agent entity labels

For new entities with class agent , you can defne entity attributes in the /etc/sensu/agent.yml
confguration fle.
For example, to add a url label, open /etc/sensu/agent.yml and add
confguration for labels :

Or, use sensu-agent start confguration fags:

Proxy entity labels

For entities with class proxy , you can create and manage labels with sensuctl.

For example, suppose you have a proxy entity like this one:

labels:

 url: sensu.docs.io

sensu-agent start --labels url=sensu.docs.io

NOTE: The entity attributes in agent.yml are used only for initial entity creation.
Modify existing
agent entities via the backend with sensuctl, the core/v2/entities API endpoints, and the web UI.

type: Entity

api_version: core/v2

YML

To add a proxy_type label to this existing entity, run the following command to open the entity
defnition:

Then, update the metadata scope in the entity defnition to add the proxy_type label as shown
below:

metadata:

 labels:

 url: docs.sensu.io

 name: sensu-docs

spec:

 deregister: false

 entity_class: proxy

 sensu_agent_version: 1.0.0

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "labels": {

 "url": "docs.sensu.io"

 },

 "name": "sensu-docs"

 },

 "spec": {

 "deregister": false,

 "entity_class": "proxy",

 "sensu_agent_version": "1.0.0"

 }

}

JSON

sensuctl edit entity sensu-docs

YML

Save your changes to update the proxy entity defnition with the proxy_type label.

Service entity labels

For entities with class service , you can create and manage labels with sensuctl.
To create a service
entity with a service_type label using sensuctl create , create a fle called service-
entity.json with an entity defnition that includes labels :

type: Entity

api_version: core/v2

metadata:

 labels:

 url: docs.sensu.io

 proxy_type: website

 name: sensu-docs

spec:

 '...': '...'

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "labels": {

 "url": "docs.sensu.io",

 "proxy_type": "website"

 },

 "name": "sensu-docs"

 },

 "spec": {

 "...": "..."

 }

}

JSON

type: Entity

YML

Then run sensuctl create to create the entity based on the defnition:

To add a label to an existing service entity, use sensuctl edit.
For example, to add a region label to a
postgresql entity:

api_version: core/v2

metadata:

 name: postgresql

 labels:

 service_type: datastore

spec:

 entity_class: service

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "postgresql",

 "labels": {

 "service_type": "datastore"

 }

 },

 "spec": {

 "entity_class": "service"

 }

}

JSON

sensuctl create --fle service-entity.yml

SHELL

sensuctl create --fle service-entity.json

SHELL

And update the metadata scope to include the region label:

Entities specifcation

Top-level attributes

sensuctl edit entity postgresql

type: Entity

api_version: core/v2

metadata:

 labels:

 service_type: datastore

 region: us-west-1

 name: postgresql

spec:

 '...': '...'

YML

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "labels": {

 "service_type": "datastore",

 "region": "us-west-1"

 },

 "name": "postgresql"

 },

 "spec": {

 "...": "..."

 }

}

JSON

api_version

description Top-level attribute that specifes the Sensu API group and version. For
entities in this version of Sensu, this attribute should always be
core/v2 .

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the entity, including name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

entity defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. Read metadata
attributes for details.

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

metadata:

 name: webserver01

 namespace: default

YML

spec

description Top-level map that includes the entity spec attributes.

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

 created_by: admin

 labels:

 region: us-west-1

 annotations:

 slack-channel: "#monitoring"

{

 "metadata": {

 "name": "webserver01",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel": "#monitoring"

 }

 }

}

JSON

spec:

 entity_class: agent

 system:

 hostname: sensu2-centos

 os: linux

 platform: centos

YML

 platform_family: rhel

 platform_version: 7.4.1708

 network:

 interfaces:

 - name: lo

 addresses:

 - 127.0.0.1/8

 - "::1/128"

 - name: enp0s3

 mac: '08:00:27:11:ad:d2'

 addresses:

 - 10.0.2.15/24

 - fe80::26a5:54ec:cf0d:9704/64

 - name: enp0s8

 mac: '08:00:27:bc:be:60'

 addresses:

 - 172.28.128.3/24

 - fe80::a00:27ff:febc:be60/64

 arch: amd64

 libc_type: glibc

 vm_system: kvm

 vm_role: host

 cloud_provider: ''

 processes:

 - name: Slack

 pid: 1349

 ppid: 0

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 1.09932518

 cpu_percent: 0.3263987595984941

 - name: Slack Helper

 pid: 1360

 ppid: 1349

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 0.146866455

 cpu_percent: 0.30897618146109257

 sensu_agent_version: 1.0.0

 subscriptions:

 - entity:webserver01

 last_seen: 1542667231

 deregister: false

 deregistration: {}

 user: agent

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

{

 "spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu2-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

JSON

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.30897618146109257

 }

type

description Top-level attribute that specifes the sensuctl create resource type.
Entities should always be type Entity .

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

]

 },

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "entity:webserver01"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

}

type: Entity

YML

JSON

Metadata attributes

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

{

 "type": "Entity"

}

NOTE: For annotations defned in agent.yml or backend.yml, the
keys are automatically modifed to use all lower-case letters. For
example, if you defne the annotation webhookURL: "https://my-
webhook.com" in agent.yml or backend.yml, it will be listed as
webhookurl: "https://my-webhook.com" in entity defnitions.

Key cases are not modifed for annotations you defne with a
command line fag or an environment variable.

annotations:

 managed-by: ops

 playbook: www.example.url

YML

JSON

created_by

description Username of the Sensu user who created the entity or last updated the
entity. Sensu automatically populates the created_by feld when the
entity is created or updated.

required false

type String

example

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

{

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

 }

}

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

name

NOTE: For labels that you defne in agent.yml or backend.yml, the
keys are automatically modifed to use all lower-case letters. For
example, if you defne the label proxyType: "website" in
agent.yml or backend.yml, it will be listed as proxytype:
"website" in entity defnitions.

Key cases are not modifed for labels you defne with a command
line fag or an environment variable.

labels:

 environment: development

 region: us-west-2

YML

{

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 }

}

JSON

description Unique name of the entity, validated with Go regex \A[\w\.\-]+\z .

required true

type String

example

namespace

description Sensu RBAC namespace that this entity belongs to.

required false

type String

default default

example

name: example-hostname

YML

{

 "name": "example-hostname"

}

JSON

namespace: production

YML

{

 "namespace": "production"

}

JSON

https://regex101.com/r/zo9mQU/2

Spec attributes

deregister

description If the entity should be removed when it stops sending keepalive
messages, true . Otherwise, false .

required false

type Boolean

default false

example

deregistration

description Map that contains a handler name to use when an agent entity is
deregistered. Read deregistration attributes for more information.

required false

type Map

example

deregister: false

YML

{

 "deregister": false

}

JSON

deregistration:

 handler: email-handler

YML

JSON

entity_class

description Entity type, validated with Go regex \A[\w\.\-]+\z . Class names have
special meaning. An entity that runs an agent is class agent and is
reserved. Setting the value of entity_class to proxy creates a
proxy entity. An entity that represents a business service is class
service . For other types of entities, the entity_class attribute isn’t

required, and you can use it to indicate an arbitrary type of entity (like
lambda or switch).

required true

type String

example

last_seen

description Time at which the entity was last seen. In seconds since the Unix epoch.

required false

{

 "deregistration": {

 "handler": "email-handler"

 }

}

entity_class: agent

YML

{

 "entity_class": "agent"

}

JSON

https://regex101.com/r/zo9mQU/2

type Integer

example

redact

description List of items to redact from log messages. If a value is provided, it
overwrites the default list of items to be redacted.

required false

type Array

default [“password”, “passwd”, “pass”, “api_key”, “api_token”, “access_key”,
“secret_key”, “private_key”, “secret”]

example

last_seen: 1522798317

YML

{

 "last_seen": 1522798317

}

JSON

redact:

- extra_secret_tokens

YML

{

 "redact": [

 "extra_secret_tokens"

]

}

JSON

sensu_agent_version

description Sensu Semantic Versioning (SemVer) version of the agent entity.

required true

type String

example

subscriptions

description List of subscription names for the entity. The entity by default has an
entity-specifc subscription, in the format of entity:<name> where
name is the entity’s hostname.

required false

type Array

default The entity-specifc subscription.

example

sensu_agent_version: 1.0.0

YML

{

 "sensu_agent_version": "1.0.0"

}

JSON

subscriptions:

- web

- prod

- entity:example-entity

YML

{

JSON

system

description System information about the entity, such as operating system and
platform. Read system attributes for more information.

required false

type Map

example

 "subscriptions": [

 "web",

 "prod",

 "entity:example-entity"

]

}

NOTE: Process discovery is disabled in this version of Sensu. New
events will not include data in the processes attributes. Instead,
the feld will be empty: "processes": null .

system:

 arch: amd64

 libc_type: glibc

 vm_system: kvm

 vm_role: host

 cloud_provider: null

 processes:

 - name: Slack

 pid: 1349

 ppid: 0

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 1.09932518

 cpu_percent: 0.3263987595984941

YML

 - name: Slack Helper

 pid: 1360

 ppid: 1349

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 0.146866455

 cpu_percent: 0.30897618146109257

 hostname: example-hostname

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 93.184.216.34/24

 - 2606:2800:220:1:248:1893:25c8:1946/10

 mac: 52:54:00:20:1b:3c

 name: eth0

 os: linux

 platform: ubuntu

 platform_family: debian

 platform_version: "16.04"

{

 "system": {

 "hostname": "example-hostname",

 "os": "linux",

 "platform": "ubuntu",

 "platform_family": "debian",

 "platform_version": "16.04",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

JSON

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 }

user

description Sensu RBAC username used by the entity. Agent entities require get,
list, create, update, and delete permissions for events across all
namespaces.

type String

default agent

example

Deregistration attributes

handler

description Name of the handler to call when an agent entity is deregistered.

required false

type String

example

}

user: agent

YML

{

 "user": "agent"

}

JSON

handler: email-handler

YML

System attributes

arch

description Entity’s system architecture. This value is determined by the Go binary
architecture as a function of runtime.GOARCH. An amd system running
a 386 binary will report the arch as 386 .

required false

type String

example

arm_version

description Entity’s ARM version. Automatically populated upon agent startup for
entities with ARM system architecture. For entities that do not use ARM
system architecture, the arm_version attribute is omitted from the
entity defnition.

{

 "handler": "email-handler"

}

JSON

arch: amd64

YML

{

 "arch": "amd64"

}

JSON

required false

type Integer

example

cloud_provider

description Entity’s cloud provider environment. Automatically populated upon agent
startup if the detect-cloud-provider confguration option is set.
Returned empty unless the agent runs on Amazon Elastic Compute
Cloud (EC2), Google Cloud Platform (GCP), or Microsoft Azure.

required false

type String

example

arm_version: 7

YML

{

 "arm_version": 7

}

JSON

NOTE: This feature can result in several HTTP requests or DNS
lookups being performed, so it may not be appropriate for all
environments.

"cloud_provider": ""

YML

{

 "cloud_provider": ""

}

JSON

foat_type

description Type of foat the entity’s system architecture uses: hardfoat or
softfoat . Automatically populated upon agent startup for entities with

MIPS, MIPS LE, MIPS 64, or MIPS 64 LE system architecture. For
entities that do not use a MIPS system architecture, the foat_type
attribute is omitted from the entity defnition.

required false

type String

example

hostname

description Hostname of the entity.

required false

type String

example

foat_type: hardfoat

YML

{

 "foat_type": "hardfoat"

}

JSON

hostname: example-hostname

YML

JSON

libc_type

description Entity’s libc type.

required false

type String

example

network

description Entity’s network interface list. Read network attributes for more
information.

required false

type Map

example

{

 "hostname": "example-hostname"

}

libc_type: glibc

YML

{

 "libc_type": "glibc"

}

JSON

network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

YML

os

description Entity’s operating system.

required false

 - ::1/128

 name: lo

 - addresses:

 - 93.184.216.34/24

 - 2606:2800:220:1:248:1893:25c8:1946/10

 mac: 52:54:00:20:1b:3c

 name: eth0

{

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

 }

}

JSON

type String

example

platform

description Entity’s operating system distribution.

required false

type String

example

platform_family

description Entity’s operating system family.

required false

os: linux

YML

{

 "os": "linux"

}

JSON

platform: ubuntu

YML

{

 "platform": "ubuntu"

}

JSON

type String

example

platform_version

description Entity’s operating system version.

required false

type String

example

processes

description List of processes on the local agent. Read processes attributes for more
information.

platform_family: debian

YML

{

 "platform_family": "debian"

}

JSON

platform_version: 16.04

YML

{

 "platform_version": "16.04"

}

JSON

NOTE: Process discovery is disabled in this version of Sensu. New

required false

type Map

example

events will not include data in the processes attributes. Instead,
the feld will be empty: "processes": null .

processes:

- name: Slack

 pid: 1349

 ppid: 0

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 1.09932518

 cpu_percent: 0.3263987595984941

- name: Slack Helper

 pid: 1360

 ppid: 1349

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 0.146866455

 cpu_percent: 0.30897618146109257

YML

{

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

JSON

vm_role

description Entity’s virtual machine role. Automatically populated upon agent startup.

required false

type String

example

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

}

vm_role: host

YML

{

 "vm_role": "host"

}

JSON

vm_system

description Entity’s virtual machine system. Automatically populated upon agent
startup.

required false

type String

example

Network attributes

interfaces

description List of network interfaces available on the entity, with their associated
MAC and IP addresses. Read interfaces attributes for more information.

required false

type Array

example

vm_system: kvm

YML

{

 "vm_system": "kvm"

}

JSON

interfaces:

- addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

- addresses:

 - 93.184.216.34/24

 - 2606:2800:220:1:248:1893:25c8:1946/10

YML

Interfaces attributes

addresses

description List of IP addresses for the network interface.

required false

type Array

example

 mac: 52:54:00:20:1b:3c

 name: eth0

{

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

}

JSON

addresses:

YML

mac

description Network interface’s MAC address.

required false

type string

example

name

description Network interface name.

required false

- 93.184.216.34/24

- 2606:2800:220:1:248:1893:25c8:1946/10

{

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

}

JSON

mac: 52:54:00:20:1b:3c

YML

{

 "mac": "52:54:00:20:1b:3c"

}

JSON

type String

example

Processes attributes

background

description If true , the process is a background process. Otherwise, false .

required false

type Boolean

example

name: eth0

YML

{

 "name": "eth0"

}

JSON

COMMERCIAL FEATURE : Access processes attributes with the discover-processes

confguration option in the packaged Sensu Go distribution.
For more information, read Get started
with commercial features.

NOTE: Process discovery is disabled in this version of Sensu.
New events will not include data in
the processes attributes.
Instead, the feld will be empty: "processes": null .

background: true

YML

{

JSON

cpu_percent

description Percent of CPU the process is using. The value is returned as a foating-
point number where 0.0 = 0% and 1.0 = 100%. For example, the
cpu_percent value 0.12639 equals 12.639%.

required false

type foat

example

created

description Time at which the process was created. In seconds since the Unix
epoch.

required false

type Integer

 "background": true

}

NOTE: The cpu_percent attribute is supported on Linux and
macOS.
It is not supported on Windows.

cpu_percent: 0.12639

YML

{

 "cpu_percent": 0.12639

}

JSON

example

memory_percent

description Percent of memory the process is using. The value is returned as a
foating-point number where 0.0 = 0% and 1.0 = 100%. For example, the
memory_percent value 0.19932 equals 19.932%.

required false

type foat

example

created: 1586138786

YML

{

 "created": 1586138786

}

JSON

NOTE: The memory_percent attribute is supported on Linux and
macOS.
It is not supported on Windows.

memory_percent: 0.19932

YML

{

 "memory_percent": 0.19932

}

JSON

name

description Name of the process.

required false

type String

example

pid

description Process ID of the process.

required false

type Integer

example

name: Slack

YML

{

 "name": "Slack"

}

JSON

pid: 1349

YML

{

 "pid": 1349

}

JSON

ppid

description Parent process ID of the process.

required false

type Integer

example

running

description If true , the process is running. Otherwise, false .

required false

type Boolean

example

ppid: 0

YML

{

 "ppid": 0

}

JSON

running: true

YML

{

 "running": true

}

JSON

status

description Status of the process. Read the Linux top manual page for examples.

required false

type String

example
status: Ss

YML

{

 "status": "Ss"

}

JSON

https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html

Automatically register and deregister
entities

Sensu uses the publish/subscribe pattern of communication, which allows automated registration and
deregistration of ephemeral systems.
Sensu agents automatically discover and register infrastructure
components and the services running on them.
At the same time, when an agent process stops, the
Sensu backend can automatically create and process a deregistration event.

Automatic registration and deregistration keeps your Sensu instance up-to-date and avoids
unnecessary process load, especially in containerized environments where containers routinely come
online and offine.
You’ll see observability event data soon after an agent entity comes online, and you
won’t receive stale events or alerts for entities that no longer exist.

You can also confgure handlers that take specifc actions based on agent registration and
deregistration, such as updating external confguration management databases (CMDBs).

Discovery and registration

Sensu agents automatically discover and register infrastructure components and the services running
on them.

Registration events

When an agent comes online, it sends its frst keepalive event.
When a Sensu backend processes a
keepalive event for an agent whose name is not already listed in the Sensu agent registry, Sensu
automatically registers the agent.
The Sensu backend stores the entity registry, which you can view by
running sensuctl entity list .

If you confgure a handler named registration , the Sensu backend will create and process a
registration event for that handler to process.
The registration handler must reference the name of
a handler or handler set that you want to execute for every registration event.

NOTE: Automatic discovery is not supported for proxy entities because they cannot run a Sensu
agent.
Use the core/v2/events API to send manual keepalive events for proxy entities.

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Configuration_management_database

Registration handler example

You can use registration event handlers to execute one-time handlers for new Sensu agents based on
registration events.

For example, suppose you want to update the ServiceNow CMDB table that contains your Sensu entity
inventory upon every registration event.
First, confgure a handler that uses the sensu/sensu-
servicenow-handler dynamic runtime asset and the --cmdb-registration argument:

WARNING: Registration events are not stored in the event registry, so they are not accessible via
the Sensu API.
However, all registration events are logged in the Sensu backend log.

type: Handler

api_version: core/v2

metadata:

 name: servicenow_cmdb

spec:

 type: pipe

 command: sensu-servicenow-handler --cmdb-registration

 runtime_assets:

 - sensu/sensu-servicenow-handler:3.0.0

 env_vars:

 - SERVICENOW_URL=https://example.servicenow.com

 secrets:

 - name: SERVICENOW_USERNAME

 secret: servicenow_username

 - name: SERVICENOW_PASSWORD

 secret: servicenow_password

 timeout: 10

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

JSON

https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler

Then, create a registration handler that references the servicenow_cmdb handler:

 "name": "servicenow_cmdb"

 },

 "spec": {

 "type": "pipe",

 "command": "sensu-servicenow-handler --cmdb-registration",

 "runtime_assets": [

 "sensu/sensu-servicenow-handler:3.0.0"

],

 "env_vars": [

 "SERVICENOW_URL=https://example.servicenow.com"

],

 "secrets": [

 {

 "name": "SERVICENOW_USERNAME",

 "secret": "servicenow_username"

 },

 {

 "name": "SERVICENOW_PASSWORD",

 "secret": "servicenow_password"

 }

],

 "timeout": 10

 }

}

type: Handler

api_version: core/v2

metadata:

 name: registration

spec:

 handlers:

 - servicenow_cmdb

 type: pipe

YML

JSON

Now the Sensu backend will execute the referenced servicenow-cmdb handler for every registration
event.
The referenced handler can send registration event alerts to any service, such as Sumo Logic or
PagerDuty, as long as it is listed within a handler named registration .

Deregistration

Just like Sensu can automatically register new agent entities when they send their frst keepalive,
Sensu can automatically deregister agent entities when they shut down and the agent process stops.

To enable automatic deregistration, set the agent deregister attribute to true .
When the Sensu
agent process stops and the agent stops sending keepalive messages, the Sensu backend can
deregister the corresponding entity without any further action.

Deregistration events

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "registration"

 },

 "spec": {

 "handlers": [

 "servicenow_cmdb"

],

 "type": "pipe"

 }

}

PRO TIP: Use a handler set to execute multiple handlers in response to registration events.

NOTE: Deregistration is supported for agent entities that have sent at least one keepalive.
Deregistration is not supported for proxy entities, which do not send keepalives, and the backend
does not automatically create and process deregistration events for proxy entities.

As with registration events, the Sensu backend can create and process a deregistration event when a
Sensu agent process stops.

When an agent exceeds its keepalive timeout setting, the backends will generate a keepalive failure for
that agent and create an event on its behalf.
If you set the agent deregister attribute to true , when
keepalive failure occurs, Sensu will delete the agent entity from the entity registry and send a
deregistration event through the event pipeline.

To take action based on deregistration events, you must also specify a handler to use for
deregistration events in the agent or backend confguration:

The agent deregistration-handler attribute overrides the backend deregistration-handler
attribute.
In other words, if you specify both an agent and backend deregistration handler, Sensu will
use only the handler specifed in the agent confguration.

Deregistration handler example

Just like registration events, deregistration events can trigger a one-time handler that performs an
action like updating an external CMDB or ephemeral infrastructures.
In fact, you can use the
servicenow_cmdb handler to update the ServiceNow CMDB table that contains your Sensu entity

inventory, this time based on every deregistration event.

To specify servicenow_cmdb as the agent deregistration handler:

To use a deregistration handler for a specifc agent, set the agent deregistration-handler
attribute.

To use a deregistration handler to process all deregistration events for all agents, set the
backend deregistration-handler attribute.

NOTE: If you set the agent deregister attribute to true , when a Sensu agent process stops,
the Sensu backend will deregister the corresponding entity.

Deregistration prevents and clears alerts for failing keepalives for agent entities — the backend
does not distinguish between intentional shutdown and failure.
As a result, if you set the deregister
fag to true and an agent process stops for any reason, you will not receive alerts for keepalive
events in the web UI.

If you want to receive alerts for failing keepalives, set the agent deregister attribute to false .

SHELL

Next steps

The Sensu Catalog includes the Platform Discovery integration, which detects the agent operating
system and platform information and updates the agent’s subscriptions accordingly.
This integration
allows you to deploy agents with a single subscription and use the auto-discovery check to add
system-based subscriptions automatically.

Follow Create limited service accounts to automatically remove AWS EC2 instances that are not in a
pending or running state.

sensu-agent start --deregistration-handler servicenow_cmdb

deregistration-handler: servicenow_cmdb

SHELL

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/tree/main/integrations/sensu/platform-discovery

Monitor external resources with proxy
entities

Proxy entities allow Sensu to monitor external resources on systems and devices where a Sensu
agent cannot be installed, like a network switch or a website.
You can create proxy entities with
sensuctl, the Sensu API, and the proxy_entity_name check attribute.
When executing checks that
include a proxy_entity_name or proxy_requests attribute, Sensu agents report the resulting
event under the proxy entity instead of the agent entity.

This guide explains how to use a proxy entity to monitor website status and includes two methods for
confguring the required Sensu resources:

This guide also explains how to use proxy checks to monitor a group of websites, with command line
confguration instructions.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.

Use a proxy entity to monitor a website (Sensu Catalog
confguration)

Follow the steps in this section to use the Sensu Catalog to confgure status monitoring for sensu.io.
You’ll confgure a check with a proxy entity name and Sensu will create an entity to represent sensu.io
and report the status of the site under this entity.

The Sensu Catalog is part of the Sensu web UI, so you can complete all the necessary confguration
directly from your browser.

Confgure a Sensu entity

Follow the Sensu Catalog integration method to confgure the resources you need directly in
Sensu web UI.

Follow the command line confguration method to manually create the Sensu resources you
need.

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://sensu.io/

To run the proxy entity check, you’ll need a Sensu agent entity with the subscription run_proxies .
Here’s how to add the subscription:

1. In the web UI, navigate to the Entities page.

2. Click the agent entity you want to use to run your check.

3. At the top right corner of the individual entity’s page, click EDIT to open the Edit Entity dialog.

4. Under Schedule, type run_proxies in the Subscriptions and press Return.

5. Click SUBMIT to save your changes.

On the individual entity’s page, the subscriptions should now include run_proxies .

http://localhost:1313/images/go/monitor_external_resources/add_entity_subscription.gif

Create the check with a Sensu Catalog integration

With your entity subscription confgured, you can use the Sensu Catalog to create the check you need
to monitor sensu.io.

1. In the web UI, navigate to the Sensu Catalog page.

2. In the catalog menu on the left, click Service monitoring and click the HTTP Endpoint
Monitoring (Remote) integration.

http://localhost:1313/images/go/monitor_external_resources/confirm_entity_subscription.png
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

3. At the top right corner of the page, click INSTALL… to open the HTTP Endpoint Confguration
dialog page.

Installing the HTTP Endpoint Monitoring (Remote) integration will add the following resources to
your Sensu instance:

4. In the HTTP Endpoint Confguration dialog page, update the values in the HTTP Endpoint

Host and Interval felds:

After you update the values, click NEXT.

The sensu/http-checks asset

Two checks: one to produce endpoint status events and one to collect endpoint metrics

A new proxy entity to represent sensu.io

HTTP Endpoint Host: type sensu.io

Interval: type 15

http://localhost:1313/images/go/monitor_external_resources/navigate_to_integration.gif
https://bonsai.sensu.io/assets/sensu/http-checks
https://bonsai.sensu.io/assets/sensu/http-checks
https://sensu.io/

5. In the Confgure Sensu Subscriptions dialog page, type run_proxies in the Subscriptions
feld and press Return.
After you add the subscription, click NEXT.

6. The HTTP Endpoint Monitoring (Remote) integration in the Sensu Catalog includes a dialog
page for adding pipelines to flter and handle your check’s events.
If you already have a pipeline
to use, you can add it now.
Otherwise, click NEXT to skip this step.

http://localhost:1313/images/go/monitor_external_resources/endpoint_interval.png
http://localhost:1313/images/go/monitor_external_resources/add_check_subscription.png

7. The Summary dialog page lists defnitions for the resources that the integration will add.
Click the
down-arrow next to any resource to view its complete defnition in YAML or JSON format.

8. Click APPLY to save the asset and check defnitions for the integration.

9. Click FINISH to return to the integration page.

Validate the check

To make sure that the monitoring check is working properly, confrm that Sensu created an entity to
represent sensu.io and the http-endpoint-healthcheck check is producing events.

1. In the web UI, navigate to the Entities page.

2. Confrm that the Entities page lists a proxy entity named sensu.io .

http://localhost:1313/images/go/monitor_external_resources/resources_summary.gif

3. Click the sensu.io entity to open the individual entity page.

4. Confrm that the individual entity page for sensu.io lists an event for the sensu.io-https-
endpoint-healthcheck check.
Click the event for details and history.

Use a proxy entity to monitor a website (command line
confguration)

In this section, you’ll use sensuctl to confgure a check with a proxy entity name to monitor the status

http://localhost:1313/images/go/monitor_external_resources/confirm_proxy_entity.png
http://localhost:1313/images/go/monitor_external_resources/confirm_event.png

of sensu.io so that Sensu creates an entity that represents the site and reports the status of the site
under this entity.

Confgure a Sensu entity

To run the check, you’ll need a Sensu agent entity with the subscription run_proxies .
Use sensuctl to
add the run_proxies subscription to the entity the Sensu agent is observing.

Before you run the following code, replace <ENTITY_NAME> with the name of the entity on your
system.

Before you continue, confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Register dynamic runtime asset

To power the check, you’ll use the sensu/http-checks dynamic runtime asset.
This community-tier asset
includes the http status check command that your check will rely on.

Use sensuctl asset add to register the dynamic runtime asset:

NOTE: To fnd your entity name, run sensuctl entity list .
The ID is the name of your entity.

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

For Subscriptions , type run_proxies and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl asset add sensu/http-checks:0.5.0 -r http-checks

https://sensu.io/
https://bonsai.sensu.io/assets/sensu/http-checks

The response will indicate that the asset was added:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
http-checks .

You can also download the dynamic runtime asset defnition from Bonsai and register the asset with
sensuctl create --fle flename.yml or sensuctl create --fle flename.json .

Use sensuctl to confrm that the dynamic runtime asset is ready to use:

The response should list the sensu/http-checks dynamic runtime asset (renamed to http-checks):

fetching bonsai asset: sensu/http-checks:0.5.0

added asset: sensu/http-checks:0.5.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["http-checks"].

sensuctl asset list

 Name URL Hash

────────────── ───

──────────

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_windows_amd64.tar.gz 52ae075

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_darwin_amd64.tar.gz 72d0f15

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_armv7.tar.gz ef18587

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_arm64.tar.gz 3504ddf

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_386.tar.gz 60b8883

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_amd64.tar.gz 1db73a8

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

https://bonsai.sensu.io/assets/sensu/http-checks

Create the check

Now that the dynamic runtime asset is registered, you can create a check named check-sensu-site
to run the command http-check --url https://sensu.io with the sensu/http-checks dynamic
runtime asset, at an interval of 15 seconds, for all agents subscribed to the run_proxies
subscription, using the sensu-site proxy entity name.

The check includes the round_robin attribute set to true to distribute the check execution across
all agents subscribed to the run_proxies subscription and avoid duplicate events.

To create the check-sensu-site check, run:

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: check-sensu-site

spec:

 command: http-check --url https://sensu.io

 interval: 15

 proxy_entity_name: sensu-site

 publish: true

 round_robin: true

 runtime_assets:

 - http-checks

 subscriptions:

 - run_proxies

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

SHELL

https://bonsai.sensu.io/assets/sensu/http-checks

Use sensuctl to confrm that Sensu added the check:

The response should list check-sensu-site :

Validate the check

Use sensuctl to confrm that Sensu created sensu-site .
It might take a few moments for Sensu to
execute the check and create the proxy entity.

 "name": "check-sensu-site"

 },

 "spec": {

 "command": "http-check --url https://sensu.io",

 "interval": 15,

 "proxy_entity_name": "sensu-site",

 "publish": true,

 "round_robin": true,

 "runtime_assets": [

 "http-checks"

],

 "subscriptions": [

 "run_proxies"

]

 }

}

EOF

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets Hooks

Publish? Stdin? Metric Format Metric Handlers

─────────────────── ─────────────────────────────────── ────────── ────── ─────────

───── ─────────────── ────────── ───────────── ─────── ────────── ────────

─────────────── ──────────────────

 check-sensu-site http-check --url https://sensu.io 15 0 0 proxy http-checks true

false

The response should list the sensu-site proxy entity:

Then, use sensuctl to confrm that Sensu is monitoring sensu-site with the check-sensu-site
check:

The response should list check-sensu-site status and history data for the sensu-site proxy
entity:

You can also view the new proxy entity in your Sensu web UI.

Use proxy requests to monitor a group of websites

sensuctl entity list

 ID Class OS Subscriptions Last Seen

─────────────── ─────── ─────── ───────────────────────────

────────────────────────────────

 sensu-centos agent linux proxy,entity:sensu-centos 2021-10-21 19:20:04 +0000 UTC

 sensu-site proxy entity:sensu-site N/A

sensuctl event info sensu-site check-sensu-site

=== sensu-site - check-sensu-site

Entity: sensu-site

Check: check-sensu-site

Output: http-check OK: HTTP Status 200 for https://sensu.io

Status: 0

History: 0

Silenced: false

Timestamp: 2021-10-21 19:20:06 +0000 UTC

UUID: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

(command line confguration)

Suppose that instead of monitoring just sensu.io, you want to monitor multiple sites, like docs.sensu.io,
packagecloud.io, and github.com.
In this section, you’ll use sensuctl to confgure the proxy_requests
check attribute, entity labels, and token substitution required to monitor three sites with the same
check.

Before you start, register the http-checks dynamic runtime asset if you haven’t already.

Create proxy entities

Instead of creating a proxy entity using the proxy_entity_name check attribute, use sensuctl to
create proxy entities to represent the three sites you want to monitor.
Your proxy entities need the
entity_class attribute set to proxy to mark them as proxy entities as well as a few custom
labels to identify them as a group and pass in individual URLs.

To add the proxy entity defnitions, run:

cat << EOF | sensuctl create

type: Entity

api_version: core/v2

metadata:

 name: sensu-docs

 labels:

 proxy_type: website

 url: https://docs.sensu.io

spec:

 entity_class: proxy

type: Entity

api_version: core/v2

metadata:

 name: packagecloud-site

 labels:

 proxy_type: website

 url: https://packagecloud.io

spec:

 entity_class: proxy

SHELL

type: Entity

api_version: core/v2

metadata:

 name: github-site

 labels:

 proxy_type: website

 url: https://github.com

spec:

 entity_class: proxy

EOF

cat << EOF | sensuctl create

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs",

 "labels": {

 "proxy_type": "website",

 "url": "https://docs.sensu.io"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "packagecloud-site",

 "labels": {

 "proxy_type": "website",

 "url": "https://packagecloud.io"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

SHELL

Use sensuctl to confrm that the entities were added:

The response should list the new sensu-docs , packagecloud-site , and github-site proxy
entities:

}

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "github-site",

 "labels": {

 "proxy_type": "website",

 "url": "https://github.com"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

EOF

PRO TIP: When you create proxy entities, you can add any custom labels that make sense for
your environment.
For example, when monitoring a group of routers, you may want to add
ip_address labels.

sensuctl entity list

 ID Class OS Subscriptions Last Seen

──────────────────── ─────── ─────── ───────────────────────────

────────────────────────────────

 github-site proxy N/A

 packagecloud-site proxy N/A

 sensu-centos agent linux proxy,entity:sensu-centos 2021-10-21 19:23:04 +0000 UTC

 sensu-docs proxy N/A

 sensu-site proxy entity:sensu-site N/A

Create a reusable HTTP check

Now that you have three proxy entities set up, each with a proxy_type and url label, you can use
proxy requests and token substitution to create a single check that monitors all three sites.

The check includes the round_robin attribute set to true to distribute the check execution across
all agents subscribed to the run_proxies subscription and avoid duplicate events.

To create the following check defnition, run:

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: check-http

spec:

 command: 'http-check --url {{ .labels.url }}'

 interval: 15

 proxy_requests:

 entity_attributes:

 - entity.entity_class == 'proxy'

 - entity.labels.proxy_type == 'website'

 publish: true

 round_robin: true

 runtime_assets:

 - http-checks

 subscriptions:

 - run_proxies

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

SHELL

Your check-http check uses the proxy_requests attribute to specify the applicable entities.
In this
case, you want to run the check-http check on all entities of entity class proxy and proxy type
website .
Because you’re using this check to monitor multiple sites, the check command uses token

substitution to apply the correct url .

Use sensuctl to confrm that Sensu created the check:

The response should include the check-http check:

 "metadata": {

 "name": "check-http"

 },

 "spec": {

 "command": "http-check --url {{ .labels.url }}",

 "interval": 15,

 "proxy_requests": {

 "entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

]

 },

 "publish": true,

 "runtime_assets": [

 "http-checks"

],

 "round_robin": true,

 "subscriptions": [

 "run_proxies"

]

 }

}

EOF

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets Hooks

Publish? Stdin? Metric Format Metric Handlers

─────────────────── ──────────────────────────────────── ────────── ────── ─────────

Validate the check

Before you validate the check, make sure that you’ve registered the sensu/http-checks dynamic
runtime asset and added the run_proxies subscription to a Sensu agent.

Use sensuctl to confrm that Sensu is monitoring docs.sensu.io, packagecloud.io, and github.com with
the check-http check, returning a status of 0 (OK):

The response should list check status data for the sensu-docs , packagecloud-site , and github-
site proxy entities:

───── ─────────────── ────────── ───────────── ─────── ────────── ────────

─────────────── ──────────────────

 check-http http-check --url {{ .labels.url }} 15 0 0 proxy http-checks true false

 check-sensu-site http-check --url https://sensu.io 15 0 0 proxy http-checks true

false

sensuctl event list

 Entity Check Output Status Silenced Timestamp

UUID

──────────────────── ──────────────────

── ────────

────────── ─────────────────────────────── ───────────────────────────────────────

 github-site check-http http-check OK: HTTP Status 200 for https://github.com 0 false 2021-10-

21 19:27:04 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

 packagecloud-site check-http http-check OK: HTTP Status 200 for https://packagecloud.io 0 false

2021-10-21 19:27:04 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

 sensu-centos keepalive Keepalive last sent from sensu-centos at 2021-10-21 19:27:44 +0000 UTC 0 false

2021-10-21 19:27:44 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

 sensu-docs check-http http-check OK: HTTP Status 200 for https://docs.sensu.io 0 false 2021-

10-21 19:27:03 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

 sensu-site check-sensu-site http-check OK: HTTP Status 200 for https://sensu.io 0 false 2021-10-

21 19:27:05 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Next steps

The fles you created with check and entity defnitions can become part of your monitoring as code
repository.
Storing your Sensu confgurations the same way you would store code means they are
portable and repeatable.
Monitoring as code makes it possible to move to a more robust deployment
without losing what you’ve started here and reproduce one environment’s confguration in another.

Now that you know how to run a proxy check to verify website status and use proxy requests to run a
check on two different proxy entities based on label evaluation, you can receive alerts based on the
events your checks create.
Confgure three more Sensu resources to start receiving alerts:

Follow any of these guides to learn how to confgure event flters, handlers, and pipelines and start
sending alerts based on event data:

Event flters, which the Sensu backend will apply to the observation data in events. Sensu then
sends any events the flters do not remove for processing.

Handlers, which process the events that flters do not remove.

Pipelines, which are Sensu resources composed of observation event processing workfows
made up of flters, mutators, and handlers. When you list a pipeline in a check defnition, all the
observability events that the check produces will be processed according to the pipeline’s
workfows.

Send email alerts with a pipeline

Send PagerDuty alerts with Sensu

Send Slack alerts with a pipeline

Events

Next or click any element in the pipeline to jump to it.

Events are generic containers that Sensu uses to provide context to status and metrics check results.
The context, called observation data, is information about the originating entity and the corresponding
status or metric check result.

These generic containers allow Sensu to handle different types of events in the pipeline for
comprehensive system and service monitoring and observability.
Events can contain CPU, memory,
and disk usage data; custom application metrics; log data you can send to an external database; and
more.

Events require a timestamp, entity, and check.
Each event must contain a check result, whether status
or metrics.
In certain cases, an event can contain both.
Because events are polymorphic in nature, it is
important to never assume their content (or lack of content).

Here’s an example event that includes both status and metrics data, retrieved with sensuctl event info:

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 check:

 check_hooks: null

YML

http://localhost:1313/images/observability-pipeline-events.png

 command: http-check --url http://localhost && http-perf --url http://localhost

 --warning 1s --critical 2s

 duration: 0.022274319

 env_vars: null

 executed: 1635959379

 handlers:

 - debug

 high_fap_threshold: 0

 history:

 - executed: 1635952820

 status: 0

 - executed: 1635952835

 status: 0

 - executed: 1635952850

 status: 0

 - executed: 1635952865

 status: 0

 - executed: 1635952880

 status: 0

 interval: 5

 is_silenced: false

 issued: 1635952880

 last_ok: 1635952880

 low_fap_threshold: 0

 metadata:

 name: collect-metrics

 namespace: default

 occurrences: 5

 occurrences_watermark: 5

 output: |

 http-check OK: HTTP Status 200 for http://localhost

 http-perf OK: 0.001150s | dns_duration=0.000257,

tls_handshake_duration=0.000000, connect_duration=0.000088,

frst_byte_duration=0.001131, total_request_duration=0.001150

 output_metric_format: nagios_perfdata

 output_metric_handlers: null

 pipelines: []

 processed_by: sensu-centos

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - http-checks

 scheduler: memory

 secrets: null

 state: passing

 status: 0

 stdin: false

 subdue: null

 subscriptions:

 - webserver

 timeout: 0

 total_state_change: 0

 ttl: 0

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1635959379

 metadata:

 created_by: admin

 name: sensu-centos

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 sensu_agent_version: 6.5.4

 subscriptions:

 - system

 - entity:sensu-centos

 - webserver

 system:

 arch: amd64

 cloud_provider: ""

 hostname: sensu-centos

 libc_type: glibc

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::20b8:8cea:fa4:2e57/64

 mac: 08:00:27:8b:c9:3f

 name: eth0

 - addresses:

 - 192.168.200.95/24

 - fe80::a00:27ff:fe40:ab31/64

 mac: 08:00:27:40:ab:31

 name: eth1

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.9.2009

 processes: null

 vm_role: guest

 vm_system: vbox

 user: agent

 id: 12545deb-0e0f-480f-addf-34545d5a01c6

 pipelines: null

 sequence: 5

 timestamp: 1635952880

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "http-check --url http://localhost && http-perf --url

http://localhost --warning 1s --critical 2s",

 "duration": 0.022274319,

JSON

 "env_vars": null,

 "executed": 1635959379,

 "handlers": [

 "debug"

],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1635952820,

 "status": 0

 },

 {

 "executed": 1635952835,

 "status": 0

 },

 {

 "executed": 1635952850,

 "status": 0

 },

 {

 "executed": 1635952865,

 "status": 0

 },

 {

 "executed": 1635952880,

 "status": 0

 }

],

 "interval": 5,

 "is_silenced": false,

 "issued": 1635952880,

 "last_ok": 1635952880,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default"

 },

 "occurrences": 5,

 "occurrences_watermark": 5,

 "output": "http-check OK: HTTP Status 200 for http://localhost\nhttp-perf OK:

0.001150s | dns_duration=0.000257, tls_handshake_duration=0.000000,

connect_duration=0.000088, frst_byte_duration=0.001131,

total_request_duration=0.001150\n",

 "output_metric_format": "nagios_perfdata",

 "output_metric_handlers": null,

 "pipelines": [],

 "processed_by": "sensu-centos",

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "http-checks"

],

 "scheduler": "memory",

 "secrets": null,

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "webserver"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1635959379,

 "metadata": {

 "created_by": "admin",

 "name": "sensu-centos",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "sensu_agent_version": "6.5.4",

 "subscriptions": [

 "system",

 "entity:sensu-centos",

 "webserver"

],

 "system": {

 "arch": "amd64",

 "cloud_provider": "",

 "hostname": "sensu-centos",

 "libc_type": "glibc",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 ":1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::20b8:8cea:fa4:2e57/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 },

 {

 "addresses": [

 "192.168.200.95/24",

 "fe80::a00:27ff:fe40:ab31/64"

],

 "mac": "08:00:27:40:ab:31",

 "name": "eth1"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.9.2009",

 "processes": null,

 "vm_role": "guest",

 "vm_system": "vbox"

 },

 "user": "agent"

 },

 "id": "12545deb-0e0f-480f-addf-34545d5a01c6",

 "pipelines": null,

 "sequence": 5,

 "timestamp": 1635952880

 }

}

NOTE: Metrics data points are not included in events retrieved with sensuctl event info — these
events include check output text rather than a set of metrics points. To view metrics points data as
shown in the event below, add a debug handler that prints events to a JSON fle.

{

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.9.2009",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::20b8:8cea:fa4:2e57/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:40:ab:31",

 "addresses": [

 "192.168.200.95/24",

 "fe80::a00:27ff:fe40:ab31/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:sensu-centos",

 "webserver"

],

 "last_seen": 1635952880,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin"

 },

 "sensu_agent_version": "6.5.4"

 },

 "check": {

 "command": "http-check --url http://localhost \\u0026\\u0026 http-perf --url

http://localhost --warning 1s --critical 2s",

 "handlers": [

 "debug"

],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "http-checks"

],

 "subscriptions": [

 "webserver"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 0.018747388,

 "executed": 1635952880,

 "history": [

 {

 "status": 0,

 "executed": 1635952820

 },

 {

 "status": 0,

 "executed": 1635952835

 },

 {

 "status": 0,

 "executed": 1635952850

 },

 {

 "status": 0,

 "executed": 1635952865

 },

 {

 "status": 0,

 "executed": 1635952880

 }

],

 "issued": 1635952880,

 "output": "http-check OK: HTTP Status 200 for http://localhost\nhttp-perf OK:

0.001059s | dns_duration=0.000235, tls_handshake_duration=0.000000,

connect_duration=0.000083, frst_byte_duration=0.001040,

total_request_duration=0.001059\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1635952880,

 "occurrences": 5,

 "occurrences_watermark": 5,

 "output_metric_format": "nagios_perfdata",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "scheduler": "memory",

 "processed_by": "sensu-centos",

 "pipelines": []

 },

 "metrics": {

 "handlers": null,

 "points": [

 {

 "name": "dns_duration",

 "value": 0.000235,

 "timestamp": 1635952880,

 "tags": null

 },

 {

 "name": "tls_handshake_duration",

 "value": 0,

 "timestamp": 1635952880,

 "tags": null

 },

 {

 "name": "connect_duration",

 "value": 0.000083,

 "timestamp": 1635952880,

 "tags": null

 },

 {

 "name": "frst_byte_duration",

 "value": 0.00104,

 "timestamp": 1635952880,

 "tags": null

 },

 {

 "name": "total_request_duration",

 "value": 0.001059,

 "timestamp": 1635952880,

 "tags": null

 }

]

 },

 "metadata": {

 "namespace": "default"

 },

 "id": "7cde3e3f-beee-408f-b89a-1edccd0d3edb",

 "sequence": 5,

 "pipelines": null,

 "timestamp": 1635952880

}

Checks

Checks work with the Sensu agent to produce events automatically. You can use checks to monitor
server resources, services, and application health as well as collect and analyze metrics.
Checks defne
how Sensu will process events, as well as when and where events are generated via subscriptions and
scheduling.

Read Monitor server resources to learn more about using checks to generate events.

Status-only events

A Sensu event is created every time a check result is processed by the Sensu server, regardless of the
status the result indicates.
The agent creates an event upon receipt of the check execution result and
executes any confgured hooks the check might have.
From there, the status result is forwarded to the
Sensu backend, where it is fltered, transformed, and processed.
Potentially noteworthy events may be
processed by one or more event handlers, for example to send an email or invoke an automated
action.

Metrics-only events

Sensu events can be created when the agent receives metrics through the StatsD listener.
The agent
will translate the StatsD metrics to Sensu metric format and place them inside an event.
Because these
events do not contain checks, they bypass the store and are sent to the event pipeline and
corresponding event handlers.

Status and metrics events

Events that contain both a check and metrics most likely originated from check output metric extraction.
If a check is confgured for metric extraction, the agent will parse the check output and transform it to
Sensu metric format.
Both the check results and resulting (extracted) metrics are stored inside the event
Event handlers from event.Check.Handlers and event.Metrics.Handlers will be invoked.

Proxy entities and events

You can create events with proxy entities, which are dynamically created entities that Sensu adds to

the entity store if an entity does not already exist for a check result.
Proxy entities allow Sensu to
monitor external resources on systems where you cannot install a Sensu agent, like a network switch
or website.
Read Monitor external resources to learn how to use a proxy entity to monitor a website.

core/v2/events API endpoints

Sensu’s core/v2/events API endpoints provide HTTP access to create, retrieve, update, and delete
events.
If you create a new event that references an entity that does not already exist, the Sensu
backend will automatically create a proxy entity when the event is published.

Events reference

An event is a generic container used by Sensu to provide context to checks and metrics.
The context,
called observation data or event data, contains information about the originating entity and the
corresponding check or metric result.
An event must contain a status or metrics.
In certain cases, an
event can contain both a status and metrics.
These generic containers allow Sensu to handle different
types of events in the observability pipeline.
Because events are polymorphic in nature, it is important to
never assume their contents (or lack of content).

Event format

Sensu events contain:

Example status-only event

entity scope (required)

Information about the source of the event, including any attributes defned in the entity
specifcation

check scope (optional if the metrics scope is present)

Information about how the event was created, including any attributes defned in the
check specifcation

Information about the event and its history, including any check attributes defned in the
event specifcation on this page

metrics scope (optional if the check scope is present)

Metric points in Sensu metric format

timestamp

Time that the event occurred in seconds since the Unix epoch

id

Universally unique identifer (UUID) for the event (logged as event_id)

The following example shows the complete resource defnition for a status-only event:

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 check:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 duration: 5.058211427

 env_vars: null

 executed: 1617050501

 handlers: []

 high_fap_threshold: 0

 history:

 - executed: 1617050261

 status: 0

 - executed: 1617050321

 status: 0

 - executed: 1617050381

 status: 0

 - executed: 1617050441

 status: 0

 - executed: 1617050501

 status: 0

 interval: 60

 is_silenced: false

 processed_by: sensu-centos

 issued: 1617050501

 last_ok: 1617050501

 low_fap_threshold: 0

 metadata:

 name: check_cpu

 namespace: default

 occurrences: 5

 occurrences_watermark: 5

 output: |

 CheckCPU TOTAL OK: total=0.41 user=0.2 nice=0.0 system=0.2 idle=99.59

YML

iowait=0.0 irq=0.0 softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0

 output_metric_format: ""

 output_metric_handlers: null

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - check-cpu-usage

 scheduler: memory

 secrets: null

 state: passing

 status: 0

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 total_state_change: 0

 ttl: 0

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1617050501

 metadata:

 name: sensu-centos

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 sensu_agent_version: 6.2.6

 subscriptions:

 - linux

 - entity:sensu-centos

 system:

 arch: amd64

 cloud_provider: ""

 hostname: sensu-centos

 libc_type: glibc

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::a268:dcce:3be:1c73/64

 mac: 08:00:27:8b:c9:3f

 name: eth0

 - addresses:

 - 172.28.128.45/24

 - fe80::a00:27ff:feb2:dc46/64

 mac: 08:00:27:b2:dc:46

 name: eth1

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.5.1804

 processes: null

 vm_role: guest

 vm_system: vbox

 user: agent

 pipelines:

 - api_version: core/v2

 type: Pipeline

 name: incident_alerts

 id: 3c3e68f6-6db7-40d3-9b84-4d61817ae559

 sequence: 5

 timestamp: 1617050507

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

JSON

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

 "duration": 5.058211427,

 "env_vars": null,

 "executed": 1617050501,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1617050261,

 "status": 0

 },

 {

 "executed": 1617050321,

 "status": 0

 },

 {

 "executed": 1617050381,

 "status": 0

 },

 {

 "executed": 1617050441,

 "status": 0

 },

 {

 "executed": 1617050501,

 "status": 0

 }

],

 "interval": 60,

 "is_silenced": false,

 "processed_by": "sensu-centos",

 "issued": 1617050501,

 "last_ok": 1617050501,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "occurrences": 5,

 "occurrences_watermark": 5,

 "output": "CheckCPU TOTAL OK: total=0.41 user=0.2 nice=0.0 system=0.2

idle=99.59 iowait=0.0 irq=0.0 softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0\n",

 "output_metric_format": "",

 "output_metric_handlers": null,

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

 "scheduler": "memory",

 "secrets": null,

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1617050501,

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "sensu_agent_version": "6.2.6",

 "subscriptions": [

 "linux",

 "entity:sensu-centos"

],

 "system": {

 "arch": "amd64",

 "cloud_provider": "",

 "hostname": "sensu-centos",

 "libc_type": "glibc",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 ":1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::a268:dcce:3be:1c73/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 },

 {

 "addresses": [

 "172.28.128.45/24",

 "fe80::a00:27ff:feb2:dc46/64"

],

 "mac": "08:00:27:b2:dc:46",

 "name": "eth1"

 }

]

 },

 "os": "linux",

Example status-only event from the Sensu API

Sensu sends events to the backend in json format, without the outer-level spec wrapper or type
and api_version attributes that are included in the wrapped-json format.
This is the format that
events are in when Sensu sends them to the observability pipeline for processing:

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "processes": null,

 "vm_role": "guest",

 "vm_system": "vbox"

 },

 "user": "agent"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "id": "3c3e68f6-6db7-40d3-9b84-4d61817ae559",

 "sequence": 5,

 "timestamp": 1617050507

 }

}

{

 "check": {

 "command": "check-cpu-usage -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 5.058211427,

 "executed": 1617050501,

 "history": [

 {

 "status": 0,

 "executed": 1617050261

 },

 {

 "status": 0,

 "executed": 1617050321

 },

 {

 "status": 0,

 "executed": 1617050381

 },

 {

 "status": 0,

 "executed": 1617050441

 },

 {

 "status": 0,

 "executed": 1617050501

 }

],

 "issued": 1617050501,

 "output": "CheckCPU TOTAL OK: total=0.4 user=0.2 nice=0.0 system=0.2 idle=99.6

iowait=0.0 irq=0.0 softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1617050501,

 "occurrences": 5,

 "occurrences_watermark": 5,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "processed_by": "sensu-centos",

 "scheduler": "memory"

 },

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::a268:dcce:3be:1c73/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:b2:dc:46",

 "addresses": [

 "172.28.128.45/24",

 "fe80::a00:27ff:feb2:dc46/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "linux",

 "entity:sensu-centos"

],

 "last_seen": 1617049781,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "sensu_agent_version": "6.2.6"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

Example metrics-only event

This example shows a complete metrics-only event, retrieved with sensuctl event info:

 "name": "incident_alerts"

 }

],

 "id": "3c3e68f6-6db7-40d3-9b84-4d61817ae559",

 "metadata": {

 "namespace": "default"

 },

 "sequence": 5,

 "timestamp": 1617050507

}

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 check:

 check_hooks: null

 command: system-check

 duration: 3.012411959

 env_vars: null

 executed: 1635959903

 handlers: []

 high_fap_threshold: 0

 history:

 - executed: 1635959873

 status: 0

 - executed: 1635959883

 status: 0

 - executed: 1635959893

 status: 0

 - executed: 1635959903

 status: 0

YML

 interval: 10

 is_silenced: false

 issued: 1635959903

 last_ok: 1635959903

 low_fap_threshold: 0

 metadata:

 labels:

 sensu.io/managed_by: sensuctl

 name: system-check

 namespace: default

 occurrences: 4

 occurrences_watermark: 4

 output: |+

 # HELP system_cpu_cores [GAUGE] Number of cpu cores on the system

 # TYPE system_cpu_cores GAUGE

 system_cpu_cores{} 1 1635959903645

 # HELP system_cpu_idle [GAUGE] Percent of time all cpus were idle

 # TYPE system_cpu_idle GAUGE

 system_cpu_idle{cpu="cpu0"} 98.94366197187135 1635959903645

 system_cpu_idle{cpu="cpu-total"} 98.94366197187135 1635959903645

 # HELP system_cpu_used [GAUGE] Percent of time all cpus were used

 # TYPE system_cpu_used GAUGE

 system_cpu_used{cpu="cpu0"} 1.0563380281286499 1635959903645

 system_cpu_used{cpu="cpu-total"} 1.0563380281286499 1635959903645

 # HELP system_cpu_user [GAUGE] Percent of time total cpu was used by normal

processes in user mode

 # TYPE system_cpu_user GAUGE

 system_cpu_user{cpu="cpu0"} 0.7042253521124505 1635959903645

 system_cpu_user{cpu="cpu-total"} 0.7042253521124505 1635959903645

 # HELP system_cpu_system [GAUGE] Percent of time all cpus used by processes

executed in kernel mode

 # TYPE system_cpu_system GAUGE

 system_cpu_system{cpu="cpu0"} 0.35211267605672564 1635959903645

 system_cpu_system{cpu="cpu-total"} 0.35211267605672564 1635959903645

 # HELP system_cpu_nice [GAUGE] Percent of time all cpus used by niced

processes in user mode

 # TYPE system_cpu_nice GAUGE

 system_cpu_nice{cpu="cpu0"} 0 1635959903645

 system_cpu_nice{cpu="cpu-total"} 0 1635959903645

 # HELP system_cpu_iowait [GAUGE] Percent of time all cpus waiting for I/O to

complete

 # TYPE system_cpu_iowait GAUGE

 system_cpu_iowait{cpu="cpu0"} 0 1635959903645

 system_cpu_iowait{cpu="cpu-total"} 0 1635959903645

 # HELP system_cpu_irq [GAUGE] Percent of time all cpus servicing interrupts

 # TYPE system_cpu_irq GAUGE

 system_cpu_irq{cpu="cpu0"} 0 1635959903645

 system_cpu_irq{cpu="cpu-total"} 0 1635959903645

 # HELP system_cpu_sortirq [GAUGE] Percent of time all cpus servicing software

interrupts

 # TYPE system_cpu_sortirq GAUGE

 system_cpu_sortirq{cpu="cpu0"} 0 1635959903645

 system_cpu_sortirq{cpu="cpu-total"} 0 1635959903645

 # HELP system_cpu_stolen [GAUGE] Percent of time all cpus serviced virtual

hosts operating systems

 # TYPE system_cpu_stolen GAUGE

 system_cpu_stolen{cpu="cpu0"} 0 1635959903645

 system_cpu_stolen{cpu="cpu-total"} 0 1635959903645

 # HELP system_cpu_guest [GAUGE] Percent of time all cpus serviced guest

operating system

 # TYPE system_cpu_guest GAUGE

 system_cpu_guest{cpu="cpu0"} 0 1635959903645

 system_cpu_guest{cpu="cpu-total"} 0 1635959903645

 # HELP system_cpu_guest_nice [GAUGE] Percent of time all cpus serviced niced

guest operating system

 # TYPE system_cpu_guest_nice GAUGE

 system_cpu_guest_nice{cpu="cpu0"} 0 1635959903645

 system_cpu_guest_nice{cpu="cpu-total"} 0 1635959903645

 # HELP system_mem_used [GAUGE] Percent of memory used

 # TYPE system_mem_used GAUGE

 system_mem_used{} 24.63435866529588 1635959903645

 # HELP system_mem_used_bytes [GAUGE] Used memory in bytes

 # TYPE system_mem_used_bytes GAUGE

 system_mem_used_bytes{} 2.56159744e+08 1635959903645

 # HELP system_mem_total_bytes [GAUGE] Total memory in bytes

 # TYPE system_mem_total_bytes GAUGE

 system_mem_total_bytes{} 1.039847424e+09 1635959903645

 # HELP system_swap_used [GAUGE] Percent of swap used

 # TYPE system_swap_used GAUGE

 system_swap_used{} 0.0976564362648702 1635959903645

 # HELP system_swap_used_bytes [GAUGE] Used swap in bytes

 # TYPE system_swap_used_bytes GAUGE

 system_swap_used_bytes{} 2.56159744e+08 1635959903645

 # HELP system_swap_total_bytes [GAUGE] Total swap in bytes

 # TYPE system_swap_total_bytes GAUGE

 system_swap_total_bytes{} 2.147479552e+09 1635959903645

 # HELP system_load_load1 [GAUGE] System load averaged over 1 minute, high load

value dependant on number of cpus in system

 # TYPE system_load_load1 GAUGE

 system_load_load1{} 0.09 1635959903645

 # HELP system_load_load5 [GAUGE] System load averaged over 5 minute, high load

value dependent on number of cpus in system

 # TYPE system_load_load5 GAUGE

 system_load_load5{} 0.04 1635959903645

 # HELP system_load_load15 [GAUGE] System load averaged over 15 minute, high

load value dependent on number of cpus in system

 # TYPE system_load_load15 GAUGE

 system_load_load15{} 0.05 1635959903645

 # HELP system_load_load1_per_cpu [GAUGE] System load averaged over 1 minute

normalized by cpu count, values > 1 means system may be overloaded

 # TYPE system_load_load1_per_cpu GAUGE

 system_load_load1_per_cpu{} 0.09 1635959903645

 # HELP system_load_load5_per_cpu [GAUGE] System load averaged over 5 minute

normalized by cpu count, values > 1 means system may be overloaded

 # TYPE system_load_load5_per_cpu GAUGE

 system_load_load5_per_cpu{} 0.04 1635959903645

 # HELP system_load_load15_per_cpu [GAUGE] System load averaged over 15 minute

normalized by cpu count, values > 1 means system may be overloaded

 # TYPE system_load_load15_per_cpu GAUGE

 system_load_load15_per_cpu{} 0.05 1635959903645

 # HELP system_host_uptime [COUNTER] Host uptime in seconds

 # TYPE system_host_uptime COUNTER

 system_host_uptime{} 15488 1635959903645

 # HELP system_host_processes [GAUGE] Number of host processes

 # TYPE system_host_processes GAUGE

 system_host_processes{} 112 1635959903645

 output_metric_format: prometheus_text

 output_metric_handlers: null

 pipelines: []

 processed_by: sensu-centos

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - system-check

 scheduler: memory

 secrets: null

 state: passing

 status: 0

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 total_state_change: 0

 ttl: 0

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1635959903

 metadata:

 created_by: admin

 name: sensu-centos

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 sensu_agent_version: 6.5.4

 subscriptions:

 - system

 - entity:sensu-centos

 - webserver

 system:

 arch: amd64

 cloud_provider: ""

 hostname: sensu-centos

 libc_type: glibc

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::20b8:8cea:fa4:2e57/64

 mac: 08:00:27:8b:c9:3f

 name: eth0

 - addresses:

 - 192.168.200.95/24

 - fe80::a00:27ff:fe40:ab31/64

 mac: 08:00:27:40:ab:31

 name: eth1

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.9.2009

 processes: null

 vm_role: guest

 vm_system: vbox

 user: agent

 id: 07425e48-e163-47d3-8bc8-17fbaa27e469

 pipelines: null

 sequence: 122

 timestamp: 1635959906

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "system-check",

 "duration": 3.012411959,

 "env_vars": null,

 "executed": 1635959903,

 "handlers": [],

JSON

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1635959873,

 "status": 0

 },

 {

 "executed": 1635959883,

 "status": 0

 },

 {

 "executed": 1635959893,

 "status": 0

 },

 {

 "executed": 1635959903,

 "status": 0

 }

],

 "interval": 10,

 "is_silenced": false,

 "issued": 1635959903,

 "last_ok": 1635959903,

 "low_fap_threshold": 0,

 "metadata": {

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "name": "system-check",

 "namespace": "default"

 },

 "occurrences": 4,

 "occurrences_watermark": 4,

 "output": "# HELP system_cpu_cores [GAUGE] Number of cpu cores on the

system\n# TYPE system_cpu_cores GAUGE\nsystem_cpu_cores{} 1 1635959903645\n# HELP

system_cpu_idle [GAUGE] Percent of time all cpus were idle\n# TYPE system_cpu_idle

GAUGE\nsystem_cpu_idle{cpu=\"cpu0\"} 98.94366197187135

1635959903645\nsystem_cpu_idle{cpu=\"cpu-total\"} 98.94366197187135 1635959903645\n#

HELP system_cpu_used [GAUGE] Percent of time all cpus were used\n# TYPE

system_cpu_used GAUGE\nsystem_cpu_used{cpu=\"cpu0\"} 1.0563380281286499

1635959903645\nsystem_cpu_used{cpu=\"cpu-total\"} 1.0563380281286499

1635959903645\n# HELP system_cpu_user [GAUGE] Percent of time total cpu was used by

normal processes in user mode\n# TYPE system_cpu_user

GAUGE\nsystem_cpu_user{cpu=\"cpu0\"} 0.7042253521124505

1635959903645\nsystem_cpu_user{cpu=\"cpu-total\"} 0.7042253521124505

1635959903645\n# HELP system_cpu_system [GAUGE] Percent of time all cpus used by

processes executed in kernel mode\n# TYPE system_cpu_system

GAUGE\nsystem_cpu_system{cpu=\"cpu0\"} 0.35211267605672564

1635959903645\nsystem_cpu_system{cpu=\"cpu-total\"} 0.35211267605672564

1635959903645\n# HELP system_cpu_nice [GAUGE] Percent of time all cpus used by niced

processes in user mode\n# TYPE system_cpu_nice GAUGE\nsystem_cpu_nice{cpu=\"cpu0\"}

0 1635959903645\nsystem_cpu_nice{cpu=\"cpu-total\"} 0 1635959903645\n# HELP

system_cpu_iowait [GAUGE] Percent of time all cpus waiting for I/O to complete\n#

TYPE system_cpu_iowait GAUGE\nsystem_cpu_iowait{cpu=\"cpu0\"} 0

1635959903645\nsystem_cpu_iowait{cpu=\"cpu-total\"} 0 1635959903645\n# HELP

system_cpu_irq [GAUGE] Percent of time all cpus servicing interrupts\n# TYPE

system_cpu_irq GAUGE\nsystem_cpu_irq{cpu=\"cpu0\"} 0

1635959903645\nsystem_cpu_irq{cpu=\"cpu-total\"} 0 1635959903645\n# HELP

system_cpu_sortirq [GAUGE] Percent of time all cpus servicing software interrupts\n#

TYPE system_cpu_sortirq GAUGE\nsystem_cpu_sortirq{cpu=\"cpu0\"} 0

1635959903645\nsystem_cpu_sortirq{cpu=\"cpu-total\"} 0 1635959903645\n# HELP

system_cpu_stolen [GAUGE] Percent of time all cpus serviced virtual hosts operating

systems\n# TYPE system_cpu_stolen GAUGE\nsystem_cpu_stolen{cpu=\"cpu0\"} 0

1635959903645\nsystem_cpu_stolen{cpu=\"cpu-total\"} 0 1635959903645\n# HELP

system_cpu_guest [GAUGE] Percent of time all cpus serviced guest operating system\n#

TYPE system_cpu_guest GAUGE\nsystem_cpu_guest{cpu=\"cpu0\"} 0

1635959903645\nsystem_cpu_guest{cpu=\"cpu-total\"} 0 1635959903645\n# HELP

system_cpu_guest_nice [GAUGE] Percent of time all cpus serviced niced guest

operating system\n# TYPE system_cpu_guest_nice

GAUGE\nsystem_cpu_guest_nice{cpu=\"cpu0\"} 0

1635959903645\nsystem_cpu_guest_nice{cpu=\"cpu-total\"} 0 1635959903645\n# HELP

system_mem_used [GAUGE] Percent of memory used\n# TYPE system_mem_used

GAUGE\nsystem_mem_used{} 24.63435866529588 1635959903645\n# HELP

system_mem_used_bytes [GAUGE] Used memory in bytes\n# TYPE system_mem_used_bytes

GAUGE\nsystem_mem_used_bytes{} 2.56159744e+08 1635959903645\n# HELP

system_mem_total_bytes [GAUGE] Total memory in bytes\n# TYPE system_mem_total_bytes

GAUGE\nsystem_mem_total_bytes{} 1.039847424e+09 1635959903645\n# HELP

system_swap_used [GAUGE] Percent of swap used\n# TYPE system_swap_used

GAUGE\nsystem_swap_used{} 0.0976564362648702 1635959903645\n# HELP

system_swap_used_bytes [GAUGE] Used swap in bytes\n# TYPE system_swap_used_bytes

GAUGE\nsystem_swap_used_bytes{} 2.56159744e+08 1635959903645\n# HELP

system_swap_total_bytes [GAUGE] Total swap in bytes\n# TYPE system_swap_total_bytes

GAUGE\nsystem_swap_total_bytes{} 2.147479552e+09 1635959903645\n# HELP

system_load_load1 [GAUGE] System load averaged over 1 minute, high load value

dependant on number of cpus in system\n# TYPE system_load_load1

GAUGE\nsystem_load_load1{} 0.09 1635959903645\n# HELP system_load_load5 [GAUGE]

System load averaged over 5 minute, high load value dependent on number of cpus in

system\n# TYPE system_load_load5 GAUGE\nsystem_load_load5{} 0.04 1635959903645\n#

HELP system_load_load15 [GAUGE] System load averaged over 15 minute, high load value

dependent on number of cpus in system\n# TYPE system_load_load15

GAUGE\nsystem_load_load15{} 0.05 1635959903645\n# HELP system_load_load1_per_cpu

[GAUGE] System load averaged over 1 minute normalized by cpu count, values > 1 means

system may be overloaded\n# TYPE system_load_load1_per_cpu

GAUGE\nsystem_load_load1_per_cpu{} 0.09 1635959903645\n# HELP

system_load_load5_per_cpu [GAUGE] System load averaged over 5 minute normalized by

cpu count, values > 1 means system may be overloaded\n# TYPE

system_load_load5_per_cpu GAUGE\nsystem_load_load5_per_cpu{} 0.04 1635959903645\n#

HELP system_load_load15_per_cpu [GAUGE] System load averaged over 15 minute

normalized by cpu count, values > 1 means system may be overloaded\n# TYPE

system_load_load15_per_cpu GAUGE\nsystem_load_load15_per_cpu{} 0.05 1635959903645\n#

HELP system_host_uptime [COUNTER] Host uptime in seconds\n# TYPE system_host_uptime

COUNTER\nsystem_host_uptime{} 15488 1635959903645\n# HELP system_host_processes

[GAUGE] Number of host processes\n# TYPE system_host_processes

GAUGE\nsystem_host_processes{} 112 1635959903645\n\n",

 "output_metric_format": "prometheus_text",

 "output_metric_handlers": null,

 "pipelines": [],

 "processed_by": "sensu-centos",

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "system-check"

],

 "scheduler": "memory",

 "secrets": null,

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1635959903,

 "metadata": {

 "created_by": "admin",

 "name": "sensu-centos",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "sensu_agent_version": "6.5.4",

 "subscriptions": [

 "system",

 "entity:sensu-centos",

 "webserver"

],

 "system": {

 "arch": "amd64",

 "cloud_provider": "",

 "hostname": "sensu-centos",

 "libc_type": "glibc",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 ":1/128"

],

 "name": "lo"

 },

Metrics data points are not included in events retrieved with sensuctl event info — those events include
check output text rather than a set of metrics points.
To view metrics points data as shown in the
following example, create a pipeline workfow that includes a debug handler that prints events to a
JSON fle:

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::20b8:8cea:fa4:2e57/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 },

 {

 "addresses": [

 "192.168.200.95/24",

 "fe80::a00:27ff:fe40:ab31/64"

],

 "mac": "08:00:27:40:ab:31",

 "name": "eth1"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.9.2009",

 "processes": null,

 "vm_role": "guest",

 "vm_system": "vbox"

 },

 "user": "agent"

 },

 "id": "07425e48-e163-47d3-8bc8-17fbaa27e469",

 "pipelines": null,

 "sequence": 122,

 "timestamp": 1635959906

 }

}

{

 "metrics": {

 "points": [

 {

 "name": "system_cpu_sortirq",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu0"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_sortirq",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_guest",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu0"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_guest",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_mem_used_bytes",

 "value": 260579328,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_mem_total_bytes",

 "value": 1039847424,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_swap_used",

 "value": 0.0736237976528123,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_used",

 "value": 0.6756756756291793,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu0"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_used",

 "value": 0.6756756756291793,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_nice",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu0"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_nice",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_irq",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu0"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_irq",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_load_load1",

 "value": 0.01,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_host_uptime",

 "value": 10642,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "counter"

 }

]

 },

 {

 "name": "system_host_processes",

 "value": 116,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_load_load5_per_cpu",

 "value": 0.02,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_cores",

 "value": 1,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_swap_used_bytes",

 "value": 260579328,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_load_load5",

 "value": 0.02,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_mem_used",

 "value": 25.059381019344624,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_swap_total_bytes",

 "value": 2147479552,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_load_load1_per_cpu",

 "value": 0.01,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_load_load15_per_cpu",

 "value": 0.05,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_idle",

 "value": 99.32432432437082,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 },

 {

 "name": "cpu",

 "value": "cpu0"

 }

]

 },

 {

 "name": "system_cpu_idle",

 "value": 99.32432432437082,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_user",

 "value": 0.3378378378376302,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu0"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_user",

 "value": 0.3378378378376302,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_iowait",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu0"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_iowait",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_load_load15",

 "value": 0.05,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_system",

 "value": 0.3378378378376302,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 },

 {

 "name": "cpu",

 "value": "cpu0"

 }

]

 },

 {

 "name": "system_cpu_system",

 "value": 0.3378378378376302,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_stolen",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu0"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_stolen",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "prom_type",

 "value": "gauge"

 },

 {

 "name": "cpu",

 "value": "cpu-total"

 }

]

 },

 {

 "name": "system_cpu_guest_nice",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu0"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "system_cpu_guest_nice",

 "value": 0,

 "timestamp": 1635952533,

 "tags": [

 {

 "name": "cpu",

 "value": "cpu-total"

 },

 {

 "name": "prom_type",

 "value": "gauge"

 }

]

 }

]

 },

 "metadata": {

 "namespace": "default"

 },

 "id": "afdeb823-74c2-4921-891a-465a2095cb5a",

 "sequence": 6,

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "debug_pipeline"

 }

],

 "timestamp": 1635952536,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.9.2009",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::20b8:8cea:fa4:2e57/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:40:ab:31",

 "addresses": [

 "192.168.200.95/24",

 "fe80::a00:27ff:fe40:ab31/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:sensu-centos"

],

 "last_seen": 1635952533,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "sensu_agent_version": "6.5.4"

 },

 "check": {

 "command": "system-check",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "system-check"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 3.01062768,

 "executed": 1635952533,

 "history": [

 {

 "status": 0,

 "executed": 1635952283

 },

 {

 "status": 0,

 "executed": 1635952293

 },

 {

 "status": 0,

 "executed": 1635952303

 },

 {

 "status": 0,

 "executed": 1635952313

 },

 {

 "status": 0,

 "executed": 1635952421

 },

 {

 "status": 0,

 "executed": 1635952533

 }

],

 "issued": 1635952533,

 "output": "# HELP system_cpu_cores [GAUGE] Number of cpu cores on the system\n#

TYPE system_cpu_cores GAUGE\nsystem_cpu_cores{} 1 1635952533657\n# HELP

system_cpu_idle [GAUGE] Percent of time all cpus were idle\n# TYPE system_cpu_idle

GAUGE\nsystem_cpu_idle{cpu=\"cpu0\"} 99.32432432437082

1635952533657\nsystem_cpu_idle{cpu=\"cpu-total\"} 99.32432432437082 1635952533657\n#

HELP system_cpu_used [GAUGE] Percent of time all cpus were used\n# TYPE

system_cpu_used GAUGE\nsystem_cpu_used{cpu=\"cpu0\"} 0.6756756756291793

1635952533657\nsystem_cpu_used{cpu=\"cpu-total\"} 0.6756756756291793

1635952533657\n# HELP system_cpu_user [GAUGE] Percent of time total cpu was used by

normal processes in user mode\n# TYPE system_cpu_user

GAUGE\nsystem_cpu_user{cpu=\"cpu0\"} 0.3378378378376302

1635952533657\nsystem_cpu_user{cpu=\"cpu-total\"} 0.3378378378376302

1635952533657\n# HELP system_cpu_system [GAUGE] Percent of time all cpus used by

processes executed in kernel mode\n# TYPE system_cpu_system

GAUGE\nsystem_cpu_system{cpu=\"cpu0\"} 0.3378378378376302

1635952533657\nsystem_cpu_system{cpu=\"cpu-total\"} 0.3378378378376302

1635952533657\n# HELP system_cpu_nice [GAUGE] Percent of time all cpus used by niced

processes in user mode\n# TYPE system_cpu_nice GAUGE\nsystem_cpu_nice{cpu=\"cpu0\"}

0 1635952533657\nsystem_cpu_nice{cpu=\"cpu-total\"} 0 1635952533657\n# HELP

system_cpu_iowait [GAUGE] Percent of time all cpus waiting for I/O to complete\n#

TYPE system_cpu_iowait GAUGE\nsystem_cpu_iowait{cpu=\"cpu0\"} 0

1635952533657\nsystem_cpu_iowait{cpu=\"cpu-total\"} 0 1635952533657\n# HELP

system_cpu_irq [GAUGE] Percent of time all cpus servicing interrupts\n# TYPE

system_cpu_irq GAUGE\nsystem_cpu_irq{cpu=\"cpu0\"} 0

1635952533657\nsystem_cpu_irq{cpu=\"cpu-total\"} 0 1635952533657\n# HELP

system_cpu_sortirq [GAUGE] Percent of time all cpus servicing software interrupts\n#

TYPE system_cpu_sortirq GAUGE\nsystem_cpu_sortirq{cpu=\"cpu0\"} 0

1635952533657\nsystem_cpu_sortirq{cpu=\"cpu-total\"} 0 1635952533657\n# HELP

system_cpu_stolen [GAUGE] Percent of time all cpus serviced virtual hosts operating

systems\n# TYPE system_cpu_stolen GAUGE\nsystem_cpu_stolen{cpu=\"cpu0\"} 0

1635952533657\nsystem_cpu_stolen{cpu=\"cpu-total\"} 0 1635952533657\n# HELP

system_cpu_guest [GAUGE] Percent of time all cpus serviced guest operating system\n#

TYPE system_cpu_guest GAUGE\nsystem_cpu_guest{cpu=\"cpu0\"} 0

1635952533657\nsystem_cpu_guest{cpu=\"cpu-total\"} 0 1635952533657\n# HELP

system_cpu_guest_nice [GAUGE] Percent of time all cpus serviced niced guest

operating system\n# TYPE system_cpu_guest_nice

GAUGE\nsystem_cpu_guest_nice{cpu=\"cpu0\"} 0

1635952533657\nsystem_cpu_guest_nice{cpu=\"cpu-total\"} 0 1635952533657\n# HELP

system_mem_used [GAUGE] Percent of memory used\n# TYPE system_mem_used

GAUGE\nsystem_mem_used{} 25.059381019344624 1635952533657\n# HELP

system_mem_used_bytes [GAUGE] Used memory in bytes\n# TYPE system_mem_used_bytes

GAUGE\nsystem_mem_used_bytes{} 2.60579328e+08 1635952533657\n# HELP

system_mem_total_bytes [GAUGE] Total memory in bytes\n# TYPE system_mem_total_bytes

GAUGE\nsystem_mem_total_bytes{} 1.039847424e+09 1635952533657\n# HELP

system_swap_used [GAUGE] Percent of swap used\n# TYPE system_swap_used

GAUGE\nsystem_swap_used{} 0.0736237976528123 1635952533657\n# HELP

system_swap_used_bytes [GAUGE] Used swap in bytes\n# TYPE system_swap_used_bytes

GAUGE\nsystem_swap_used_bytes{} 2.60579328e+08 1635952533657\n# HELP

system_swap_total_bytes [GAUGE] Total swap in bytes\n# TYPE system_swap_total_bytes

GAUGE\nsystem_swap_total_bytes{} 2.147479552e+09 1635952533657\n# HELP

system_load_load1 [GAUGE] System load averaged over 1 minute, high load value

dependant on number of cpus in system\n# TYPE system_load_load1

GAUGE\nsystem_load_load1{} 0.01 1635952533657\n# HELP system_load_load5 [GAUGE]

System load averaged over 5 minute, high load value dependent on number of cpus in

system\n# TYPE system_load_load5 GAUGE\nsystem_load_load5{} 0.02 1635952533657\n#

HELP system_load_load15 [GAUGE] System load averaged over 15 minute, high load value

dependent on number of cpus in system\n# TYPE system_load_load15

GAUGE\nsystem_load_load15{} 0.05 1635952533657\n# HELP system_load_load1_per_cpu

[GAUGE] System load averaged over 1 minute normalized by cpu count, values \\u003e 1

means system may be overloaded\n# TYPE system_load_load1_per_cpu

GAUGE\nsystem_load_load1_per_cpu{} 0.01 1635952533657\n# HELP

system_load_load5_per_cpu [GAUGE] System load averaged over 5 minute normalized by

cpu count, values \\u003e 1 means system may be overloaded\n# TYPE

system_load_load5_per_cpu GAUGE\nsystem_load_load5_per_cpu{} 0.02 1635952533657\n#

HELP system_load_load15_per_cpu [GAUGE] System load averaged over 15 minute

normalized by cpu count, values \\u003e 1 means system may be overloaded\n# TYPE

system_load_load15_per_cpu GAUGE\nsystem_load_load15_per_cpu{} 0.05 1635952533657\n#

HELP system_host_uptime [COUNTER] Host uptime in seconds\n# TYPE system_host_uptime

COUNTER\nsystem_host_uptime{} 10642 1635952533657\n# HELP system_host_processes

[GAUGE] Number of host processes\n# TYPE system_host_processes

GAUGE\nsystem_host_processes{} 116 1635952533657\n\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1635952533,

 "occurrences": 6,

 "occurrences_watermark": 6,

 "output_metric_format": "prometheus_text",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "system-check",

 "namespace": "default",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 }

 },

 "secrets": null,

 "is_silenced": false,

 "scheduler": "memory",

 "processed_by": "sensu-centos",

 "pipelines": [],

 "output_metric_thresholds": [

 {

 "name": "system_mem_used",

 "tags": null,

 "null_status": 1,

 "thresholds": [

 {

 "min": "",

 "max": "75.0",

 "status": 1

 },

 {

 "min": "",

 "max": "90.0",

 "status": 2

 }

]

 },

 {

 "name": "system_host_processes",

 "tags": [

 {

 "name": "namespace",

 "value": "production"

 }

],

 "null_status": 1,

 "thresholds": [

 {

 "min": "5",

 "max": "50",

 "status": 1

 },

 {

 "min": "2",

Example status and metrics event

The following example resource defnition for a status and metrics event contains both a check and
metrics, retrieved with sensuctl event info:

 "max": "75",

 "status": 2

 }

]

 }

]

 }

}

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 check:

 check_hooks: null

 command: http-check --url http://localhost && http-perf --url http://localhost

 --warning 1s --critical 2s

 duration: 0.022274319

 env_vars: null

 executed: 1635959379

 handlers: null

 high_fap_threshold: 0

 history:

 - executed: 1635952820

 status: 0

 - executed: 1635952835

 status: 0

 - executed: 1635952850

 status: 0

 - executed: 1635952865

 status: 0

YML

 - executed: 1635952880

 status: 0

 interval: 5

 is_silenced: false

 issued: 1635952880

 last_ok: 1635952880

 low_fap_threshold: 0

 metadata:

 name: collect-metrics

 namespace: default

 occurrences: 5

 occurrences_watermark: 5

 output: |

 http-check OK: HTTP Status 200 for http://localhost

 http-perf OK: 0.001150s | dns_duration=0.000257,

tls_handshake_duration=0.000000, connect_duration=0.000088,

frst_byte_duration=0.001131, total_request_duration=0.001150

 output_metric_format: nagios_perfdata

 output_metric_handlers: null

 pipelines: []

 processed_by: sensu-centos

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - http-checks

 scheduler: memory

 secrets: null

 state: passing

 status: 0

 stdin: false

 subdue: null

 subscriptions:

 - webserver

 timeout: 0

 total_state_change: 0

 ttl: 0

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1635959379

 metadata:

 created_by: admin

 name: sensu-centos

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 sensu_agent_version: 6.5.4

 subscriptions:

 - system

 - entity:sensu-centos

 - webserver

 system:

 arch: amd64

 cloud_provider: ""

 hostname: sensu-centos

 libc_type: glibc

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::20b8:8cea:fa4:2e57/64

 mac: 08:00:27:8b:c9:3f

 name: eth0

 - addresses:

 - 192.168.200.95/24

 - fe80::a00:27ff:fe40:ab31/64

 mac: 08:00:27:40:ab:31

 name: eth1

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.9.2009

 processes: null

 vm_role: guest

 vm_system: vbox

 user: agent

 id: 12545deb-0e0f-480f-addf-34545d5a01c6

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: status_and_metrics_pipeline

 sequence: 5

 timestamp: 1635952880

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "http-check --url http://localhost && http-perf --url

http://localhost --warning 1s --critical 2s",

 "duration": 0.022274319,

 "env_vars": null,

 "executed": 1635959379,

 "handlers": null,

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1635952820,

 "status": 0

 },

 {

 "executed": 1635952835,

 "status": 0

 },

 {

JSON

 "executed": 1635952850,

 "status": 0

 },

 {

 "executed": 1635952865,

 "status": 0

 },

 {

 "executed": 1635952880,

 "status": 0

 }

],

 "interval": 5,

 "is_silenced": false,

 "issued": 1635952880,

 "last_ok": 1635952880,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default"

 },

 "occurrences": 5,

 "occurrences_watermark": 5,

 "output": "http-check OK: HTTP Status 200 for http://localhost\nhttp-perf OK:

0.001150s | dns_duration=0.000257, tls_handshake_duration=0.000000,

connect_duration=0.000088, frst_byte_duration=0.001131,

total_request_duration=0.001150\n",

 "output_metric_format": "nagios_perfdata",

 "output_metric_handlers": null,

 "pipelines": [],

 "processed_by": "sensu-centos",

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "http-checks"

],

 "scheduler": "memory",

 "secrets": null,

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "webserver"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1635959379,

 "metadata": {

 "created_by": "admin",

 "name": "sensu-centos",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "sensu_agent_version": "6.5.4",

 "subscriptions": [

 "system",

 "entity:sensu-centos",

 "webserver"

],

 "system": {

 "arch": "amd64",

 "cloud_provider": "",

 "hostname": "sensu-centos",

 "libc_type": "glibc",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 ":1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::20b8:8cea:fa4:2e57/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 },

 {

 "addresses": [

 "192.168.200.95/24",

 "fe80::a00:27ff:fe40:ab31/64"

],

 "mac": "08:00:27:40:ab:31",

 "name": "eth1"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.9.2009",

 "processes": null,

 "vm_role": "guest",

 "vm_system": "vbox"

 },

 "user": "agent"

 },

 "id": "12545deb-0e0f-480f-addf-34545d5a01c6",

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "status_and_metrics_pipeline"

 }

Metrics data points are not included in events retrieved with sensuctl event info — those events include
check output text rather than a set of metrics points.
To view metrics points data as shown in the
following example, create a pipeline workfow that includes a debug handler that prints events to a
JSON fle:

],

 "sequence": 5,

 "timestamp": 1635952880

 }

}

{

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.9.2009",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::20b8:8cea:fa4:2e57/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:40:ab:31",

 "addresses": [

 "192.168.200.95/24",

 "fe80::a00:27ff:fe40:ab31/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:sensu-centos",

 "webserver"

],

 "last_seen": 1635952880,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin"

 },

 "sensu_agent_version": "6.5.4"

 },

 "check": {

 "command": "http-check --url http://localhost \\u0026\\u0026 http-perf --url

http://localhost --warning 1s --critical 2s",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "http-checks"

],

 "subscriptions": [

 "webserver"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 0.018747388,

 "executed": 1635952880,

 "history": [

 {

 "status": 0,

 "executed": 1635952820

 },

 {

 "status": 0,

 "executed": 1635952835

 },

 {

 "status": 0,

 "executed": 1635952850

 },

 {

 "status": 0,

 "executed": 1635952865

 },

 {

 "status": 0,

 "executed": 1635952880

 }

],

 "issued": 1635952880,

 "output": "http-check OK: HTTP Status 200 for http://localhost\nhttp-perf OK:

0.001059s | dns_duration=0.000235, tls_handshake_duration=0.000000,

connect_duration=0.000083, frst_byte_duration=0.001040,

total_request_duration=0.001059\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1635952880,

 "occurrences": 5,

 "occurrences_watermark": 5,

 "output_metric_format": "nagios_perfdata",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "scheduler": "memory",

 "processed_by": "sensu-centos",

 "pipelines": []

 },

 "metrics": {

 "points": [

 {

 "name": "dns_duration",

 "value": 0.000235,

 "timestamp": 1635952880,

 "tags": null

 },

 {

 "name": "tls_handshake_duration",

 "value": 0,

 "timestamp": 1635952880,

 "tags": null

 },

 {

 "name": "connect_duration",

Create events using the Sensu agent

The Sensu agent is a powerful event producer and monitoring automation tool.
You can use Sensu
agents to produce events automatically using service checks and metric checks.
Sensu agents can also
act as a collector for metrics throughout your infrastructure.

 "value": 0.000083,

 "timestamp": 1635952880,

 "tags": null

 },

 {

 "name": "frst_byte_duration",

 "value": 0.00104,

 "timestamp": 1635952880,

 "tags": null

 },

 {

 "name": "total_request_duration",

 "value": 0.001059,

 "timestamp": 1635952880,

 "tags": null

 }

]

 },

 "metadata": {

 "namespace": "default"

 },

 "id": "7cde3e3f-beee-408f-b89a-1edccd0d3edb",

 "sequence": 5,

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "debug_pipeline"

 }

],

 "timestamp": 1635952880

}

Create events using service checks

Create events with the core/v2/events API endpoints

You can send events directly to the Sensu observability pipeline using the core/v2 API events endpoint.
To create an event, send a JSON event defnition with a PUT request to core/v2/events.

If you use the core/v2/events API to create a new event referencing an entity that does not already
exist, the sensu-backend will automatically create a proxy entity in the same namespace when the
event is published.

Manage events

You can manage events using the Sensu web UI, core/v2/events API endpoints, and sensuctl
command line tool.

View events

To list all events:

To show event details in the default output format (tabular):

Create events using metric checks

Create events using the agent API

Create events using the agent TCP and UDP sockets

Create events using the StatsD listener

NOTE: An agent cannot belong to, execute checks in, or create events in more than one
namespace.

sensuctl event list

sensuctl event info <entity-name> <check-name>

With both the list and info commands, you can specify an output format using the --format
fag:

Delete events

To delete an event:

You can use the --skip-confrm fag to skip the confrmation step:

NOTE: Metrics data points are not included in events retrieved with sensuctl event info —
these events include check output text rather than a set of metrics points.

yaml or wrapped-json formats for use with sensuctl create

json format for use with core/v2/events API endpoints

sensuctl event info entity-name check-name --format yaml

SHELL

sensuctl event info entity-name check-name --format wrapped-json

SHELL

sensuctl event info entity-name check-name --format json

SHELL

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

sensuctl event delete entity-name check-name

sensuctl event delete entity-name check-name --skip-confrm

You should receive a confrmation message upon success:

Resolve events

You can use sensuctl to change the status of an event to 0 (OK).
Events resolved by sensuctl include
the output message Resolved manually by sensuctl .

You should receive a confrmation message upon success:

Use event data

Observability data in events is a powerful tool for automating monitoring workfows.
For example, the
state attribute provides handlers with a high-level description of check status.
Filtering events based

on this attribute can help reduce alert fatigue.

State attribute

The state event attribute adds meaning to the check status:

Deleted

sensuctl event resolve entity-name check-name

Resolved

passing means the check status is 0 (OK).

failing means the check status is non-zero (WARNING or CRITICAL).

fapping indicates an unsteady state in which the check result status (determined based on
per-check high fap threshold and low fap threshold attributes) is not settling on passing or
failing according to the fap detection algorithm.

Flapping typically indicates intermittent problems with an entity, provided your low and high fap
threshold settings are properly confgured.
Although some teams choose to flter out fapping events to
reduce unactionable alerts, we suggest sending fapping events to a designated handler for later
review.
If you repeatedly observe events in fapping state, Sensu’s per-check fap threshold
confguration allows you to adjust the sensitivity of the fap detection algorithm.

Flap detection algorithm

Sensu uses the same fap detection algorithm as Nagios.
Every time you run a check, Sensu records
whether the status value changed since the previous check.
Sensu stores the last 21 status

values and uses them to calculate the percent state change for the entity/check pair.
Then, Sensu’s
algorithm applies a weight to these status changes: more recent changes have more value than older
changes.

After calculating the weighted total percent state change, Sensu compares it with the high fap
threshold and low fap threshold set in the check attributes.

Depending on the result of this comparison, Sensu will trigger the appropriate event flters based on
check attributes like event.check.high_fap_threshold and event.check.low_fap_threshold .

Occurrences and occurrences watermark

The occurrences and occurrences_watermark event attributes give you context about recent
events for a given entity and check.
You can use these attributes within event flters to fne-tune incident
notifcations and reduce alert fatigue.

Starting at 1 , the occurrences attribute increments for events with the same status as the
preceding event (OK, WARNING, CRITICAL, or UNKNOWN) and resets whenever the status changes.
You can use the occurrences attribute to create a state-change-only flter or an interval flter.

The occurrences_watermark attribute gives you useful information when looking at events that
change status between non-OK (WARNING, CRITICAL, or UNKNOWN) and OK.
For these resolution
events, the occurrences_watermark attribute tells you the number of preceding events with a non-
OK status.
Sensu resets occurrences_watermark to 1 on the frst non-OK event.
Within a sequence
of only OK or only non-OK events, Sensu increments occurrences_watermark when the

If the entity was not already fapping and the weighted total percent state change for the
entity/check pair is greater than or equal to the high_fap_threshold setting, the entity has
started fapping.

If the entity was already fapping and the weighted total percent state change for the
entity/check pair is less than the low_fap_threshold setting, the entity has stopped fapping.

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html

occurrences attribute is greater than the preceding occurrences_watermark .

The following table shows the occurrences attributes for a series of example events:

event sequence occurrences occurrences_watermark

1. OK event occurrences: 1 occurrences_watermark: 1

2. OK event occurrences: 2 occurrences_watermark: 2

3. WARNING event occurrences: 1 occurrences_watermark: 1

4. WARNING event occurrences: 2 occurrences_watermark: 2

5. WARNING event occurrences: 3 occurrences_watermark: 3

6. CRITICAL event occurrences: 1 occurrences_watermark: 3

7. CRITICAL event occurrences: 2 occurrences_watermark: 3

8. CRITICAL event occurrences: 3 occurrences_watermark: 3

9. CRITICAL event occurrences: 4 occurrences_watermark: 4

10. OK event occurrences: 1 occurrences_watermark: 4

11. CRITICAL event occurrences: 1 occurrences_watermark: 1

Event specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
events in this version of Sensu, api_version should always be
core/v2 .

required Required for events in wrapped-json or yaml format for use with

sensuctl create .

type String

example

metadata

description Top-level scope that contains the event namespace and created_by
feld. The metadata map is always at the top level of the check
defnition. This means that in wrapped-json and yaml formats, the
metadata scope occurs outside the spec scope. Review the

metadata attributes for details.

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

metadata:

 namespace: default

 created_by: admin

YML

{

 "metadata": {

 "namespace": "default",

 "created_by": "admin"

 }

JSON

pipelines

description Name, type, and API version for the pipelines used to process the
observability event. Sensu automatically populates the pipelines
attributes when the event is created or updated. Read pipelines attributes
for more information.

required false

type Array

example

spec

description Top-level map that includes the event spec attributes.

}

pipelines:

- type: Pipeline

 api_version: core/v2

 name: incident_alerts

YML

{

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "incident_alerts"

 }

]

}

JSON

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example
spec:

 check:

 check_hooks:

 command: metrics-curl -u "http://localhost"

 duration: 0.060790838

 env_vars:

 executed: 1552506033

 handlers: []

 high_fap_threshold: 0

 history:

 - executed: 1552505833

 status: 0

 - executed: 1552505843

 status: 0

 interval: 10

 is_silenced: true

 processed_by: sensu-go-sandbox

 issued: 1552506033

 last_ok: 1552506033

 low_fap_threshold: 0

 metadata:

 name: curl_timings

 namespace: default

 occurrences: 1

 occurrences_watermark: 1

 silenced:

 - webserver:*

 output: |-

 sensu-go.curl_timings.time_total 0.005 1552506033

 sensu-go.curl_timings.time_namelookup 0.004

 output_metric_format: graphite_plaintext

 proxy_entity_name: ''

 publish: true

 round_robin: false

 runtime_assets: []

 state: passing

YML

 status: 0

 stdin: false

 subdue:

 subscriptions:

 - entity:sensu-go-testing

 timeout: 0

 total_state_change: 0

 ttl: 0

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1552495139

 metadata:

 name: sensu-go-testing

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:sensu-go-testing

 system:

 arch: amd64

 hostname: sensu-go-testing

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - "::1/128"

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::5a94:f67a:1bfc:a579/64

 mac: '08:00:27:8b:c9:3f'

 name: eth0

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.5.1804

 processes:

 user: agent

 metrics:

 points:

 - name: sensu-go.curl_timings.time_total

 tags: []

 timestamp: 1552506033

 value: 0.005

 - name: sensu-go.curl_timings.time_namelookup

 tags: []

 timestamp: 1552506033

 value: 0.004

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: status_and_metrics_pipeline

 timestamp: 1552506033

 id: 431a0085-96da-4521-863f-c38b480701e9

 sequence: 1

{

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "metrics-curl -u \"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

JSON

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "is_silenced": true,

 "processed_by": "sensu-go-sandbox",

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "silenced": [

 "webserver:*"

],

 "output": "sensu-go.curl_timings.time_total 0.005

1552506033\nsensu-go.curl_timings.time_namelookup 0.004",

 "output_metric_format": "graphite_plaintext",

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-testing"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-testing",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-testing"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-testing",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

type

description Top-level attribute that specifes the sensuctl create resource type.

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "processes": null

 },

 "user": "agent"

 },

 "metrics": {

 "points": [

 {

 "name": "sensu-go.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "status_and_metrics_pipeline"

 }

],

 "timestamp": 1552506033,

 "id": "431a0085-96da-4521-863f-c38b480701e9",

 "sequence": 1

 }

}

Events should always be type Event .

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type String

example

Metadata attributes

created_by

description Username of the Sensu user who created the event or last updated the
event. Sensu automatically populates the created_by feld when the
event is created or updated.

required false

type String

example

type: Event

YML

{

 "type": "Event"

}

JSON

created_by: "admin"

YML

{

 "created_by": "admin"

}

JSON

namespace

description Sensu RBAC namespace that the event belongs to.

required false

type String

default default

example

Pipelines attributes

api_version

description The Sensu API group and version for the pipeline. Sensu automatically
populates the pipelines api_version feld when the event is created or
updated. For pipelines in this version of Sensu, the api_version is
core/v2 .

required false

type String

default null

example

namespace: production

YML

{

 "namespace": "production"

}

JSON

YML

name

description Name of the Sensu pipeline used to process the observability event.
Sensu automatically populates the pipeline name feld when the event is
created or updated.

required false

type String

default null

example

type

description The sensuctl create resource type for the pipeline. Sensu
automatically populates the pipelines type feld when the event is created
or updated. Pipeline resources are always type Pipeline .

api_version: core/v2

{

 "api_version": "core/v2"

}

JSON

name: is_incident

YML

{

 "name": "is_incident"

}

JSON

required false

type String

default null

example

Spec attributes

check

description Check defnition used to create the event and information about the
status and history of the event. The check scope includes attributes
described in the event specifcation and the check specifcation.

type Map

required true

example

type: Pipeline

YML

{

 "type": "Pipeline"

}

JSON

check:

 check_hooks:

 command: metrics-curl -u "http://localhost"

 duration: 0.060790838

 env_vars:

 executed: 1552506033

 handlers: []

 high_fap_threshold: 0

 history:

 - executed: 1552505833

YML

 status: 0

 - executed: 1552505843

 status: 0

 interval: 10

 is_silenced: true

 processed_by: sensu-go-sandbox

 issued: 1552506033

 last_ok: 1552506033

 low_fap_threshold: 0

 metadata:

 name: curl_timings

 namespace: default

 occurrences: 1

 occurrences_watermark: 1

 silenced:

 - webserver:*

 output: sensu-go.curl_timings.time_total 0.005

 output_metric_format: graphite_plaintext

 proxy_entity_name: ''

 publish: true

 round_robin: false

 runtime_assets: []

 state: passing

 status: 0

 stdin: false

 subdue:

 subscriptions:

 - entity:sensu-go-testing

 timeout: 0

 total_state_change: 0

 ttl: 0

{

 "check": {

 "check_hooks": null,

 "command": "metrics-curl -u \"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

JSON

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "is_silenced": true,

 "processed_by": "sensu-go-sandbox",

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "silenced": [

 "webserver:*"

],

 "output": "sensu-go.curl_timings.time_total 0.005",

 "output_metric_format": "graphite_plaintext",

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-testing"

],

 "timeout": 0,

 "total_state_change": 0,

entity

description Entity attributes from the originating entity (agent or proxy).

For events created with the core/v2/events API, if the event’s entity does
not already exist, the sensu-backend automatically creates a proxy entity
when the event is published.

type Map

required true

example

 "ttl": 0

 }

}

entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1552495139

 metadata:

 name: sensu-go-testing

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:sensu-go-testing

 system:

 arch: amd64

YML

 hostname: sensu-go-testing

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - "::1/128"

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::5a94:f67a:1bfc:a579/64

 mac: '08:00:27:8b:c9:3f'

 name: eth0

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.5.1804

 user: agent

{

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-testing",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

JSON

id

description Universally unique identifer (UUID) for the event. Logged as event_id .

Sensu automatically populates the id value for the event.

 "entity:sensu-go-testing"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-testing",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

 "user": "agent"

 }

}

required false

type String

example

metrics

description Metrics collected by the entity in Sensu metric format. Review the metrics
attributes.

type Map

required false

example

id: 431a0085-96da-4521-863f-c38b480701e9

YML

{

 "id": "431a0085-96da-4521-863f-c38b480701e9"

}

JSON

metrics:

 points:

 - name: sensu-go.curl_timings.time_total

 tags: []

 timestamp: 1552506033

 value: 0.005

 - name: sensu-go.curl_timings.time_namelookup

 tags: []

 timestamp: 1552506033

 value: 0.004

YML

{

 "metrics": {

JSON

sequence

description Event sequence number. The Sensu agent sets the sequence to 1 at
startup, then increments the sequence by 1 for every successive check
execution or keepalive event. If the agent restarts or reconnects to
another backend, the sequence value resets to 1.

A sequence value of 0 indicates that an outdated or non-conforming
agent generated the event.

Sensu only increments the sequence for agent-executed events. Sensu
does not update the sequence for events created with the core/v2/events
API.

required false

type Integer

example

 "points": [

 {

 "name": "sensu-go.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 }

}

sequence: 1

YML

JSON

timestamp

description Time that the event occurred. In seconds since the Unix epoch.

Sensu automatically populates the timestamp value for the event. For
events created with the core/v2/events API, you can specify a
timestamp value in the request body.

required false

type Integer

default Time that the event occurred

example

Check attributes

Sensu events include a check scope that contains information about how the event was created,
including any attributes defned in the check specifcation, and information about the event and its
history, including the attributes defned below.

{

 "sequence": 1

}

timestamp: 1522099512

YML

{

 "timestamp": 1522099512

}

JSON

duration

description Command execution time. In seconds.

required false

type Float

example

executed

description Time at which the check request was executed. In seconds since the
Unix epoch.

The difference between a request’s issued and executed values is
the request latency.

For agent-executed checks, Sensu automatically populates the
executed value. For events created with the core/v2/events API, the

default executed value is 0 unless you specify a value in the request
body.

required false

type Integer

example

duration: 1.903135228

YML

{

 "duration": 1.903135228

}

JSON

executed: 1522100915

YML

JSON

history

description Check status history for the last 21 check executions. Read history
attributes.

Sensu automatically populates the history attributes with check execution
data.

To store more than the last 21 check executions, use one of our long-
term event storage integrations.

required false

type Array

example

{

 "executed": 1522100915

}

history:

- executed: 1552505983

 status: 0

- executed: 1552505993

 status: 0

YML

{

 "history": [

 {

 "executed": 1552505983,

 "status": 0

 },

 {

 "executed": 1552505993,

 "status": 0

 }

JSON

is_silenced

description If true , the event was silenced at the time of processing. Otherwise,
false . If true , the event. Check defnitions also list the silenced

entries that match the event in the silenced array.

required false

type Boolean

example

issued

description Time that the check request was issued. In seconds since the Unix
epoch.

The difference between a request’s issued and executed values is
the request latency.

For agent-executed checks, Sensu automatically populates the issued
value. For events created with the core/v2/events API, the default
issued value is 0 unless you specify a value in the request body.

required false

]

}

is_silenced: true

YML

{

 "is_silenced": "true"

}

JSON

type Integer

example

last_ok

description Last time that the check returned an OK status (0). In seconds since
the Unix epoch.

For agent-executed checks, Sensu automatically populates the
last_ok value. For events created with the core/v2/events API, the
last_ok attribute will default to 0 even if you specify OK status in the

request body.

required false

type Integer

example

issued: 1552506033

YML

{

 "issued": 1552506033

}

JSON

last_ok: 1552506033

YML

{

 "last_ok": 1552506033

}

JSON

occurrences

description Number of preceding events with the same status as the current event
(OK, WARNING, CRITICAL, or UNKNOWN). Starting at 1 , the
occurrences attribute increments for events with the same status as

the preceding event and resets whenever the status changes. Read Use
event data for more information.

Sensu automatically populates the occurrences value. For events
created with the core/v2/events API, Sensu overwrites any occurences
value you specify in the request body with the correct value.

required false

type Integer greater than 0

example

occurrences_watermark

description For incident and resolution events, the number of preceding events
with an OK status (for incident events) or non-OK status (for
resolution events). The occurrences_watermark attribute gives
you useful information when looking at events that change status
between OK (0)and non-OK (1 -WARNING, 2 -CRITICAL, or
UNKNOWN).

Sensu resets occurrences_watermark to 1 whenever an event
for a given entity and check transitions between OK and non-OK.
Within a sequence of only OK or only non-OK events, Sensu
increments occurrences_watermark only when the
occurrences attribute is greater than the preceding

occurrences: 1

YML

{

 "occurrences": 1

}

JSON

occurrences_watermark . Read Use event data for more
information.

Sensu automatically populates the occurrences_watermark
value. For events created with the core/v2/events API, Sensu
overwrites any occurences_watermark value you specify in the
request body with the correct value.

required false

type Integer greater than 0

example

output

description Output from the execution of the check command.

required false

type String

example

occurrences_watermark: 1

YML

{

 "occurrences_watermark": 1

}

JSON

output: "sensu-go.curl_timings.time_total 0.005

YML

{

 "output": "sensu-go.curl_timings.time_total 0.005"

}

JSON

processed_by

description The name of the agent that processed the event. Useful for determining
which agent processed an event executed by a proxy check request or a
POST request to the events API.

required false

type String

example

silenced

description Array of silencing entries that match the event. The silenced attribute
is only present for events if one or more silencing entries matched the
event at time of processing. If the silenced attribute is not present in
an event, the event was not silenced at the time of processing.

required false

type Array

example

processed_by: sensu-go-sandbox

YML

{

 "processed_by": "sensu-go-sandbox"

}

JSON

silenced:

- webserver:*

YML

JSON

state

description State of the check: passing (status 0), failing (status other than
0), or fapping . Use the low_fap_threshold and
high_fap_threshold check attributes to confgure fapping state

detection.

Sensu automatically populates the state based on the status .

required false

type String

example

status

description Exit status code produced by the check.

{

 "silenced": [

 "webserver:*"

]

}

state: passing

YML

{

 "state": "passing"

}

JSON

0 indicates OK

1 indicates WARNING

Exit status codes other than 0 , 1 , or 2 indicate an UNKNOWN or
custom status.

For agent-executed checks, Sensu automatically populates the status
value based on the check result. For events created with the
core/v2/events API, Sensu assumes the status is 0 (OK) unless you
specify a non-zero value in the request body.

required false

type Integer

example

total_state_change

description Total state change percentage for the check’s history.

For agent-executed checks, Sensu automatically populates the
total_state_change value. For events created with the

core/v2/events API, the total_state_change attribute will default to
0 even if you specify a different value or change the status value in

the request body.

required false

type Integer

example

2 indicates CRITICAL

status: 0

YML

{

 "status": 0

}

JSON

total_state_change: 0

YML

History attributes

executed

description Time at which the check request was executed. In seconds since the
Unix epoch.

Sensu automatically populates the executed value with check
execution data. For events created with the core/v2/events API, the
executed default value is 0 .

required false

type Integer

example

status

description Exit status code produced by the check.

{

 "total_state_change": 0

}

JSON

executed: 1522100915

YML

{

 "executed": 1522100915

}

JSON

Exit status codes other than 0 , 1 , or 2 indicate an UNKNOWN or
custom status.

Sensu automatically populates the status value with check execution
data.

required false

type Integer

example

Metrics attributes

handlers

description Array of Sensu handlers to use for events created by the check. Each
array item must be a string.

required false

type Array

example

0 indicates OK

1 indicates WARNING

2 indicates CRITICAL

status: 0

YML

{

 "status": 0

}

JSON

handlers:

YML

points

description Metrics data points, including a name, timestamp, value, and tags. Read
points attributes.

required false

type Array

example

- infux-db

{

 "handlers": [

 "infux-db"

]

}

JSON

points:

- name: sensu-go.curl_timings.time_total

 tags:

 - name: response_time_in_ms

 value: '101'

 timestamp: 1552506033

 value: 0.005

- name: sensu-go.curl_timings.time_namelookup

 tags:

 - name: namelookup_time_in_ms

 value: '57'

 timestamp: 1552506033

 value: 0.004

YML

{

 "points": [

JSON

Points attributes

name

description Metric name in the format $entity.$check.$metric where $entity
is the entity name, $check is the check name, and $metric is the
metric name.

required false

type String

example

 {

 "name": "sensu-go.curl_timings.time_total",

 "tags": [

 {

 "name": "response_time_in_ms",

 "value": "101"

 }

],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go.curl_timings.time_namelookup",

 "tags": [

 {

 "name": "namelookup_time_in_ms",

 "value": "57"

 }

],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

}

YML

tags

description Optional tags to include with the metric. Each element of the array must
be a hash that contains two key-value pairs: the name of the tag and
the value . Both values of the pairs must be strings.

required false

type Array

example

name: sensu-go.curl_timings.time_total

{

 "name": "sensu-go.curl_timings.time_total"

}

JSON

tags:

- name: response_time_in_ms

 value: '101'

YML

{

 "tags": [

 {

 "name": "response_time_in_ms",

 "value": "101"

 }

]

}

JSON

timestamp

description Time at which the metric was collected. In seconds since the Unix epoch.
Sensu automatically populates the timestamp values for metrics data
points.

required false

type Integer

example

value

description Metric value.

required false

type Float

example

timestamp: 1552506033

YML

{

 "timestamp": 1552506033

}

JSON

value: 0.005

YML

{

 "value": 0.005

}

JSON

Schedule observability data collection

Next or click any element in the pipeline to jump to it.

Sensu’s schedule function is based on subscriptions: transport topics to which the Sensu backend
publishes check requests.
The subscriptions you specify in your Sensu agent defnition determine which
checks the agent will execute.
The Sensu backend schedules checks, publishes check execution
requests to entities, and processes the observation data (events) it receives from the agent.

Agent and backend

The Sensu agent is a lightweight process that runs on the infrastructure components you want to
monitor and observe.
The agent registers with the Sensu backend as an entity with type: "agent" .
Agent entities are responsible for creating status and metrics events to send to the backend event
pipeline.

The Sensu backend includes an integrated structure for scheduling checks using subscriptions and an
event pipeline that applies event flters, mutators, and handlers, an embedded etcd datastore for
storing confguration and state, and the Sensu API, Sensu web UI, and sensuctl command line tool.

The Sensu agent is available for Linux, macOS, and Windows.
The Sensu backend is available for
Debian- and RHEL-family distributions of Linux.
Learn more in the agent and backend references.

Follow the installation guide to install the agent and backend.

Subscriptions

http://localhost:1313/images/observability-pipeline-schedule.png
https://etcd.io/docs

Subscriptions are at the core of Sensu’s publish/subscribe pattern of communication: subscriptions are
transport topics to which the Sensu backend publishes check requests.
Sensu entities become
subscribers to these topics via their individual subscriptions attribute.

Each Sensu agent’s defned set of subscriptions determine which checks the agent will execute.
Agent
subscriptions allow Sensu to request check executions on a group of systems at a time instead of a
traditional 1:1 mapping of confgured hosts to monitoring checks.

In each check’s defnition, you can specify which subscriptions should run the check.
At the same time,
your entities are “subscribed” to these subscriptions.
Subscriptions make sure your entities
automatically run the appropriate checks for their functionality.

The following example shows the resource defnition for a check with the system and linux
subscriptions.
This check would run on any entities whose defnitions also specify the system or
linux subscriptions.

type: CheckConfg

api_version: core/v2

metadata:

 name: check-cpu

spec:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 env_vars: null

 handlers:

 - slack

 high_fap_threshold: 0

 interval: 60

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - check-cpu-usage

 secrets: null

 stdin: false

 subdue: null

YML

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

 subscriptions:

 - system

 - linux

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-cpu"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

 "env_vars": null,

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

JSON

Subscriptions typically correspond to a specifc role or responsibility.
For example, you might add all the
checks you want to run on your database entities to a database subscription.
Rather than specifying
these checks individually for every database you are monitoring, you add the database subscription
to your database entities and they run the desired checks automatically.

Read the subscriptions reference to learn more.

Communication between the agent and backend

The Sensu agent uses WebSocket (ws) protocol to send and receive JSON messages with the Sensu
backend.
For optimal network throughput, agents will attempt to negotiate the use of Protobuf
serialization when communicating with a Sensu backend that supports it.
This communication is via
clear text by default.

Follow Secure Sensu to confgure the backend and agent for WebSocket Secure (wss) encrypted
communication.

}

https://en.m.wikipedia.org/wiki/WebSocket
https://en.m.wikipedia.org/wiki/Protocol_Buffers

Agent reference

Example Sensu agent confguration fle (download)

The Sensu agent is a lightweight client that runs on the infrastructure components you want to monitor.
Agents register with the Sensu backend as entities with type: "agent" .
Agent entities are
responsible for creating check and metrics events to send to the backend event pipeline.

The Sensu agent is available for Linux, macOS, and Windows.
For Windows operating systems, the
Sensu agent uses cmd.exe for the execution environment.
For all other operating systems, the Sensu
agent uses the Bourne shell (sh).

Read the installation guide to install the agent.

Agent authentication

The Sensu agent authenticates to the Sensu backend via WebSocket transport by either built-in basic
authentication (username and password) or mutual transport layer security (mTLS) authentication.

Username and password authentication

The default mechanism for agent authentication is built-in basic authentication with username and
password.
The Sensu agent uses username and password authentication unless mTLS authentication
has been explicitly confgured.

For username and password authentication, sensu-agent joins the username and password with a
colon and encodes them as a Base64 value.
Sensu provides the encoded string as the value of the
Authorization HTTP header — for example, Authorization: Basic YWdlbnQ6UEBzc3cwcmQh —

to authenticate to the Sensu backend.

When using username and password authentication, sensu-agent also sends the following HTTP
headers in requests to the backend:

Sensu-User : the username in plaintext

Sensu-AgentName : the agent’s confgured name in plaintext

http://localhost:1313/sensu-go/6.8/files/agent.yml
https://en.m.wikipedia.org/wiki/WebSocket

mTLS authentication

When mTLS is confgured for both the Sensu agent and backend, the agent uses mTLS authentication
instead of the default username and password authentication.

Sensu backends that are confgured for mTLS authentication will no longer accept agent authentication
via username and password.
Agents that are confgured to use mTLS authentication cannot
authenticate with the backend unless the backend is confgured for mTLS.

To confgure the agent and backend for mTLS authentication:

The agent and backend will compare the provided certifcates with the trusted CA certifcate either in
the system trust store or specifed explicitly as the agent-auth-trusted-ca-fle in the backend
confguration and trusted-ca-fle in the agent confguration.

When using mTLS authentication, sensu-agent sends the following HTTP headers in requests to the
backend:

If the Sensu agent is confgured for mTLS authentication, it will not send the Authorization HTTP
header.

Sensu-Subscriptions : the agent’s subscriptions in a comma-separated plaintext list

Sensu-Namespace : the agent’s confgured namespace in plaintext

In the backend confguration, specify valid certifcate and key fles as values for the agent-
auth-cert-fle and agent-auth-key-fle parameters (e.g. backend-1.pem and
backend-1-key.pem , respectively).

In the agent confguration, specify valid certifcate and key fles as values for the cert-fle
and key-fle parameters (e.g. agent.pem and agent-key.pem , respectively).

NOTE: For detailed information about the certifcates and keys required for mTLS authentication,
read Generate certifcates for your Sensu installation.
For information about using the certifcates
and keys to secure your confguration, read Secure Sensu.

Sensu-AgentName : the agent’s confgured name in plaintext

Sensu-Subscriptions : the agent’s subscriptions in a comma-separated, plaintext list

Sensu-Namespace : the agent’s confgured namespace in plaintext

Certifcate bundles or chains

The Sensu agent supports all types of certifcate bundles (or chains) as long as the agent (or leaf)
certifcate is the frst certifcate in the bundle.
This is because the Go standard library assumes that the
frst certifcate listed in the PEM fle is the leaf certifcate — the certifcate that the program will use to
show its own identity.

If you send the leaf certifcate alone instead of sending the whole bundle with the leaf certifcate frst,
you will receive a certifcate not signed by trusted authority error.
You must present the
whole chain to the remote so it can determine whether it trusts the presented certifcate through the
chain.

Certifcate revocation check

The Sensu backend checks certifcate revocation list (CRL) and Online Certifcate Status Protocol
(OCSP) endpoints for agent mTLS, etcd client, and etcd peer connections whose remote sides present
X.509 certifcates that provide CRL and OCSP revocation information.

Communication between the agent and backend

The Sensu agent uses WebSocket (ws) protocol to send and receive JSON messages with the Sensu
backend.
For optimal network throughput, agents will attempt to negotiate the use of Protobuf
serialization when communicating with a Sensu backend that supports it.
This communication is via
clear text by default.

Follow Secure Sensu to confgure the backend and agent for WebSocket Secure (wss) encrypted
communication.

Connection failure

Although connection failure may be due to socket errors like unexpectedly closed connections and TLS
handshake failures, the Sensu agent generally keeps retrying connections to each URL in the
backend-url list until it is successfully connected to a backend URL or you stop the process.

When you start up a Sensu agent confgured with multiple backend-url values, the agent shuffes

NOTE: For information about agent transport status, use the /health API.

https://en.m.wikipedia.org/wiki/WebSocket
https://en.m.wikipedia.org/wiki/Protocol_Buffers

the backend-url list and attempts to connect to the frst URL in the shuffed list.
If the agent cannot
establish a WebSocket connection with the frst URL within the number of seconds specifed for the
backend-handshake-timeout , the agent abandons the connection attempt and tries the next URL in

the shuffed list.

When the agent establishes a WebSocket connection with a backend URL within the backend-

handshake-timeout period, the agent sends a heartbeat message to the backend at the specifed
backend-heartbeat-interval .
For every heartbeat the agent sends, the agent expects the

connected backend to send a heartbeat response within the number of seconds specifed for the
backend-heartbeat-timeout .
If the connected backend does not respond within the backend-

heartbeat-timeout period, the agent closes the connection and attempts to connect to the next
backend URL in the shuffed list.

The agent iterates through the shuffed backend-url list until it successfully establishes a
WebSocket connection with a backend, returning to the frst URL if it fails to connect with the last URL
in the list.

Synchronize time between agents and the backend

System clocks between agents and the backend should be synchronized to a central NTP server.
If
system time is out of sync, it may cause issues with keepalive, metric, and check alerts.

Agent connection to a cluster

Agents can connect to a Sensu cluster by specifying any Sensu backend URL in the cluster in the
backend-url confguration option.

NOTE: Sensu’s WebSocket connection heartbeat message and keepalive monitoring mechanism
are different, although they have similar purposes.

The backend-heartbeat-interval and backend-heartbeat-timeout are specifcally
confgured for the WebSocket connection heartbeat message the agent sends when it connects to
a backend URL.

Keepalive monitoring is more fuid — it permits agents to reconnect any number of times within the
confgured timeout.
As long as the agent can successfully send one event to any backend within the
timeout, the keepalive logic is satisfed.

For more information about clustering, read Backend datastore confguration and Run a Sensu cluster.

Keepalive monitoring

Sensu keepalives are the heartbeat mechanism used to ensure that all registered agents are
operational and able to reach the Sensu backend.
Sensu agents publish keepalive events containing
entity confguration data to the Sensu backend according to the interval specifed by the keepalive-
interval confguration option.
All Sensu agent data provided in keepalive events is stored in the agent
registry and used to add context to Sensu events and detect Sensu agents in an unhealthy state.

If a Sensu agent fails to send keepalive events over the period specifed by the keepalive-critical-
timeout confguration option, the Sensu backend creates a keepalive critical alert in the Sensu web
UI.
The keepalive-critical-timeout is set to 0 (disabled) by default to help ensure that it will not
interfere with your keepalive-warning-timeout setting.

If a Sensu agent fails to send keepalive events over the period specifed by the keepalive-warning-
timeout confguration option, the Sensu backend creates a keepalive warning alert in the Sensu web
UI.
The value you specify for keepalive-warning-timeout must be lower than the value you specify
for keepalive-critical-timeout .

You can use keepalives to identify unhealthy systems and network partitions, send notifcations, trigger
auto-remediation, and automatically register and deregister agent entities, among other useful actions.
The agent maps keepalive-critical-timeout and keepalive-warning-timeout values to
certain event check attributes, so you can also create time-based event flters to reduce alert fatigue
for agent keepalive events.

NOTE: If you set the deregister confguration option to true , when a Sensu agent process
stops, the Sensu backend will deregister the corresponding entity.

Deregistration prevents and clears alerts for failing keepalives for agent entities — the backend
does not distinguish between intentional shutdown and failure.
As a result, if you set deregister
to true and an agent process stops for any reason, you will not receive alerts for keepalive
events in the web UI.

If you want to receive alerts for failing keepalives, set the deregister confguration option to
false .

NOTE: Automatic keepalive monitoring is not supported for proxy entities because they cannot run
a Sensu agent.
Use the core/v2/events API to send manual keepalive events for proxy entities.

Process keepalive events

Process keepalive events with a pipeline or handler.

Keepalive pipelines

Use the keepalive-pipelines confguration option to send keepalive events to any pipeline you
have confgured.

To specify pipelines for the keepalive-pipelines option, use the fully qualifed name for pipelines
(core/v2.Pipeline) plus the pipeline name (e.g. slack or store-keepalives).
For example:

If you do not specify a pipeline with the keepalive-pipelines option, the Sensu backend will use
the default keepalive handler and create an event in sensuctl and the Sensu web UI for keepalives.

Keepalive handlers

You can use a keepalive handler to connect keepalive events to your monitoring workfows.
Sensu looks
for an event handler named keepalive and automatically uses it to process keepalive events.

Suppose you want to receive Slack notifcations for keepalive alerts, and you already have a Slack
handler set up to process events.
To process keepalive events using the Slack handler, create a
handler set named keepalive and add the slack handler to the handlers array.
The resulting
keepalive handler set confguration looks like this:

sensu-agent start --keepalive-pipelines

core/v2.Pipeline.slack,core/v2.Pipeline.store-keepalives

SHELL

keepalive-pipelines:

- core/v2.Pipeline.slack

- core/v2.Pipeline.store-keepalives

YML

YML

You can also use the keepalive-handlers confguration option to send keepalive events to any
handler you have confgured.
If you do not specify a keepalive handler with the keepalive-handlers
option, the Sensu backend will use the default keepalive handler and create an event in sensuctl
and the Sensu web UI.

Create observability events using service checks

The Sensu backend coordinates check execution for you by comparing the subscriptions you specify in
your checks and entities to determine which entities should receive execution requests for a given
check.

Sensu uses the publish/subscribe pattern of communication, which allows automated registration and

type: Handler

api_version: core/v2

metadata:

 name: keepalive

spec:

 handlers:

 - slack

 type: set

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "keepalive"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "slack"

]

 }

}

JSON

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

deregistration of ephemeral systems.
At the core of this model are Sensu subscriptions, which you
specify in checks and entities to determine which entities should receive execution requests for a given
check.
Subscriptions often correspond with the roles and responsibilities assigned to the entity, such as
webserver or database .

Subscriptions determine which checks the agent will execute.
For an agent to execute a check, at least
one entity must include a subscription that matches a subscription in the check defnition.
Read the
subscriptions reference for more information.

After receiving a check request from the Sensu backend, the agent:

1. Applies any tokens that match attribute values in the check defnition.

2. Fetches dynamic runtime assets and stores them in its local cache.

By default, agents cache dynamic runtime asset data at /var/cache/sensu/sensu-agent
(Linux) or C:\ProgramData\sensu\cache\sensu-agent (Windows).
To specify a different
cache location, use the cache-dir confguration attribute.

3. Executes the check command.

4. Executes any hooks specifed by the check based on the exit status.

5. Creates an event that contains information about the applicable entity, check, and metric.

The Sensu backend then processes the event by applying event flters, mutators, and handlers.

Proxy entities

Proxy entities allow Sensu to monitor external resources on systems or devices where a Sensu agent
cannot be installed, like a network switch.

The Sensu backend stores proxy entity defnitions (unlike agent entities, which the agent stores).
When
the backend requests a check that includes a proxy_entity_name , the agent includes the provided
entity information in the observation data in events in place of the agent entity data.

Read the entities reference and Monitor external resources for more information about monitoring
proxy entities.

Create observability events using the agent API

The Sensu agent API allows external sources to send monitoring data to Sensu without requiring the
external sources to know anything about Sensu’s internal implementation.
The agent API listens on the
address and port specifed with the agent API confguration options.

The agent API supports only unsecured HTTP requests (no HTTPS).
Requests for unknown endpoints
will result in an HTTP 404 Not Found response.

/events (POST)

The agent API provides HTTP POST access to publish observability events to the Sensu backend via
the /events endpoint.

The agent places events created via the agent API /events endpoint into a queue stored on disk.
In
case of a loss of connection with the backend or agent shutdown, the agent preserves queued event
data.
When the connection is reestablished, the agent sends the queued events to the backend.

The agent API /events endpoint uses a confgurable burst limit and rate limit for relaying events to
the backend.
Read API confguration to confgure the events-burst-limit and events-rate-limit
options.

Example POST request to events endpoint

The following example submits an HTTP POST request to the agent API /events endpoint.
The
request creates an event for a check named check-mysql-status with the output could not
connect to mysql and a status of 1 (warning).
The agent responds with an HTTP 202 Accepted

response to indicate that the event has been added to the queue to be sent to the backend.

In this example, the event will be processed according to an incident_alerts pipeline.

NOTE: For HTTP POST requests to the agent API /events endpoint, check-specifc spec
attributes are not required.
If you do want to include spec attributes, list them as individual top-level
attributes within the event’s check scope.

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

Detect silent failures

You can use the Sensu agent API in combination with the check time-to-live (TTL) attribute to detect
silent failures.
This creates what’s commonly referred to as a “dead man’s switch”.

With check TTLs, Sensu can set an expectation that a Sensu agent will publish additional events for a
check within the period of time specifed by the TTL attribute.
If a Sensu agent fails to publish an event
before the check TTL expires, the Sensu backend creates an event with a status of 1 (warning) to
indicate the expected event was not received.
For more information about check TTLs, read the checks
reference.

If you use the check TTL attribute along with the Sensu agent API to enable tasks that run outside of
Sensu’s check scheduling to emit events, these events create a dead man’s switch: if the task fails for
any reason, the lack of an “all clear” event from the task will notify operators of the silent failure, which
might otherwise be missed.
If an external source sends an event with a check TTL to the Sensu agent
API, Sensu expects another event from the same external source before the TTL expires.

Here’s an example of external event input via the Sensu agent API that uses a check TTL to create a
dead man’s switch for MySQL backups.
Assume that a MySQL backup script runs periodically, and you
expect the job to take a little less than 7 hours to complete.

 "check": {

 "metadata": {

 "name": "check-mysql-status"

 },

 "status": 1,

 "output": "could not connect to mysql"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

]

}' \

http://127.0.0.1:3031/events

PRO TIP: To use the agent API /events endpoint to create proxy entities, include a
proxy_entity_name attribute within the check scope.

https://en.wikipedia.org/wiki/Dead_man%27s_switch

The script can send an event that tells the Sensu backend to expect an additional event with the same
name within 7 hours of the frst event:

When the script submitted this initial event to the agent API, you recorded in the Sensu backend that
your script started.
You also confgured the dead man’s switch by including the ttl attribute, so you’ll
receive an alert if the job fails or runs for too long.
Although it is possible for your script to handle errors
gracefully and emit additional observability events, this approach allows you to worry less about
handling every possible error case.
A lack of additional events before the 7-hour period elapses results
in an alert.

If your backup script runs successfully, it can send an additional event without the TTL attribute, which
removes the dead man’s switch:

If the job completes successfully, you want a record of it, but you don’t need to receive an alert.

If the job fails or continues running longer than the expected 7 hours, you do need to receive
an alert.

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "mysql-backup-job"

 },

 "status": 0,

 "output": "mysql backup initiated",

 "ttl": 25200

 }

}' \

http://127.0.0.1:3031/events

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "mysql-backup-job"

 },

Omitting the TTL attribute from this event also removes the dead man’s switch being monitored by the
Sensu backend.
This effectively sounds the “all clear” for this iteration of the task.

API specifcation

/events (POST)

description Accepts JSON event data and passes the event to the Sensu backend
event pipeline for processing.

example url http://hostname:3031/events

payload example

payload attributes
Required:

Optional:

 "status": 0,

 "output": "mysql backup ran successfully!"

 }

}' \

http://127.0.0.1:3031/events

{

 "check": {

 "metadata": {

 "name": "check-mysql-status"

 },

 "status": 1,

 "output": "could not connect to mysql"

 }

}

check : All check data must be within the check scope

metadata : The check scope must contain a metadata
scope

name : The metadata scope must contain the name attribute
with a string that represents the name of the monitoring check

response codes

/healthz (GET)

The agent API /healthz endpoint provides HTTP GET access to the status of the Sensu agent via
the agent API.

Example

In the following example, an HTTP GET request is submitted to the agent API /healthz endpoint:

The request results in a healthy response:

API specifcation

/healthz (GET)

description Returns the agent status:
- ok if the agent is active and connected to a Sensu backend.
- sensu backend unavailable if the agent cannot connect to a
backend.

example url http://hostname:3031/healthz

Any other attributes supported by the Sensu check specifcation

Success: 202 (Accepted)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl http://127.0.0.1:3031/healthz

ok

Create observability events using the StatsD listener

Sensu agents include a listener to send StatsD metrics to the event pipeline.
By default, Sensu agents
listen on UDP socket 8125 for messages that follow the StatsD line protocol and send metric events for
handling by the Sensu backend.

For example, you can use the Netcat utility to send metrics to the StatsD listener:

Sensu does not store metrics received through the StatsD listener, so it’s important to confgure event
handlers.

StatsD line protocol

The Sensu StatsD listener accepts messages that are formatted according to the StatsD line protocol:

For more information about StatsD, read the StatsD documentation.

Confgure the StatsD listener

To confgure the StatsD listener, specify the statsd-event-handlers confguration option in the
agent confguration and start the agent.
For example, to start an agent that sends StatsD metrics to
InfuxDB, run:

Use the StatsD confguration options to change the default settings for the StatsD listener address,
port, and fush interval.
For example, to start an agent with a customized address and fush interval, run:

echo 'abc.def.g:10|c' | nc -w1 -u localhost 8125

<metricname>:<value>|<type>

sensu-agent --statsd-event-handlers infux-db

https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://sourceforge.net/projects/netcat/
https://github.com/etsy/statsd
https://github.com/statsd/statsd#key-concepts

Create observability events using the agent TCP and UDP
sockets

Sensu agents listen for external monitoring data using TCP and UDP sockets.
The agent sockets accept
JSON event data and pass events to the Sensu backend event pipeline for processing.
The TCP and
UDP sockets listen on the address and port specifed by the socket confguration options.

Use the TCP socket

This example demonstrates external monitoring data input via the Sensu agent TCP socket.
The
example uses Bash’s built-in /dev/tcp fle to communicate with the Sensu agent socket:

You can also use the Netcat utility to send monitoring data to the agent socket:

Use the UDP socket

This example demonstrates external monitoring data input via the Sensu agent UDP socket.
The
example uses Bash’s built-in /dev/udp fle to communicate with the Sensu agent socket:

sensu-agent --statsd-event-handlers infux-db --statsd-fush-interval 1 --statsd-

metrics-host 123.4.5.11 --statsd-metrics-port 8125

NOTE: The agent TCP and UDP sockets are deprecated in favor of the agent API.

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' >

/dev/tcp/localhost/3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' | nc

localhost 3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' >

https://sourceforge.net/projects/netcat/

You can also use the Netcat utility to send monitoring data to the agent socket:

Socket event format

The agent TCP and UDP sockets use a special event data format designed for backward compatibility
with Sensu Core 1.x check results.
Attributes specifed in socket events appear in the resulting event
data passed to the Sensu backend.

Example socket input: Minimum required attributes

Example socket input: All attributes

/dev/udp/127.0.0.1/3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' | nc -u -v

127.0.0.1 3030

{

 "name": "check-mysql-status",

 "status": 1,

 "output": "error!"

}

{

 "name": "check-http",

 "status": 1,

 "output": "404",

 "source": "sensu-docs-site",

 "executed": 1550013435,

 "duration": 1.903135228,

 "handlers": ["slack", "infuxdb"]

}

https://sourceforge.net/projects/netcat/

Socket event specifcation

name

description Check name.

required true

type String

example

status

description Check execution exit status code. An exit status code of 0 (zero)
indicates OK , 1 indicates WARNING , and 2 indicates CRITICAL .
Exit status codes other than 0 , 1 , and 2 indicate an UNKNOWN or
custom status.

required true

type Integer

example

output

description Output produced by the check command .

NOTE: The Sensu agent socket ignores any attributes that are not included in this specifcation.

{

 "name": "check-mysql-status"

}

{

 "status": 0

}

required true

type String

example

source

description Name of the Sensu entity associated with the event. Use this attribute to
tie the event to a proxy entity. If no matching entity exists, Sensu creates
a proxy entity with the name provided by the source attribute.

required false

default The agent entity that receives the event data.

type String

example

client

description Name of the Sensu entity associated with the event. Use this attribute to
tie the event to a proxy entity. If no matching entity exists, Sensu creates
a proxy entity with the name provided by the client attribute.

required false

{

 "output": "CheckHttp OK: 200, 78572 bytes"

}

{

 "source": "sensu-docs-site"

}

NOTE: The client attribute is deprecated in favor of the source
attribute.

default The agent entity that receives the event data.

type String

example

executed

description Time at which the check was executed. In seconds since the Unix epoch.

required false

default The time the event was received by the agent.

type Integer

example

duration

description Amount of time it took to execute the check. In seconds.

required false

type Float

example

{

 "client": "sensu-docs-site"

}

{

 "executed": 1458934742

}

{

 "duration": 1.903135228

}

command

description Command executed to produce the event. Use the command attribute to
add context to the event data. Sensu does not execute the command
included in this attribute.

required false

type String

example

interval

description Interval used to produce the event. Use the interval attribute to add
context to the event data. Sensu does not act on the value provided in
this attribute.

required false

default 1

type Integer

example

handlers

description Array of Sensu handler names to use for handling the event. Each
handler name in the array must be a string.

required false

{

 "command": "http-check --url https://sensu.io"

}

{

 "interval": 60

}

type Array

example

Registration, endpoint management, and service discovery

Sensu agents automatically discover and register infrastructure components and the services running
on them.
When an agent process stops, the Sensu backend can automatically create and process a
deregistration event for the agent entities.

Read Automatically register and deregister entities for more information.

Agent confguration options

Agent confguration is customizable.
This section describes each confguration option in more detail,
including examples for each confguration method.

You can customize agent confguration with the agent confguration fle (Linux and Windows),
command line fag arguments (Linux), or environment variables (Linux and Windows).

To view available confguration options for the sensu-agent start command, run:

The response will list confguration options as command line fags for sensu-agent start :

{

 "handlers": ["slack", "infuxdb"]

}

NOTE: The agent loads confguration upon startup, so you must restart the agent for any
confguration updates to take effect.

sensu-agent start --help

start the sensu agent

Usage:

 sensu-agent start [fags]

Flags:

 --agent-managed-entity manage this entity via the agent

 --allow-list string path to agent execution allow list

confguration fle

 --annotations stringToString entity annotations map (default [])

 --api-host string address to bind the Sensu client HTTP

API to (default "127.0.0.1")

 --api-port int port the Sensu client HTTP API listens

on (default 3031)

 --assets-burst-limit int asset fetch burst limit (default 100)

 --assets-rate-limit foat maximum number of assets fetched per

second

 --backend-handshake-timeout int number of seconds the agent should wait

when negotiating a new WebSocket connection (default 15)

 --backend-heartbeat-interval int interval at which the agent should send

heartbeats to the backend (default 30)

 --backend-heartbeat-timeout int number of seconds the agent should wait

for a response to a hearbeat (default 45)

 --backend-url strings comma-delimited list of ws/wss URLs of

Sensu backend servers. This fag can also be invoked multiple times (default

[ws://127.0.0.1:8081])

 --cache-dir string path to store cached data (default

"/var/cache/sensu/sensu-agent")

 --cert-fle string certifcate for TLS authentication

 -c, --confg-fle string path to sensu-agent confg fle (default

"/etc/sensu/agent.yml")

 --deregister ephemeral agent

 --deregistration-handler string deregistration handler that should

process the entity deregistration event

 --detect-cloud-provider enable cloud provider detection

 --disable-api disable the Agent HTTP API

 --disable-assets disable check assets on this agent

 --disable-sockets disable the Agent TCP and UDP event

sockets

 --discover-processes indicates whether process discovery

should be enabled

 --events-burst-limit int /events api burst limit (default 10)

 --events-rate-limit foat maximum number of events transmitted to

the backend through the /events api

 -h, --help help for start

 --insecure-skip-tls-verify skip TLS verifcation (not recommended!)

 --keepalive-critical-timeout uint32 number of seconds until agent is

considered dead by backend to create a critical event

 --keepalive-handlers strings comma-delimited list of keepalive

handlers for this entity. This fag can also be invoked multiple times

 --keepalive-interval int number of seconds to send between

keepalive events (default 20)

 --keepalive-pipelines strings comma-delimited list of pipeline

references for keepalive event

 --keepalive-warning-timeout uint32 number of seconds until agent is

considered dead by backend to create a warning event (default 120)

 --key-fle string key for TLS authentication

 --labels stringToString entity labels map (default [])

 --log-level string logging level [panic, fatal, error,

warn, info, debug] (default "info")

 --max-session-length maximum amount of time after which the

agent will reconnect to one of the confgured backends (no maximum by default)

 --name string agent name (defaults to hostname)

(default "my_hostname")

 --namespace string agent namespace (default "default")

 --password string agent password (default "P@ssw0rd!")

 --redact strings comma-delimited list of felds to redact,

overwrites the default felds. This fag can also be invoked multiple times (default

[password,passwd,pass,api_key,api_token,access_key,secret_key,private_key,secret])

 --require-fps indicates whether fps support should be

required in openssl

 --require-openssl indicates whether openssl should be

required instead of go's built-in crypto

 --retry-max maximum amount of time to wait before

retrying an agent connection to the backend

 --retry-min minimum amount of time to wait before

retrying an agent connection to the backend

 --retry-multiplier value multiplied with the current retry

delay to produce a longer retry delay (bounded by --retry-max)

 --socket-host string address to bind the Sensu client socket

to (default "127.0.0.1")

 --socket-port int port the Sensu client socket listens on

(default 3030)

 --statsd-disable disables the statsd listener and metrics

General confguration

agent-managed-entity

description Indicates whether the agent’s entity solely managed by the agent
rather than the backend API. Agent-managed entity defnitions will
include the label sensu.io/managed_by: sensu-agent , and you
cannot update these agent-managed entities via the Sensu backend
REST API.

required false

type Boolean

default false

environment variable SENSU_AGENT_MANAGED_ENTITY

command line example

server

 --statsd-event-handlers strings comma-delimited list of event handlers

for statsd metrics. This fag can also be invoked multiple times

 --statsd-fush-interval int number of seconds between statsd fush

(default 10)

 --statsd-metrics-host string address used for the statsd metrics

server (default "127.0.0.1")

 --statsd-metrics-port int port used for the statsd metrics server

(default 8125)

 --subscriptions strings comma-delimited list of agent

subscriptions. This fag can also be invoked multiple times

 --trusted-ca-fle string TLS CA certifcate bundle in PEM format

 --user string agent user (default "agent")

NOTE: Process discovery is disabled in this version of Sensu.
The discover-processes

confguration option is not available, and new events will not include data in the processes
attributes.
Instead, the feld will be empty: "processes": null .

sensu-agent start --agent-managed-entity

agent.yml confg fle
example

allow-list

description Path to yaml or json fle that contains the allow list of check or hook
commands the agent can execute. Read Allow list confguration and the
example allow list confguration for information about building a
confguration fle.

type String

default ""

environment variable SENSU_ALLOW_LIST

command line
example

agent.yml confg fle
example

annotations

description Non-identifying metadata to include with event data that you can access
with event flters and tokens. You can use annotations to add data that is
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI view fltering.

agent-managed-entity: true

sensu-agent start --allow-list /etc/sensu/check-allow-

list.yaml

allow-list: /etc/sensu/check-allow-list.yaml

NOTE: For annotations that you defne in agent.yml, the keys are
automatically modifed to use all lower-case letters. For example, if
you defne the annotation webhookURL: "https://my-
webhook.com" in agent.yml, it will be listed as webhookurl:

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

environment variable SENSU_ANNOTATIONS

command line
example

agent.yml confg fle
example

assets-burst-limit

description Maximum amount of burst allowed in a rate interval when fetching
dynamic runtime assets.

type Integer

default 100

environment variable SENSU_ASSETS_BURST_LIMIT

"https://my-webhook.com" in entity defnitions.

Key cases are not modifed for annotations you defne with the --
annotations command line fag or the SENSU_ANNOTATIONS
environment variable.

sensu-agent start --annotations

sensu.io/plugins/slack/confg/webhook-

url=https://hooks.slack.com/services/T00000000/B00000000/XX

XXXXXXXXXXXXXXXXXXXXXX

sensu-agent start --annotations example-key="example value"

--annotations example-key2="example value"

annotations:

 sensu.io/plugins/slack/confg/webhook-url:

"https://hooks.slack.com/services/T00000000/B00000000/XXXXX

XXXXXXXXXXXXXXXXXXX"

command line
example

agent.yml confg fle
example

assets-rate-limit

description Maximum number of dynamic runtime assets to fetch per second. The
default value 1.39 is equivalent to approximately 5000 user-to-server
requests per hour.

type Float

default 1.39

environment variable SENSU_ASSETS_RATE_LIMIT

command line
example

agent.yml confg fle
example

backend-handshake-timeout

description Number of seconds the Sensu agent should wait when
negotiating a new WebSocket connection.

type Integer

default 15

environment variable SENSU_BACKEND_HANDSHAKE_TIMEOUT

command line example

sensu-agent start --assets-burst-limit 100

assets-burst-limit: 100

sensu-agent start --assets-rate-limit 1.39

assets-rate-limit: 1.39

agent.yml confg fle example

backend-heartbeat-interval

description Interval at which the agent should send heartbeats to the Sensu
backend. In seconds.

type Integer

default 30

environment variable SENSU_BACKEND_HEARTBEAT_INTERVAL

command line example

agent.yml confg fle example

backend-heartbeat-timeout

description Number of seconds the agent should wait for a response to a
hearbeat from the Sensu backend.

type Integer

default 45

environment variable SENSU_BACKEND_HEARTBEAT_TIMEOUT

command line example

sensu-agent start --backend-handshake-timeout 20

backend-handshake-timeout: 20

sensu-agent start --backend-heartbeat-interval 45

backend-heartbeat-interval: 45

sensu-agent start --backend-heartbeat-timeout 60

agent.yml confg fle example

backend-url

description ws or wss URL of the Sensu backend server. To specify multiple
backends with sensu-agent start , use this fag multiple times.

type List

default ws://127.0.0.1:8081 (Debian and RHEL families)

$SENSU_HOSTNAME:8080 (Docker)

environment variable SENSU_BACKEND_URL

command line
example

backend-heartbeat-timeout: 60

NOTE: If you do not specify a port for your backend-url values, the
agent will automatically append the default backend port (8081).

NOTE: Docker-only Sensu binds to the hostnames of containers,
represented here as SENSU_HOSTNAME in Docker default values.

sensu-agent start --backend-url ws://127.0.0.1:8081

sensu-agent start --backend-url ws://127.0.0.1:8081 --

backend-url ws://127.0.0.1:8082

SHELL

sensu-agent start --backend-url wss://127.0.0.1:8081

sensu-agent start --backend-url wss://127.0.0.1:8081 --

backend-url wss://127.0.0.1:8082

SHELL

SHELL

agent.yml confg fle
example

cache-dir

description Path to store cached data.

type String

default

environment variable SENSU_CACHE_DIR

command line
example

agent.yml confg fle
example

confg-fle

description Path to Sensu agent confguration fle.

type String

backend-url:

 - "ws://127.0.0.1:8081"

 - "ws://127.0.0.1:8082"

backend-url:

 - "wss://127.0.0.1:8081"

 - "wss://127.0.0.1:8082"

SHELL

Linux: /var/cache/sensu/sensu-agent

Windows: C:\ProgramData\sensu\cache\sensu-agent

sensu-agent start --cache-dir /cache/sensu-agent

cache-dir: "/cache/sensu-agent"

default

environment variable SENSU_CONFIG_FILE

command line
example

disable-assets

description When set to true , disables dynamic runtime assets for the agent. If an
agent attempts to execute a check that requires a dynamic runtime
asset, the agent will respond with a status of 3 and a message that
indicates the agent could not execute the check because assets are
disabled.

type Boolean

default false

environment variable SENSU_DISABLE_ASSETS

command line
example

agent.yml confg fle
example

discover-processes

description When set to true , the agent populates the processes feld in
entity.system and updates every 20 seconds.

Linux: /etc/sensu/agent.yml

FreeBSD: /usr/local/etc/sensu/agent.yml

Windows: C:\ProgramData\sensu\confg\agent.yml

sensu-agent start --confg-fle /sensu/agent.yml

sensu-agent start -c /sensu/agent.yml

sensu-agent start --disable-assets

disable-assets: true

type Boolean

default false

environment variable SENSU_DISCOVER_PROCESSES

command line
example

agent.yml confg fle
example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

COMMERCIAL FEATURE : Access the discover-processes

confguration option in the packaged Sensu Go distribution. For
more information, read Get started with commercial features.

NOTE: Process discovery is disabled in this version of Sensu. The
discover-processes fag is not available, and new events will not
include data in the processes attributes. Instead, the feld will be
empty: "processes": null .

sensu-agent start --discover-processes

discover-processes: true

NOTE: For labels that you defne in agent.yml, the keys are

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

environment variable SENSU_LABELS

command line
example

agent.yml confg fle
example

log-level

description Logging level: panic , fatal , error , warn , info , or debug .

type String

default warn

environment variable SENSU_LOG_LEVEL

command line
example

automatically modifed to use all lower-case letters. For example, if
you defne the label proxyType: "website" in agent.yml, it will be
listed as proxytype: "website" in entity defnitions.

Key cases are not modifed for labels you defne with the --labels
command line fag or the SENSU_LABELS environment variable.

sensu-agent start --labels proxy_type=website

sensu-agent start --labels example_key1="example value"

example_key2="example value"

labels:

 proxy_type: website

sensu-agent start --log-level debug

agent.yml confg fle
example

max-session-length

description Maximum duration for any one agent connection. In milliseconds (ms),
seconds (s), minutes (m), or hours (h). Use max-session-length to
prevent agent connection distribution from becoming skewed over time.

The max-session-length algorithm includes random jitter so that agents
will not disconnect and reconnect all at once. Based on the random jitter
calculation, at some time before a connection reaches the specifed
maximum duration, Sensu will force the agent to disconnect and
reconnect to an available confgured backend.

type String

default Defaults to no maximum.

environment variable SENSU_MAX_SESSION_LENGTH

command line
example

agent.yml confg fle
example

name

description Entity name assigned to the agent entity.

type String

default Defaults to hostname (for example, sensu-centos).

environment variable SENSU_NAME

log-level: debug

sensu-agent start --max-session-length 15m

max-session-length: 15m

command line
example

agent.yml confg fle
example

retry-max

description Maximum amount of time to wait before retrying an agent connection to
the backend. In milliseconds (ms), seconds (s), minutes (m), or
hours (h).

type String

default 120s

environment variable SENSU_RETRY_MAX

command line
example

agent.yml confg fle
example

retry-min

description Minimum amount of time to wait before retrying an agent connection to
the backend. Multiplied with the retry-multiplier value at each retry. In
milliseconds (ms), seconds (s), minutes (m), or hours (h).

type String

default 1s

environment variable SENSU_RETRY_MIN

sensu-agent start --name agent-01

name: "agent-01"

sensu-agent start --retry-max 120s

retry-max: 120s

command line
example

agent.yml confg fle
example

retry-multiplier

description Value to multiply with the current retry-min delay to produce longer
delays at each retry for exponential backoff.

type Float

default 2.0

environment variable SENSU_RETRY_MULTIPLIER

command line
example

agent.yml confg fle
example

subscriptions

description Array of agent subscriptions that determine which monitoring checks the
agent will execute. The subscriptions array items must be strings.

type List

environment variable SENSU_SUBSCRIPTIONS

sensu-agent start --retry-min 1s

retry-min: 1s

NOTE: The maximum retry delay cannot not exceed the retry-max
value.

sensu-agent start --retry-multiplier 2.0

retry-multiplier: 2.0

command line
example

agent.yml confg fle
example

API confguration

api-host

description Bind address for the Sensu agent HTTP API.

type String

default 127.0.0.1

environment variable SENSU_API_HOST

command line
example

agent.yml confg fle
example

api-port

description Listening port for the Sensu agent HTTP API.

type Integer

sensu-agent start --subscriptions disk-checks,process-

checks

sensu-agent start --subscriptions disk-checks --

subscriptions process-checks

subscriptions:

 - disk-checks

 - process-checks

sensu-agent start --api-host 127.0.0.1

api-host: "127.0.0.1"

default 3031

environment variable SENSU_API_PORT

command line
example

agent.yml confg fle
example

disable-api

description true to disable the agent HTTP API. Otherwise, false .

type Boolean

default false

environment variable SENSU_DISABLE_API

command line
example

agent.yml confg fle
example

events-burst-limit

description Maximum amount of burst allowed in a rate interval for the agent events
API.

type Integer

default 10

environment variable SENSU_EVENTS_BURST_LIMIT

sensu-agent start --api-port 3031

api-port: 3031

sensu-agent start --disable-api

disable-api: true

command line
example

agent.yml confg fle
example

events-rate-limit

description Maximum number of events per second that can be transmitted to the
backend with the agent events API.

type Float

default 10.0

environment variable SENSU_EVENTS_RATE_LIMIT

command line
example

agent.yml confg fle
example

Ephemeral agent confguration

deregister

description true if a deregistration event should be created upon Sensu agent
process stop. Otherwise, false .

sensu-agent start --events-burst-limit 20

events-burst-limit: 20

sensu-agent start --events-rate-limit 20.0

events-rate-limit: 20.0

NOTE: To receive alerts for failing keepalives, set to false .

type Boolean

default false

environment variable SENSU_DEREGISTER

command line
example

agent.yml confg fle
example

deregistration-handler

description Name of the event handler to use when processing the agent’s
deregistration events. This confguration option overrides any
handlers applied by the deregistration-handler backend
confguration option.

type String

environment variable SENSU_DEREGISTRATION_HANDLER

command line example

agent.yml confg fle
example

detect-cloud-provider

description true to enable cloud provider detection mechanisms. Otherwise,
false . When this option is enabled, the agent will attempt to read

fles, resolve hostnames, and make HTTP requests to determine what
cloud environment it is running in.

sensu-agent start --deregister

deregister: true

sensu-agent start --deregistration-handler deregister

deregistration-handler: deregister

type Boolean

default false

environment variable SENSU_DETECT_CLOUD_PROVIDER

command line example

agent.yml confg fle
example

Keepalive confguration

keepalive-critical-timeout

description Number of seconds after a missing keepalive event until the agent
is considered unresponsive by the Sensu backend to create a
critical event. Set to disabled (0) by default. If the value is not
0 , it must be greater than or equal to 5 .

type Integer

default 0

environment variable SENSU_KEEPALIVE_CRITICAL_TIMEOUT

command line example

sensu-agent start --detect-cloud-provider false

detect-cloud-provider: false

NOTE: The agent maps the keepalive-critical-timeout
value to the event.check.ttl attribute when keepalive
events are generated for the Sensu backend to process. The
event.check.ttl attribute is useful for creating time-based

event flters to reduce alert fatigue for agent keepalive events.

sensu-agent start --keepalive-critical-timeout 300

agent.yml confg fle
example

keepalive-handlers

description Keepalive event handlers to use for the entity, specifed in a comma-
delimited list. You can specify any confgured handler and invoke the
keepalive-handlers confguration option multiple times. If keepalive

handlers are not specifed, the Sensu backend will use the default
keepalive handler and create an event in sensuctl and the Sensu web

UI.

type List

default keepalive

environment variable SENSU_KEEPALIVE_HANDLERS

command line
example

agent.yml confg fle
example

keepalive-interval

description Number of seconds between keepalive events.

type Integer

default 20

environment variable SENSU_KEEPALIVE_INTERNAL

command line

keepalive-critical-timeout: 300

sensu-agent start --keepalive-handlers slack,email

keepalive-handlers:

- slack

- email

sensu-agent start --keepalive-interval 30

example

agent.yml confg fle
example

keepalive-pipelines

description Pipelines to use for processing keepalive events, specifed in a comma-
delimited list. If keepalive pipelines are not specifed, the Sensu backend
will use the default keepalive handler and create an event in sensuctl
and the Sensu web UI.

To specify pipelines for the keepalive-pipelines confguration option,
use the fully qualifed name for pipeline resources (core/v2.Pipeline)
plus the pipeline name.

type List

default keepalive

environment variable SENSU_KEEPALIVE_PIPELINES

command line
example

agent.yml confg fle
example

keepalive-warning-timeout

description Number of seconds after a missing keepalive event until the
agent is considered unresponsive by the Sensu backend to
create a warning event. Value must be lower than the

keepalive-interval: 30

sensu-agent start --keepalive-pipelines

core/v2.Pipeline.slack,core/v2.Pipeline.store-keepalives

keepalive-pipelines:

- core/v2.Pipeline.slack

- core/v2.Pipeline.store-keepalives

keepalive-critical-timeout value. Minimum value is 5 .

type Integer

default 120

environment variable SENSU_KEEPALIVE_WARNING_TIMEOUT

command line example

agent.yml confg fle example

Security confguration

cert-fle

description Path to the agent certifcate fle used in mTLS authentication. Sensu
supports certifcate bundles (or chains) as long as the agent (or leaf)
certifcate is the frst certifcate in the bundle.

type String

default ""

environment variable SENSU_CERT_FILE

command line
example

NOTE: The agent maps the keepalive-warning-timeout
value to the event.check.timeout attribute when
keepalive events are generated for the Sensu backend to
process. The event.check.timeout attribute is useful for
creating time-based event flters to reduce alert fatigue for
agent keepalive events.

sensu-agent start --keepalive-warning-timeout 300

keepalive-warning-timeout: 300

sensu-agent start --cert-fle /path/to/tls/agent.pem

agent.yml confg fle
example

insecure-skip-tls-verify

description Skip SSL verifcation.

type Boolean

default false

environment variable SENSU_INSECURE_SKIP_TLS_VERIFY

command line example

agent.yml confg fle
example

key-fle

description Path to the agent key fle used in mTLS authentication.

type String

default ""

environment variable SENSU_KEY_FILE

cert-fle: "/path/to/tls/agent.pem"

WARNING: This confguration option is intended for use in
development systems only. Do not use this confguration option
in production.

sensu-agent start --insecure-skip-tls-verify

insecure-skip-tls-verify: true

command line
example

agent.yml confg fle
example

namespace

description Agent namespace.

type String

default default

environment variable SENSU_NAMESPACE

command line
example

agent.yml confg fle
example

password

description Sensu RBAC password used by the agent.

type String

default P@ssw0rd!

environment variable SENSU_PASSWORD

sensu-agent start --key-fle /path/to/tls/agent-key.pem

key-fle: "/path/to/tls/agent-key.pem"

NOTE: Agents are represented in the backend as a class of entity.
Entities can only belong to a single namespace.

sensu-agent start --namespace ops

namespace: ops

command line
example

agent.yml confg fle
example

redact

description List of felds to redact when displaying the entity.

type List

default By default, Sensu redacts the following felds: password , passwd ,
pass , api_key , api_token , access_key , secret_key ,
private_key , secret .

environment variable SENSU_REDACT

command line
example

agent.yml confg fle
example

require-fps

description Require Federal Information Processing Standard (FIPS) support in

sensu-agent start --password secure-password

password: secure-password

NOTE: Redacted secrets are sent via the WebSocket connection
and stored in etcd.
They are not logged or displayed via the Sensu
API.

sensu-agent start --redact secret,ec2_access_key

redact:

 - secret

 - ec2_access_key

OpenSSL. Logs an error at Sensu agent startup if true but OpenSSL
is not running in FIPS mode.

type Boolean

default false

environment variable SENSU_REQUIRE_FIPS

command line
example

agent.yml confg fle
example

require-openssl

description Use OpenSSL instead of Go’s standard cryptography library. Logs an
error at Sensu agent startup if true but Go’s standard cryptography
library is loaded.

type Boolean

default false

environment variable SENSU_REQUIRE_OPENSSL

command line

NOTE: The require-fps confguration option is only available
within the Linux amd64 OpenSSL-linked binary.
Contact Sensu to
request the builds for OpenSSL with FIPS support.

sensu-agent start --require-fps

require-fps: true

NOTE: The require-openssl confguration option is only available
within the Linux amd64 OpenSSL-linked binary.
Contact Sensu to
request the builds for OpenSSL with FIPS support.

https://sensu.io/contact
https://sensu.io/contact

example

agent.yml confg fle
example

trusted-ca-fle

description SSL/TLS certifcate authority.

type String

default ""

environment variable SENSU_TRUSTED_CA_FILE

command line
example

agent.yml confg fle
example

user

description Sensu RBAC username used by the agent. Agents require get, list,
create, update, and delete permissions for events across all
namespaces.

type String

default agent

environment variable SENSU_USER

command line
example

sensu-agent start --require-openssl

require-openssl: true

sensu-agent start --trusted-ca-fle /path/to/tls/ca.pem

trusted-ca-fle: "/path/to/tls/ca.pem"

sensu-agent start --user agent-01

agent.yml confg fle
example

Socket confguration

disable-sockets

description true to disable the agent TCP and UDP event sockets. Othewise,
false .

type Boolean

default false

environment variable SENSU_DISABLE_SOCKETS

command line
example

agent.yml confg fle
example

socket-host

description Address to bind the Sensu agent socket to.

type String

default 127.0.0.1

environment variable SENSU_SOCKET_HOST

command line
example

user: "agent-01"

sensu-agent start --disable-sockets

disable-sockets: true

sensu-agent start --socket-host 127.0.0.1

agent.yml confg fle
example

socket-port

description Port the Sensu agent socket listens on.

type Integer

default 3030

environment variable SENSU_SOCKET_PORT

command line
example

agent.yml confg fle
example

StatsD confguration

statsd-disable

description true to disable the StatsD listener and metrics server. Otherwise,
false .

type Boolean

default false

environment variable SENSU_STATSD_DISABLE

command line
example

socket-host: "127.0.0.1"

sensu-agent start --socket-port 3030

socket-port: 3030

sensu-agent start --statsd-disable

https://github.com/etsy/statsd

agent.yml confg fle
example

statsd-event-handlers

description List of event handlers for StatsD metrics.

type List

environment variable SENSU_STATSD_EVENT_HANDLERS

command line example

agent.yml confg fle
example

statsd-fush-interval

description Number of seconds between StatsD fushes.

type Integer

default 10

environment variable SENSU_STATSD_FLUSH_INTERVAL

command line
example

agent.yml confg fle

statsd-disable: true

sensu-agent start --statsd-event-handlers

infuxdb,opentsdb

sensu-agent start --statsd-event-handlers infuxdb --

statsd-event-handlers opentsdb

statsd-event-handlers:

 - infuxdb

 - opentsdb

sensu-agent start --statsd-fush-interval 30

https://github.com/statsd/statsd#key-concepts

example

statsd-metrics-host

description Address used for the StatsD metrics server.

type String

default 127.0.0.1

environment variable SENSU_STATSD_METRICS_HOST

command line
example

agent.yml confg fle
example

statsd-metrics-port

description Port used for the StatsD metrics server.

type Integer

default 8125

environment variable SENSU_STATSD_METRICS_PORT

command line
example

agent.yml confg fle
example

statsd-fush-interval: 30

sensu-agent start --statsd-metrics-host 127.0.0.1

statsd-metrics-host: "127.0.0.1"

sensu-agent start --statsd-metrics-port 8125

statsd-metrics-port: 8125

Allow list confguration

The allow list includes check and hook commands the agent can execute.
Use the allow-list

confguration option to specify the path to the yaml or json fle that contains your allow list.

Use these commands to build your allow list confguration fle.

args

description Arguments for the exec command.

required true

type Array

example

enable_env

description true to enable environment variables. Otherwise, false .

required false

type Boolean

example

args:

- foo

YML

{

 "args": ["foo"]

}

JSON

enable_env: true

YML

JSON

exec

description Command to allow the Sensu agent to run as a check or a hook.

required true

type String

example

sha512

description Checksum of the check or hook executable.

required false

type String

example

{

 "enable_env": true

}

exec: "/usr/local/bin/check_memory.sh"

YML

{

 "exec": "/usr/local/bin/check_memory.sh"

}

JSON

sha512: 4f926bf4328...

YML

JSON

Example allow list confguration

{

 "sha512": "4f926bf4328..."

}

- exec: /usr/local/bin/check_memory.sh

 args:

 - ""

 sha512:

736ac120323772543fd3a08ee54afdd54d214e58c280707b63ce652424313ef9084ca5b247d226aa09be

8f831034ff4991bfb95553291c8b3dc32cad034b4706

 enable_env: true

 foo: bar

- exec: /usr/local/bin/show_process_table.sh

 args:

 - ""

 sha512:

28d61f303136b16d20742268a896bde194cc99342e02cdffc1c2186f81c5adc53f8550635156bebeed7d

87a0c19a7d4b7a690f1a337cc4737e240b62b827f78a

- exec: echo-asset.sh

 args:

 - "foo"

 sha512:

cce3d16e5881ba829f271df778f9014f7c3659917f7acfd7a60a91bfcabb472eea72f9781194d310388b

a046c21790364ad0308a5a897cde50022195ba90924b

YML

[

 {

 "exec": "/usr/local/bin/check_memory.sh",

 "args": [

 ""

],

 "sha512":

"736ac120323772543fd3a08ee54afdd54d214e58c280707b63ce652424313ef9084ca5b247d226aa09b

JSON

Agent confguration methods

Agent confguration fle

For Linux and Windows agents, you can customize the agent confguration in a .yml confguration
fle.

The default agent confguration fle path for Linux is /etc/sensu/agent.yml .
The default agent
confguration fle path for Windows is C:\ProgramData\sensu\confg\agent.yml.example .

To use the agent.yml fle to confgure the agent, list the desired confguration attributes and values.
Review the example Sensu agent confguration fle for a complete example.

e8f831034ff4991bfb95553291c8b3dc32cad034b4706",

 "enable_env": true,

 "foo": "bar"

 },

 {

 "exec": "/usr/local/bin/show_process_table.sh",

 "args": [

 ""

],

 "sha512":

"28d61f303136b16d20742268a896bde194cc99342e02cdffc1c2186f81c5adc53f8550635156bebeed7

d87a0c19a7d4b7a690f1a337cc4737e240b62b827f78a"

 },

 {

 "exec": "echo-asset.sh",

 "args": [

 "foo"

],

 "sha512":

"cce3d16e5881ba829f271df778f9014f7c3659917f7acfd7a60a91bfcabb472eea72f9781194d310388

ba046c21790364ad0308a5a897cde50022195ba90924b"

 }

]

NOTE: The agent loads confguration upon startup.
If you make changes in the agent.yml

http://localhost:1313/sensu-go/6.8/files/windows/agent.yml

Confguration via command line fags or environment variables overrides any confguration specifed in
the agent confguration fle.
Read Create overrides to learn more.

Command line fags

For Linux agents, you can customize the agent confguration with sensu-agent start command line
fags.

To use command line fags, specify the desired confguration options and values along with the
sensu-agent start command.
For example:

Confguration via command line fags overrides attributes specifed in a confguration fle or with
environment variables.
Read Create overrides to learn more.

Environment variables

Instead of using the agent confguration fle or command line fags, you can use environment variables
to confgure your Sensu agent.
Each agent confguration option has an associated environment variable
You can also create your own environment variables, as long as you name them correctly and save
them in the correct place.
Here’s how.

1. Create the fles from which the sensu-agent service confgured by our supported packages
will read environment variables:

confguration fle after startup, you must restart the agent for the changes to take effect.

sensu-agent start --name webserver_05 --keepalive-warning-timeout 60 --keepalive-

critical-timeout 120

sudo touch /etc/default/sensu-agent

SHELL

sudo touch /etc/sysconfg/sensu-agent

SHELL

2. Make sure the environment variable is named correctly.
All environment variables that control
Sensu agent confguration begin with SENSU_ .

To rename a confguration option you wish to specify as an environment variable, prepend
SENSU_ , convert dashes to underscores, and capitalize all letters.
For example, the

environment variable for the fag api-host is SENSU_API_HOST .

For a custom environment variable, you do not have to prepend SENSU .
For example,
TEST_VAR_1 is a valid custom environment variable name.

3. Add the environment variable to the environment fle.

In this example, the api-host fag is confgured as an environment variable and set to
"0.0.0.0" :

By default, the agent loads confguration from

%ALLUSERSPROFILE%\sensu\confg\agent.yml.

If you did not change the location for the confguration fle during

installation,

the sensu-agent confguration fle path is:

C:\ProgramData\sensu\confg\agent.yml

SHELL

echo 'SENSU_API_HOST="0.0.0.0"' | sudo tee -a /etc/default/sensu-agent

SHELL

echo 'SENSU_API_HOST="0.0.0.0"' | sudo tee -a /etc/sysconfg/sensu-agent

SHELL

Save the following environment variable in the confguration fle

at C:\ProgramData\sensu\confg\agent.yml:

SENSU_API_HOST="0.0.0.0"

SHELL

4. Restart the sensu-agent service so these settings can take effect:

Format for label and annotation environment variables

To use labels and annotations as environment variables in your check and plugin confgurations, you
must use a specifc format when you create the environment variables.

For example, to create the labels "region": "us-east-1" and "type": "website" as an
environment variable:

sudo systemctl restart sensu-agent

SHELL

sudo systemctl restart sensu-agent

SHELL

sc.exe start SensuAgent

SHELL

NOTE: Sensu includes an environment variable for each agent confguration option.
They are listed
in the confguration description tables.

echo 'SENSU_LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/default/sensu-agent

SHELL

echo 'SENSU_LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/sysconfg/sensu-agent

SHELL

To create the annotations "maintainer": "Team A" and "webhook-url":
"https://hooks.slack.com/services/T0000/B00000/XXXXX" as an environment variable:

Use environment variables with the Sensu agent

Any environment variables you create in /etc/default/sensu-agent (Debian family) or
/etc/sysconfg/sensu-agent (RHEL family) will be available to check and hook commands

executed by the Sensu agent.
This includes your checks and plugins.

For example, if you create a custom environment variable TEST_VARIABLE in your sensu-agent fle, it
will be available to use in your check and hook confgurations as $TEST_VARIABLE .

The following check example demonstrates how to use a TEST_GITHUB_TOKEN environment variable
(set to the token value in the sensu-agent fle) in the check command to run a script that pings the
GitHub API:

echo 'SENSU_ANNOTATIONS='{"maintainer": "Team A", "webhook-url":

"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'' | sudo tee -a

/etc/default/sensu-agent

SHELL

echo 'SENSU_ANNOTATIONS='{"maintainer": "Team A", "webhook-url":

"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'' | sudo tee -a

/etc/sysconfg/sensu-agent

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 name: ping-github-api

spec:

 command: ping-github-api.sh $TEST_GITHUB_TOKEN

 handlers:

 - slack

YML

Use environment variables to specify an HTTP proxy for agent use

If an HTTP proxy is required to access the internet in your compute environment, you may need to
confgure the Sensu agent to successfully download dynamic runtime assets or execute commands
that depend on internet access.

For Sensu agents that require a proxy server, defne HTTP_PROXY and HTTPS_PROXY environment
variables in your sensu-agent fle.

 interval: 10

 publish: true

 subscriptions:

 - system

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "ping-github-api"

 },

 "spec": {

 "command": "ping-github-api.sh $TEST_GITHUB_TOKEN",

 "handlers": [

 "slack"

],

 "interval": 10,

 "publish": true,

 "subscriptions": [

 "system"

]

 }

}

JSON

HTTP_PROXY="http://YOUR_PROXY_SERVER:PORT"

HTTPS_PROXY="http://YOUR_PROXY_SERVER:PORT"

You can use the same proxy server URL for HTTP_PROXY and HTTPS_PROXY .
The proxy server URL
you specify for HTTPS_PROXY does not need to use https:// .

After you add the HTTP_PROXY and HTTPS_PROXY environment variables and restart sensu-agent,
they will be available to check and hook commands executed by the Sensu agent.
You can then use
HTTP_PROXY and HTTPS_PROXY to add dynamic runtime assets, run checks, and complete other

tasks that typically require an internet connection for your unconnected entities.

Create confguration overrides

Sensu has default settings and limits for certain confguration attributes, like the default log level.
Depending on your environment and preferences, you may want to create overrides for these Sensu-
specifc defaults and limits.

You can create confguration overrides in several ways:

Sensu applies the following precedence to override settings:

1. Arguments passed to the Sensu agent via command line confguration fags.
2. Environment variables in /etc/default/sensu-agent (Debian family) or

/etc/sysconfg/sensu-agent (RHEL family).
3. Confguration in the agent.yml confg fle.

For example, if you create overrides using all three methods, the command line confguration fag
values will take precedence over the values you specify in /etc/default/sensu-agent or
/etc/sysconfg/sensu-agent or the agent.yml confg fle.

NOTE: If you defne the HTTP_PROXY and HTTPS_PROXY environment variables, the agent
WebSocket connection will also use the proxy URL you specify.

Command line confguration fag arguments for sensu-agent start .

Environment variables in /etc/default/sensu-agent (Debian family) or
/etc/sysconfg/sensu-agent (RHEL family).

Confguration settings in the agent.yml confg fle.

NOTE: We do not recommend editing the systemd unit fle to create overrides.
Future package
upgrades can overwrite changes in the systemd unit fle.

Example override: Log level

The default log level for the Sensu agent is warn .

To override the default and automatically apply a different log level for the agent, add the --log-

level command line confguration fag when you start the Sensu agent.
For example, to specify
debug as the log level:

To confgure an environment variable for the desired agent log level:

To confgure the desired log level in the confg fle, add this line to agent.yml:

Service management

Start the service

Use the sensu-agent tool to start the agent and apply confguration fags.

sensu-agent start --log-level debug

echo 'SENSU_LOG_LEVEL=debug' | sudo tee -a /etc/default/sensu-agent

SHELL

echo 'SENSU_LOG_LEVEL=debug' | sudo tee -a /etc/sysconfg/sensu-agent

SHELL

log-level: debug

NOTE: Service management commands may require administrative privileges.

Linux

Start the agent with confguration fags:

View available confguration fags and defaults:

Start the agent using a service manager:

If you do not provide any confguration fags, the agent loads confguration from the location specifed
by the confg-fle attribute (default is /etc/sensu/agent.yml).

Windows

Run the following command as the admin user to install and start the agent:

By default, the agent loads confguration from %ALLUSERSPROFILE%\sensu\confg\agent.yml (for
example, C:\ProgramData\sensu\confg\agent.yml) and stores service logs to
%ALLUSERSPROFILE%\sensu\log\sensu-agent.log (for example,
C:\ProgramData\sensu\log\sensu-agent.log).

Confgure the confguration fle and log fle locations using the confg-fle and log-fle fags:

sensu-agent start --subscriptions disk-checks --log-level debug

sensu-agent start --help

sudo systemctl start sensu-agent

sensu-agent service install

sensu-agent service install --confg-fle 'C:\\ProgramData\\sensu\\confg\\agent.yml' -

-log-fle 'C:\\ProgramData\\sensu\\log\\sensu-agent.log'

Stop the service

Stop the agent service using a service manager:

Restart the service

You must restart the agent to implement any confguration updates.

Linux

Restart the agent with a service manager:

Windows

Restart the agent with a service manager:

As of Sensu Go 6.8.2, the Sensu Agent service on Windows platforms will automatically restart after
failures.
You’ll still need to use a service manager restart Windows agents to implement confguration
updates.

Enable on boot

sudo systemctl stop sensu-agent

SHELL

sc.exe stop SensuAgent

SHELL

sudo systemctl restart sensu-agent

sc.exe start SensuAgent

Enable the agent to start on system boot:

Disable on boot

Disable the agent from starting on system boot:

Get service status

View the status of the agent service using a service manager:

sudo systemctl enable sensu-agent

SHELL

The service is confgured to start automatically on boot by default.

SHELL

NOTE: On older distributions of Linux, use sudo chkconfg sensu-agent on to enable the
agent.

sudo systemctl disable sensu-agent

SHELL

The service is confgured to start automatically on boot by default.

SHELL

NOTE: On older distributions of Linux, use sudo chkconfg sensu-agent off to disable the
agent.

SHELL

Get service version

Get the version of the current sensu-agent tool:

Get the version of the running sensu-agent service:

Uninstall the service

Uninstall the sensu-agent service:

Get help

The sensu-agent tool provides general and command-specifc help fags.

sudo systemctl status sensu-agent

sc.exe query SensuAgent

SHELL

sensu-agent version

curl http://127.0.0.1:3031/version

sudo systemctl stop sensu-agent

SHELL

sensu-agent service uninstall

SHELL

View sensu-agent commands:

List options for a specifc command (in this case, sensu-agent start):

sensu-agent help

sensu-agent start --help

Backend reference

Example Sensu backend confguration fle (download)

The Sensu backend is a service that manages check requests and observability data.
Every Sensu
backend includes an integrated structure for scheduling checks using subscriptions, an event
processing pipeline that applies event flters, mutators, handlers, and pipelines, an embedded etcd
datastore for storing confguration and state, and the Sensu API, Sensu web UI, and sensuctl
command line tool.

The Sensu backend is available for Debian- and RHEL-family distributions of Linux.
For these operating
systems, the Sensu backend uses the Bourne shell (sh) for the execution environment.

Read the installation guide to install the backend.

Initialization

For a new installation, the backend database must be initialized by providing a username and
password for the user to be granted administrative privileges.
Although initialization is required for every
new installation, the implementation differs depending on your method of installation:

The initialization step bootstraps the frst admin user account for your Sensu installation.
This frst
account will be granted the cluster admin role.

If you are using Docker, you can use environment variables to override the default admin
username (admin) and password (P@ssw0rd!) during step 2 of the backend installation
process.

If you are using a Debian- or RHEL-family distribution, you must specify admin credentials
during step 3 of the backend installation process.
Sensu does not apply default admin
credentials for Debian- or RHEL-family installations.

WARNING: If you plan to run a Sensu cluster, make sure that each of your backend nodes is
confgured, running, and a member of the cluster before you initialize.

http://localhost:1313/sensu-go/6.8/files/backend.yml
https://etcd.io/docs

Docker initialization

For Docker installations, set administrator credentials with environment variables when you confgure
and start the backend as shown below.
Replace <username> and <password> with the username
and password you want to use:

If you did not use environment variables to override the default admin credentials in step 2 of the

docker run -v /var/lib/sensu:/var/lib/sensu \

-d --name sensu-backend \

-p 3000:3000 -p 8080:8080 -p 8081:8081 \

-e SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username> \

-e SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password> \

sensu/sensu:latest \

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug

DOCKER

version: "3"

services:

 sensu-backend:

 ports:

 - 3000:3000

 - 8080:8080

 - 8081:8081

 volumes:

 - "sensu-backend-data:/var/lib/sensu/sensu-backend/etcd"

 command: "sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-

level debug"

 environment:

 - SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username>

 - SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password>

 image: sensu/sensu:latest

volumes:

 sensu-backend-data:

 driver: local

DOCKER

backend installation process, we recommend changing your default admin password as soon as you
have installed sensuctl.

Debian or RHEL family initialization

For Debian- or RHEL-family distributions, set administrator credentials with environment variables at
initialization as shown below.

To initialize with your username and password, replace <username> and <password> with the
username and password you want to use:

Add API key for initialization

Add an API key when you initialize the backend to make automated cluster setup and deployment
more straightforward.
An API key is a persistent UUID that maps to a stored Sensu username.

If you supply an API key via sensu-backend init, you do not need to confgure sensuctl.
Instead, you can
execute sensuctl commands to manage resources immediately after initializing a cluster by providing
the --api-key and --api-url fags with their correct values in your sensuctl commands.

To initialize with an API key in addition to username and password, set your administrator credentials
as follows.
Replace <api_key> with the API key you want to use:

export SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username>

export SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password>

sensu-backend init

NOTE: Make sure the Sensu backend is running before you run sensu-backend init .

docker run -v /var/lib/sensu:/var/lib/sensu \

-d --name sensu-backend \

-p 3000:3000 -p 8080:8080 -p 8081:8081 \

-e SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username> \

-e SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password> \

-e SENSU_BACKEND_CLUSTER_ADMIN_API_KEY=<api_key> \

sensu/sensu:latest \

DOCKER

Initialize in interactive mode

You can also run the sensu-backend init command in interactive mode:

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug

version: "3"

services:

 sensu-backend:

 ports:

 - 3000:3000

 - 8080:8080

 - 8081:8081

 volumes:

 - "sensu-backend-data:/var/lib/sensu/sensu-backend/etcd"

 command: "sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-

level debug"

 environment:

 - SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username>

 - SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password>

 - SENSU_BACKEND_CLUSTER_ADMIN_API_KEY=<api_key>

 image: sensu/sensu:latest

volumes:

 sensu-backend-data:

 driver: local

DOCKER

export SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username>

export SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password>

export SENSU_BACKEND_CLUSTER_ADMIN_API_KEY=<api_key>

sensu-backend init

SHELL

sensu-backend init --interactive

You will receive prompts for username, password, and API key in interactive mode.
Provide your
username and password to complete initialization.
The API key is optional — press return to skip it.

Initialization fags

To view available initialization fags:

The response will list command information and confguration fags for sensu-backend init :

Cluster Admin Username: <username>

Cluster Admin Password: <password>

Retype Cluster Admin Password: <password>

Cluster Admin API Key: <api_key>

NOTE: If you are already using Sensu, you do not need to initialize.
Your installation has already
seeded the admin username and password you have set up.
Running sensu-backend init on a
previously initialized cluster has no effect — it will not change the admin credentials.

sensu-backend init --help

Usage:

 sensu-backend init [fags]

General Flags:

 --cluster-admin-api-key string cluster admin API key

 --cluster-admin-password string cluster admin password

 --cluster-admin-username string cluster admin username

 -c, --confg-fle string path to sensu-backend confg fle (default

"/etc/sensu/backend.yml")

 -h, --help help for init

 --ignore-already-initialized exit 0 if the cluster has already been

initialized

 --interactive interactive mode

For more information about the initialization store fags, read Datastore and cluster confguration and
Advanced confguration options.

ignore-already-initialized

description If you run sensu-backend init on a cluster that has already been
initialized, the command returns a non-zero exit status. Add the
ignore-already-initialized fag to suppress the “already

initialized” response and return an exit code 0 if the cluster has
already been initialized.

example

timeout

description Specify how long the backend should continue trying to establish a
connection to etcd before timing out.

 --timeout string duration to wait before a connection attempt

to etcd is considered failed (must be >= 1s) (default "5s")

 --wait continuously retry to establish a connection

to etcd until it is successful

Store Flags:

 --etcd-advertise-client-urls strings list of this member's client URLs to

advertise to clients (default [http://localhost:2379])

 --etcd-cert-fle string path to the client server TLS cert fle

 --etcd-cipher-suites strings list of ciphers to use for etcd TLS

confguration

 --etcd-client-cert-auth enable client cert authentication

 --etcd-client-urls string client URLs to use when operating as an

etcd client

 --etcd-key-fle string path to the client server TLS key fle

 --etcd-max-request-bytes uint maximum etcd request size in bytes (use

with caution) (default 1572864)

 --etcd-trusted-ca-fle string path to the client server TLS trusted CA

cert fle

sensu-backend init --ignore-already-initialized

To specify the timeout duration, use an integer paired with a unit of time:
s for seconds, m for minutes, or h for hours.

type String

example

wait

description Instruct the backend to continue trying to establish a connection to etcd
until it is successful.

example

Backend transport

The Sensu backend listens for agent communications via WebSocket transport.
By default, this
transport operates on port 8081.
The agent subscriptions are used to determine which check execution
requests the backend publishes via the transport.
Sensu agents locally execute checks as requested by
the backend and publish check results back to the transport to be processed.

Sensu agents authenticate to the Sensu backend via transport by either built-in username and
password authentication or mutual transport layer security (mTLS) authentication.

To secure the WebSocket transport, frst generate the certifcates you will need to set up transport
layer security (TLS).
Then, secure Sensu by confguring either TLS or mTLS to make Sensu production-
ready.

Read the Sensu architecture overview for a diagram that includes the WebSocket transport.

NOTE: Sensu interprets timeout values less than 1 second and
integer-only values as seconds. For example, Sensu will convert
both 20ms and 20 to 20s (20 seconds).

sensu-backend init --timeout 30s

sensu-backend init --wait

https://en.m.wikipedia.org/wiki/WebSocket

Certifcate bundles or chains

The Sensu backend supports all types of certifcate bundles (or chains) as long as the server (or leaf)
certifcate is the frst certifcate in the bundle.
This is because the Go standard library assumes that the
frst certifcate listed in the PEM fle is the server certifcate — the certifcate that the program will use
to show its own identity.

If you send the server certifcate alone instead of sending the whole bundle with the server certifcate
frst, you will receive a certifcate not signed by trusted authority error.
You must present the
whole chain to the remote so it can determine whether it trusts the server certifcate through the chain.

Certifcate revocation check

The Sensu backend checks certifcate revocation list (CRL) and Online Certifcate Status Protocol
(OCSP) endpoints for mutual transport layer security (mTLS), etcd client, and etcd peer connections
whose remote sides present X.509 certifcates that provide CRL and OCSP revocation information.

Startup and backend entities

When a backend starts up, Sensu automatically checks for a sensu-system namespace (and creates
the namespace if it doesn’t exist).
Then, Sensu checks the sensu-system namespace for an existing
entity named after the backend’s local hostname.

Once the backend entity is created, the backend uses its own entity to report cluster state errors.
Read
backend entities in the entities reference for more information and an example backend entity
defnition.

Synchronize time between agents and the backend

System clocks between agents and the backend should be synchronized to a central NTP server.
If
system time is out of sync, it may cause issues with keepalive, metric, and check alerts.

If there is no corresponding entity, Sensu creates a new entity with entity_class: backend

and populates the entity’s system information.

If there is a corresponding entity, Sensu does nothing further to the existing entity.

Backend clusters

You can run the backend as a standalone service, but running a cluster of backends makes Sensu
more highly available, reliable, and durable.
Sensu backend clusters build on the etcd clustering system.
Clustering lets you synchronize data between backends and get the benefts of a highly available
confguration.

To confgure a cluster, read Run a Sensu cluster and review the datastore confguration options.

Create event pipelines

Sensu backend event pipelines process observation data and execute event flters, mutators, handlers,
and pipelines.
These resources are powerful tools to automate your monitoring workfows.

Read the event flter, mutator, handler, and pipeline references to learn more about these Sensu
resources.
Read guides like Reduce alert fatigue with event flters and Send Slack alerts with handlers
for usage examples.

Schedule checks

The backend is responsible for storing check defnitions and scheduling check requests.
Check
scheduling is subscription-based: the backend sends check requests to subscriptions, where they’re
picked up by subscribing agents.

For information about creating and managing checks, read the checks reference and the guides
Monitor server resources with checks and Collect metrics with checks.

Backend confguration options

Backend confguration is customizable.
This section describes each confguration option in more detail,
including examples for each confguration method.

You can customize backend confguration with the backend confguration fle, command line fag
arguments, or environment variables.

https://etcd.io/docs

To view confguration information for the sensu-backend start command, run:

The response will list confguration options as command line fags for sensu-backend start :

NOTE: The backend loads confguration upon startup, so you must restart the backend for any
confguration updates to take effect.

sensu-backend start --help

start the sensu backend

Usage:

 sensu-backend start [fags]

General Flags:

 --agent-auth-cert-fle string TLS certifcate in PEM format for

agent certifcate authentication

 --agent-auth-crl-urls strings URLs of CRLs for agent certifcate

authentication

 --agent-auth-key-fle string TLS certifcate key in PEM format

for agent certifcate authentication

 --agent-auth-trusted-ca-fle string TLS CA certifcate bundle in PEM

format for agent certifcate authentication

 --agent-burst-limit int agent connections maximum burst

size

 --agent-host string agent listener host (default "

[::]")

 --agent-serve-wait-time duration wait time before accepting agent

connections on startup

 --agent-port int agent listener port (default 8081)

 --agent-rate-limit int agent connections maximum rate

limit

 --agent-write-timeout int timeout in seconds for agent

writes (default 15)

 --annotations stringToString entity annotations map (default

[])

 --api-listen-address string address to listen on for api

traffc (default "[::]:8080")

 --api-serve-wait-time duration wait time before serving API

requests on startup

 --api-request-limit int maximum API request body size, in

bytes (default 512000)

 --api-url string url of the api to connect to

(default "http://localhost:8080")

 --api-write-timeout maximum duration before timing out

writes of responses

 --assets-burst-limit int asset fetch burst limit (default

100)

 --assets-rate-limit foat maximum number of assets fetched

per second

 --cache-dir string path to store cached data (default

"/var/cache/sensu/sensu-backend")

 --cert-fle string TLS certifcate in PEM format

 -c, --confg-fle string path to sensu-backend confg fle

(default "/etc/sensu/backend.yml")

 --dashboard-cert-fle string dashboard TLS certifcate in PEM

format

 --dashboard-host string dashboard listener host (default "

[::]")

 --dashboard-key-fle string dashboard TLS certifcate key in PEM

format

 --dashboard-port int dashboard listener port (default

3000)

 --dashboard-write-timeout maximum duration before timing out

writes of responses

 --debug enable debugging and profling

features

 --deregistration-handler string default deregistration handler

 --disable-platform-metrics disable platform metrics logging

 --event-log-buffer-size int buffer size of the event logger

(default 100000)

 --event-log-buffer-wait string full buffer wait time (default

"10ms")

 --event-log-fle string path to the event log fle

 --event-log-parallel-encoders used to indicate parallel encoders

should be used for event logging

 --eventd-buffer-size int number of incoming events that can

be buffered (default 100)

 --eventd-workers int number of workers spawned for

processing incoming events (default 100)

 -h, --help help for start

 --insecure-skip-tls-verify skip TLS verifcation (not

recommended!)

 --jwt-private-key-fle string path to the PEM-encoded private key

to use to sign JWTs

 --jwt-public-key-fle string path to the PEM-encoded public key

to use to verify JWT signatures

 --keepalived-buffer-size int number of incoming keepalives that

can be buffered (default 100)

 --keepalived-workers int number of workers spawned for

processing incoming keepalives (default 100)

 --key-fle string TLS certifcate key in PEM format

 --labels stringToString entity labels map (default [])

 --log-level string logging level [panic, fatal,

error, warn, info, debug, trace] (default "warn")

 --metrics-refresh-interval string Go duration value (e.g. 1h5m30s)

that governs how often metrics are refreshed. (default "1m")

 --pipelined-buffer-size int number of events to handle that

can be buffered (default 100)

 --pipelined-workers int number of workers spawned for

handling events through the event pipeline (default 100)

 --platform-metrics-log-fle string platform metrics log fle path

 --platform-metrics-logging-interval string platform metrics logging interval

 --require-fps indicates whether fps support

should be required in openssl

 --trusted-ca-fle string TLS CA certifcate bundle in PEM

format

Store Flags:

 --etcd-advertise-client-urls strings list of this member's client URLs

to advertise to clients (default [http://localhost:2379])

 --etcd-cert-fle string path to the client server TLS cert

fle

 --etcd-cipher-suites strings list of ciphers to use for etcd

TLS confguration

 --etcd-client-cert-auth enable client cert authentication

 --etcd-client-urls string client URLs to use when operating

as an etcd client

 --etcd-discovery string discovery URL used to bootstrap

the cluster

 --etcd-discovery-srv string DNS SRV record used to bootstrap

the cluster

 --etcd-election-timeout uint time in ms a follower node will go

without hearing a heartbeat before attempting to become leader itself (default 3000)

 --etcd-heartbeat-interval uint interval in ms with which the etcd

leader will notify followers that it is still the leader (default 300)

 --etcd-initial-advertise-peer-urls strings list of this member's peer URLs to

advertise to the rest of the cluster (default [http://127.0.0.1:2380])

 --etcd-initial-cluster string initial cluster confguration for

bootstrapping

 --etcd-initial-cluster-state string initial cluster state ("new" or

"existing") (default "new")

 --etcd-initial-cluster-token string initial cluster token for the etcd

cluster during bootstrap

 --etcd-key-fle string path to the client server TLS key

fle

 --etcd-client-log-level string etcd client logging level [panic,

fatal, error, warn, info, debug] (default "error")

 --etcd-listen-client-urls strings list of etcd client URLs to listen

on (default [http://127.0.0.1:2379])

 --etcd-listen-peer-urls strings list of URLs to listen on for peer

traffc (default [http://127.0.0.1:2380])

 --etcd-log-level string etcd server logging level [panic,

fatal, error, warn, info, debug]

 --etcd-max-request-bytes uint maximum etcd request size in bytes

(use with caution) (default 1572864)

 --etcd-name string name for this etcd node (default

"default")

 --etcd-peer-cert-fle string path to the peer server TLS cert

fle

 --etcd-peer-client-cert-auth enable peer client cert

authentication

 --etcd-peer-key-fle string path to the peer server TLS key fle

 --etcd-peer-trusted-ca-fle string path to the peer server TLS trusted

CA fle

 --etcd-quota-backend-bytes int maximum etcd database size in

bytes (use with caution) (default 4294967296)

 --etcd-trusted-ca-fle string path to the client server TLS

trusted CA cert fle

 --etcd-unsafe-no-fsync disables fsync, unsafe, may cause

data loss

 --no-embed-etcd don't embed etcd, use external

etcd instead

The backend requires that the state-dir confguration option is set before starting.
All other required
fags have default values.

For more information about log confguration options, read Event logging and Platform metrics logging.

General confguration

annotations

description Non-identifying metadata to include with entity data for backend dynamic
runtime assets (for example, handler and mutator dynamic runtime
assets).

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

environment variable SENSU_BACKEND_ANNOTATIONS

command line
example

NOTE: For annotations that you defne in backend.yml, the keys are
automatically modifed to use all lower-case letters. For example, if
you defne the annotation webhookURL: "https://my-
webhook.com" in backend.yml, it will be listed as webhookurl:
"https://my-webhook.com" in entity defnitions.

Key cases are not modifed for annotations you defne with the --
annotations command line fag or the
SENSU_BACKEND_ANNOTATIONS environment variable.

sensu-backend start --annotations

sensu.io/plugins/slack/confg/webhook-

url=https://hooks.slack.com/services/T00000000/B00000000/XX

XXXXXXXXXXXXXXXXXXXXXX

sensu-backend start --annotations example-key="example

value" --annotations example-key2="example value"

backend.yml confg
fle example

api-listen-address

description Address the API daemon will listen for requests on.

type String

default [::]:8080

environment variable SENSU_BACKEND_API_LISTEN_ADDRESS

command line
example

backend.yml confg
fle example

api-request-limit

description Maximum size for API request bodies. In bytes.

type Integer

default 512000

environment variable SENSU_BACKEND_API_REQUEST_LIMIT

command line
example

backend.yml confg

annotations:

 sensu.io/plugins/slack/confg/webhook-url:

"https://hooks.slack.com/services/T00000000/B00000000/XXXXX

XXXXXXXXXXXXXXXXXXX"

sensu-backend start --api-listen-address [::]:8080

api-listen-address: "[::]:8080"

sensu-backend start --api-request-limit 1024000

fle example

api-serve-wait-time

description Time to wait after starting the backend before serving API requests. In
seconds.

type String

default 0s

environment variable SENSU_BACKEND_API_SERVE_WAIT_TIME

command line
example

backend.yml confg
fle example

api-url

description URL used to connect to the API.

type String

default http://localhost:8080 (Debian and RHEL families)

http://$SENSU_HOSTNAME:8080 (Docker)

environment variable SENSU_BACKEND_API_URL

command line

api-request-limit: 1024000

sensu-backend start --api-serve-wait-time 10s

api-serve-wait-time: 10s

NOTE: Docker-only Sensu binds to the hostnames of containers,
represented here as SENSU_HOSTNAME in Docker default values.

sensu-backend start --api-url http://localhost:8080

example

backend.yml confg
fle example

api-write-timeout

description Maximum amount of time to wait before timing out on API HTTP server
response writes. In milliseconds (ms), seconds (s), minutes (m), or
hours (h).

type String

default 15s

environment variable SENSU_BACKEND_API_WRITE_TIMEOUT

command line
example

backend.yml confg
fle example

assets-burst-limit

description Maximum amount of burst allowed in a rate interval when fetching
dynamic runtime assets.

type Integer

default 100

environment variable SENSU_BACKEND_ASSETS_BURST_LIMIT

command line
example

api-url: "http://localhost:8080"

sensu-backend start --api-write-timeout 15s

api-write-timeout: 15s

sensu-backend start --assets-burst-limit 100

backend.yml confg
fle example

assets-rate-limit

description Maximum number of dynamic runtime assets to fetch per second. The
default value 1.39 is equivalent to approximately 5000 user-to-server
requests per hour.

type Float

default 1.39

environment variable SENSU_BACKEND_ASSETS_RATE_LIMIT

command line
example

backend.yml confg
fle example

cache-dir

description Path to store cached data.

type String

default /var/cache/sensu/sensu-backend

environment variable SENSU_BACKEND_CACHE_DIR

command line
example

backend.yml confg

assets-burst-limit: 100

sensu-backend start --assets-rate-limit 1.39

assets-rate-limit: 1.39

sensu-backend start --cache-dir /var/cache/sensu-backend

fle example

confg-fle

description Path to Sensu backend confg fle.

type String

default /etc/sensu/backend.yml

environment variable SENSU_BACKEND_CONFIG_FILE

command line
example

debug

description If true , enable debugging and profling features for use with the Go
pprof package. Otherwise, false .

type Boolean

default false

environment variable SENSU_BACKEND_DEBUG

command line
example

backend.yml confg
fle example

deregistration-handler

cache-dir: "/var/cache/sensu-backend"

sensu-backend start --confg-fle /etc/sensu/backend.yml

sensu-backend start -c /etc/sensu/backend.yml

sensu-backend start --debug

debug: true

https://golang.org/pkg/net/http/pprof/
https://golang.org/pkg/net/http/pprof/

description Name of the default event handler to use when processing agent
deregistration events.

type String

default ""

environment variable SENSU_BACKEND_DEREGISTRATION_HANDLER

command line example

backend.yml confg fle
example

labels

description Custom attributes to include with entity data for backend dynamic
runtime assets (for example, handler and mutator dynamic runtime
assets).

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

sensu-backend start --deregistration-handler deregister

deregistration-handler: "deregister"

NOTE: For labels that you defne in backend.yml, the keys are
automatically modifed to use all lower-case letters. For example, if
you defne the label securityZone: "us-west-2a" in
backend.yml, it will be listed as securityzone: "us-west-2a" in
entity defnitions.

Key cases are not modifed for labels you defne with the --labels
command line fag or the SENSU_BACKEND_LABELS environment
variable.

environment variable SENSU_BACKEND_LABELS

command line
example

backend.yml confg
fle example

log-level

description Logging level: panic , fatal , error , warn , info , debug , or
trace .

type String

default warn

environment variable SENSU_BACKEND_LOG_LEVEL

command line
example

backend.yml confg
fle example

metrics-refresh-interval

description Interval at which Sensu should refresh metrics. In hours, minutes,
seconds, or a combination — for example, 5m , 1m30s , and
1h10m30s are all valid values.

sensu-backend start --labels security_zone=us-west-2a

sensu-backend start --labels example_key1="example value"

example_key2="example value"

labels:

 security_zone: "us-west-2a"

 example_key1: "example value"

 example_key2: "example value"

sensu-backend start --log-level debug

log-level: "debug"

type String

default 1m

environment variable SENSU_BACKEND_METRICS_REFRESH_INTERVAL

command line example

backend.yml confg fle
example

state-dir

description Path to Sensu state storage: /var/lib/sensu/sensu-backend .

type String

required true

environment variable SENSU_BACKEND_STATE_DIR

command line
example

backend.yml confg
fle example

COMMERCIAL FEATURE : Access the metrics-refresh-

interval confguration option in the packaged Sensu Go
distribution. For more information, read Get started with
commercial features.

sensu-backend start --metrics-refresh-interval 10s

metrics-refresh-interval: 10s

sensu-backend start --state-dir /var/lib/sensu/sensu-

backend

sensu-backend start -d /var/lib/sensu/sensu-backend

state-dir: "/var/lib/sensu/sensu-backend"

Agent communication confguration

agent-auth-cert-fle

description TLS certifcate in PEM format for agent certifcate authentication. Sensu
supports certifcate bundles (or chains) as long as the server (or leaf)
certifcate is the frst certifcate in the bundle.

type String

default ""

environment variable SENSU_BACKEND_AGENT_AUTH_CERT_FILE

command line
example

backend.yml confg
fle example

agent-auth-crl-urls

description URLs of CRLs for agent certifcate authentication. The Sensu backend
uses this list to perform a revocation check for agent mTLS.

type String

default ""

environment variable SENSU_BACKEND_AGENT_AUTH_CRL_URLS

command line
example

backend.yml confg

sensu-backend start --agent-auth-cert-fle

/path/to/tls/backend-1.pem

agent-auth-cert-fle: /path/to/tls/backend-1.pem

sensu-backend start --agent-auth-crl-urls

http://localhost/CARoot.crl

fle example

agent-auth-key-fle

description TLS certifcate key in PEM format for agent certifcate authentication.

type String

default ""

environment variable SENSU_BACKEND_AGENT_AUTH_KEY_FILE

command line
example

backend.yml confg
fle example

agent-auth-trusted-ca-fle

description TLS CA certifcate bundle in PEM format for agent certifcate
authentication.

type String

default ""

environment variable SENSU_BACKEND_AGENT_AUTH_TRUSTED_CA_FILE

command line example

backend.yml confg fle
example

agent-auth-crl-urls: http://localhost/CARoot.crl

sensu-backend start --agent-auth-key-fle

/path/to/tls/backend-1-key.pem

agent-auth-key-fle: /path/to/tls/backend-1-key.pem

sensu-backend start --agent-auth-trusted-ca-fle

/path/to/tls/ca.pem

agent-auth-trusted-ca-fle: /path/to/tls/ca.pem

agent-burst-limit

description Maximum amount of burst allowed in a rate interval for agent transport
WebSocket connections.

type Integer

default null

environment variable SENSU_BACKEND_AGENT_BURST_LIMIT

command line
example

backend.yml confg
fle example

agent-host

description Agent listener host. Listens on all IPv4 and IPv6 addresses by default.

type String

default [::]

environment variable SENSU_BACKEND_AGENT_HOST

command line

NOTE: The agent-burst-limit confguration fag is deprecated.

COMMERCIAL FEATURE : Access the agent-burst-limit

confguration option in the packaged Sensu Go distribution. For more
information, read Get started with commercial features.

sensu-backend start --agent-burst-limit 10

agent-burst-limit: 10

example

backend.yml confg
fle example

agent-serve-wait-time

description Time to wait after starting the backend before accepting agent
connections. In seconds.

type String

default 0s

environment variable SENSU_BACKEND_AGENT_LISTEN_WAIT_TIME

command line example

backend.yml confg fle
example

agent-port

description Agent listener port.

type Integer

default 8081

environment variable SENSU_BACKEND_AGENT_PORT

command line
example

sensu-backend start --agent-host 127.0.0.1

agent-host: "127.0.0.1"

sensu-backend start --agent-serve-wait-time 10s

agent-serve-wait-time: 10s

sensu-backend start --agent-port 8081

backend.yml confg
fle example

agent-rate-limit

description Maximum number of agent transport WebSocket connections per
second, per backend.

type Integer

default null

environment variable SENSU_BACKEND_AGENT_RATE_LIMIT

command line
example

backend.yml confg
fle example

Security confguration

cert-fle

description Path to the primary backend certifcate fle. Specifes a fallback SSL/TLS
certifcate if the dashboard-cert-fle confguration option is not used.
This certifcate secures communications between the Sensu web UI and
end user web browsers, as well as communication between sensuctl and
the Sensu API. Sensu supports certifcate bundles (or chains) as long as
the server (or leaf) certifcate is the frst certifcate in the bundle.

agent-port: 8081

COMMERCIAL FEATURE : Access the agent-rate-limit

confguration option in the packaged Sensu Go distribution. For more
information, read Get started with commercial features.

sensu-backend start --agent-rate-limit 10

agent-rate-limit: 10

type String

default ""

environment variable SENSU_BACKEND_CERT_FILE

command line
example

backend.yml confg
fle example

insecure-skip-tls-verify

description If true , skip SSL verifcation. Otherwise, false .

type Boolean

default false

environment variable SENSU_BACKEND_INSECURE_SKIP_TLS_VERIFY

command line example

backend.yml confg fle
example

jwt-private-key-fle

sensu-backend start --cert-fle /path/to/tls/backend-1.pem

cert-fle: "/path/to/tls/backend-1.pem"

WARNING: This confguration option is intended for use in
development systems only. Do not use this confguration option
in production.

sensu-backend start --insecure-skip-tls-verify

insecure-skip-tls-verify: true

description Path to the PEM-encoded private key to use to sign JSON Web Tokens
(JWTs).

type String

default ""

environment variable SENSU_BACKEND_JWT_PRIVATE_KEY_FILE

command line
example

backend.yml confg
fle example

jwt-public-key-fle

description Path to the PEM-encoded public key to use to verify JSON Web Token
(JWT) signatures.

type String

default ""

environment variable SENSU_BACKEND_JWT_PUBLIC_KEY_FILE

required false, unless jwt-private-key-fle is defned

command line

NOTE: The internal symmetric secret key is used by default to sign
all JWTs unless a private key is specifed via this attribute.

sensu-backend start --jwt-private-key-fle

/path/to/key/private.pem

jwt-private-key-fle: /path/to/key/private.pem

NOTE: JWTs signed with the internal symmetric secret key will
continue to be verifed with that key.

example

backend.yml confg
fle example

key-fle

description Path to the primary backend key fle. Specifes a fallback SSL/TLS key if
the dashboard-key-fle confguration option is not used. This key
secures communication between the Sensu web UI and end user web
browsers, as well as communication between sensuctl and the Sensu
API.

type String

default ""

environment variable SENSU_BACKEND_KEY_FILE

command line
example

backend.yml confg
fle example

require-fps

description Require Federal Information Processing Standard (FIPS) support in
OpenSSL. Logs an error at Sensu backend startup if true but
OpenSSL is not running in FIPS mode.

sensu-backend start --jwt-public-key-fle

/path/to/key/public.pem

jwt-public-key-fle: /path/to/key/public.pem

sensu-backend start --key-fle /path/to/tls/backend-1-

key.pem

key-fle: "/path/to/tls/backend-1-key.pem"

NOTE: The require-fps confguration option is only available
within the Linux amd64 OpenSSL-linked binary.
Contact Sensu to

https://sensu.io/contact

type Boolean

default false

environment variable SENSU_BACKEND_REQUIRE_FIPS

command line
example

backend.yml confg
fle example

require-openssl

description Use OpenSSL instead of Go’s standard cryptography library. Logs an
error at Sensu backend startup if true but Go’s standard cryptography
library is loaded.

type Boolean

default false

environment variable SENSU_BACKEND_REQUIRE_OPENSSL

command line
example

backend.yml confg
fle example

request the builds for OpenSSL with FIPS support.

sensu-backend start --require-fps

require-fps: true

NOTE: The require-openssl confguration option is only available
within the Linux amd64 OpenSSL-linked binary.
Contact Sensu to
request the builds for OpenSSL with FIPS support.

sensu-backend start --require-openssl

require-openssl: true

https://sensu.io/contact

trusted-ca-fle

description Path to the primary backend CA fle. Specifes a fallback SSL/TLS
certifcate authority in PEM format used for etcd client (mutual TLS)
communication if the etcd-trusted-ca-fle is not used. This CA fle is
used in communication between the Sensu web UI and end user web
browsers, as well as communication between sensuctl and the Sensu
API.

type String

default ""

environment variable SENSU_BACKEND_TRUSTED_CA_FILE

command line
example

backend.yml confg
fle example

Web UI confguration

dashboard-cert-fle

description Web UI TLS certifcate in PEM format. This certifcate secures
communication with the Sensu web UI. If the dashboard-cert-fle is
not provided in the backend confguration, Sensu uses the certifcate
specifed in the cert-fle confguration option for the web UI. Sensu
supports certifcate bundles (or chains) as long as the server (or leaf)
certifcate is the frst certifcate in the bundle.

type String

default ""

sensu-backend start --trusted-ca-fle /path/to/tls/ca.pem

trusted-ca-fle: "/path/to/tls/ca.pem"

environment variable SENSU_BACKEND_DASHBOARD_CERT_FILE

command line
example

backend.yml confg
fle example

dashboard-host

description Web UI listener host.

type String

default [::]

environment variable SENSU_BACKEND_DASHBOARD_HOST

command line
example

backend.yml confg
fle example

dashboard-key-fle

description Web UI TLS certifcate key in PEM format. This key secures
communication with the Sensu web UI. If the dashboard-key-fle is
not provided in the backend confguration, Sensu uses the key specifed
in the key-fle confguration option for the web UI.

type String

default ""

sensu-backend start --dashboard-cert-fle

/path/to/tls/separate-webui-cert.pem

dashboard-cert-fle: "/path/to/tls/separate-webui-cert.pem"

sensu-backend start --dashboard-host 127.0.0.1

dashboard-host: "127.0.0.1"

environment variable SENSU_BACKEND_DASHBOARD_KEY_FILE

command line
example

backend.yml confg
fle example

dashboard-port

description Web UI listener port.

type Integer

default 3000

environment variable SENSU_BACKEND_DASHBOARD_PORT

command line
example

backend.yml confg
fle example

dashboard-write-timeout

description Maximum amount of time to wait before timing out on web UI
HTTP server response writes. In milliseconds (ms), seconds
(s), minutes (m), or hours (h).

type String

default 15s

environment variable SENSU_BACKEND_DASHBOARD_WRITE_TIMEOUT

sensu-backend start --dashboard-key-fle

/path/to/tls/separate-webui-key.pem

dashboard-key-fle: "/path/to/tls/separate-webui-key.pem"

sensu-backend start --dashboard-port 3000

dashboard-port: 3000

command line example

backend.yml confg fle
example

Datastore and cluster confguration

etcd-advertise-client-urls

description List of this member’s client URLs to advertise to the rest of the
cluster.

type List

default http://localhost:2379 (Debian and RHEL families)

http://$SENSU_HOSTNAME:2379 (Docker)

environment variable SENSU_BACKEND_ETCD_ADVERTISE_CLIENT_URLS

command line example

sensu-backend start --dashboard-write-timeout 15s

dashboard-write-timeout: 15s

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.
Do not confgure external etcd in Sensu
via backend command line fags or the backend confguration
fle (/etc/sensu/backend.yml).

NOTE: Docker-only Sensu binds to the hostnames of
containers, represented here as SENSU_HOSTNAME in Docker
default values.

sensu-backend start --etcd-advertise-client-urls

http://localhost:2378,http://localhost:2379

sensu-backend start --etcd-advertise-client-urls

https://etcd.io/docs/latest/op-guide/clustering/

backend.yml confg fle
example

etcd-cert-fle

description Path to the etcd client API TLS certifcate fle. Secures communication
between the embedded etcd client API and any etcd clients. Sensu
supports certifcate bundles (or chains) as long as the server (or leaf)
certifcate is the frst certifcate in the bundle.

type String

default ""

environment variable SENSU_BACKEND_ETCD_CERT_FILE

command line
example

backend.yml confg
fle example

etcd-cipher-suites

http://localhost:2378 --etcd-advertise-client-urls

http://localhost:2379

etcd-advertise-client-urls:

 - http://localhost:2378

 - http://localhost:2379

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-cert-fle /path/to/tls/backend-

1.pem

etcd-cert-fle: "/path/to/tls/backend-1.pem"

https://etcd.io/docs/latest/op-guide/clustering/

description List of allowed cipher suites for etcd TLS confguration. Sensu supports
TLS 1.0-1.2 cipher suites as listed in the Go TLS documentation. You
can use this attribute to defend your TLS servers from attacks on weak
TLS ciphers. Go determines the default cipher suites based on the
hardware used.

recommended

type List

environment variable SENSU_BACKEND_ETCD_CIPHER_SUITES

command line
example

backend.yml confg
fle example

NOTE: To use TLS 1.3, add the following environment variable:
GODEBUG="tls13=1" .

To use Sensu with an external etcd cluster, follow etcd’s clustering
guide.
Do not confgure external etcd in Sensu via backend command
line fags or the backend confguration fle
(/etc/sensu/backend.yml).

etcd-cipher-suites:

 - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305

 - TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305

sensu-backend start --etcd-cipher-suites

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AE

S_256_GCM_SHA384

sensu-backend start --etcd-cipher-suites

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 --etcd-cipher-suites

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

etcd-cipher-suites:

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

https://golang.org/pkg/crypto/tls/#pkg-constants
https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

etcd-client-cert-auth

description If true , enable client certifcate authentication. Otherwise, false .

type Boolean

default false

environment variable SENSU_BACKEND_ETCD_CLIENT_CERT_AUTH

command line
example

backend.yml confg fle
example

etcd-client-log-level

description Logging level for the internal etcd client: panic , fatal , error ,
warn , info , or debug .

type String

default error

environment variable SENSU_BACKEND_ETCD_CLIENT_LOG_LEVEL

command line

 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via
backend command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-client-cert-auth

etcd-client-cert-auth: true

sensu-backend start --etcd-client-log-level error

https://etcd.io/docs/latest/op-guide/clustering/

example

backend.yml confg
fle example

etcd-client-urls

description List of client URLs to use when a sensu-backend is not operating as an
etcd member. To confgure sensu-backend for use with an external etcd
instance, use this confguration option in conjunction with no-embed-
etcd when executing sensu-backend start or sensu-backend init. If you
do not use this option when using no-embed-etcd , sensu-backend start
and sensu-backend-init will fall back to –etcd-listen-client-urls.

type List

default http://127.0.0.1:2379

environment variable SENSU_BACKEND_ETCD_CLIENT_URLS

command line
example

backend.yml confg
fle example

etcd-client-log-level: "error"

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-client-urls

'https://10.0.0.1:2379 https://10.1.0.1:2379'

sensu-backend start --etcd-client-urls

https://10.0.0.1:2379 --etcd-client-urls

https://10.1.0.1:2379

etcd-client-urls:

 - https://10.0.0.1:2379

 - https://10.1.0.1:2379

https://etcd.io/docs/latest/op-guide/clustering/

etcd-discovery

description Exposes etcd’s embedded auto-discovery features. Attempts to use etcd
discovery to get the cluster confguration.

type String

default ""

environment variable SENSU_BACKEND_ETCD_DISCOVERY

command line
example

backend.yml confg
fle example

etcd-discovery-srv

description Exposes etcd’s embedded auto-discovery features. Attempts to use a
DNS SRV record to get the cluster confguration.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-discovery

https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579c

bf573de

etcd-discovery:

 -

https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579c

bf573de

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend

https://etcd.io/docs/latest/op-guide/clustering/#discovery
https://etcd.io/docs/latest/op-guide/clustering/#etcd-discovery
https://etcd.io/docs/latest/op-guide/clustering/#etcd-discovery
http://localhost:1313/sensu-go/6.8/files/backend.yml
https://etcd.io/docs/latest/op-guide/clustering/#dns-discovery
https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

type String

default ""

environment variable SENSU_BACKEND_ETCD_DISCOVERY_SRV

command line
example

backend.yml confg
fle example

etcd-initial-advertise-peer-urls

description List of this member’s peer URLs to advertise to the rest of
the cluster.

type List

default http://127.0.0.1:2380 (Debian and RHEL families)

http://$SENSU_HOSTNAME:2380 (Docker)

command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-discovery-srv example.org

etcd-discovery-srv:

 - example.org

NOTE: To use Sensu with an external etcd cluster,
follow etcd’s clustering guide.
Do not confgure external
etcd in Sensu via backend command line fags or the
backend confguration fle (/etc/sensu/backend.yml).

NOTE: Docker-only Sensu binds to the hostnames of
containers, represented here as SENSU_HOSTNAME in
Docker default values.

https://etcd.io/docs/latest/op-guide/clustering/

environment variable SENSU_BACKEND_ETCD_INITIAL_ADVERTISE_PEER_URLS

command line example

backend.yml confg fle example

etcd-initial-cluster

description Initial cluster confguration for bootstrapping.

type String

default default=http://127.0.0.1:2380 (Debian and RHEL families)

default=http://$SENSU_HOSTNAME:2380 (Docker)

environment variable SENSU_BACKEND_ETCD_INITIAL_CLUSTER

sensu-backend start --etcd-initial-advertise-

peer-urls

https://10.0.0.1:2380,https://10.1.0.1:2380

sensu-backend start --etcd-initial-advertise-

peer-urls https://10.0.0.1:2380 --etcd-initial-

advertise-peer-urls https://10.1.0.1:2380

etcd-initial-advertise-peer-urls:

 - https://10.0.0.1:2380

 - https://10.1.0.1:2380

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

NOTE: Docker-only Sensu binds to the hostnames of containers,
represented here as SENSU_HOSTNAME in Docker default values.

https://etcd.io/docs/latest/op-guide/clustering/

command line
example

backend.yml confg
fle example

etcd-initial-cluster-state

description Initial cluster state (new or existing).

type String

default new

environment variable SENSU_BACKEND_ETCD_INITIAL_CLUSTER_STATE

command line example

backend.yml confg fle
example

etcd-initial-cluster-token

sensu-backend start --etcd-initial-cluster backend-

0=https://10.0.0.1:2380,backend-

1=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380

etcd-initial-cluster: "backend-

0=https://10.0.0.1:2380,backend-

1=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380"

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via
backend command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-initial-cluster-state

existing

etcd-initial-cluster-state: "existing"

https://etcd.io/docs/latest/op-guide/clustering/

description Unique token for the etcd cluster. Provide the same etcd-

initial-cluster-token value for each cluster member. The
etcd-initial-cluster-token allows etcd to generate unique

cluster IDs and member IDs even for clusters with otherwise
identical confgurations, which prevents cross-cluster-interaction
and potential cluster corruption.

type String

default ""

environment variable SENSU_BACKEND_ETCD_INITIAL_CLUSTER_TOKEN

command line example

backend.yml confg fle
example

etcd-key-fle

description Path to the etcd client API TLS key fle. Secures communication between
the embedded etcd client API and any etcd clients.

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.
Do not confgure external etcd in Sensu
via backend command line fags or the backend confguration
fle (/etc/sensu/backend.yml).

sensu-backend start --etcd-initial-cluster-token

unique_token_for_this_cluster

etcd-initial-cluster-token:

"unique_token_for_this_cluster"

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

type String

environment variable SENSU_BACKEND_ETCD_KEY_FILE

command line
example

backend.yml confg
fle example

etcd-listen-client-urls

description List of URLs to listen on for client traffc. Sensu’s default embedded
etcd confguration listens for unencrypted client communication on port
2379.

type List

default http://127.0.0.1:2379 (Debian and RHEL families)

http://[::]:2379 (Docker)

environment variable SENSU_BACKEND_ETCD_LISTEN_CLIENT_URLS

command line example

sensu-backend start --etcd-key-fle /path/to/tls/backend-1-

key.pem

etcd-key-fle: "/path/to/tls/backend-1-key.pem"

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via
backend command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-listen-client-urls

https://10.0.0.1:2379,https://10.1.0.1:2379

sensu-backend start --etcd-listen-client-urls

https://10.0.0.1:2379 --etcd-listen-client-urls

https://10.1.0.1:2379

https://etcd.io/docs/latest/op-guide/clustering/

backend.yml confg fle
example

etcd-listen-peer-urls

description List of URLs to listen on for peer traffc. Sensu’s default embedded etcd
confguration listens for unencrypted peer communication on port 2380.

type List

default http://127.0.0.1:2380 (Debian and RHEL families)

http://[::]:2380 (Docker)

environment variable SENSU_BACKEND_ETCD_LISTEN_PEER_URLS

command line
example

backend.yml confg fle
example

etcd-listen-client-urls:

 - https://10.0.0.1:2379

 - https://10.1.0.1:2379

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via
backend command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380,https://10.1.0.1:2380

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380 --etcd-listen-peer-urls

https://10.1.0.1:2380

etcd-listen-peer-urls:

 - https://10.0.0.1:2380

 - https://10.1.0.1:2380

https://etcd.io/docs/latest/op-guide/clustering/

etcd-log-level

description Logging level for the embedded etcd server: panic , fatal , error ,
warn , info , or debug . Defaults to value provided for the backend

log level. If the backend log level is set to trace , the etcd log level will
be set to debug (trace is not a valid etcd log level).

type String

default Backend log level value (or debug , if the backend log level is set to
trace)

environment variable SENSU_BACKEND_ETCD_LOG_LEVEL

command line
example

backend.yml confg
fle example

etcd-name

description Human-readable name for this member.

type String

default default

environment variable SENSU_BACKEND_ETCD_NAME

command line
example

sensu-backend start --etcd-log-level debug

etcd-log-level: "debug"

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-name backend-0

https://etcd.io/docs/latest/op-guide/clustering/

backend.yml confg
fle example

etcd-peer-cert-fle

description Path to the peer server TLS certifcate fle. Sensu supports certifcate
bundles (or chains) as long as the server (or leaf) certifcate is the frst
certifcate in the bundle.

type String

environment variable SENSU_BACKEND_ETCD_PEER_CERT_FILE

command line
example

backend.yml confg
fle example

etcd-peer-client-cert-auth

description Enable peer client certifcate authentication.

etcd-name: "backend-0"

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-peer-cert-fle

/path/to/tls/backend-1.pem

etcd-peer-cert-fle: "/path/to/tls/backend-1.pem"

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.
Do not confgure external etcd in Sensu
via backend command line fags or the backend confguration
fle (/etc/sensu/backend.yml).

https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

type Boolean

default false

environment variable SENSU_BACKEND_ETCD_PEER_CLIENT_CERT_AUTH

command line example

backend.yml confg fle
example

etcd-peer-key-fle

description Path to the etcd peer API TLS key fle. Secures communication between
etcd cluster members.

type String

environment variable SENSU_BACKEND_ETCD_PEER_KEY_FILE

command line
example

backend.yml confg
fle example

sensu-backend start --etcd-peer-client-cert-auth

etcd-peer-client-cert-auth: true

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-peer-key-fle

/path/to/tls/backend-1-key.pem

etcd-peer-key-fle: "/path/to/tls/backend-1-key.pem"

https://etcd.io/docs/latest/op-guide/clustering/

etcd-peer-trusted-ca-fle

description Path to the etcd peer API server TLS trusted CA fle. Secures
communication between etcd cluster members.

type String

environment variable SENSU_BACKEND_ETCD_PEER_TRUSTED_CA_FILE

command line example

backend.yml confg fle
example

etcd-trusted-ca-fle

description Path to the client server TLS trusted CA certifcate fle. Secures
communication with the etcd client server.

type String

default ""

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.
Do not confgure external etcd in Sensu
via backend command line fags or the backend confguration
fle (/etc/sensu/backend.yml).

sensu-backend start --etcd-peer-trusted-ca-fle

./ca.pem

etcd-peer-trusted-ca-fle: "./ca.pem"

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

environment variable SENSU_BACKEND_ETCD_TRUSTED_CA_FILE

command line
example

backend.yml confg
fle example

etcd-unsafe-no-fsync

description The etcd-unsafe-no-fsync confguration option allows you to run
sensu-backend with an embedded etcd node for testing and
development with less load on the fle system. If true , disable fsync.
Otherwise, false .

type Boolean

default false

environment variable SENSU_BACKEND_ETCD_UNSAFE_NO_FSYNC

command line example

backend.yml confg fle
example

no-embed-etcd

description If true , do not embed etcd (use external etcd instead). Otherwise,
false .

sensu-backend start --etcd-trusted-ca-fle ./ca.pem

etcd-trusted-ca-fle: "./ca.pem"

sensu-backend start --etcd-unsafe-no-fsync

etcd-unsafe-no-fsync: true

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via backend
command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

https://etcd.io/docs/latest/op-guide/clustering/

type Boolean

default false

environment variable SENSU_BACKEND_NO_EMBED_ETCD

command line
example

backend.yml confg
fle example

Advanced confguration options

etcd-election-timeout

description Time that a follower node will go without hearing a heartbeat before
attempting to become leader itself. In milliseconds (ms). Set to at least
10 times the etcd-heartbeat-interval. Read the etcd time parameter
documentation for details and other considerations.

type Integer

default 3000

sensu-backend start --no-embed-etcd

no-embed-etcd: true

WARNING: Make sure to set the same election timeout value for
all etcd members in one cluster. Setting different values for etcd
members may reduce cluster stability.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via
backend command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

https://etcd.io/docs/current/tuning/#time-parameters
https://etcd.io/docs/current/tuning/#time-parameters
https://etcd.io/docs/latest/op-guide/clustering/

environment variable SENSU_BACKEND_ETCD_ELECTION_TIMEOUT

command line example

backend.yml confg fle
example

etcd-heartbeat-interval

description Interval at which the etcd leader will notify followers that it is still the
leader. In milliseconds (ms). Best practice is to set the interval based
on round-trip time between members. Read the etcd time parameter
documentation for details and other considerations.

type Integer

default 300

environment variable SENSU_BACKEND_ETCD_HEARTBEAT_INTERVAL

command line example

backend.yml confg fle
example

sensu-backend start --etcd-election-timeout 3000

etcd-election-timeout: 3000

WARNING: Make sure to set the same heartbeat interval value
for all etcd members in one cluster. Setting different values for
etcd members may reduce cluster stability.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via
backend command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-heartbeat-interval 300

etcd-heartbeat-interval: 300

https://etcd.io/docs/current/tuning/#time-parameters
https://etcd.io/docs/current/tuning/#time-parameters
https://etcd.io/docs/latest/op-guide/clustering/

etcd-max-request-bytes

description Maximum etcd request size in bytes that can be sent to an etcd
server by a client. Increasing this value allows etcd to process
events with large outputs at the cost of overall latency.

type Integer

default 1572864

environment variable SENSU_BACKEND_ETCD_MAX_REQUEST_BYTES

command line example

backend.yml confg fle
example

etcd-quota-backend-bytes

description Maximum etcd database size in bytes. Increasing this value
allows for a larger etcd database at the cost of performance.

WARNING: Use with caution. This confguration option requires
familiarity with etcd. Improper use of this option can result in a
non-functioning Sensu instance.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.
Do not confgure external etcd in Sensu via
backend command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

sensu-backend start --etcd-max-request-bytes 1572864

etcd-max-request-bytes: 1572864

https://etcd.io/docs/latest/op-guide/clustering/

type Integer

default 4294967296

environment variable SENSU_BACKEND_ETCD_QUOTA_BACKEND_BYTES

command line example

backend.yml confg fle
example

eventd-buffer-size

description Number of incoming events that can be buffered before being processed
by an eventd worker.

type Integer

default 100

environment variable SENSU_BACKEND_EVENTD_BUFFER_SIZE

WARNING: Use with caution. This confguration option
requires familiarity with etcd. Improper use of this option can
result in a non-functioning Sensu instance.

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.
Do not confgure external etcd in
Sensu via backend command line fags or the backend
confguration fle (/etc/sensu/backend.yml).

sensu-backend start --etcd-quota-backend-bytes

4294967296

etcd-quota-backend-bytes: 4294967296

WARNING: Modify with caution. Increasing this value may result in
greater memory usage.

https://etcd.io/docs/latest/op-guide/clustering/

command line
example

backend.yml confg
fle example

eventd-workers

description Number of workers spawned for processing incoming events that are
stored in the eventd buffer.

type Integer

default 100

environment variable SENSU_BACKEND_EVENTD_WORKERS

command line
example

backend.yml confg
fle example

keepalived-buffer-size

description Number of incoming keepalives that can be buffered before being
processed by a keepalived worker.

sensu-backend start --eventd-buffer-size 100

eventd-buffer-size: 100

WARNING: Modify with caution. Increasing this value may result in
greater CPU usage.

sensu-backend start --eventd-workers 100

eventd-workers: 100

WARNING: Modify with caution. Increasing this value may result
in greater memory usage.

type Integer

default 100

environment variable SENSU_BACKEND_KEEPALIVED_BUFFER_SIZE

command line example

backend.yml confg fle
example

keepalived-workers

description Number of workers spawned for processing incoming keepalives that
are stored in the keepalived buffer.

type Integer

default 100

environment variable SENSU_BACKEND_KEEPALIVED_WORKERS

command line
example

backend.yml confg
fle example

sensu-backend start --keepalived-buffer-size 100

keepalived-buffer-size: 100

WARNING: Modify with caution. Increasing this value may result in
greater CPU usage.

sensu-backend start --keepalived-workers 100

keepalived-workers: 100

pipelined-buffer-size

description Number of events to handle that can be buffered before being
processed by a pipelined worker.

type Integer

default 100

environment variable SENSU_BACKEND_PIPELINED_BUFFER_SIZE

command line example

backend.yml confg fle
example

pipelined-workers

description Number of workers spawned for handling events through the event
pipeline that are stored in the pipelined buffer.

type Integer

default 100

environment variable SENSU_BACKEND_PIPELINED_WORKERS

command line
example

WARNING: Modify with caution. Increasing this value may result in
greater memory usage.

sensu-backend start --pipelined-buffer-size 100

pipelined-buffer-size: 100

WARNING: Modify with caution. Increasing this value may result in
greater CPU usage.

sensu-backend start --pipelined-workers 100

backend.yml confg
fle example

Backend confguration methods

Backend confguration fle

You can customize the backend confguration in a .yml confguration fle.
The default backend
confguration fle path for Linux is /etc/sensu/backend.yml .

To use the backend.yml fle to confgure the backend, list the desired confguration attributes and
values.
Review the example Sensu backend confguration fle for a complete example.

Confguration via command line fags or environment variables overrides any confguration specifed in
the backend confguration fle.
Read Create overrides to learn more.

Command line fags

You can customize the backend confguration with sensu-agent start command line fags.

To use command line fags, specify the desired confguration options and values along with the
sensu-backend start command.
For example:

Confguration via command line fags overrides attributes specifed in a confguration fle or with
environment variables.
Read Create overrides to learn more.

pipelined-workers: 100

NOTE: The backend loads confguration upon startup.
If you make changes in the backend.yml

confguration fle after startup, you must restart the backend for the changes to take effect.

sensu-backend start --deregistration-handler slack_deregister --log-level debug

http://localhost:1313/sensu-go/6.8/files/backend.yml

Environment variables

Instead of using a confguration fle or command line fags, you can use environment variables to
confgure your Sensu backend.
Each backend confguration option has an associated environment
variable.
You can also create your own environment variables, as long as you name them correctly and
save them in the correct place.
Here’s how.

1. Create the fles from which the sensu-backend service confgured by our supported packages
will read environment variables:

2. Make sure the environment variable is named correctly.

3. Add the environment variable to the environment fle.

For example, to create api-listen-address as an environment variable and set it to
192.168.100.20:8080 :

sudo touch /etc/default/sensu-backend

SHELL

sudo touch /etc/sysconfg/sensu-backend

SHELL

To rename a confguration option you wish to specify as an environment variable,
prepend SENSU_BACKEND_ , convert dashes to underscores, and capitalize all letters.
For
example, the environment variable for the confguration option api-listen-address is
SENSU_BACKEND_API_LISTEN_ADDRESS .

For a custom environment variable, you do not have to prepend SENSU_BACKEND .
For
example, TEST_VAR_1 is a valid custom environment variable name.

echo 'SENSU_BACKEND_API_LISTEN_ADDRESS=192.168.100.20:8080' | sudo tee -a

/etc/default/sensu-backend

SHELL

SHELL

4. Restart the sensu-backend service so these settings can take effect:

Format for label and annotation environment variables

To use labels and annotations as environment variables in your handler confgurations, you must use a
specifc format when you create the label and annotation environment variables.

For example, to create the labels "region": "us-east-1" and "type": "website" as an
environment variable:

To create the annotations "maintainer": "Team A" and "webhook-url":

echo 'SENSU_BACKEND_API_LISTEN_ADDRESS=192.168.100.20:8080' | sudo tee -a

/etc/sysconfg/sensu-backend

sudo systemctl restart sensu-backend

SHELL

sudo systemctl restart sensu-backend

SHELL

NOTE: Sensu includes an environment variable for each backend confguration option.
They are
listed in the confguration description tables.

echo 'BACKEND_LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/default/sensu-backend

SHELL

echo 'BACKEND_LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/sysconfg/sensu-backend

SHELL

"https://hooks.slack.com/services/T0000/B00000/XXXXX" as an environment variable:

Use environment variables with the Sensu backend

Any environment variables you create in /etc/default/sensu-backend (Debian family) or
/etc/sysconfg/sensu-backend (RHEL family) will be available to handlers executed by the Sensu

backend.

For example, if you create a custom environment variable TEST_VARIABLE in your sensu-backend
fle, it will be available to use in your handler confgurations as $TEST_VARIABLE .
The following handler
will print the TEST_VARIABLE value set in your sensu-backend fle in /tmp/test.txt :

echo 'BACKEND_ANNOTATIONS='{"maintainer": "Team A", "webhook-url":

"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'' | sudo tee -a

/etc/default/sensu-backend

SHELL

echo 'BACKEND_ANNOTATIONS='{"maintainer": "Team A", "webhook-url":

"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'' | sudo tee -a

/etc/sysconfg/sensu-backend

SHELL

type: Handler

api_version: core/v2

metadata:

 name: print_test_var

spec:

 command: echo $TEST_VARIABLE >> ./tmp/test.txt

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

JSON

Create confguration overrides

Sensu has default settings and limits for certain confguration attributes, like the default log level.
Depending on your environment and preferences, you may want to create overrides for these Sensu-
specifc defaults and limits.

You can create confguration overrides in several ways:

Sensu applies the following precedence to override settings:

1. Arguments passed to the Sensu backend via command line confguration fags.
2. Environment variables in /etc/default/sensu-backend (Debian family) or

 "api_version": "core/v2",

 "metadata": {

 "name": "print_test_var"

 },

 "spec": {

 "command": "echo $TEST_VARIABLE >> ./tmp/test.txt",

 "timeout": 0,

 "type": "pipe"

 }

}

NOTE: We recommend using secrets with the Env provider to expose secrets from environment
variables on your Sensu backend nodes rather than using environment variables directly in your
handler commands.
Read the secrets reference and Use Env for secrets management for details.

Command line confguration fag arguments for sensu-backend start .

Environment variables in /etc/default/sensu-backend (Debian family) or
/etc/sysconfg/sensu-backend (RHEL family).

Confguration settings in the backend.yml confg fle.

NOTE: We do not recommend editing the systemd unit fle to create overrides.
Future package
upgrades can overwrite changes in the systemd unit fle.

https://docs.sensu.io/sensu-go/latest/operations/manage-secrets/secrets/

/etc/sysconfg/sensu-backend (RHEL family).
3. Confguration in the backend.yml confg fle.

For example, if you create overrides using all three methods, the command line confguration fag
values will take precedence over the values you specify in /etc/default/sensu-backend or
/etc/sysconfg/sensu-backend or the backend.yml confg fle.

Example override: Log level

The default log level for the Sensu backend is warn .
To override the default and automatically apply a
different log level for the backend, add the --log-level command line confguration fag when you
start the Sensu backend.
For example, to specify debug as the log level:

To confgure an environment variable for the desired backend log level:

To confgure the desired log level in the confg fle, add this line to backend.yml:

Event logging

If you wish, you can log all Sensu event data to a fle in JSON format.
The Sensu event log fle can be a
reliable input source for your favorite data lake solution as well as a buffer for event data that you send
to a database in case the database is unavailable.

sensu-backend start --log-level debug

echo 'SENSU_BACKEND_LOG_LEVEL=debug' | sudo tee -a /etc/default/sensu-backend

SHELL

echo 'SENSU_BACKEND_LOG_LEVEL=debug' | sudo tee -a /etc/sysconfg/sensu-backend

SHELL

log-level: debug

Depending on the number and size of events, logging status and metrics events to a fle can require
intensive input/output (I/O) performance.
Make sure you have adequate I/O capacity before using the
event logging function.

Use these backend confguration options to customize event logging:

event-log-buffer-size

description Buffer size of the event logger. Corresponds to the maximum number
of events kept in memory in case the log fle is temporarily unavailable
or more events have been received than can be written to the log fle.

type Integer

default 100000

environment variable SENSU_BACKEND_EVENT_LOG_BUFFER_SIZE

command line example

backend.yml confg fle
example

event-log-buffer-wait

description Buffer wait time for the event logger. When the buffer is full, the event
logger will wait for the specifed time for the writer to consume events

NOTE: Event logs do not include log messages produced by sensu-backend service.
To write
Sensu service logs to fat fles on disk, read Log Sensu services with systemd.

PRO TIP: TCP stream handlers, which send observability event data to TCP sockets for external
services to consume, are also a reliable way to transmit status and metrics event data without
writing events to a local fle.

sensu-backend start --event-log-buffer-size 100000

event-log-buffer-size: 100000

from the buffer.

type String

default 10ms

environment variable SENSU_BACKEND_EVENT_LOG_BUFFER_WAIT

command line example

backend.yml confg fle
example

event-log-fle

description Path to the event log fle.

type String

environment variable SENSU_BACKEND_EVENT_LOG_FILE

command line
example

backend.yml confg
fle example

event-log-parallel-encoders

sensu-backend start --event-log-buffer-wait 10ms

event-log-buffer-wait: 10ms

WARNING: The log fle should be located on a local drive. Logging
directly to network drives is not supported.

sensu-backend start --event-log-fle

/var/log/sensu/events.log

event-log-fle: "/var/log/sensu/events.log"

description Indicates whether Sensu should use parallel JSON encoders
for event logging. If true , Sensu sets the number of JSON
encoder workers to 50% of the total number of cores, with a
minimum of 2 (for example, 6 JSON encoders on a 12-core
machine). Otherwise, Sensu uses the default setting, which is a
single JSON encoding worker.

The event-log-parallel-encoders setting will not take
effect unless you also specify a path to the event log fle with
the event-log-fle confguration attribute.

type Boolean

default false

environment variable SENSU_BACKEND_EVENT_LOG_PARALLEL_ENCODERS

command line example

backend.yml confg fle
example

Log rotation

To manually rotate event logs, frst rename (move) the current log fle.
Then, send the SIGHUP signal to
the sensu-backend process so it creates a new log fle and starts logging to it.
Most Linux distributions
include logrotate to automatically rotate log fles as a standard utility, confgured to run once per
day by default.

Because event log fles can grow quickly for larger Sensu installations, we recommend using
logrotate to automatically rotate log fles more frequently.
To use the example log rotation

confgurations listed below, you may need to confgure logrotate to run once per hour.

Log rotation for systemd

In this example, the postrotate script will reload the backend after log rotate is complete.

sensu-backend start --event-log-parallel-encoders

true

event-log-parallel-encoders: true

https://unix.stackexchange.com/questions/29574/how-can-i-set-up-logrotate-to-rotate-logs-hourly
https://unix.stackexchange.com/questions/29574/how-can-i-set-up-logrotate-to-rotate-logs-hourly
https://unix.stackexchange.com/questions/29574/how-can-i-set-up-logrotate-to-rotate-logs-hourly

Without the postrotate script, the backend will not reload.
This will cause sensu-backend (and
sensu-agent, if translated for the Sensu agent) to no longer write to the log fle, even if logrotate
recreates the log fle.

Log rotation for sysvinit

Platform metrics logging

Sensu automatically writes core platform metrics in InfuxDB Line Protocol to a fle at
/var/log/sensu/backend-stats.log .
You can use this fle as an input source for your favorite data

lake solution.

/var/log/sensu/events.log

{

 rotate 3

 hourly

 missingok

 notifempty

 compress

 postrotate

 /bin/systemctl reload sensu-backend.service > /dev/null 2>/dev/null || true

 endscript

}

/var/log/sensu/events.log

{

 rotate 3

 hourly

 missingok

 notifempty

 compress

 postrotate

 kill -HUP `cat /var/run/sensu/sensu-backend.pid 2> /dev/null` 2> /dev/null ||

true

 endscript

}

https://docs.influxdata.com/enterprise_influxdb/v1.9/write_protocols/line_protocol_reference/

Metrics logging is enabled by default but can be disabled with the disable-platform-metrics
confguration option.
Sensu appends updated metrics at the interval you specify with the platform-
metrics-logging-interval confguration option (default is every 60 seconds).

To rotate the platform metrics log, use the same methods as for event log rotation.

Use these backend confguration options to customize platform metrics logging:

disable-platform-metrics

description true to disable platform metrics logging. Otherwise, false .

type Boolean

default false

environment variable SENSU_BACKEND_DISABLE_PLATFORM_METRICS

command line example

backend.yml confg fle
example

platform-metrics-log-fle

description Path to the platform metrics log fle.

type String

default /var/log/sensu/sensu-backend/stats.log

environment variable SENSU_BACKEND_PLATFORM_METRICS_LOG_FILE

sensu-backend start --disable-platform-metrics false

disable-platform-metrics: false

WARNING: The log fle should be located on a local drive.
Logging directly to network drives is not supported.

command line example

backend.yml confg fle
example

platform-metrics-logging-interval

description Interval at which Sensu should append metrics to the
platform metrics log.

type String

default 60s

environment variable SENSU_BACKEND_PLATFORM_METRICS_LOGGING_INTERVAL

command line example

backend.yml confg fle example

Service management

Start the service

sensu-backend start --platform-metrics-log-fle

/var/log/sensu/sensu-backend/stats.log

platform-metrics-log-fle: "/var/log/sensu/sensu-

backend/stats.log"

sensu-backend start --platform-metrics-

logging-interval 60s

platform-metrics-logging-interval: 60s

NOTE: Service management commands may require administrative privileges.

Use the sensu-backend tool to start the backend and apply confguration fags.

Start the backend with confguration fags:

View available confguration fags and defaults:

If you do not include any confguration fags with the sensu-backend start command, the backend
loads confguration from /etc/sensu/backend.yml by default.

Start the backend using a service manager:

Stop the service

Stop the backend service using a service manager:

Restart the service

Restart the backend using a service manager:

You must restart the backend to implement any confguration updates.

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug

sensu-backend start --help

sudo systemctl start sensu-backend

sudo systemctl stop sensu-backend

sudo systemctl restart sensu-backend

Enable on boot

Enable the backend to start on system boot:

Disable the backend from starting on system boot:

Get service status

View the status of the backend service using a service manager:

Get service version

Get the current backend version using the sensu-backend tool:

Get help

The sensu-backend tool provides general and command-specifc help fags.

sudo systemctl enable sensu-backend

sudo systemctl disable sensu-backend

NOTE: On older distributions of Linux, use sudo chkconfg sensu-server on to enable the
backend and sudo chkconfg sensu-server off to disable the backend.

sudo systemctl status sensu-backend

sensu-backend version

View sensu-backend commands:

List options for a specifc command (in this case, sensu-backend start):

sensu-backend help

sensu-backend start --help

Checks reference

Checks work with Sensu agents to produce observability events automatically.
You can use checks to
monitor server resources, services, and application health as well as collect and analyze metrics.
Read
Monitor server resources to get started.
Use Bonsai, the Sensu asset hub, to discover, download, and
share Sensu check dynamic runtime assets.

Check example (minimum recommended attributes)

This example shows a check resource defnition that includes the minimum recommended attributes.

NOTE: The attribute interval is not required if a valid cron schedule is defned.
Read
scheduling for more information.

type: CheckConfg

api_version: core/v2

metadata:

 name: check_minimum

spec:

 command: collect.sh

 handlers:

 - slack

 interval: 10

 publish: true

 subscriptions:

 - system

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

JSON

https://bonsai.sensu.io/

Check commands

Each Sensu check defnition specifes a command and the schedule at which it should be executed.
Check commands are executable commands that the Sensu agent executes.

A command may include command line arguments for controlling the behavior of the command
executable.
Many common checks are available as dynamic runtime assets from Bonsai and support
command line arguments so different check defnitions can use the same executable.

Check command execution

All check commands are executed by Sensu agents as the sensu user.
Commands must be
executable fles that are discoverable on the Sensu agent system (for example, installed in a system
$PATH directory).

Check result specifcation

 "name": "check_minimum"

 },

 "spec": {

 "command": "collect.sh",

 "subscriptions": [

 "system"

],

 "handlers": [

 "slack"

],

 "interval": 10,

 "publish": true

 }

}

NOTE: Sensu advises against requiring root privileges to execute check commands or scripts.
The
Sensu user is not permitted to kill timed-out processes invoked by the root user, which could result
in zombie processes.

https://bonsai.sensu.io/

Although Sensu agents attempt to execute any command defned for a check, successful check result
processing requires adherence to a simple specifcation.

At every execution of a check command, regardless of success or failure, the Sensu agent publishes
the check’s result for eventual handling by the event processor (the Sensu backend).

Check scheduling

The Sensu backend schedules checks and publishes check execution requests to entities via a
publish/subscribe model.
Checks have a defned set of subscriptions: transport topics to which the
Sensu backend publishes check requests.
Sensu entities become subscribers to these topics (called
subscriptions) via their individual subscriptions attribute.

You can schedule checks using the interval , cron , and publish attributes.
Sensu requires that
checks include either an interval attribute (interval scheduling) or a cron attribute (cron
scheduling).

Round robin checks

By default, Sensu schedules checks once per interval for each agent with a matching subscription: one
check execution per agent per interval.
Sensu also supports deduplicated check execution when
confgured with the round_robin check attribute.
For checks with round_robin set to true , Sensu

Result data is output to stdout or stderr.

For service checks, this output is typically a human-readable message.

For metric checks, this output contains the measurements gathered by the
check.

Exit status code indicates state.

0 indicates OK.

1 indicates WARNING.

2 indicates CRITICAL.

Exit status codes other than 0 , 1 , and 2 indicate an UNKNOWN or custom status

PRO TIP: If you’re familiar with the Nagios monitoring system, you may recognize this
specifcation — it is the same one that Nagios plugins use.
As a result, you can use Nagios plugins
with Sensu without any modifcation.

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Standard_streams

executes the check once per interval, cycling through the available agents alphabetically according to
agent name.

For example, for three agents confgured with the system subscription (agents A, B, and C), a check
confgured with the system subscription and round_robin set to true results in one observability
event per interval, with the agent creating the event following the pattern A -> B -> C -> A -> B -> C for
the frst six intervals.

In the diagram above, the standard check is executed by agents A, B, and C every 60 seconds.
The
round robin check cycles through the available agents, resulting in each agent executing the check
every 180 seconds.

To use check ttl and round_robin together, your check confguration must also specify a
proxy_entity_name .
If you do not specify a proxy_entity_name when using check ttl and
round_robin together, your check will stop executing.

Event storage for round robin scheduling

If you use round robin scheduling for check execution, we recommend using PostgreSQL rather than
etcd for event storage.
Etcd leases are unreliable as the scheduling mechanism for round robin check
execution, and etcd will not produce precise round robin behavior.

When you enable round robin scheduling on PostgreSQL, any existing round robin scheduling will stop

PRO TIP: Use round robin to distribute check execution workload across multiple agents when
using proxy checks.

http://localhost:1313/images/go/checks_reference/round_robin_diagram.png

and migrate to PostgreSQL as entities check in with keepalives.
Sensu will gradually delete the existing
etcd scheduler state as keepalives on the etcd scheduler keys expire over time.

Interval scheduling

You can schedule a check to be executed at regular intervals using the interval and publish
check attributes.
For example, to schedule a check to execute every 60 seconds, set the interval
attribute to 60 and the publish attribute to true .

Example interval check

NOTE: When creating an interval check, Sensu calculates an initial offset to splay the check’s frst
scheduled request.
This helps balance the load of both the backend and the agent and may result
in a delay before initial check execution.

type: CheckConfg

api_version: core/v2

metadata:

 name: interval_check

spec:

 command: check-cpu.sh -w 75 -c 90

 handlers:

 - slack

 interval: 60

 publish: true

 subscriptions:

 - system

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "interval_check"

 },

 "spec": {

JSON

Cron scheduling

You can also schedule checks using cron syntax.

Examples of valid cron values include:

Example cron checks

To schedule a check to execute once a minute at the start of the minute, set the cron attribute to *
* * * * and the publish attribute to true :

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true

 }

}

cron: CRON_TZ=Asia/Tokyo * * * * *

cron: TZ=Asia/Tokyo * * * * *

cron: '* * * * *'

NOTE: If you’re using YAML to create a check that uses cron scheduling and the frst character of
the cron schedule is an asterisk (*), place the entire cron schedule inside single or double
quotes (for example, cron: '* * * * *').

type: CheckConfg

api_version: core/v2

metadata:

 name: cron_check

spec:

 command: check-cpu.sh -w 75 -c 90

 cron: '* * * * *'

 handlers:

YML

https://en.wikipedia.org/wiki/Cron#CRON_expression

Use a prefx of TZ= or CRON_TZ= to set a timezone for the cron attribute:

 - slack

 publish: true

 subscriptions:

 - system

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "cron_check"

 },

 "spec": {

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "cron": "* * * * *",

 "publish": true

 }

}

JSON

type: CheckConfg

api_version: core/v2

metadata:

 name: cron_check

spec:

 check_hooks: null

 command: hi

 cron: CRON_TZ=Asia/Tokyo * * * * *

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 0

 low_fap_threshold: 0

YML

https://en.wikipedia.org/wiki/Cron#Time_zone_handling

 output_metric_format: ""

 output_metric_handlers: null

 output_metric_tags: null

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: null

 stdin: false

 subdue: null

 subscriptions:

 - sys

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "cron_check"

 },

 "spec": {

 "check_hooks": null,

 "command": "hi",

 "cron": "CRON_TZ=Asia/Tokyo * * * * *",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 0,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "output_metric_tags": null,

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "sys"

JSON

Ad hoc scheduling

In addition to automatic execution, you can create checks to be scheduled manually using
core/v2/checks API endpoints.
To create a check with ad-hoc scheduling, set the publish attribute to
false in addition to an interval or cron schedule.

Example ad hoc check

],

 "timeout": 0,

 "ttl": 0

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 name: ad_hoc_check

spec:

 command: check-cpu.sh -w 75 -c 90

 handlers:

 - slack

 interval: 60

 publish: false

 subscriptions:

 - system

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "ad_hoc_check"

 },

 "spec": {

 "command": "check-cpu.sh -w 75 -c 90",

JSON

Proxy checks

Sensu supports running proxy checks that associate events with a entity that isn’t actually executing
the check, regardless of whether that entity is an agent entity or a proxy entity.
Proxy entities allow
Sensu to monitor external resources on systems and devices where a Sensu agent cannot be
installed, like a network switch or a website.
You can create a proxy check using proxy_entity_name

or proxy_requests .

When you create a proxy check, make sure the check defnition includes a subscription that matches
the subscription of at least one agent entity to defne which agents will run the check.
Proxy entities do
not use subscriptions.

To avoid duplicate events, use the round_robin check attribute with proxy checks.
Read Round robin
checks and Proxy entities and round robin scheduling to learn more.

Read Monitor external resources with proxy entities to learn how to create proxy checks to generate
events for one or more proxy entities.

Use a proxy check to monitor a proxy entity

When executing checks that include a proxy_entity_name , Sensu agents report the resulting events
under the specifed proxy entity instead of the agent entity.
If the proxy entity doesn’t exist, Sensu
creates the proxy entity when the backend receives the event.

Example proxy check using proxy_entity_name

The following proxy check runs every 60 seconds, cycling through the agents with the run_proxies
subscription alphabetically according to the agent name, for the proxy entity sensu-site .

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": false

 }

}

YML

Use a proxy check to monitor multiple proxy entities

The proxy_requests check attributes allow Sensu to run a check for each entity that matches the
expressions specifed in the entity_attributes , resulting in observability events that represent
each matching proxy entity.
The entity attributes must match exactly as stated.

type: CheckConfg

api_version: core/v2

metadata:

 name: proxy_check

spec:

 command: http_check.sh https://sensu.io

 handlers:

 - slack

 interval: 60

 proxy_entity_name: sensu-site

 publish: true

 round_robin: true

 subscriptions:

 - run_proxies

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "proxy_check"

 },

 "spec": {

 "command": "http_check.sh https://sensu.io",

 "subscriptions": ["run_proxies"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true,

 "round_robin": true,

 "proxy_entity_name": "sensu-site"

 }

}

JSON

No variables or directives have any special meaning, but you can use Sensu query expressions to
perform more complicated fltering on the available value, such as fnding entities with a particular
class or label.

Combine proxy_requests attributes with with token substitution as shown in the example proxy
check below to monitor multiple entities using a single check defnition.

Example proxy check using proxy_requests

The following proxy check runs every 60 seconds, cycling through the agents with the run_proxies
subscription alphabetically according to the agent name, for all existing proxy entities with the custom
label proxy_type set to website .

This check uses token substitution to import the value of the custom entity label url to complete the
check command.
Read the entities reference for information about adding custom labels to entities.

type: CheckConfg

api_version: core/v2

metadata:

 name: proxy_check_proxy_requests

spec:

 command: http_check.sh {{ .labels.url }}

 handlers:

 - slack

 interval: 60

 proxy_requests:

 entity_attributes:

 - entity.labels.proxy_type == 'website'

 publish: true

 round_robin: true

 subscriptions:

 - run_proxies

YML

{

 "type": "CheckConfg",

JSON

Fine-tune proxy check scheduling with splay

Use the splay and splay_coverage attributes to distribute proxy check executions across the
check interval.

To continue the example proxy_check_proxy_requests check, if the check matches three proxy
entities, you will get a single burst of three check executions (with the resulting events) every 60
seconds.
Use the splay and splay_coverage attributes to distribute the three check executions
over the specifed check interval instead of all at the same time.

The following example adds splay set to true and splay_coverage set to 90 within the
proxy_requests object.
With this addition, instead of three check executions in a single burst every

60 seconds, Sensu will distribute the three check executions evenly across a 54-second period (90%
of the 60-second interval):

 "api_version": "core/v2",

 "metadata": {

 "name": "proxy_check_proxy_requests"

 },

 "spec": {

 "command": "http_check.sh {{ .labels.url }}",

 "subscriptions": ["run_proxies"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true,

 "proxy_requests": {

 "entity_attributes": [

 "entity.labels.proxy_type == 'website'"

]

 },

 "round_robin": true

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 name: proxy_check_proxy_requests

YML

spec:

 command: http_check.sh {{ .labels.url }}

 handlers:

 - slack

 interval: 60

 proxy_requests:

 entity_attributes:

 - entity.labels.proxy_type == 'website'

 splay: true

 splay_coverage: 90

 publish: true

 round_robin: true

 subscriptions:

 - run_proxies

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "proxy_check_proxy_requests"

 },

 "spec": {

 "command": "http_check.sh {{ .labels.url }}",

 "handlers": [

 "slack"

],

 "interval": 60,

 "proxy_requests": {

 "entity_attributes": [

 "entity.labels.proxy_type == 'website'"

],

 "splay": true,

 "splay_coverage": 90

 },

 "publish": true,

 "round_robin": true,

 "subscriptions": [

 "run_proxies"

]

 }

JSON

Check token substitution

Sensu check defnitions may include attributes that you wish to override on an entity-by-entity basis.
For
example, check commands, which may include command line arguments for controlling the behavior of
the check command, may beneft from entity-specifc thresholds.
Sensu check tokens are check
defnition placeholders that the Sensu agent will replace with the corresponding entity defnition
attribute values (including custom attributes).

Learn how to use check tokens with the Sensu tokens reference documentation.

Subdues

Use the subdues attribute in check defnitions to set specifc periods of time when Sensu should not
execute the check.
Subdues allow you to schedule alert-free periods of time, such as during sleeping
hours, weekends, or special maintenance periods.

You can set more than one subdue at a time.
Each subdue includes a begin and end time as well as
how often to repeat the subdue, if desired.

For example, this check will be subdued (in other words, will not be executed) from 5:00 p.m. until 8:00
a.m. PDT on every weekday, and for the entire day on weekends, as well as every Friday from 10:00
until 11:00 a.m. PDT:

}

NOTE: Check tokens are processed before check execution, so token substitutions will not apply
to check data delivered via the local agent socket input.

type: CheckConfg

api_version: core/v2

metadata:

 name: check_cpu

spec:

 command: check-cpu-usage -w 75 -c 90

YML

 interval: 60

 handlers:

 - slack

 publish: true

 round_robin: false

 runtime_assets:

 - check-cpu-usage

 subdues:

 - begin: "2022-04-18T17:00:00-07:00"

 end: "2022-04-19T08:00:00-07:00"

 repeat:

 - weekdays

 - begin: "2022-04-23T00:00:00-07:00"

 end: "2022-04-23T23:59:59-07:00"

 repeat:

 - weekends

 - begin: "2022-04-22T10:00:00-07:00"

 end: "2022-04-22T11:00:00-07:00"

 repeat:

 - fridays

 subscriptions:

 - system

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu"

 },

 "spec": {

 "command": "check-cpu-usage -w 75 -c 90",

 "interval": 60,

 "handlers": [

 "slack"

],

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

JSON

Subdues and repeat

If you include a repeat array in a subdues object, Sensu will start the subdue period on the date
you specify.
After the frst subdue, Sensu uses the begin and end values only to determine the time
of day to start and stop the subdue.

 "subdues": [

 {

 "begin": "2022-04-18T17:00:00-07:00",

 "end": "2022-04-19T08:00:00-07:00",

 "repeat": [

 "weekdays"

]

 },

 {

 "begin": "2022-04-23T00:00:00-07:00",

 "end": "2022-04-23T23:59:59-07:00",

 "repeat": [

 "weekends"

]

 },

 {

 "begin": "2022-04-22T10:00:00-07:00",

 "end": "2022-04-22T11:00:00-07:00",

 "repeat": [

 "fridays"

]

 }

],

 "subscriptions": [

 "system"

]

 }

}

NOTE: Check subdue repeats are based on the specifed begin and end times and not
duration or the difference between the begin and end times.
Read Repeat and multi-day
subdues for more information.

In the above example, on April 18, 2022, Sensu will apply the weekdays subdue at 5:00 p.m. PDT
and end it on April 19 at 8:00 a.m. PDT.
On April 19, Sensu will apply the weekdays subdue again at
5:00 p.m. PDT and end it on April 20 at 8:00 a.m. PDT, and so on.

Valid values for repeat arrays

This table lists and describes valid values for the repeat array:

Value Description

mondays

tuesdays

wednesdays

thursdays

fridays

saturdays

sundays

Subdue on the specifed day, at the same time of day

weekdays Subdue on all Mondays, Tuesdays, Wednesdays, Thursdays, and
Fridays, at the same time of day

weekends Subdue on all Saturdays and Sundays, at the same time of day

daily Subdue once every day, at the same time of day

weekly Subdue once per week on the same day, at the same time of day

monthly Subdue once per month on the same day, at the same time of day

annually Subdue once per year on the same day, at the same time of day

Repeat and multi-day subdues

Because repeat schedules for subdues are based only on the specifed time of day, you may need to
confgure more than one repeat for multi-day subdues.

For example, suppose that you want to subdue a check on the weekends.
You might set a repeat that
starts on a Friday at 5:00 p.m. PDT and ends on Monday at 8:00 a.m. PDT:

YML

The frst weekend, your repeat will work as expected to subdue the check from 5:00 p.m. PDT on
Friday until 8:00 a.m. PDT on Monday.

After the frst weekend, the subdue will start as expected at 5:00 p.m. PDT on Friday, but it will expire
at 8:00 a.m. PDT on Saturday instead of Monday.
This is because after the frst instance, repeats are
based only on the specifed begin and end times.
Sensu uses the dates to schedule only the frst
subdue.

Instead, use the following three-part confguration to achieve the desired repeat schedule (every Friday
at 5:00 p.m. PDT until Monday at 8:00 a.m. PDT):

subdues:

- begin: "2022-05-06T17:00:00-07:00"

 end: "2022-05-09T08:00:00-07:00"

 repeat:

 - fridays

{

 "subdues": [

 {

 "begin": "2022-05-06T17:00:00-07:00",

 "end": "2022-05-09T08:00:00-07:00",

 "repeat": [

 "fridays"

]

 }

]

}

JSON

subdues:

- begin: "2022-05-06T17:00:00-07:00"

 end: "2022-05-06T23:59:59-07:00"

 repeat:

 - fridays

- begin: "2022-05-07T00:00:00-07:00"

 end: "2022-05-07T23:59:59-07:00"

YML

With this confguration, the repeat schedule will subdue the check every Friday from 5:00 p.m. PDT
until midnight, the entire 24 hours on every Saturday and Sunday, and every Monday from midnight
until 8:00 a.m. PDT.

 repeat:

 - weekends

- begin: "2022-05-09T00:00:00-07:00"

 end: "2022-05-09T08:00:00-07:00"

 repeat:

 - mondays

{

 "subdues": [

 {

 "begin": "2022-05-06T17:00:00-07:00",

 "end": "2022-05-06T23:59:59-07:00",

 "repeat": [

 "fridays"

]

 },

 {

 "begin": "2022-05-07T00:00:00-07:00",

 "end": "2022-05-07T23:59:59-07:00",

 "repeat": [

 "weekends"

]

 },

 {

 "begin": "2022-05-09T00:00:00-07:00",

 "end": "2022-05-09T08:00:00-07:00",

 "repeat": [

 "mondays"

]

 }

]

}

JSON

Check hooks

Check hooks are commands run by the Sensu agent in response to the result of check command
execution.
The Sensu agent will execute the appropriate confgured hook command, depending on the
check execution status (for example, 0 , 1 , or 2).

Learn how to use check hooks with the Sensu hooks reference documentation.

Check specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
checks in this version of Sensu, this attribute should always be
core/v2 .

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the check, including name ,

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

check defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. Read metadata
attributes for details.

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example
metadata:

 name: sensu-site-perf

 namespace: development

 created_by: admin

 labels:

 region: us-west-1

 environment: dev

 annotations:

 slack-channel: "#monitoring"

 managed-by: ops

 playbooks: www.playbooks-example.url

YML

{

 "metadata": {

 "name": "sensu-site-perf",

 "namespace": "development",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1",

 "environment": "dev"

 },

 "annotations": {

 "slack-channel": "#monitoring",

 "managed-by": "ops",

 "playbooks": "www.playbooks-example.url"

 }

 }

}

JSON

spec

description Top-level map that includes the check spec attributes.

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example
spec:

 check_hooks: null

 command: collect.sh

 discard_output: true

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: prometheus_text

 output_metric_tags:

 - name: instance

 value: '{{ .name }}'

 - name: namespace

 value: "{{ .namespace }}"

 - name: service

 value: '{{ .labels.service }}'

 output_metric_thresholds:

 - name: system_mem_used

 tags: null

 null_status: 0

 thresholds:

 - max: "75.0"

 min: ""

 status: 1

 - max: "90.0"

 min: ""

 status: 2

YML

 - name: system_host_processes

 tags:

 - name: namespace

 value: production

 null_status: 0

 thresholds:

 - max: "50"

 min: "5"

 status: 1

 - max: "75"

 min: "2"

 status: 2

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: prometheus_gateway_workfows

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: null

 stdin: false

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "spec": {

 "check_hooks": null,

 "command": "collect.sh",

 "discard_output": true,

 "env_vars": null,

 "handlers": [

],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "output_metric_format": "prometheus_text",

 "output_metric_tags": [

JSON

 {

 "name": "instance",

 "value": "{{ .name }}"

 },

 {

 "name": "namespace",

 "value": "{{ .namespace }}"

 },

 {

 "name": "service",

 "value": "{{ .labels.service }}"

 }

],

 "output_metric_thresholds": [

 {

 "name": "system_mem_used",

 "tags": null,

 "null_status": 0,

 "thresholds": [

 {

 "max": "75.0",

 "min": "",

 "status": 1

 },

 {

 "max": "90.0",

 "min": "",

 "status": 2

 }

]

 },

 {

 "name": "system_host_processes",

 "tags": [

 {

 "name": "namespace",

 "value": "production"

 }

],

 "null_status": 0,

 "thresholds": [

 {

type

description Top-level attribute that specifes the sensuctl create resource type.
Checks should always be type CheckConfg .

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

 "max": "50",

 "min": "5",

 "status": 1

 },

 {

 "max": "75",

 "min": "2",

 "status": 2

 }

]

 }

],

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "prometheus_gateway_workfows"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": null,

 "stdin": false,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

type String

example

Metadata attributes

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

type: CheckConfg

YML

{

 "type": "CheckConfg"

}

JSON

annotations:

 slack-channel: "#monitoring"

 managed-by: ops

 playbooks: www.playbooks-example.url

YML

JSON

created_by

description Username of the Sensu user who created the check or last updated the
check. Sensu automatically populates the created_by feld when the
check is created or updated.

required false

type String

example

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

{

 "annotations": {

 "slack-channel": "#monitoring",

 "managed-by": "ops",

 "playbooks": "www.playbooks-example.url"

 }

}

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

name

description Unique string used to identify the check. Check names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each check must have a unique name within its namespace.

required true

type String

example

labels:

 region: us-west-1

 environment: dev

YML

{

 "labels": {

 "region": "us-west-1",

 "environment": "dev"

 }

}

JSON

name: sensu-site-perf

YML

https://regex101.com/r/zo9mQU/2

namespace

description Sensu RBAC namespace that the check belongs to.

required false

type String

default default

example

Spec attributes

{

 "name": "sensu-site-perf"

}

JSON

namespace: development

YML

{

 "namespace": "development"

}

JSON

NOTE: Spec attributes are not required when sending an HTTP POST request to the agent
events API or the backend core/v2/events API.
When doing so, the spec attributes are listed as
individual top-level attributes in the check defnition instead.

check_hooks

description Array of check response types with respective arrays of Sensu hook
names. Sensu hooks are commands run by the Sensu agent in response
to the result of the check command execution. Hooks are executed in
order of precedence based on their severity type: 1 to 255 , ok ,
warning , critical , unknown , and fnally non-zero .

required false

type Array

example
check_hooks:

- '1':

 - playbook-warning

 - collect-diagnostics

- critical:

 - playbook-critical

 - collect-diagnostics

 - process-tree

YML

{

 "check_hooks": [

 {

 "1": [

 "playbook-warning",

 "collect-diagnostics"

]

 },

 {

 "critical": [

 "playbook-critical",

 "collect-diagnostics",

 "process-tree"

]

 }

]

}

JSON

command

description Check command to be executed.

required true

type String

example

cron

description When the check should be executed, using cron syntax or a predefned
schedule. Use a prefx of TZ= or CRON_TZ= to set a timezone for the
cron attribute.

required true (unless interval is confgured)

type String

command: http-perf --url https://sensu.io --warning 1s --

critical 2s

YML

{

 "command": "http-perf --url https://sensu.io --warning 1s

--critical 2s"

}

JSON

NOTE: If you’re using YAML to create a check that uses cron
scheduling and the frst character of the cron schedule is an asterisk
(*), place the entire cron schedule inside single or double quotes
(for example, cron: '* * * * *').

YML

https://en.wikipedia.org/wiki/Cron#CRON_expression
https://godoc.org/github.com/robfig/cron#hdr-Predefined_schedules
https://godoc.org/github.com/robfig/cron#hdr-Predefined_schedules
https://en.wikipedia.org/wiki/Cron#Time_zone_handling

example

env_vars

description Array of environment variables to use with command execution.

required false

type Array

example

cron: 0 0 * * *

{

 "cron": "0 0 * * *"

}

JSON

NOTE: To add env_vars to a check, use sensuctl create .

env_vars:

- APP_VERSION=2.5.0

- CHECK_HOST=my.host.internal

YML

{

 "env_vars": [

 "APP_VERSION=2.5.0",

 "CHECK_HOST=my.host.internal"

]

}

JSON

handlers

description Array of Sensu event handlers (names) to use for events created by the
check. Each array item must be a string.

required false

type Array

example

high_fap_threshold

description Flap detection high threshold (% state change) for the check. Sensu
uses the same fap detection algorithm as Nagios. Read the event
reference to learn more about how Sensu uses the

NOTE: The names of Sumo Logic metrics handlers and TCP stream
handlers are not valid values for the handlers array.
Only traditional
handlers are valid for the handlers array.

To use Sumo Logic metrics or TCP stream handlers, include them in
a pipeline workfow and reference the pipeline name in the check
pipelines array.

handlers:

- pagerduty

- slack

YML

{

 "handlers": [

 "pagerduty",

 "slack"

]

}

JSON

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html

high_fap_threshold value.

required true (if low_fap_threshold is confgured)

type Integer

example

interval

description How often the check is executed. In seconds.

required true (unless cron is confgured)

type Integer

example

low_fap_threshold

high_fap_threshold: 60

YML

{

 "high_fap_threshold": 60

}

JSON

interval: 60

YML

{

 "interval": 60

}

JSON

description Flap detection low threshold (% state change) for the check. Sensu uses
the same fap detection algorithm as Nagios. Read the event reference to
learn more about how Sensu uses the low_fap_threshold value.

required false

type Integer

example

output_metric_format

description Metric format generated by the check command. Sensu supports the
following metric formats:
nagios_perfdata (Nagios Performance Data)
graphite_plaintext (Graphite Plaintext Protocol)
infuxdb_line (InfuxDB Line Protocol)
opentsdb_line (OpenTSDB Data Specifcation)
prometheus_text (Prometheus Exposition Text)

When a check includes an output_metric_format , Sensu will
extract the metrics from the check output and add them to the event
data in Sensu metric format. Read Collect metrics with Sensu checks.

required false

type String

example

low_fap_threshold: 20

YML

{

 "low_fap_threshold": 20

}

JSON

output_metric_format:

- nagios_perfdata

YML

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
https://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://docs.influxdata.com/enterprise_influxdb/v1.9/write_protocols/line_protocol_reference/
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#data-specification
https://prometheus.io/docs/instrumenting/exposition_formats/#text-based-format

output_metric_handlers

description Array of Sensu handlers to use for events created by the check.
Each array item must be a string. Use output_metric_handlers
in place of the handlers attribute if output_metric_format is
confgured. Metric handlers must be able to process Sensu metric
format. The Sensu InfuxDB handler provides an example.

required false

type Array

example

output_metric_tags

description Custom tags to enrich metric points produced by check output metric

{

 "output_metric_format": [

 "nagios_perfdata"

]

}

JSON

output_metric_handlers:

- infux-db

YML

{

 "output_metric_handlers": [

 "infux-db"

]

}

JSON

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

extraction. One name/value pair make up a single tag. The
output_metric_tags array can contain multiple tags.

You can use check token substitution for the value attribute in output
metric tags.

required false

type Array

example

output_metric_thresholds

description Array of metric names and threshold values to compare to check
output metrics for metric threshold evaluation.

output_metric_tags:

- name: instance

 value: "{{ .name }}"

- name: region

 value: "{{ .labels.region }}"

YML

{

 "output_metric_tags": [

 {

 "name": "instance",

 "value": "{{ .name }}"

 },

 {

 "name": "region",

 "value": "{{ .labels.region }}"

 }

]

}

JSON

NOTE: To apply metric threshold evaluation, check defnitions

required false

type Array

example

must include the output_metric_format attribute with a
value that specifes one of Sensu’s supported output metric
formats.

output_metric_thresholds:

- name: system_mem_used

 tags: ''

 null_status: 0

 thresholds:

 - max: '75.0'

 min: ''

 status: 1

 - max: '90.0'

 min: ''

 status: 2

- name: system_host_processes

 tags:

 - name: namespace

 value: production

 null_status: 0

 thresholds:

 - max: '50'

 min: '5'

 status: 1

 - max: '75'

 min: '2'

 status: 2

YML

{

 "output_metric_thresholds": [

 {

 "name": "system_mem_used",

 "tags": null,

 "null status": 0,

JSON

 "thresholds": [

 {

 "max": "75.0",

 "min": "",

 "status": 1

 },

 {

 "max": "90.0",

 "min": "",

 "status": 2

 }

]

 },

 {

 "name": "system_host_processes",

 "tags": [

 {

 "name": "namespace",

 "value": "production"

 }

],

 "null_status": 0,

 "thresholds": [

 {

 "max": "50",

 "min": "5",

 "status": 1

 },

 {

 "max": "75",

 "min": "2",

 "status": 2

 }

]

 }

]

}

pipelines

description Name, type, and API version for the pipelines to use for event
processing. All the observability events that the check produces will be
processed according to the pipelines listed in the pipeline array. Read
pipelines attributes for more information.

required false

type Array

example

proxy_entity_name

description Entity name. Used to create a proxy entity for an external resource (for
example, a network switch).

required false

type String

validated \A[\w\.\-]+\z

pipelines:

- type: Pipeline

 api_version: core/v2

 name: incident_alerts

YML

{

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "incident_alerts"

 }

]

}

JSON

https://regex101.com/r/zo9mQU/2

example

proxy_requests

description Assigns a check to run for multiple entities according to their
entity_attributes . In the example below, the check executes for all

entities with entity class proxy and the custom proxy type label
website . The proxy_requests attributes allow you to reuse check

defnitions for a group of entities. For more information, read Proxy
requests attributes and Monitor external resources with proxy entities.

required false

type Hash

example

proxy_entity_name: switch-dc-01

YML

{

 "proxy_entity_name": "switch-dc-01"

}

JSON

proxy_requests:

 entity_attributes:

 - entity.entity_class == 'proxy'

 - entity.labels.proxy_type == 'website'

 splay: true

 splay_coverage: 90

YML

{

 "proxy_requests": {

 "entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

JSON

publish

description true if check requests are published for the check. Otherwise, false .

required false

type Boolean

default false

example

round_robin

description When set to true , Sensu executes the check once per interval, cycling
through each subscribing agent in turn. Read round robin checks for
more information.

Use the round_robin attribute with proxy checks to avoid duplicate
events and distribute proxy check executions evenly across multiple
agents. Read about proxy checks for more information.

],

 "splay": true,

 "splay_coverage": 90

 }

}

publish: true

YML

{

 "publish": true

}

JSON

To use check ttl and round_robin together, your check
confguration must also specify a proxy_entity_name . If you do not
specify a proxy_entity_name when using check ttl and
round_robin together, your check will stop executing.

required false

type Boolean

default false

example

runtime_assets

description Array of Sensu dynamic runtime assets (names). Required at runtime for
the execution of the command .

required false

type Array

example

round_robin: true

YML

{

 "round_robin": true

}

JSON

runtime_assets:

- http-checks

YML

{

 "runtime_assets": [

 "http-checks"

JSON

scheduler

description Type of scheduler that schedules the check. Sensu automatically sets
the scheduler value and overrides any user-entered values. Value
may be:

required false

type String

example

secrets

]

}

memory for checks scheduled in-memory

etcd for checks scheduled with etcd leases and watchers
(check attribute round_robin: true and etcd used for event
storage)

postgres for checks scheduled with PostgreSQL using
transactions and asynchronous notifcation (check attribute
round_robin: true and PostgreSQL used for event storage

with datastore attribute enable_round_robin: true)

scheduler: postgres

YML

{

 "scheduler": "postgres"

}

JSON

description Array of the name/secret pairs to use with command execution.

required false

type Array

example

silenced

description Silences that apply to the check.

type Array

example

secrets:

- name: PAGERDUTY_TOKEN

 secret: sensu-pagerduty-token

YML

{

 "secrets": [

 {

 "name": "PAGERDUTY_TOKEN",

 "secret": "sensu-pagerduty-token"

 }

]

}

JSON

silenced:

- "*:routers"

YML

{

 "silenced": [

 "*:routers"

]

JSON

stdin

description true if the Sensu agent writes JSON serialized Sensu entity and check
data to the command process’ stdin. The command must expect the
JSON data via stdin, read it, and close stdin. Otherwise, false . This
attribute cannot be used with existing Sensu check plugins or Nagios
plugins because the Sensu agent will wait indefnitely for the check
process to read and close stdin.

required false

type Boolean

default false

example

subdue (placeholder)

description Use the subdues attribute to stop check execution during specifc
periods. This subdue attribute appears in check defnitions by
default, but it is a placeholder and should not be modifed.

example

}

stdin: true

YML

{

 "stdin": true

}

JSON

subdue: null

YML

subdues

description Specifc periods of time when Sensu should not send alerts based on the
events the check produces. Use to schedule alert-free periods of time,
such as during sleeping hours, weekends, or special maintenance
periods. Read subdues attributes for more information.

required false

type Array

example

{

 "subdue": null

}

JSON

subdues:

 - begin: "2022-04-18T17:00:00-07:00"

 end: "2022-04-19T08:00:00-07:00"

 repeat:

 - weekdays

 - begin: "2022-04-23T00:00:00-07:00"

 end: "2022-04-23T23:59:59-07:00"

 repeat:

 - weekends

 - begin: "2022-04-22T10:00:00-07:00"

 end: "2022-04-22T11:00:00-07:00"

 repeat:

 - fridays

YML

{

 "subdues": [

 {

 "begin": "2022-04-18T17:00:00-07:00",

JSON

subscriptions

description Array of Sensu entity subscriptions that check requests will be sent to.
The array cannot be empty and its items must each be a string.

required true

type Array

example

 "end": "2022-04-19T08:00:00-07:00",

 "repeat": [

 "weekdays"

]

 },

 {

 "begin": "2022-04-23T00:00:00-07:00",

 "end": "2022-04-23T23:59:59-07:00",

 "repeat": [

 "weekends"

]

 },

 {

 "begin": "2022-04-22T10:00:00-07:00",

 "end": "2022-04-22T11:00:00-07:00",

 "repeat": [

 "fridays"

]

 }

]

}

subscriptions:

- system

YML

{

JSON

timeout

description Check execution duration timeout (hard stop). In seconds.

required false

type Integer

example

ttl

description The time-to-live (TTL) until check results are considered stale. In
seconds. If an agent stops publishing results for the check and the TTL
expires, an event will be created for the agent’s entity.

The check ttl must be greater than the check interval and should
allow enough time for the check execution and result processing to
complete. For example, for a check that has an interval of 60
(seconds) and a timeout of 30 (seconds), the appropriate ttl is at
least 90 (seconds).

To use check ttl and round_robin together, your check

 "subscriptions": [

 "system"

]

}

timeout: 30

YML

{

 "timeout": 30

}

JSON

confguration must also specify a proxy_entity_name . If you do not
specify a proxy_entity_name when using check ttl and
round_robin together, your check will stop executing.

required false

type Integer

example

Check output truncation attributes

max_output_size

description Maximum size of stored check outputs. In bytes. When set to a non-zero
value, the Sensu backend truncates check outputs larger than this value
before storing to etcd. max_output_size does not affect data sent to
Sensu flters, mutators, and handlers.

As of Sensu Go 6.8.2, when check output is truncated due to the
max_output_size confguration, the events the check produces will

include a sensu.io/output_truncated_bytes label.

required false

type Integer

NOTE: Adding TTLs to checks adds overhead, so use the ttl

attribute sparingly.

ttl: 100

YML

{

 "ttl": 100

}

JSON

example

discard_output

description If true , discard check output after extracting metrics. No check output
will be sent to the Sensu backend. Otherwise, false .

required false

type Boolean

example

output_metric_tags attributes

name

description Name for the output metric tag.

max_output_size: 1024

YML

{

 "max_output_size": 1024

}

JSON

discard_output: true

YML

{

 "discard_output": true

}

JSON

required true

type String

example

value

description Value for the output metric tag. Use check token substitution syntax for
the value attribute, with dot-notation access to any event attribute.

required true

type String

example

output_metric_thresholds attributes

name: instance

YML

{

 "name": "instance"

}

JSON

value: {{ .name }}

YML

{

 "value": "{{ .name }}"

}

JSON

name

description Name of the metric to use for metric threshold evaluation. Must match
the event.metrics.points[].name value for a metric point in the check
results.

required true

type String

example

null_status

description Event check status to use if a metric specifed for metric threshold
evaluation is missing from the event data.

required false

type Integer

default 0

NOTE: To produce values for the output metrics you specify, the
check defnition must include a valid output_metric_format .

name: system_host_processes

YML

{

 "name": "system_host_processes"

}

JSON

NOTE: Sensu only overrides the event check status if it is less than
the specifed null_status value.

example

tags

description Tags of the metric to use for metric threshold evaluation. If provided,
must match the event.metrics.points[].tags name and value for a metric
point in the check results. Read tags attributes for more information.

required false

type Array

example

null_status: 0

YML

{

 "null_status": 0

}

JSON

tags:

- name: namespace

 value: production

YML

{

 "tags": [

 {

 "name": "namespace",

 "value": "production"

 }

]

}

JSON

thresholds

description Rules to apply for metric threshold evaluation. Read thresholds attributes
for more information.

required true

type Array

example

Pipelines attributes

thresholds:

- max: '50'

 min: '5'

 status: 1

- max: '75'

 min: '2'

 status: 2

YML

{

 "thresholds": [

 {

 "max": "50",

 "min": "5",

 "status": 1

 },

 {

 "max": "75",

 "min": "2",

 "status": 2

 }

]

}

JSON

api_version

description The Sensu API group and version for the pipeline. For pipelines in this
version of Sensu, the api_version should always be core/v2 .

required true

type String

default null

example

name

description Name of the Sensu pipeline for the check to use.

required true

type String

default null

example

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

name: incident_alerts

YML

{

 "name": "incident_alerts"

JSON

type

description The sensuctl create resource type for the pipeline. Pipelines should
always be type Pipeline .

required true

type String

default null

example

Proxy requests attributes

entity_attributes

description Sensu entity attributes to match entities in the registry using Sensu query
expressions.

required false

type Array

example

}

type: Pipeline

YML

{

 "type": "Pipeline"

}

JSON

entity_attributes:

YML

splay

description true if proxy check requests should be splayed, published evenly over
a window of time, determined by the check interval and a confgurable
splay_coverage percentage. Otherwise, false .

required false

type Boolean

default false

example

splay_coverage

- entity.entity_class == 'proxy'

- entity.labels.proxy_type == 'website'

{

 "entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

]

}

JSON

splay: true

YML

{

 "splay": true

}

JSON

description Percentage of the check interval over which Sensu can execute the
check for all applicable entities, as defned in the entity attributes. Sensu
uses the splay_coverage attribute to determine the period of time to
publish check requests over, before the next check interval begins.

For example, if a check’s interval is 60 seconds and splay_coverage is
90, Sensu will distribute its proxy check requests evenly over a time
window of 54 seconds (60 seconds * 90%). This leaves 6 seconds after
the last proxy check execution before the the next round of proxy check
requests for the same check.

required true if splay attribute is set to true (otherwise, false)

type Integer

example

secrets attributes

name

description Name of the secret defned in the executable command. Becomes the
environment variable presented to the check. Read Use secrets
management in Sensu for more information.

required true

type String

example

splay_coverage: 90

YML

{

 "splay_coverage": 90

}

JSON

name: ANSIBLE_HOST

YML

secret

description Name of the Sensu secret resource that defnes how to retrieve the
secret.

required true

type String

example

Tags attributes

name

description Tag name for the metric to use for metric threshold evaluation. If
provided, must match the event.metrics.points[].tags.name value for a
metric point in the check results.

{

 "name": "ANSIBLE_HOST"

}

JSON

secret: sensu-ansible-host

YML

{

 "secret": "sensu-ansible-host"

}

JSON

required false

type String

example

value

description Tag value of the metric to use for metric threshold evaluation. If provided,
must match the event.metrics.points[].tags.value value for a metric point
in the check results.

required false

type String

example

NOTE: If provided, you must also provide the value for the same
metric point tag.

name: namespace

YML

{

 "name": "namespace"

}

JSON

NOTE: If provided, you must also provide the name for the same
metric point tag.

value: production

YML

{

JSON

Thresholds attributes

max

description Maximum threshold for the metric for metric threshold evaluation. You
must provide a thresholds max value if you do not provide a min
value.

required false (if a thresholds min value is provided)

type String

example

min

description Minimum threshold for the metric for metric threshold evaluation. You
must provide a thresholds min value if you do not provide a max
value.

required false (if a thresholds max value is provided)

type String

 "value": "production"

}

max: '75'

YML

{

 "max": "75"

}

JSON

YML

example

status

description Event check status to use if the check’s output metric value is equal to or
greater than the specifed max threshold or equal to or less than the
specifed min threshold in metric threshold evaluation.

You can specify any status value, but event annotations based on
threshold status will display unknown if the status does not equal 0 ,
1 , or 2 .

required true

type Integer

example

min: '2'

{

 "min": "2"

}

JSON

NOTE: Sensu only overrides the event check status if it is less than
the specifed threshold status value.

status: 2

YML

{

 "status": 2

}

JSON

subdues attributes

begin

description Date and time at which the subdue should begin. In RFC 3339 format
with numeric zone offset (2022-01-01T07:30:00-07:00 or 2022-01-
01T14:30:00Z).

required true

type String

example

end

description Date and time at which the subdue should end. In RFC 3339 format with
numeric zone offset (2022-01-01T07:30:00-07:00 or 2022-01-
01T14:30:00Z).

required true

type String

example

begin: "2022-04-18T17:00:00-07:00"

YML

{

 "begin": "2022-04-18T17:00:00-07:00"

}

JSON

end: "2022-04-19T08:00:00-07:00"

YML

JSON

https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt

repeat

description Interval at which the subdue should repeat. weekdays includes
Mondays, Tuesdays, Wednesdays, Thursdays, and Fridays. weekends

includes Saturdays and Sundays. Read Subdues and repeat for more
information.

required false

type Array

allowed values mondays , tuesdays , wednesdays , thursdays , fridays ,
saturdays , sundays , weekdays , weekends , daily , weekly ,
monthly , annually

example

{

 "end": "2022-04-19T08:00:00-07:00"

}

NOTE: Check subdue repeats are based on the specifed begin
and end times and not duration or the difference between the
begin and end times.

repeat:

- weekdays

YML

{

 "repeat": [

 "weekdays"

]

}

JSON

Metric check example

The following example shows the resource defnition for a check that collects metrics in Nagios
Performance Data format:

type: CheckConfg

api_version: core/v2

metadata:

 annotations:

 slack-channel: '#monitoring'

 labels:

 region: us-west-1

 name: collect-metrics

spec:

 check_hooks: null

 command: collect.sh

 discard_output: true

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: prometheus_text

 output_metric_tags:

 - name: instance

 value: '{{ .name }}'

 - name: namespace

 value: '{{ .namespace }}'

 - name: service

 value: '{{ .labels.service }}'

 output_metric_thresholds:

 - name: system_mem_used

 tags: null

 null_status: 1

 thresholds:

 - max: "75.0"

 min: ""

YML

 status: 1

 - max: "90.0"

 min: ""

 status: 2

 - name: system_host_processes

 tags:

 - name: namespace

 value: production

 null_status: 1

 thresholds:

 - max: "50"

 min: "5"

 status: 1

 - max: "75"

 min: "2"

 status: 2

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: prometheus_gateway_workfows

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: null

 stdin: false

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "annotations": {

 "slack-channel": "#monitoring"

 },

 "labels": {

 "region": "us-west-1"

JSON

 },

 "name": "collect-metrics"

 },

 "spec": {

 "check_hooks": null,

 "command": "collect.sh",

 "discard_output": true,

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "output_metric_format": "prometheus_text",

 "output_metric_tags": [

 {

 "name": "instance",

 "value": "{{ .name }}"

 },

 {

 "name": "namespace",

 "value": "{{ .namespace }}"

 },

 {

 "name": "service",

 "value": "{{ .labels.service }}"

 }

],

 "output_metric_thresholds": [

 {

 "name": "system_mem_used",

 "tags": null,

 "null_status": 1,

 "thresholds": [

 {

 "max": "75.0",

 "min": "",

 "status": 1

 },

 {

 "max": "90.0",

 "min": "",

 "status": 2

 }

]

 },

 {

 "name": "system_host_processes",

 "tags": [

 {

 "name": "namespace",

 "value": "production"

 }

],

 "null_status": 1,

 "thresholds": [

 {

 "max": "50",

 "min": "5",

 "status": 1

 },

 {

 "max": "75",

 "min": "2",

 "status": 2

 }

]

 }

],

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "prometheus_gateway_workfows"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": null,

 "stdin": false,

 "subscriptions": [

 "system"

],

 "timeout": 0,

Check example that uses secrets management

The check in the following example uses secrets management to keep a GitHub token private.
Learn
more about secrets management for your Sensu confguration in the secrets and secrets providers
references.

 "ttl": 0

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 name: ping-github-api

spec:

 check_hooks: null

 command: ping-github-api.sh $GITHUB_TOKEN

 secrets:

 - name: GITHUB_TOKEN

 secret: github-token-vault

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "ping-github-api"

 },

 "spec": {

 "check_hooks": null,

 "command": "ping-github-api.sh $GITHUB_TOKEN",

 "secrets": [

 {

 "name": "GITHUB_TOKEN",

 "secret": "github-token-vault"

JSON

Check example with a PowerShell script command

If you use a PowerShell script in your check command, make sure to include the -f fag in the
command.
The -f fag ensures that the proper exit code is passed into Sensu.
For example:

 }

]

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 name: interval_test

spec:

 command: powershell.exe -f c:\\users\\tester\\test.ps1

 subscriptions:

 - system

 interval: 60

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: interval_pipeline

 publish: true

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "interval_test"

 },

 "spec": {

 "command": "powershell.exe -f c:\\\\users\\ ester\\ est.ps1",

 "subscriptions": [

JSON

The dynamic runtime asset reference includes an example check defnition that uses the asset path to
correctly capture exit status codes from PowerShell plugins distributed as dynamic runtime assets.

 "system"

],

 "interval": 60,

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "interval_pipeline"

 }

],

 "publish": true

 }

}

Hooks reference

Hooks are reusable commands the agent executes in response to a check result before creating an
observability event.
You can create, manage, and reuse hooks independently of checks.
Hooks enrich
observability event context by gathering relevant information based on the exit status code of a check
(ex: 1).
Hook commands can also receive JSON serialized Sensu client data via stdin.

Hook example

You can use hooks to automate data gathering for incident triage.
This example demonstrates a check
hook to capture the process tree when a process is not running:

type: HookConfg

api_version: core/v2

metadata:

 name: process_tree

spec:

 command: ps aux

 stdin: false

 timeout: 60

 runtime_assets: null

YML

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "process_tree"

 },

 "spec": {

 "command": "ps aux",

 "timeout": 60,

 "stdin": false,

JSON

Check response types

Each type of response (ex: non-zero) can contain one or more hooks and correspond to one or
more exit status codes.
Hooks are executed in order of precedence, based on their type:

1. 1 to 255
2. ok

3. warning

4. critical

5. unknown

6. non-zero

You can assign one or more hooks to a check in the check defnition.
review the check specifcation to
confgure the check_hooks attribute.

Check hooks

Sensu captures the hook command output, status, executed timestamp, and duration and publishes
them in the resulting event.

You can use sensuctl to view hook command data:

The response lists the specifed event, which includes the hook command data:

 "runtime_assets": null

 }

}

sensuctl event info <entity_name> <check_name> --format yaml

SHELL

sensuctl event info <entity_name> <check_name> --format wrapped-json

SHELL

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 check:

 ...

 hooks:

 - command: df -hT / | grep '/'

 duration: 0.002904412

 executed: 1559948435

 issued: 0

 metadata:

 name: root_disk

 namespace: default

 output: "/dev/mapper/centos-root xfs 41G 1.6G 40G 4% /\n"

 status: 0

 stdin: false

 timeout: 60

YML

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "...": "...",

 "hooks": [

 {

 "command": "df -hT / | grep '/'",

 "duration": 0.002904412,

 "executed": 1559948435,

 "issued": 0,

 "metadata": {

JSON

Hook specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
hooks in this version of Sensu, the api_version should always be
core/v2 .

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

 "name": "root_disk",

 "namespace": "default"

 },

 "output": "/dev/mapper/centos-root xfs 41G 1.6G 40G 4% /\n",

 "status": 0,

 "stdin": false,

 "timeout": 60

 }

]

 }

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

api_version: core/v2

YML

{

JSON

metadata

description Top-level collection of metadata about the hook that includes name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

hook defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. Read metadata
attributes for details.

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

 "api_version": "core/v2"

}

metadata:

 name: process_tree

 namespace: default

 created_by: admin

 labels:

 region: us-west-1

 annotations:

 slack-channel: "#monitoring"

YML

{

 "metadata": {

 "name": "process_tree",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel": "#monitoring"

JSON

spec

description Top-level map that includes the hook spec attributes.

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

type

description Top-level attribute that specifes the sensuctl create resource type.
Hooks should always be type HookConfg .

required Required for hook defnitions in wrapped-json or yaml format for use

 }

 }

}

spec:

 command: ps aux

 timeout: 60

 stdin: false

YML

{

 "spec": {

 "command": "ps aux",

 "timeout": 60,

 "stdin": false

 }

}

JSON

with sensuctl create .

type String

example

Metadata attributes

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

type: HookConfg

YML

{

 "type": "HookConfg"

}

JSON

annotations:

 managed-by: ops

 playbook: www.example.url

YML

JSON

created_by

description Username of the Sensu user who created the hook or last updated the
hook. Sensu automatically populates the created_by feld when the
hook is created or updated.

required false

type String

example

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

{

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

 }

}

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

name

description Unique string used to identify the hook. Hook names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each hook must have a unique name within its namespace.

required true

type String

example

labels:

 environment: development

 region: us-west-2

YML

{

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 }

}

JSON

name: process_tree

YML

https://regex101.com/r/zo9mQU/2

namespace

description The Sensu RBAC namespace that this hook belongs to.

required false

type String

default default

example

Spec attributes

command

description Hook command to be executed.

required true

type String

{

 "name": "process_tree"

}

JSON

namespace: production

YML

{

 "namespace": "production"

}

JSON

example

runtime_assets

description Array of Sensu dynamic runtime assets (by their names) required at
runtime for execution of the command .

required false

type Array

example

stdin

description If true , the Sensu agent writes JSON serialized Sensu entity and

command: sudo /etc/init.d/nginx start

YML

{

 "command": "sudo /etc/init.d/nginx start"

}

JSON

runtime_assets:

- log-context

YML

{

 "runtime_assets": [

 "log-context"

]

}

JSON

check data to the command process stdin. Otherwise, false . The
command must expect the JSON data via stdin, read it, and close stdin.
This attribute cannot be used with existing Sensu check plugins or
Nagios plugins because the Sensu agent will wait indefnitely for the
hook process to read and close stdin.

required false

type Boolean

default false

example

timeout

description Hook execution duration timeout (hard stop). In seconds.

required false

type Integer

default 60

example

stdin: true

YML

{

 "stdin": true

}

JSON

timeout: 30

YML

{

 "timeout": 30

}

JSON

Hook for rudimentary auto-remediation

You can use hooks for rudimentary auto-remediation tasks, such as starting a process that is no longer
running.

NOTE: Use caution with this approach. Hooks used for auto-remediation will run without regard to
the number of event occurrences.

type: HookConfg

api_version: core/v2

metadata:

 name: restart_nginx

spec:

 command: sudo systemctl start nginx

 stdin: false

 timeout: 60

YML

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "restart_nginx"

 },

 "spec": {

 "command": "sudo systemctl start nginx",

 "timeout": 60,

 "stdin": false

 }

}

JSON

Hook that uses token substitution

You can create check hooks that use token substitution so you can fne-tune check attributes on a per-
entity level and re-use the check defnition.

NOTE: Token substitution uses entity-scoped metadata, so make sure to set labels at the entity
level.

type: HookConfg

api_version: core/v2

metadata:

 labels:

 foo: bar

 name: tokensub

spec:

 command: tokensub {{ .labels.foo }}

 stdin: false

 timeout: 60

YML

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "labels": {

 "foo": "bar"

 },

 "name": "tokensub"

 },

 "spec": {

 "command": "tokensub {{ .labels.foo }}",

 "stdin": false,

 "timeout": 60

 }

}

JSON

Metrics reference

Sensu Go offers built-in support for collecting and processing service and time-series metrics for your
entire infrastructure.

In Sensu, metrics are an optional component of observation data in events.
Sensu events may contain
check execution results, metrics, or both.
Certain inputs like the Sensu StatsD listener or patterns like
the Prometheus collector pattern will create metrics-only events.
Events can also include metrics from
check output metric extraction.

Use Sensu handlers to process extracted metrics and route them to databases like Elasticsearch,
InfuxDB, Grafana, and Graphite.
You can also use Sensu’s time-series and long-term event storage
integrations to process service and time-series metrics.

Metric check example

This check defnition collects metrics in Graphite Plaintext Protocol format using the sensu/system-
check dynamic runtime asset and sends the collected metrics to a pipeline confgured with handlers
that use the sensu/sensu-go-graphite-handler dynamic runtime asset:

NOTE: This reference describes the metrics component of observation data included in Sensu
events, which is distinct from the Sensu /metrics API.
For information about HTTP GET access to
internal Sensu metrics, read our /metrics API documentation.

type: CheckConfg

api_version: core/v2

metadata:

 name: collect-system-metrics

spec:

 check_hooks: null

 command: system-check

 env_vars: null

 high_fap_threshold: 0

YML

https://bonsai.sensu.io/assets/sensu/system-check
https://bonsai.sensu.io/assets/sensu/system-check
https://bonsai.sensu.io/assets/sensu/sensu-go-graphite-handler

 interval: 10

 low_fap_threshold: 0

 output_metric_format: graphite_plaintext

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: graphite_workfows

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - system-check

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "collect-system-metrics"

 },

 "spec": {

 "check_hooks": null,

 "command": "system-check",

 "env_vars": null,

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "output_metric_format": "graphite_plaintext",

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "graphite_workfows"

 }

JSON

Metric event example

The example metric check will produce events similar to this metric event:

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "system-check"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

pipelines:

- type: Pipeline

 api_version: core/v2

 name: graphite_workfows

timestamp: 1635270402

entity:

 entity_class: agent

 system:

 hostname: sensu-centos

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.5.1804

 network:

 interfaces:

YML

 - name: lo

 addresses:

 - 127.0.0.1/8

 - "::1/128"

 - name: eth0

 mac: '08:00:27:8b:c9:3f'

 addresses:

 - 10.0.2.15/24

 - fe80::7103:bbce:3543:cfcf/64

 - name: eth1

 mac: '08:00:27:36:bb:67'

 addresses:

 - 172.28.128.89/24

 - fe80::a00:27ff:fe36:bb67/64

 arch: amd64

 libc_type: glibc

 vm_system: vbox

 vm_role: guest

 cloud_provider: ''

 processes:

 subscriptions:

 - system

 - entity:sensu-centos

 last_seen: 1635270399

 deregister: false

 deregistration: {}

 user: agent

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 metadata:

 name: sensu-centos

 namespace: default

 sensu_agent_version: 6.5.1

check:

 command: system-check

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 publish: true

 runtime_assets:

 - system-check

 subscriptions:

 - system

 proxy_entity_name: ''

 check_hooks:

 stdin: false

 subdue:

 ttl: 0

 timeout: 0

 round_robin: false

 duration: 3.00889206

 executed: 1635270399

 history:

 - status: 0

 executed: 1635270359

 - status: 0

 executed: 1635270369

 - status: 0

 executed: 1635270379

 - status: 0

 executed: 1635270389

 - status: 0

 executed: 1635270399

 issued: 1635270399

 output: |+

 # HELP system_cpu_cores [GAUGE] Number of cpu cores on the system

 # TYPE system_cpu_cores GAUGE

 system_cpu_cores{} 1 1635270399219

 # HELP system_cpu_idle [GAUGE] Percent of time all cpus were idle

 # TYPE system_cpu_idle GAUGE

 system_cpu_idle{cpu="cpu0"} 99.32885906040329 1635270399219

 system_cpu_idle{cpu="cpu-total"} 99.32885906040329 1635270399219

 # HELP system_cpu_used [GAUGE] Percent of time all cpus were used

 # TYPE system_cpu_used GAUGE

 system_cpu_used{cpu="cpu0"} 0.671140939596711 1635270399219

 system_cpu_used{cpu="cpu-total"} 0.671140939596711 1635270399219

 # HELP system_cpu_user [GAUGE] Percent of time total cpu was used by normal

processes in user mode

 # TYPE system_cpu_user GAUGE

 system_cpu_user{cpu="cpu0"} 0.3355704697986485 1635270399219

 system_cpu_user{cpu="cpu-total"} 0.3355704697986485 1635270399219

 # HELP system_cpu_system [GAUGE] Percent of time all cpus used by processes

executed in kernel mode

 # TYPE system_cpu_system GAUGE

 system_cpu_system{cpu="cpu0"} 0.33557046979867833 1635270399219

 system_cpu_system{cpu="cpu-total"} 0.33557046979867833 1635270399219

 # HELP system_cpu_nice [GAUGE] Percent of time all cpus used by niced processes

in user mode

 # TYPE system_cpu_nice GAUGE

 system_cpu_nice{cpu="cpu0"} 0 1635270399219

 system_cpu_nice{cpu="cpu-total"} 0 1635270399219

 # HELP system_cpu_iowait [GAUGE] Percent of time all cpus waiting for I/O to

complete

 # TYPE system_cpu_iowait GAUGE

 system_cpu_iowait{cpu="cpu0"} 0 1635270399219

 system_cpu_iowait{cpu="cpu-total"} 0 1635270399219

 # HELP system_cpu_irq [GAUGE] Percent of time all cpus servicing interrupts

 # TYPE system_cpu_irq GAUGE

 system_cpu_irq{cpu="cpu0"} 0 1635270399219

 system_cpu_irq{cpu="cpu-total"} 0 1635270399219

 # HELP system_cpu_sortirq [GAUGE] Percent of time all cpus servicing software

interrupts

 # TYPE system_cpu_sortirq GAUGE

 system_cpu_sortirq{cpu="cpu0"} 0 1635270399219

 system_cpu_sortirq{cpu="cpu-total"} 0 1635270399219

 # HELP system_cpu_stolen [GAUGE] Percent of time all cpus serviced virtual hosts

operating systems

 # TYPE system_cpu_stolen GAUGE

 system_cpu_stolen{cpu="cpu0"} 0 1635270399219

 system_cpu_stolen{cpu="cpu-total"} 0 1635270399219

 # HELP system_cpu_guest [GAUGE] Percent of time all cpus serviced guest

operating system

 # TYPE system_cpu_guest GAUGE

 system_cpu_guest{cpu="cpu0"} 0 1635270399219

 system_cpu_guest{cpu="cpu-total"} 0 1635270399219

 # HELP system_cpu_guest_nice [GAUGE] Percent of time all cpus serviced niced

guest operating system

 # TYPE system_cpu_guest_nice GAUGE

 system_cpu_guest_nice{cpu="cpu0"} 0 1635270399219

 system_cpu_guest_nice{cpu="cpu-total"} 0 1635270399219

 # HELP system_mem_used [GAUGE] Percent of memory used

 # TYPE system_mem_used GAUGE

 system_mem_used{} 21.21448463577672 1635270399219

 # HELP system_mem_used_bytes [GAUGE] Used memory in bytes

 # TYPE system_mem_used_bytes GAUGE

 system_mem_used_bytes{} 2.20598272e+08 1635270399219

 # HELP system_mem_total_bytes [GAUGE] Total memory in bytes

 # TYPE system_mem_total_bytes GAUGE

 system_mem_total_bytes{} 1.039847424e+09 1635270399219

 # HELP system_swap_used [GAUGE] Percent of swap used

 # TYPE system_swap_used GAUGE

 system_swap_used{} 0 1635270399219

 # HELP system_swap_used_bytes [GAUGE] Used swap in bytes

 # TYPE system_swap_used_bytes GAUGE

 system_swap_used_bytes{} 2.20598272e+08 1635270399219

 # HELP system_swap_total_bytes [GAUGE] Total swap in bytes

 # TYPE system_swap_total_bytes GAUGE

 system_swap_total_bytes{} 2.147479552e+09 1635270399219

 # HELP system_load_load1 [GAUGE] System load averaged over 1 minute, high load

value dependant on number of cpus in system

 # TYPE system_load_load1 GAUGE

 system_load_load1{} 0 1635270399219

 # HELP system_load_load5 [GAUGE] System load averaged over 5 minute, high load

value dependent on number of cpus in system

 # TYPE system_load_load5 GAUGE

 system_load_load5{} 0.01 1635270399219

 # HELP system_load_load15 [GAUGE] System load averaged over 15 minute, high load

value dependent on number of cpus in system

 # TYPE system_load_load15 GAUGE

 system_load_load15{} 0.05 1635270399219

 # HELP system_load_load1_per_cpu [GAUGE] System load averaged over 1 minute

normalized by cpu count, values \u003e 1 means system may be overloaded

 # TYPE system_load_load1_per_cpu GAUGE

 system_load_load1_per_cpu{} 0 1635270399219

 # HELP system_load_load5_per_cpu [GAUGE] System load averaged over 5 minute

normalized by cpu count, values \u003e 1 means system may be overloaded

 # TYPE system_load_load5_per_cpu GAUGE

 system_load_load5_per_cpu{} 0.01 1635270399219

 # HELP system_load_load15_per_cpu [GAUGE] System load averaged over 15 minute

normalized by cpu count, values \u003e 1 means system may be overloaded

 # TYPE system_load_load15_per_cpu GAUGE

 system_load_load15_per_cpu{} 0.05 1635270399219

 # HELP system_host_uptime [COUNTER] Host uptime in seconds

 # TYPE system_host_uptime COUNTER

 system_host_uptime{} 982 1635270399219

 # HELP system_host_processes [GAUGE] Number of host processes

 # TYPE system_host_processes GAUGE

 system_host_processes{} 109 1635270399219

 state: passing

 status: 0

 total_state_change: 0

 last_ok: 1635270399

 occurrences: 5

 occurrences_watermark: 5

 output_metric_format: graphite_plaintext

 env_vars:

 metadata:

 name: collect-system-metrics

 namespace: default

 secrets:

 is_silenced: false

 scheduler: memory

 processed_by: sensu-centos

metrics:

 points:

 - name: system_cpu_cores{}

 value: 1

 timestamp: 1635270399219

 tags:

 - name: system_cpu_idle{cpu="cpu0"}

 value: 99.32885906040329

 timestamp: 1635270399219

 tags:

 - name: system_cpu_idle{cpu="cpu-total"}

 value: 99.32885906040329

 timestamp: 1635270399219

 tags:

 - name: system_cpu_used{cpu="cpu0"}

 value: 0.671140939596711

 timestamp: 1635270399219

 tags:

 - name: system_cpu_used{cpu="cpu-total"}

 value: 0.671140939596711

 timestamp: 1635270399219

 tags:

 - name: system_cpu_user{cpu="cpu0"}

 value: 0.3355704697986485

 timestamp: 1635270399219

 tags:

 - name: system_cpu_user{cpu="cpu-total"}

 value: 0.3355704697986485

 timestamp: 1635270399219

 tags:

 - name: system_cpu_system{cpu="cpu0"}

 value: 0.33557046979867833

 timestamp: 1635270399219

 tags:

 - name: system_cpu_system{cpu="cpu-total"}

 value: 0.33557046979867833

 timestamp: 1635270399219

 tags:

 - name: system_cpu_nice{cpu="cpu0"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_nice{cpu="cpu-total"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_iowait{cpu="cpu0"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_iowait{cpu="cpu-total"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_irq{cpu="cpu0"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_irq{cpu="cpu-total"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_sortirq{cpu="cpu0"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_sortirq{cpu="cpu-total"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_stolen{cpu="cpu0"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_stolen{cpu="cpu-total"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_guest{cpu="cpu0"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_guest{cpu="cpu-total"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_guest_nice{cpu="cpu0"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_cpu_guest_nice{cpu="cpu-total"}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_mem_used{}

 value: 21.21448463577672

 timestamp: 1635270399219

 tags:

 - name: system_mem_used_bytes{}

 value: 220598272

 timestamp: 1635270399219

 tags:

 - name: system_mem_total_bytes{}

 value: 1039847424

 timestamp: 1635270399219

 tags:

 - name: system_swap_used{}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_swap_used_bytes{}

 value: 220598272

 timestamp: 1635270399219

 tags:

 - name: system_swap_total_bytes{}

 value: 2147479552

 timestamp: 1635270399219

 tags:

 - name: system_load_load1{}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_load_load5{}

 value: 0.01

 timestamp: 1635270399219

 tags:

 - name: system_load_load15{}

 value: 0.05

 timestamp: 1635270399219

 tags:

 - name: system_load_load1_per_cpu{}

 value: 0

 timestamp: 1635270399219

 tags:

 - name: system_load_load5_per_cpu{}

 value: 0.01

 timestamp: 1635270399219

 tags:

 - name: system_load_load15_per_cpu{}

 value: 0.05

 timestamp: 1635270399219

 tags:

 - name: system_host_uptime{}

 value: 982

 timestamp: 1635270399219

 tags:

 - name: system_host_processes{}

 value: 109

 timestamp: 1635270399219

 tags:

metadata:

 namespace: default

id: xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

sequence: 5

{

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "graphite_workfows"

 }

],

 "timestamp": 1635270402,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

JSON

 "10.0.2.15/24",

 "fe80::7103:bbce:3543:cfcf/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:36:bb:67",

 "addresses": [

 "172.28.128.89/24",

 "fe80::a00:27ff:fe36:bb67/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:sensu-centos"

],

 "last_seen": 1635270399,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "sensu_agent_version": "6.5.1"

 },

 "check": {

 "command": "system-check",

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "system-check"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 3.00889206,

 "executed": 1635270399,

 "history": [

 {

 "status": 0,

 "executed": 1635270359

 },

 {

 "status": 0,

 "executed": 1635270369

 },

 {

 "status": 0,

 "executed": 1635270379

 },

 {

 "status": 0,

 "executed": 1635270389

 },

 {

 "status": 0,

 "executed": 1635270399

 }

],

 "issued": 1635270399,

 "output": "# HELP system_cpu_cores [GAUGE] Number of cpu cores on the system\n#

TYPE system_cpu_cores GAUGE\nsystem_cpu_cores{} 1 1635270399219\n# HELP

system_cpu_idle [GAUGE] Percent of time all cpus were idle\n# TYPE system_cpu_idle

GAUGE\nsystem_cpu_idle{cpu=\"cpu0\"} 99.32885906040329

1635270399219\nsystem_cpu_idle{cpu=\"cpu-total\"} 99.32885906040329 1635270399219\n#

HELP system_cpu_used [GAUGE] Percent of time all cpus were used\n# TYPE

system_cpu_used GAUGE\nsystem_cpu_used{cpu=\"cpu0\"} 0.671140939596711

1635270399219\nsystem_cpu_used{cpu=\"cpu-total\"} 0.671140939596711 1635270399219\n#

HELP system_cpu_user [GAUGE] Percent of time total cpu was used by normal processes

in user mode\n# TYPE system_cpu_user GAUGE\nsystem_cpu_user{cpu=\"cpu0\"}

0.3355704697986485 1635270399219\nsystem_cpu_user{cpu=\"cpu-total\"}

0.3355704697986485 1635270399219\n# HELP system_cpu_system [GAUGE] Percent of time

all cpus used by processes executed in kernel mode\n# TYPE system_cpu_system

GAUGE\nsystem_cpu_system{cpu=\"cpu0\"} 0.33557046979867833

1635270399219\nsystem_cpu_system{cpu=\"cpu-total\"} 0.33557046979867833

1635270399219\n# HELP system_cpu_nice [GAUGE] Percent of time all cpus used by niced

processes in user mode\n# TYPE system_cpu_nice GAUGE\nsystem_cpu_nice{cpu=\"cpu0\"}

0 1635270399219\nsystem_cpu_nice{cpu=\"cpu-total\"} 0 1635270399219\n# HELP

system_cpu_iowait [GAUGE] Percent of time all cpus waiting for I/O to complete\n#

TYPE system_cpu_iowait GAUGE\nsystem_cpu_iowait{cpu=\"cpu0\"} 0

1635270399219\nsystem_cpu_iowait{cpu=\"cpu-total\"} 0 1635270399219\n# HELP

system_cpu_irq [GAUGE] Percent of time all cpus servicing interrupts\n# TYPE

system_cpu_irq GAUGE\nsystem_cpu_irq{cpu=\"cpu0\"} 0

1635270399219\nsystem_cpu_irq{cpu=\"cpu-total\"} 0 1635270399219\n# HELP

system_cpu_sortirq [GAUGE] Percent of time all cpus servicing software interrupts\n#

TYPE system_cpu_sortirq GAUGE\nsystem_cpu_sortirq{cpu=\"cpu0\"} 0

1635270399219\nsystem_cpu_sortirq{cpu=\"cpu-total\"} 0 1635270399219\n# HELP

system_cpu_stolen [GAUGE] Percent of time all cpus serviced virtual hosts operating

systems\n# TYPE system_cpu_stolen GAUGE\nsystem_cpu_stolen{cpu=\"cpu0\"} 0

1635270399219\nsystem_cpu_stolen{cpu=\"cpu-total\"} 0 1635270399219\n# HELP

system_cpu_guest [GAUGE] Percent of time all cpus serviced guest operating system\n#

TYPE system_cpu_guest GAUGE\nsystem_cpu_guest{cpu=\"cpu0\"} 0

1635270399219\nsystem_cpu_guest{cpu=\"cpu-total\"} 0 1635270399219\n# HELP

system_cpu_guest_nice [GAUGE] Percent of time all cpus serviced niced guest

operating system\n# TYPE system_cpu_guest_nice

GAUGE\nsystem_cpu_guest_nice{cpu=\"cpu0\"} 0

1635270399219\nsystem_cpu_guest_nice{cpu=\"cpu-total\"} 0 1635270399219\n# HELP

system_mem_used [GAUGE] Percent of memory used\n# TYPE system_mem_used

GAUGE\nsystem_mem_used{} 21.21448463577672 1635270399219\n# HELP

system_mem_used_bytes [GAUGE] Used memory in bytes\n# TYPE system_mem_used_bytes

GAUGE\nsystem_mem_used_bytes{} 2.20598272e+08 1635270399219\n# HELP

system_mem_total_bytes [GAUGE] Total memory in bytes\n# TYPE system_mem_total_bytes

GAUGE\nsystem_mem_total_bytes{} 1.039847424e+09 1635270399219\n# HELP

system_swap_used [GAUGE] Percent of swap used\n# TYPE system_swap_used

GAUGE\nsystem_swap_used{} 0 1635270399219\n# HELP system_swap_used_bytes [GAUGE]

Used swap in bytes\n# TYPE system_swap_used_bytes GAUGE\nsystem_swap_used_bytes{}

2.20598272e+08 1635270399219\n# HELP system_swap_total_bytes [GAUGE] Total swap in

bytes\n# TYPE system_swap_total_bytes GAUGE\nsystem_swap_total_bytes{}

2.147479552e+09 1635270399219\n# HELP system_load_load1 [GAUGE] System load averaged

over 1 minute, high load value dependant on number of cpus in system\n# TYPE

system_load_load1 GAUGE\nsystem_load_load1{} 0 1635270399219\n# HELP

system_load_load5 [GAUGE] System load averaged over 5 minute, high load value

dependent on number of cpus in system\n# TYPE system_load_load5

GAUGE\nsystem_load_load5{} 0.01 1635270399219\n# HELP system_load_load15 [GAUGE]

System load averaged over 15 minute, high load value dependent on number of cpus in

system\n# TYPE system_load_load15 GAUGE\nsystem_load_load15{} 0.05 1635270399219\n#

HELP system_load_load1_per_cpu [GAUGE] System load averaged over 1 minute normalized

by cpu count, values \\u003e 1 means system may be overloaded\n# TYPE

system_load_load1_per_cpu GAUGE\nsystem_load_load1_per_cpu{} 0 1635270399219\n# HELP

system_load_load5_per_cpu [GAUGE] System load averaged over 5 minute normalized by

cpu count, values \\u003e 1 means system may be overloaded\n# TYPE

system_load_load5_per_cpu GAUGE\nsystem_load_load5_per_cpu{} 0.01 1635270399219\n#

HELP system_load_load15_per_cpu [GAUGE] System load averaged over 15 minute

normalized by cpu count, values \\u003e 1 means system may be overloaded\n# TYPE

system_load_load15_per_cpu GAUGE\nsystem_load_load15_per_cpu{} 0.05 1635270399219\n#

HELP system_host_uptime [COUNTER] Host uptime in seconds\n# TYPE system_host_uptime

COUNTER\nsystem_host_uptime{} 982 1635270399219\n# HELP system_host_processes

[GAUGE] Number of host processes\n# TYPE system_host_processes

GAUGE\nsystem_host_processes{} 109 1635270399219\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1635270399,

 "occurrences": 5,

 "occurrences_watermark": 5,

 "output_metric_format": "graphite_plaintext",

 "env_vars": null,

 "metadata": {

 "name": "collect-system-metrics",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "scheduler": "memory",

 "processed_by": "sensu-centos"

 },

 "metrics": {

 "points": [

 {

 "name": "system_cpu_cores{}",

 "value": 1,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_idle{cpu=\"cpu0\"}",

 "value": 99.32885906040329,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_idle{cpu=\"cpu-total\"}",

 "value": 99.32885906040329,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_used{cpu=\"cpu0\"}",

 "value": 0.671140939596711,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_used{cpu=\"cpu-total\"}",

 "value": 0.671140939596711,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_user{cpu=\"cpu0\"}",

 "value": 0.3355704697986485,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_user{cpu=\"cpu-total\"}",

 "value": 0.3355704697986485,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_system{cpu=\"cpu0\"}",

 "value": 0.33557046979867833,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_system{cpu=\"cpu-total\"}",

 "value": 0.33557046979867833,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_nice{cpu=\"cpu0\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_nice{cpu=\"cpu-total\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_iowait{cpu=\"cpu0\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_iowait{cpu=\"cpu-total\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_irq{cpu=\"cpu0\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_irq{cpu=\"cpu-total\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_sortirq{cpu=\"cpu0\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_sortirq{cpu=\"cpu-total\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_stolen{cpu=\"cpu0\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_stolen{cpu=\"cpu-total\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_guest{cpu=\"cpu0\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_guest{cpu=\"cpu-total\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_guest_nice{cpu=\"cpu0\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_cpu_guest_nice{cpu=\"cpu-total\"}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_mem_used{}",

 "value": 21.21448463577672,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_mem_used_bytes{}",

 "value": 220598272,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_mem_total_bytes{}",

 "value": 1039847424,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_swap_used{}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_swap_used_bytes{}",

 "value": 220598272,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_swap_total_bytes{}",

 "value": 2147479552,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_load_load1{}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_load_load5{}",

 "value": 0.01,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_load_load15{}",

 "value": 0.05,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_load_load1_per_cpu{}",

 "value": 0,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_load_load5_per_cpu{}",

Extract metrics from check output

The Sensu agent can extract metrics data from check command output and populate an event’s

 "value": 0.01,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_load_load15_per_cpu{}",

 "value": 0.05,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_host_uptime{}",

 "value": 982,

 "timestamp": 1635270399219,

 "tags": null

 },

 {

 "name": "system_host_processes{}",

 "value": 109,

 "timestamp": 1635270399219,

 "tags": null

 }

]

 },

 "metadata": {

 "namespace": "default"

 },

 "id": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

 "sequence": 5

}

NOTE: Metrics data points are not included in events retrieved with sensuctl event info —
these events include check output text rather than a set of metrics points.
To view metrics points
data, add a debug handler that prints events to a JSON fle.

metrics attribute before sending the event to the Sensu backend for processing.

To extract metrics from check output:

When a check includes correctly confgured command and output_metric_format attributes, Sensu
will extract the specifed metrics from the check output and add them to the event data in the metrics
attribute.

Supported output metric formats

Sensu supports the following formats for check output metric extraction.

Graphite

output metric format graphite_plaintext

documentation Graphite Plaintext Protocol

example

InfuxDB

output metric format infuxdb_line

documentation InfuxDB Line Protocol

example

The check command execution must output metrics in one of Sensu’s supported output metric
formats.

The check must include the output_metric_format attribute with a value that specifes one
of Sensu’s supported output metric formats.

local.random.diceroll 4 123456789

weather,location=us-midwest temperature=82

1465839830100400200

https://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://docs.influxdata.com/enterprise_influxdb/v1.9/write_protocols/line_protocol_reference/

Nagios

output metric format nagios_perfdata

documentation Nagios Performance Data

example

OpenTSDB

output metric format opentsdb_line

documentation OpenTSDB Data Specifcation

example

Prometheus

output metric format prometheus_text

documentation Prometheus Exposition Text

example

Enrich metrics with tags

In metric check output, metrics data points include the tags array.
Tags add information for the
metrics points in events.
For example, a tag can specify the name of the check or entity associated with
a specifc metrics point.

PING ok - Packet loss = 0%, RTA = 0.80 ms |

percent_packet_loss=0, rta=0.80

sys.cpu.user 1356998400 42.5 host=webserver01 cpu=0

http_requests_total{method="post",code="200"} 1027

1395066363000

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#data-specification
https://prometheus.io/docs/instrumenting/exposition_formats/#text-based-format

Tags can be generated in various ways, like plugin code or a third-party exporter.
You can also add
specifc tags to metrics points with output metric tags.

Add output metric tags

Output metric tags are custom tags you can add to your check defnition to enrich the metrics data
points produced by check output metric extraction with additional context.

The key-value pairs you add to a check’s output_metric_tags array will be included in the tags
array after check output metric extraction.
For example, suppose you include this
output_metric_tags array in your check:

In check output, the metrics points would include the output metric tags in the tags array, similar to
this example:

output_metric_tags:

- name: instance

 value: sensu-centos-1

- name: prometheus_type

 value: gauge

YML

{

 "output_metric_tags": [

 {

 "name": "instance",

 "value": "sensu-centos-1"

 },

 {

 "name": "prometheus_type",

 "value": "gauge"

 }

]

}

JSON

TEXT

points:

- name: dns_duration

 value: 0.000251

 timestamp: 1648220984

 tags:

 - name: instance

 value: sensu-centos-1

 - name: prometheus_type

 value: gauge

- name: tls_handshake_duration

 value: 0

 timestamp: 1648220984

 tags:

 - name: instance

 value: sensu-centos-1

 - name: prometheus_type

 value: gauge

{

 "points": [

 {

 "name": "dns_duration",

 "value": 0.000251,

 "timestamp": 1648220984,

 "tags": [

 {

 "name": "instance",

 "value": "sensu-centos-1"

 },

 {

 "name": "prometheus_type",

 "value": "gauge"

 }

]

 },

 {

 "name": "tls_handshake_duration",

 "value": 0,

 "timestamp": 1648220984,

TEXT

Sensu adds any output metric tag values to the tags array along with any natively supported tags
produced by check output metric extraction.

Use token substitution with output metric tags

Use token substitution to include any event attribute in an output metric tag.
Add token substitution in
the output metric tag value attribute.
For example, these tags will list the event.timestamp and
event.entity.name attributes:

 "tags": [

 {

 "name": "instance",

 "value": "sensu-centos-1"

 },

 {

 "name": "prometheus_type",

 "value": "gauge"

 }

]

 }

]

}

output_metric_tags:

- name: time

 value: "{{ .timestamp }}"

- name: entity_name

 value: "{{ .entity.name }}"

YML

{

 "output_metric_tags": [

 {

 "name": "time",

 "value": "{{ .timestamp }}"

JSON

Collect metrics in formats that do not support tags

Output metric tags are useful when you want to collect metrics in a format that does not natively
support tags, like Nagios Performance Data.

For example, you might want to collect and transmit metrics in Nagios Performance Data format, which
does not support tags, and store the metrics in Prometheus, which does support tags.
In this case, you
can specify the tags to include with metrics with output metric tags.
The output_metric_format ,
output_metric_handlers , and output_metric_tags attributes in your check defnition might look

similar to this example:

 },

 {

 "name": "entity_name",

 "value": "{{ .entity.name }}"

 }

]

}

output_metric_format: nagios_perfdata

output_metric_handlers:

 - prometheus_gateway

output_metric_tags:

 - name: instance

 value: '{{ .name }}'

 - name: prometheus_type

 value: gauge

 - name: service

 value: '{{ .labels.service }}'

YML

{

 "output_metric_format": "nagios_perfdata",

 "output_metric_handlers": [

 "prometheus_gateway"

],

 "output_metric_tags": [

JSON

Metric threshold evaluation

Metric threshold evaluation extends Sensu’s service check and metrics processing capabilities so you
can get real-time alerts based on the metrics your Sensu checks collect.
The Sensu agent analyzes
output metrics against the thresholds you specify and overrides the event check status if the metrics
values exceed the threshold values.

For example, the check from the Sensu Plus guide uses the sensu/system-check dynamic runtime
asset to collect baseline system metrics.
Add the output_metric_thresholds array to get alerts
based on the Sensu System Check metrics system_mem_used (percent of memory used) and
system_host_processes (number of host processes):

 {

 "name": "instance",

 "value": "{{ .name }}"

 },

 {

 "name": "prometheus_type",

 "value": "gauge"

 },

 {

 "name": "service",

 "value": "{{ .labels.service }}"

 }

]

}

type: CheckConfg

api_version: core/v2

metadata:

 name: system-check

spec:

 command: system-check

 runtime_assets:

 - system-check

 subscriptions:

 - system

YML

https://bonsai.sensu.io/assets/sensu/system-check

 interval: 10

 timeout: 5

 publish: true

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: sensu_to_sumo

 output_metric_format: prometheus_text

 output_metric_tags:

 - name: entity

 value: "{{ .name }}"

 - name: namespace

 value: "{{ .namespace }}"

 - name: os

 value: "{{ .system.os }}"

 - name: platform

 value: "{{ .system.platform }}"

 output_metric_thresholds:

 - name: system_mem_used

 tags:

 null_status: 1

 thresholds:

 - max: '75.0'

 min: ''

 status: 1

 - max: '90.0'

 min: ''

 status: 2

 - name: system_host_processes

 tags:

 - name: namespace

 value: production

 null_status: 1

 thresholds:

 - max: '50'

 min: '5'

 status: 1

 - max: '75'

 min: '2'

 status: 2

JSON

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "system-check"

 },

 "spec": {

 "command": "system-check",

 "runtime_assets": [

 "system-check"

],

 "subscriptions": [

 "system"

],

 "interval": 10,

 "timeout": 5,

 "publish": true,

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "sensu_to_sumo"

 }

],

 "output_metric_format": "prometheus_text",

 "output_metric_tags": [

 {

 "name": "entity",

 "value": "{{ .name }}"

 },

 {

 "name": "namespace",

 "value": "{{ .namespace }}"

 },

 {

 "name": "os",

 "value": "{{ .system.os }}"

 },

 {

 "name": "platform",

 "value": "{{ .system.platform }}"

 }

],

 "output_metric_thresholds": [

 {

 "name": "system_mem_used",

 "tags": null,

 "null_status": 1,

 "thresholds": [

 {

 "max": "75.0",

 "min": "",

 "status": 1

 },

 {

 "max": "90.0",

 "min": "",

 "status": 2

 }

]

 },

 {

 "name": "system_host_processes",

 "tags": [

 {

 "name": "namespace",

 "value": "production"

 }

],

 "null_status": 1,

 "thresholds": [

 {

 "max": "50",

 "min": "5",

 "status": 1

 },

 {

 "max": "75",

 "min": "2",

 "status": 2

 }

]

 }

In this example, for both system_mem_used and system_host_processes , Sensu will compare the
output metrics in each event with the thresholds set for each metric.
If the output metrics match or
exceed the thresholds, Sensu will override the check status.

For system_mem_used :

For system_host_processes :

Metric threshold evaluation takes place after Sensu extracts metrics and before Sensu processes any
check hooks.
If you specify a metric name and tags that match more than one check output metric point,
Sensu evaluates all matching metric points against the thresholds.

Check confguration requirements for metric threshold evaluation

To apply metric threshold evaluation, check defnitions must include:

]

 }

}

Set event status to 1 (warning) if the output metrics do not include system_mem_used .

Set event status to 1 (warning) when 75% of memory is used.

Set event status to 2 (critical) when 90% of memory is used.

Evaluate only output metrics for entities whose tags include name: namespace and value:
production .

Set event status to 1 (warning) if the output metrics do not include
system_host_processes .

Set event status to 1 (warning) when the number of host processes reaches 50 or more or 5
or fewer.

Set event status to 2 (critical) when the number of host processes reaches 75 or more or 2 or
fewer.

NOTE: The Sensu Plus example handler processes and transmits metrics data but cannot send
alerts.
Read Send data to Sumo Logic with Sensu to create a handler that sends alerts to Sumo
Logic, which you can add to the Sensu Plus example pipeline.

In addition, check status must be 0 (OK), indicating that Sensu successfully collected metrics, for the
Sensu agent to evaluate the collected metrics against the specifed thresholds.

Use token substitution in thresholds values

You can use check token substitution in values for thresholds max and min attributes instead of
specifying a single constant value.
Check tokens are placeholders that the Sensu agent will replace with
the corresponding entity defnition attribute values.

This example shows the thresholds array confgured to use token substitution for the max and
min attribute values:

The output_metric_format attribute with a value that specifes one of Sensu’s supported
output metric formats.

The output_metric_thresholds array, with values specifed for name and thresholds .

thresholds:

- max: '{{ .annotations.system_cpu_used_warning_threshold | default "70.0" }}'

 min: '{{ .annotations.system_cpu_used_warning_threshold | default "50.0" }}'

 status: 1

- max: '{{ .annotations.system_cpu_used_warning_threshold | default "80.0" }}'

 min: '{{ .annotations.system_cpu_used_warning_threshold | default "40.0" }}'

 status: 2

YML

{

 "thresholds": [

 {

 "max": "{{ .annotations.system_cpu_used_warning_threshold | default \"70.0\"

}}",

 "min": "{{ .annotations.system_cpu_used_warning_threshold | default \"50.0\"

}}",

 "status": 1

 },

 {

 "max": "{{ .annotations.system_cpu_used_warning_threshold | default \"80.0\"

}}",

JSON

If an entity has an annotation that matches system_cpu_used_warning_threshold , the check will
substitute the annotation value when executing the check.
If an entity does not have a matching
annotation, the check will use the specifed default values instead.

Add event annotations based on metric threshold evaluation

If a check defnition includes the output_metric_thresholds attribute, the check’s metric events
with non-zero status will include an annotation that lists the reason for the status.
Sensu adds one
annotation per matched threshold rule, one annotation per missing metric (null_status), and one
annotation that lists the global status for the check.

Annotations based on specifed threshold values are similar to this example:

Annotations based on null_status are similar to this example:

 "min": "{{ .annotations.system_cpu_used_warning_threshold | default \"40.0\"

}}",

 "status": 2

 }

]

}

annotations:

 sensu.io/output_metric_thresholds/system_mem_used/min/critical: 'The value of

"system_mem_used" exceeded the confgured threshold (max: 90, actual: 95)'

TEXT

{

 "annotations": {

 "sensu.io/output_metric_thresholds/system_mem_used/min/critical": "The value of

\"system_mem_used\" exceeded the confgured threshold (max: 90, actual: 95)"

 }

}

TEXT

TEXT

Annotations based on global status for the check are similar to this example:

Annotations based on global null_status for the check are similar to this example:

annotations:

 sensu.io/output_metric_thresholds/system_host_processes/null: 'WARNING: no metric

matching "system_host_processes" (namespace="production") was found; expected min: 5

- max: 50 (status: warning) min:2 - max: 75 (status: critical)'

{

 "annotations": {

 "sensu.io/output_metric_thresholds/system_host_processes/null": "WARNING: no

metric matching \"system_host_processes\" (namespace=\"production\") was found;

expected min: 5 - max: 50 (status: warning) min:2 - max: 75 (status: critical)"

 }

}

TEXT

annotations:

 sensu.io/notifcations/critical: 'The value of node_load1 exceeded the confgured

threshold (max: 4.0, actual: 5.263671875).'

TEXT

{

 "annotations": {

 "sensu.io/notifcations/critical": "The value of node_load1 exceeded the

confgured threshold (max: 4.0, actual: 5.263671875)."

 }

}

TEXT

annotations:

 sensu.io/notifcations/unknown: 'WARNING: no metric matching "node_load1"

TEXT

Process extracted and tagged metrics

Specify the handlers you want to process your Sensu metrics in a pipeline, then reference the pipeline
in the check pipelines array.
With handlers, you can route metrics to one or more databases for
storing and visualizing metrics, like Elasticsearch, InfuxDB, Grafana, and Graphite.

Many of our most popular metrics integrations for time-series and long-term event storage include
curated, confgurable quick-start templates to integrate Sensu with your existing workfows.
Use Bonsai,
the Sensu asset hub, to discover, download, and share dynamic runtime assets for processing metrics.

To handle both metrics and status events without applying conditional flter logic, confgure a pipeline
with different workfows for metrics and status.
The events reference includes an example event with
check and metric data.
Read the pipelines reference for more information about confguring a pipeline
with multiple workfows.

You do not need to add a mutator to your check defnition to process metrics with an event handler.
The
metrics attribute format automatically reduces metrics data complexity so event handlers can process
metrics effectively.

Validate metrics

If the check output is formatted correctly according to its output_metric_format , the metrics will be
extracted in Sensu metric format and passed to the observability pipeline.
The Sensu agent will log
errors if it cannot parse the check output.

(namespace="production") was found; expected min: 4.0 (status: warning); expected

max: 6 (status: critical)'

{

 "annotations": {

 "sensu.io/notifcations/unknown": "WARNING: no metric matching \"node_load1\"

(namespace=\"production\") was found; expected min: 4.0 (status: warning); expected

max: 6 (status: critical)"

 }

}

TEXT

https://bonsai.sensu.io/

Use the debug handler example to write metric events to a fle for inspection.
To confrm that the check
extracted metrics, inspect the event passed to the handler in the debug-event.json fle.
The event will
include a top-level metrics section populated with metrics points arrays if the Sensu agent correctly
ingested the metrics.

Metrics specifcation

The check specifcation describes metrics attributes in checks.

The event specifcation describes metrics attributes in events.

Rule templates reference

Rule templates are the resources that Sensu applies to service components for business service
monitoring (BSM).
A rule template applies to selections of events defned by a service component’s
query.
This selection of events is the rule’s input.

The rule template evaluates the selection of events using an ECMAScript 5 (JavaScript) expression
specifed in the rule template’s eval object and emits a single event based on this evaluation.
For
example, a rule template’s expression might defne the thresholds at which Sensu will consider a
service component online, degraded, or offine:

The rule template expression can also create arbitrary events.

Built-in rule template: Aggregate

Sensu includes a built-in rule template, aggregate , that allows you to treat the results of multiple
disparate check executions executed across multiple disparate systems as a single result (event).
This
built-in rule template is ready to use with your service components.

Reference the rule template name in the rules.template feld and confgure the arguments in the
rules.template.arguments object in your service component resource defnitions.

Use the aggregate rule template for services that can be considered healthy as long as a minimum
threshold is satisfed.
For example, you might set the minimum threshold at 10 web servers with an OK

COMMERCIAL FEATURE : Access business service monitoring (BSM), including rule templates,
in the packaged Sensu Go distribution.
For more information, read Get started with commercial
features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

Online until fewer than 70% of the service component’s events have a check status of OK.

Degraded while 50-69% of the service component’s events have a check status of OK.

Offine when fewer than 50% of the service component’s events have a check status of OK.

status or 70% of processes running with an OK status.

The aggregate rule template is useful in dynamic environments and environments with some
tolerance for failure.

To review the aggregate resource defnition, retrieve it with a GET request to /enterprise/bsm/v1:

The response will include the complete aggregate rule template resource defnition in JSON format:

curl -X GET \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/rule-

templates/aggregate \

-H "Authorization: Key $SENSU_API_KEY"

{

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a critical status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a critical status if the percentage

of non-zero events is equal to or greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers to use for produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from aggregate data and include them in

the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a warning status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a warning status if the percentage of

non-zero events is equal to or greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed service - aggregate one or more events

into a single event. This BSM rule template allows you to treat the results of

multiple disparate check executions – executed across multiple disparate systems –

as a single event. This template is extremely useful in dynamic environments and/or

environments that have a reasonable tolerance for failure. Use this template when a

service can be considered healthy as long as a minimum threshold is satisfed (for

example, at least 5 healthy web servers? at least 70% of N processes healthy?).",

 "eval": "\nif (events && events.length == 0) {\n event.check.output =

\"WARNING: No events selected for aggregate\n\";\n event.check.status = 1;\n

return event;\n}\n\nevent.annotations[\"io.sensu.bsm.selected_event_count\"] =

events.length;\n\npercentOK = sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var handlers = [];\n\n if

(!!args[\"metric_handlers\"]) {\n handlers =

args[\"metric_handlers\"].slice();\n }\n\n var ts = Math.foor(new

Date().getTime() / 1000);\n\n event.timestamp = ts;\n\n var tags = [\n

{\n name: \"service\",\n value: event.entity.name\n

},\n {\n name: \"entity\",\n value: event.entity.name\n

},\n {\n name: \"check\",\n value: event.check.name\n

}\n];\n\n event.metrics = sensu.NewMetrics({\n handlers: handlers,\n

points: [\n {\n name: \"percent_non_zero\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n name: \"percent_ok\",\n

timestamp: ts,\n value: percentOK,\n tags: tags\n

},\n {\n name: \"percent_warning\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n name:

\"percent_critical\",\n timestamp: ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n tags: tags\n

},\n {\n name: \"percent_unknown\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n name:

\"count_non_zero\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"non-zero\"),\n tags: tags\n },\n

{\n name: \"count_ok\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"ok\"),\n tags: tags\n },\n

{\n name: \"count_warning\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"warning\"),\n tags: tags\n

},\n {\n name: \"count_critical\",\n

timestamp: ts,\n value: sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n name:

\"count_unknown\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n tags: tags\n }\n

]\n });\n\n if (!!args[\"set_metric_annotations\"]) {\n var i = 0;\n\n

while(i < event.metrics.points.length) {\n

event.annotations[\"io.sensu.bsm.selected_event_\" + event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n i++;\n }\n

}\n}\n\nif (!!args[\"critical_threshold\"] && percentOK <=

args[\"critical_threshold\"]) {\n event.check.output = \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 2;\n return

event;\n}\n\nif (!!args[\"warning_threshold\"] && percentOK <=

args[\"warning_threshold\"]) {\n event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 1;\n return

event;\n}\n\nif (!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n if (crit >= args[\"critical_count\"])

{\n event.check.output = \"CRITICAL: \" + args[\"critical_count\"].toString()

+ \" or more selected events are in a critical state (\" + crit.toString() +

The confguration for a service component that references the aggregate rule template might look
like this example:

\")\n\";\n event.check.status = 2;\n return event;\n }\n}\n\nif

(!!args[\"warning_count\"]) {\n warn = sensu.CountBySeverity(\"warning\");\n\n

if (warn >= args[\"warning_count\"]) {\n event.check.output = \"WARNING: \" +

args[\"warning_count\"].toString() + \" or more selected events are in a warning

state (\" + warn.toString() + \")\n\";\n event.check.status = 1;\n

return event;\n }\n}\n\nevent.check.output = \"Everything looks good (\" +

percentOK.toString() + \"% OK)\";\nevent.check.status = 0;\n\nreturn event;\n"

 }

}

type: ServiceComponent

api_version: bsm/v1

metadata:

 name: webservers

spec:

 services:

 - website-services

 interval: 60

 query:

 - type: feldSelector

 value: webserver in event.check.subscriptions

 rules:

 - template: aggregate

 name: webservers_50-70

 arguments:

 critical_threshold: 70

 warning_threshold: 50

 handlers:

 - slack

YML

{

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

JSON

Apply rule templates to service components

Rule templates are general, parameterized resources that can apply to one or more service
components.
To apply a rule template to a specifc service component:

 "metadata": {

 "name": "webservers"

 },

 "spec": {

 "services": [

 "website-services"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in event.check.subscriptions"

 }

],

 "rules": [

 {

 "template": "aggregate",

 "name": "webservers_50-70",

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 }

 }

],

 "handlers": [

 "slack"

]

 }

}

List the rule template name in the service component’s rules.template feld.

Specify the arguments the rule template requires in the service component’s
rules.template.arguments object.

Several service components can use the same rule template with different argument values.
For
example, a rule template might evaluate one argument, threshold_ok , against the number of events
with OK status, as represented by the following logic:

You can specify a variety of thresholds as arguments in service component defnitions that reference
this rule template.
One service component might set a threshold_ok value at 10; another service
component might set the value at 50.
Both service components can make use of the same rule template
at the threshold that makes sense for that component.

Service components can reference more than one rule template.
Sensu evaluates each rule separately,
and each rule produces its own event as output.

Rule template specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
rule template confguration in this version of Sensu, the api_version
should always be bsm/v1 .

required Required for rule template confguration in wrapped-json or yaml
format.

type String

example

if numberEventsOK < threshold_ok {

 emit warning event

}

api_version: bsm/v1

YML

{

JSON

metadata

description Top-level collection of information about the rule template, including
name , namespace , and created_by as well as custom labels and
annotations .

required true

type Map of key-value pairs

example

 "api_version": "bsm/v1"

}

metadata:

 name: aggregate

 namespace: default

 created_by: admin

 labels:

 region: us-west-1

 annotations:

 managed_by: ops

YML

{

 "metadata": {

 "name": "aggregate",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "managed_by": "ops"

 }

 }

}

JSON

spec

description Top-level map that includes the rule template confguration spec
attributes.

required Required for rule template confguration in wrapped-json or yaml
format.

type Map of key-value pairs

example
spec:

 arguments:

 properties:

 critical_count:

 description: create an event with a critical status

if there the number of

 critical events is equal to or greater than this

count

 type: number

 critical_threshold:

 description: create an event with a critical status

if the percentage of non-zero

 events is equal to or greater than this threshold

 type: number

 metric_handlers:

 default: {}

 description: metric handlers to use for produced

metrics

 items:

 type: string

 type: array

 produce_metrics:

 default: {}

 description: produce metrics from aggregate data

and include them in the produced

 event

 type: boolean

 set_metric_annotations:

YML

 default: {}

 description: annotate the produced event with

metric annotations

 type: boolean

 warning_count:

 description: create an event with a warning status

if there the number of

 critical events is equal to or greater than this

count

 type: number

 warning_threshold:

 description: create an event with a warning status

if the percentage of non-zero

 events is equal to or greater than this threshold

 type: number

 required: null

 description: Monitor a distributed service - aggregate

one or more events into a

 single event. This BSM rule template allows you to

treat the results of multiple

 disparate check executions – executed across multiple

disparate systems – as a

 single event. This template is extremely useful in

dynamic environments and/or

 environments that have a reasonable tolerance for

failure. Use this template when

 a service can be considered healthy as long as a

minimum threshold is satisfed

 (e.g. at least 5 healthy web servers? at least 70% of N

processes healthy?).

 eval: |2

 if (events && events.length == 0) {

 event.check.output = "WARNING: No events selected

for aggregate

 ";

 event.check.status = 1;

 return event;

 }

 event.annotations["io.sensu.bsm.selected_event_count"]

= events.length;

 percentOK = sensu.PercentageBySeverity("ok");

 if (!!args["produce_metrics"]) {

 var ts = Math.foor(new Date().getTime() / 1000);

 event.timestamp = ts;

 var tags = [

 {

 name: "service",

 value: event.entity.name

 },

 {

 name: "entity",

 value: event.entity.name

 },

 {

 name: "check",

 value: event.check.name

 }

];

 event.metrics = sensu.NewMetrics({

 points: [

 {

 name: "percent_non_zero",

 timestamp: ts,

 value: sensu.PercentageBySeverity("non-

zero"),

 tags: tags

 },

 {

 name: "percent_ok",

 timestamp: ts,

 value: percentOK,

 tags: tags

 },

 {

 name: "percent_warning",

 timestamp: ts,

 value:

sensu.PercentageBySeverity("warning"),

 tags: tags

 },

 {

 name: "percent_critical",

 timestamp: ts,

 value:

sensu.PercentageBySeverity("critical"),

 tags: tags

 },

 {

 name: "percent_unknown",

 timestamp: ts,

 value:

sensu.PercentageBySeverity("unknown"),

 tags: tags

 },

 {

 name: "count_non_zero",

 timestamp: ts,

 value: sensu.CountBySeverity("non-

zero"),

 tags: tags

 },

 {

 name: "count_ok",

 timestamp: ts,

 value: sensu.CountBySeverity("ok"),

 tags: tags

 },

 {

 name: "count_warning",

 timestamp: ts,

 value:

sensu.CountBySeverity("warning"),

 tags: tags

 },

 {

 name: "count_critical",

 timestamp: ts,

 value:

sensu.CountBySeverity("critical"),

 tags: tags

 },

 {

 name: "count_unknown",

 timestamp: ts,

 value:

sensu.CountBySeverity("unknown"),

 tags: tags

 }

]

 });

 if (!!args["metric_handlers"]) {

 event.metrics.handlers =

args["metric_handlers"].slice();

 }

 if (!!args["set_metric_annotations"]) {

 var i = 0;

 while(i \u003c event.metrics.points.length) {

event.annotations["io.sensu.bsm.selected_event_" +

event.metrics.points[i].name] =

event.metrics.points[i].value.toString();

 i++;

 }

 }

 }

 if (!!args["critical_threshold"] && percentOK \u003c=

args["critical_threshold"]) {

 event.check.output = "CRITICAL: Less than " +

args["critical_threshold"].toString() + "% of selected

events are OK (" + percentOK.toString() + "%)

 ";

 event.check.status = 2;

 return event;

 }

 if (!!args["warning_threshold"] && percentOK \u003c=

args["warning_threshold"]) {

 event.check.output = "WARNING: Less than " +

args["warning_threshold"].toString() + "% of selected

events are OK (" + percentOK.toString() + "%)

 ";

 event.check.status = 1;

 return event;

 }

 if (!!args["critical_count"]) {

 crit = sensu.CountBySeverity("critical");

 if (crit \u003e= args["critical_count"]) {

 event.check.output = "CRITICAL: " +

args["critical_count"].toString() + " or more selected

events are in a critical state (" + crit.toString() + ")

 ";

 event.check.status = 2;

 return event;

 }

 }

 if (!!args["warning_count"]) {

 warn = sensu.CountBySeverity("warning");

 if (warn \u003e= args["warning_count"]) {

 event.check.output = "WARNING: " +

args["warning_count"].toString() + " or more selected

events are in a warning state (" + warn.toString() + ")

 ";

 event.check.status = 1;

 return event;

 }

 }

 event.check.output = "Everything looks good (" +

percentOK.toString() + "% OK)";

 event.check.status = 0;

 return event;

{

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a critical

status if there the number of critical events is equal to

or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a critical

status if the percentage of non-zero events is equal to or

greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

JSON

 "description": "metric handlers to use for

produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from aggregate

data and include them in the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event with

metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a warning

status if there the number of critical events is equal to

or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a warning

status if the percentage of non-zero events is equal to or

greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed service -

aggregate one or more events into a single event. This BSM

rule template allows you to treat the results of multiple

disparate check executions – executed across multiple

disparate systems – as a single event. This template is

extremely useful in dynamic environments and/or

environments that have a reasonable tolerance for failure.

Use this template when a service can be considered healthy

as long as a minimum threshold is satisfed (e.g. at least 5

healthy web servers? at least 70% of N processes

healthy?).",

 "eval": "\nif (events \\u0026\\u0026 events.length ==

0) {\n event.check.output = \"WARNING: No events

selected for aggregate\n\";\n event.check.status = 1;\n

return

event;\n}\n\nevent.annotations[\"io.sensu.bsm.selected_even

t_count\"] = events.length;\n\npercentOK =

sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var ts = Math.foor(new

Date().getTime() / 1000);\n\n event.timestamp = ts;\n\n

var tags = [\n {\n name: \"service\",\n

value: event.entity.name\n },\n {\n

name: \"entity\",\n value: event.entity.name\n

},\n {\n name: \"check\",\n

value: event.check.name\n }\n];\n\n

event.metrics = sensu.NewMetrics({\n points: [\n

{\n name: \"percent_non_zero\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"percent_ok\",\n timestamp: ts,\n

value: percentOK,\n tags: tags\n

},\n {\n name:

\"percent_warning\",\n timestamp: ts,\n

value: sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"percent_critical\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"percent_unknown\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n

name: \"count_non_zero\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"count_ok\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"ok\"),\n

tags: tags\n },\n {\n

name: \"count_warning\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"count_critical\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"count_unknown\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"unknown\"),\n

tags: tags\n }\n]\n });\n\n if

(!!args[\"metric_handlers\"]) {\n

event.metrics.handlers =

args[\"metric_handlers\"].slice();\n }\n\n if

(!!args[\"set_metric_annotations\"]) {\n var i =

0;\n\n while(i \\u003c event.metrics.points.length)

{\n

event.annotations[\"io.sensu.bsm.selected_event_\" +

event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n

i++;\n }\n }\n}\n\nif

(!!args[\"critical_threshold\"] \\u0026\\u0026 percentOK

\\u003c= args[\"critical_threshold\"]) {\n

event.check.output = \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of selected

events are OK (\" + percentOK.toString() + \"%)\n\";\n

event.check.status = 2;\n return event;\n}\n\nif

(!!args[\"warning_threshold\"] \\u0026\\u0026 percentOK

\\u003c= args[\"warning_threshold\"]) {\n

event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of selected

events are OK (\" + percentOK.toString() + \"%)\n\";\n

event.check.status = 1;\n return event;\n}\n\nif

(!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n if (crit

\\u003e= args[\"critical_count\"]) {\n

event.check.output = \"CRITICAL: \" +

args[\"critical_count\"].toString() + \" or more selected

events are in a critical state (\" + crit.toString() +

\")\n\";\n event.check.status = 2;\n return

event;\n }\n}\n\nif (!!args[\"warning_count\"]) {\n

warn = sensu.CountBySeverity(\"warning\");\n\n if (warn

\\u003e= args[\"warning_count\"]) {\n

event.check.output = \"WARNING: \" +

type

description Top-level attribute that specifes the resource type. For rule template
confguration, the type should always be RuleTemplate .

required Required for rule template confguration in wrapped-json or yaml
format.

type String

example

Metadata attributes

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s

args[\"warning_count\"].toString() + \" or more selected

events are in a warning state (\" + warn.toString() +

\")\n\";\n event.check.status = 1;\n return

event;\n }\n}\n\nevent.check.output = \"Everything looks

good (\" + percentOK.toString() + \"%

OK)\";\nevent.check.status = 0;\n\nreturn event;\n"

 }

}

type: RuleTemplate

YML

{

 "type": "RuleTemplate"

}

JSON

meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

created_by

description Username of the Sensu user who created the rule template or last
updated the rule template. Sensu automatically populates the
created_by feld when the rule template is created or updated.

required false

type String

example

annotations:

 managed-by: ops

YML

{

 "annotations": {

 "managed-by": "ops"

 }

}

JSON

created_by: admin

YML

{

JSON

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

 "created_by": "admin"

}

labels:

 region: us-west-1

YML

{

 "labels": {

 "region": "us-west-1"

 }

}

JSON

name

description Name for the rule template that is used internally by Sensu.

required true

type String

example

namespace

description Sensu RBAC namespace that the rule template belongs to.

required true

type String

example

name: aggregate

YML

{

 "name": "aggregate"

}

JSON

namespace: default

YML

{

 "namespace": "default"

}

JSON

Spec attributes

arguments

description The rule template’s arguments using JSON Schema properties.

required true

type Map of key-value pairs

example
arguments:

 properties:

 critical_count:

 description: create an event with a critical status

if there the number of critical

 events is equal to or greater than this count

 type: number

 critical_threshold:

 description: create an event with a critical status

if the percentage of non-zero

 events is equal to or greater than this threshold

 type: number

 metric_handlers:

 default: {}

 description: metric handlers to use for produced

metrics

 items:

 type: string

 type: array

 produce_metrics:

 default: {}

 description: produce metrics from aggregate data and

include them in the produced

 event

 type: boolean

 set_metric_annotations:

 default: {}

 description: annotate the produced event with metric

annotations

 type: boolean

YML

https://json-schema.org/

 warning_count:

 description: create an event with a warning status if

there the number of critical

 events is equal to or greater than this count

 type: number

 warning_threshold:

 description: create an event with a warning status if

the percentage of non-zero

 events is equal to or greater than this threshold

 type: number

 required: null

{

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a critical

status if there the number of critical events is equal to

or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a critical

status if the percentage of non-zero events is equal to or

greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {

 },

 "description": "metric handlers to use for produced

metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {

 },

JSON

description

description Plain text description of the rule template’s behavior.

required true

type String

example

 "description": "produce metrics from aggregate data

and include them in the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {

 },

 "description": "annotate the produced event with

metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a warning

status if there the number of critical events is equal to

or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a warning

status if the percentage of non-zero events is equal to or

greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 }

}

description: Monitor a distributed service - aggregate one

or more events into a single event. This BSM rule template

YML

eval

description ECMAScript 5 (JavaScript) expression for the rule template to evaluate.

required true

type String

example

allows you to treat the results of multiple disparate check

executions – executed across multiple disparate systems –

as a single event. This template is extremely useful in

dynamic environments and/or environments that have a

reasonable tolerance for failure. Use this template when a

service can be considered healthy as long as a minimum

threshold is satisfed (e.g. at least 5 healthy web servers?

at least 70% of N processes healthy?).

{

 "description": "Monitor a distributed service - aggregate

one or more events into a single event. This BSM rule

template allows you to treat the results of multiple

disparate check executions – executed across multiple

disparate systems – as a single event. This template is

extremely useful in dynamic environments and/or

environments that have a reasonable tolerance for failure.

Use this template when a service can be considered healthy

as long as a minimum threshold is satisfed (e.g. at least 5

healthy web servers? at least 70% of N processes

healthy?)."

}

JSON

eval: |2

 if (events && events.length == 0) {

 event.check.output = "WARNING: No events selected for

aggregate

YML

 ";

 event.check.status = 1;

 return event;

 }

 event.annotations["io.sensu.bsm.selected_event_count"] =

events.length;

 percentOK = sensu.PercentageBySeverity("ok");

 if (!!args["produce_metrics"]) {

 var ts = Math.foor(new Date().getTime() / 1000);

 event.timestamp = ts;

 var tags = [

 {

 name: "service",

 value: event.entity.name

 },

 {

 name: "entity",

 value: event.entity.name

 },

 {

 name: "check",

 value: event.check.name

 }

];

 event.metrics = sensu.NewMetrics({

 points: [

 {

 name: "percent_non_zero",

 timestamp: ts,

 value: sensu.PercentageBySeverity("non-

zero"),

 tags: tags

 },

 {

 name: "percent_ok",

 timestamp: ts,

 value: percentOK,

 tags: tags

 },

 {

 name: "percent_warning",

 timestamp: ts,

 value:

sensu.PercentageBySeverity("warning"),

 tags: tags

 },

 {

 name: "percent_critical",

 timestamp: ts,

 value:

sensu.PercentageBySeverity("critical"),

 tags: tags

 },

 {

 name: "percent_unknown",

 timestamp: ts,

 value:

sensu.PercentageBySeverity("unknown"),

 tags: tags

 },

 {

 name: "count_non_zero",

 timestamp: ts,

 value: sensu.CountBySeverity("non-zero"),

 tags: tags

 },

 {

 name: "count_ok",

 timestamp: ts,

 value: sensu.CountBySeverity("ok"),

 tags: tags

 },

 {

 name: "count_warning",

 timestamp: ts,

 value: sensu.CountBySeverity("warning"),

 tags: tags

 },

 {

 name: "count_critical",

 timestamp: ts,

 value: sensu.CountBySeverity("critical"),

 tags: tags

 },

 {

 name: "count_unknown",

 timestamp: ts,

 value: sensu.CountBySeverity("unknown"),

 tags: tags

 }

]

 });

 if (!!args["metric_handlers"]) {

 event.metrics.handlers =

args["metric_handlers"].slice();

 }

 if (!!args["set_metric_annotations"]) {

 var i = 0;

 while(i \u003c event.metrics.points.length) {

event.annotations["io.sensu.bsm.selected_event_" +

event.metrics.points[i].name] =

event.metrics.points[i].value.toString();

 i++;

 }

 }

 }

 if (!!args["critical_threshold"] && percentOK \u003c=

args["critical_threshold"]) {

 event.check.output = "CRITICAL: Less than " +

args["critical_threshold"].toString() + "% of selected

events are OK (" + percentOK.toString() + "%)

 ";

 event.check.status = 2;

 return event;

 }

 if (!!args["warning_threshold"] && percentOK \u003c=

args["warning_threshold"]) {

 event.check.output = "WARNING: Less than " +

args["warning_threshold"].toString() + "% of selected

events are OK (" + percentOK.toString() + "%)

 ";

 event.check.status = 1;

 return event;

 }

 if (!!args["critical_count"]) {

 crit = sensu.CountBySeverity("critical");

 if (crit \u003e= args["critical_count"]) {

 event.check.output = "CRITICAL: " +

args["critical_count"].toString() + " or more selected

events are in a critical state (" + crit.toString() + ")

 ";

 event.check.status = 2;

 return event;

 }

 }

 if (!!args["warning_count"]) {

 warn = sensu.CountBySeverity("warning");

 if (warn \u003e= args["warning_count"]) {

 event.check.output = "WARNING: " +

args["warning_count"].toString() + " or more selected

events are in a warning state (" + warn.toString() + ")

 ";

 event.check.status = 1;

 return event;

 }

 }

 event.check.output = "Everything looks good (" +

percentOK.toString() + "% OK)";

 event.check.status = 0;

 return event;

{

 "eval": " if (events \\u0026\\u0026 events.length == 0)

{\n event.check.output = \"WARNING: No events selected

for aggregate\n \";\n event.check.status = 1;\n

return event;\n }\n

event.annotations[\"io.sensu.bsm.selected_event_count\"] =

events.length;\n percentOK =

sensu.PercentageBySeverity(\"ok\");\n if

(!!args[\"produce_metrics\"]) {\n var ts =

Math.foor(new Date().getTime() / 1000);\n

event.timestamp = ts;\n var tags = [\n {\n

name: \"service\",\n value:

event.entity.name\n },\n {\n

name: \"entity\",\n value: event.entity.name\n

JSON

},\n {\n name: \"check\",\n

value: event.check.name\n }\n];\n

event.metrics = sensu.NewMetrics({\n points: [\n

{\n name: \"percent_non_zero\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"percent_ok\",\n timestamp: ts,\n

value: percentOK,\n tags: tags\n

},\n {\n name:

\"percent_warning\",\n timestamp: ts,\n

value: sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"percent_critical\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"percent_unknown\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n

name: \"count_non_zero\",\n timestamp:

ts,\n value: sensu.CountBySeverity(\"non-

zero\"),\n tags: tags\n },\n

{\n name: \"count_ok\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"ok\"),\n tags:

tags\n },\n {\n

name: \"count_warning\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"count_critical\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"count_unknown\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n

tags: tags\n }\n]\n });\n

if (!!args[\"metric_handlers\"]) {\n

event.metrics.handlers =

args[\"metric_handlers\"].slice();\n }\n if

(!!args[\"set_metric_annotations\"]) {\n var i =

0;\n while(i \\u003c event.metrics.points.length)

{\n

event.annotations[\"io.sensu.bsm.selected_event_\" +

event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n

i++;\n }\n }\n }\n if

(!!args[\"critical_threshold\"] \\u0026\\u0026 percentOK

\\u003c= args[\"critical_threshold\"]) {\n

event.check.output = \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of selected

events are OK (\" + percentOK.toString() + \"%)\n \";\n

event.check.status = 2;\n return event;\n }\n if

(!!args[\"warning_threshold\"] \\u0026\\u0026 percentOK

\\u003c= args[\"warning_threshold\"]) {\n

event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of selected

events are OK (\" + percentOK.toString() + \"%)\n \";\n

event.check.status = 1;\n return event;\n }\n if

(!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n if (crit

\\u003e= args[\"critical_count\"]) {\n

event.check.output = \"CRITICAL: \" +

args[\"critical_count\"].toString() + \" or more selected

events are in a critical state (\" + crit.toString() +

\")\n \";\n event.check.status = 2;\n

return event;\n }\n }\n if

(!!args[\"warning_count\"]) {\n warn =

sensu.CountBySeverity(\"warning\");\n if (warn

\\u003e= args[\"warning_count\"]) {\n

event.check.output = \"WARNING: \" +

args[\"warning_count\"].toString() + \" or more selected

events are in a warning state (\" + warn.toString() + \")\n

\";\n event.check.status = 1;\n return

event;\n }\n }\n event.check.output = \"Everything

looks good (\" + percentOK.toString() + \"% OK)\";\n

event.check.status = 0;\n return event;"

}

Arguments attributes

properties

description List of properties that defne the argument’s behavior. In JSON Schema.

required true

type Array

example
properties:

 critical_count:

 description: create an event with a critical status if

there the number of

 critical events is equal to or greater than this

count

 type: number

 critical_threshold:

 description: create an event with a critical status if

the percentage of non-zero

 events is equal to or greater than this threshold

 type: number

 metric_handlers:

 default: {}

 description: metric handlers to use for produced

metrics

 items:

 type: string

 type: array

 produce_metrics:

 default: {}

 description: produce metrics from aggregate data and

include them in the produced

 event

 type: boolean

 set_metric_annotations:

 default: {}

 description: annotate the produced event with metric

annotations

 type: boolean

YML

https://json-schema.org/

 warning_count:

 description: create an event with a warning status if

there the number of

 critical events is equal to or greater than this

count

 type: number

 warning_threshold:

 description: create an event with a warning status if

the percentage of non-zero

 events is equal to or greater than this threshold

 type: number

{

 "properties": {

 "critical_count": {

 "description": "create an event with a critical

status if there the number of critical events is equal to

or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a critical

status if the percentage of non-zero events is equal to or

greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers to use for produced

metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from aggregate data

and include them in the produced event",

JSON

required

description List of attributes the rule template argument requires. The listed
attributes must be confgured in the properties object.

required false

type Array

example

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event with

metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a warning status

if there the number of critical events is equal to or

greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a warning status

if the percentage of non-zero events is equal to or greater

than this threshold",

 "type": "number"

 }

 },

 "required": null

}

required: null

YML

JSON

{

 "required": null

}

Service components reference

Service components are resources for defning and managing elements of a business service in
business service monitoring.
A service entity consists of a number of underlying service components.
A
service component is a meaningful selection of Sensu events for a business service, such as database
monitoring events.

A service component includes event selectors to defne the events that the component includes, a
service component scheduler (either an interval or cron expression), and references to at least one
monitoring rule template with arguments.
The monitoring rules are evaluated against aggregate data
derived from the service component’s selection of events.
Monitoring rules are confgured in a separate
resource: rule templates.

If you delete a resource (for example, an entity, check, or event) that is part of one or more service
components, Sensu will automatically remove the deleted resource from the service components.

Service component example

The example service component below is a dependency of the business service entity website-
services .
Sensu will execute the component at 60-second intervals for website-services service
entities whose events include the webserver subscription.
The monitoring rule template for the service
component is aggregate .

COMMERCIAL FEATURE : Access business service monitoring (BSM), including service
components, in the packaged Sensu Go distribution.
For more information, read Get started with
commercial features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

type: ServiceComponent

api_version: bsm/v1

metadata:

YML

 name: webservers

spec:

 handlers:

 - slack

 interval: 60

 query:

 - type: feldSelector

 value: webserver in event.check.subscriptions

 rules:

 - arguments:

 critical_threshold: 70

 warning_threshold: 50

 name: webservers_50-70

 template: aggregate

 services:

 - website-services

{

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "webservers"

 },

 "spec": {

 "handlers": [

 "slack"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in event.check.subscriptions"

 }

],

 "rules": [

 {

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 },

JSON

Service component scheduling

Sensu executes service components on sensu-backend processes in a round-robin fashion and
according to a schedule specifed by an interval or a cron expression in the component defnition.
During
each execution of the service component, Sensu retrieves the events identifed in the component’s
query expression and processes these events according to the monitoring rules specifed in the service
component defnition.
The rules can emit new events based on the component input.

Service component specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
service component confguration in this version of Sensu, the api_version
should always be bsm/v1 .

required Required for service component confguration in wrapped-json or
yaml format.

type String

example

 "name": "webservers_50-70",

 "template": "aggregate"

 }

],

 "services": [

 "website-services"

]

 }

}

api_version: bsm/v1

YML

metadata

description Top-level collection of information about the service component,
including name , namespace , and created_by as well as custom
labels and annotations .

required true

type Map of key-value pairs

example

{

 "api_version": "bsm/v1"

}

JSON

metadata:

 name: webservers

 namespace: default

 created_by: admin

 labels:

 region: us-west-1

 annotations:

 managed_by: ops

YML

{

 "metadata": {

 "name": "webservers",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "managed_by": "ops"

JSON

spec

description Top-level map that includes the service component confguration spec
attributes.

required Required for service component confguration in wrapped-json or
yaml format.

type Map of key-value pairs

example

 }

 }

}

spec:

 handlers:

 - slack

 interval: 60

 query:

 - type: feldSelector

 value: webserver in event.check.subscriptions

 rules:

 - arguments:

 critical_threshold: 70

 warning_threshold: 50

 name: webservers_50-70

 template: aggregate

 services:

 - website-services

YML

{

 "spec": {

 "handlers": [

 "slack"

],

JSON

type

description Top-level attribute that specifes the resource type. For service
component confguration, the type should always be
ServiceComponent .

required Required for service component confguration in wrapped-json or
yaml format.

type String

example

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in event.check.subscriptions"

 }

],

 "rules": [

 {

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 },

 "name": "webservers_50-70",

 "template": "aggregate"

 }

],

 "services": [

 "website-services"

]

 }

}

type: ServiceComponent

YML

JSON

Metadata attributes

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

{

 "type": "ServiceComponent"

}

annotations:

 managed-by: ops

YML

{

 "annotations": {

 "managed-by": "ops"

 }

}

JSON

created_by

description Username of the Sensu user who created or last updated the service
component. Sensu automatically populates the created_by feld when
the service component is created or updated.

required false

type String

example

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

example

name

description Name for the service component that is used internally by Sensu.

required true

type String

example

namespace

description Sensu RBAC namespace that the service component belongs to.

labels:

 region: us-west-1

YML

{

 "labels": {

 "region": "us-west-1"

 }

}

JSON

name: webservers

YML

{

 "name": "webservers"

}

JSON

required true

type String

example

Spec attributes

cron

description When the service component should be executed, using cron syntax or a
predefned schedule. Use a prefx of TZ= or CRON_TZ= to set a
timezone for the cron attribute.

required true (unless interval is confgured)

type String

example

namespace: default

YML

{

 "namespace": "default"

}

JSON

NOTE: If you’re using YAML to create a service component that
uses cron scheduling and the frst character of the cron schedule is
an asterisk (*), place the entire cron schedule inside single or
double quotes (for example, cron: '* * * * *').

cron: 0 0 * * *

YML

JSON

https://en.wikipedia.org/wiki/Cron#CRON_expression
https://godoc.org/github.com/robfig/cron#hdr-Predefined_schedules
https://en.wikipedia.org/wiki/Cron#Timezone_handling

handlers

description List of handlers to use for the events the service component produces.
The service component will set the handlers property in events that are
produced by rule evaluation. If no handlers are specifed in the service
component defnition, handlers can be set by the monitoring rule itself via
template arguments. Handlers specifed in the service component
defnition will override any handlers set by rule evaluation.

required false

type Array

example

interval

description How often the service component should be executed. In seconds. Each
service component must have a value for either the interval or the
cron attribute, but not both.

{

 "cron": "0 0 * * *"

}

handlers:

 - slack

YML

{

 "handlers": [

 "slack"

]

}

JSON

required true (unless cron is confgured)

type Integer

example

query

description Query expression that describes the events that each monitoring rule
should process for the service component. Read query attributes for
details.

required true

type Array

example

interval: 60

YML

{

 "interval": 60

}

JSON

query:

 - type: feldSelector

 value: webserver in event.check.subscriptions

YML

{

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in event.check.subscriptions"

 }

]

}

JSON

rules

description List of the rule templates and arguments that Sensu should apply for the
service component. Sensu evaluates each rule separately, and each rule
produces its own event as output. Read rules attributes for details.

required true

type Map of key-value pairs

example

services

rules:

- arguments:

 critical_threshold: 70

 warning_threshold: 50

 name: webservers_50-70

 template: aggregate

YML

{

 "rules": [

 {

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 },

 "name": "webservers_50-70",

 "template": "aggregate"

 }

]

}

JSON

description List of business service entities that include the service component as a
dependency.

required true

type Array

example

Query attributes

type

description Type of selector to use to identify the events that the service
component’s monitoring rule should process: feldSelector or
labelSelector .

required true

type String

example

services:

 - website-services

YML

{

 "services": [

 "website-services"

]

}

JSON

type: feldSelector

YML

{

JSON

value

description Selector expression the query will use to identify the events that the
service component’s monitoring rule should process.

required true

type String

example

Rules attributes

arguments

description The arguments to pass to the rule template for the service component.
Argument names and values will vary depending on the arguments
confgured in the specifed rule template.

required false

type Map of key-value pairs

example

 "type": "feldSelector"

}

value: webserver in event.check.subscriptions

YML

{

 "value": "webserver in event.check.subscriptions"

}

JSON

YML

name

description Explicit name to use for the rule-specifc events generated for the service
component. These names help keep events distinct when a service
component includes different rules for the same rule template.

required true

type String

example

template

- arguments:

 critical_threshold: 70

 warning_threshold: 50

{

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 }

}

JSON

name: webservers_50-70

YML

{

 "name": "webservers_50-70"

}

JSON

description Name of the rule template the service component should use.

required true

type String

example
template: aggregate

YML

{

 "template": "aggregate"

}

JSON

Subscriptions reference

Sensu uses the publish/subscribe model of communication.
The publish/subscribe model is powerful in
ephemeral or elastic infrastructures, where the names and numbers of things change over time.

Because Sensu uses the publish/subscribe model, you can write checks even if you don’t know the
specifc names of the entities that should run the checks.
Likewise, your entities do not need to know the
specifc names of the checks they should execute.
The Sensu backend coordinates check execution for
you by comparing the subscriptions you specify in your checks and entities to determine which entities
should receive execution requests for a given check.

The diagram below shows how Sensu coordinates check execution based on subscriptions.
For
example, the check_cpu check includes the system subscription.
All three entities include the
system subscription, so all three entities will execute the check_cpu check.
However, only the
server01 and database01 entities will execute check_sshd_process — the webserver01 entity

does not include the linux subscription required to execute check_sshd_process .

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Sensu subscriptions are equivalent to topics in a traditional publish/subscribe system.
Sensu entities
become subscribers to these topics via the strings you specify with the agent subscriptions fag.
Sensu checks have a subscriptions attribute, where you specify strings to indicate which
subscribers will execute the checks.
For Sensu to execute a check, the check defnition must include a
subscription that matches the subscription of at least one Sensu entity.

As loosely coupled references, subscriptions avoid the fragility of traditional host-based monitoring
systems.
Subscriptions allow you to confgure check requests in a one-to-many model for entire groups
or subgroups of entities rather than a traditional one-to-one mapping of confgured hosts or

NOTE: Proxy entities do not use subscriptions.
Instead, use proxy checks to generate events for
proxy entities.

http://localhost:1313/images/go/subscriptions_reference/subscriptions_diagram.png

observability checks.

Subscription example

Suppose you have a Sensu agent entity with the linux subscription:

For this agent to run a check, you must have at least one check with linux specifed in the
subscriptions attribute, such as this check to collect status information:

sensu-agent start --subscriptions linux --log-level debug

type: CheckConfg

api_version: core/v2

metadata:

 name: collect_info

spec:

 command: collect.sh

 handlers:

 - slack

 interval: 10

 publish: true

 subscriptions:

 - linux

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "command": "collect.sh",

 "handlers": [

JSON

If this is your only check for the linux subscription, this is the only check that your agent will execute.
If you add more checks that specify the linux subscription, your agent will automatically run those
checks too (as long as the publish attribute is set to true in the check defnitions).

You can also add more subscriptions for your entity.
For example, if you want your agent entity to
execute checks for the webserver subscription, you can add it with the subscriptions fag:

Now your agent entity will execute checks with the linux or webserver subscriptions.

To directly add, update, and delete subscriptions for individual entities, use sensuctl, the
core/v2/entities API endpoints, or the web UI.

Confgure subscriptions

Sensu automatically executes a check when the check defnition includes a subscription that matches
a subscription for at least one Sensu entity.
In other words, subscriptions are confgured for both checks
and agent entities:

The Sensu backend schedules checks once per interval for each agent entity with a matching
subscription.
For example, if you have three entities confgured with the system subscription, a check

 "slack"

],

 "interval": 10,

 "publish": true,

 "subscriptions": [

 "linux"

]

 }

}

sensu-agent start --subscriptions linux,webserver --log-level debug

To confgure subscriptions for a check, add one or more subscription names in the check
subscriptions attribute.

To confgure subscriptions for an agent entity, specify a subscription that matches one
subscription in each check that the agent’s entities should execute.

confgured with the system subscription results in three monitoring events per interval: one check
execution per entity per interval.

In addition to the subscriptions defned in the agent confguration, Sensu agent entities subscribe
automatically to subscriptions that match their entity name .
For example, an agent entity with name:

"i-424242" subscribes to check requests with the subscription entity:i-424242 .
This makes it
possible to generate ad hoc check requests that target specifc entities via the API.

Publish checks

If you want Sensu to automatically schedule and execute a check according to its subscriptions, set
the publish attribute to true in the check defnition.

You can also manually schedule ad hoc check execution with the core/v2/checks API endpoints,
whether the publish attribute is set to true or false .
To target the subscriptions defned in the
check, include only the check name in the request body (for example, "check": "check_cpu").
To
override the check’s subscriptions and target an alternate entity or group of entities, add the
subscriptions attribute to the request body:

WARNING: Make sure that your checks and entities share only one subscription.
Entities receive a
separate check request for each matching subscription, even if the requests are for the same
check.
This can result in check execution errors as well as unexpected results for check history
and the features that rely on it.

NOTE: You can directly add, update, and delete subscriptions for individual entities via the
backend with sensuctl, the core/v2/entities API endpoints, and the web UI.

{

 "check": "check_cpu",

 "subscriptions": [

 "entity:i-424242",

 "entity:i-828282"

]

}

Monitor multiple servers

You can use subscriptions to confgure monitoring and observability for multiple servers with different
operating systems and monitoring requirements.

For example, suppose you want to set up monitoring for these servers:

This diagram shows the subscriptions to list for each of the 12 servers (the entities) and for each check
to achieve the example monitoring confguration:

In this scenario, none of the Windows servers should execute the NGINX metrics check, so the
check_nginx subscriptions do not match any subscriptions listed for any of the Windows servers.
Two

of the six Windows servers should execute the SQL Server metrics check, so the subscription listed in
the check sqlsrv defnition matches a subscription listed for those two Windows server entities.

Six Linux servers:

Get CPU, memory, and disk status for all six

Get NGINX metrics for four

Get PostgreSQL metrics for two

Six Windows servers:

Get CPU, memory, and disk checks for all six

Get SQL Server metrics for two

http://localhost:1313/images/go/subscriptions_reference/subscriptions_multiple_servers.png

Subscription naming considerations

Consistent subscription naming helps you group and flter different entities and quickly understand
which entities will be affected by any changes.

Subscriptions based on function are helpful when you’re creating silences.
For example, if you need to
silence all webservers for maintenance, it’s easier to silence the affected entities if they all include a
subscription like webserver instead of identifying and silencing all of your webserver entities
individually.
Other function-based subscriptions might be database , switch , service , or
container .

Subscription naming is also important in the context of API and sensuctl flters and web UI searches.
Consistent subscription naming means that search queries like "linux" in checks.subscriptions
will actually retrieve all of your checks that run on Linux agents.

To make subscriptions more granular, use camel case to append information about environment, roles,
entity type, or any other category as needed.
For example, you can use webserverDev and
webserverProd to specify a distinction between development and production webservers while

preserving your ability to fnd all webserver entities with a search query like "webserver" in
entity.subscriptions .

Tokens reference

Tokens are placeholders in a check defnition that the agent replaces with entity information before
executing the check.
You can use tokens to fne-tune check attributes (like alert thresholds) on a per-
entity level while reusing the check defnition.

When a check is scheduled to be executed by an agent, it frst goes through a token substitution step.
The agent replaces any tokens with matching attributes from the entity defnition, and then the check is
executed.
Invalid templates or unmatched tokens return an error, which is logged and sent to the Sensu
backend message transport.
Checks with token-matching errors are not executed.

Token substitution is supported for check, hook, and dynamic runtime asset defnitions.
Only entity
attributes are available for substitution.
Token substitution is not available for event flters because flters
already have access to the entity.

Available entity attributes will always have string values, such as labels and annotations.

Example: Token substitution for check thresholds

This example demonstrates a reusable disk usage check.
The check command includes -w (warning)
and -c (critical) arguments with default values for the thresholds (as percentages) for generating
warning or critical events.
The check will compare every subscribed entity’s disk space against the
default threshold values to determine whether to generate a warning or critical event.

However, the check command also includes token substitution, which means you can add entity labels
that correspond to the check command tokens to specify different warning and critical values for
individual entities.
Instead of creating a different check for every set of thresholds, you can use the
same check to apply the defaults in most cases and the token-substituted values for specifc entities.

Follow this example to set up a reusable check for disk usage:

1. Add the sensu/check-disk-usage dynamic runtime asset, which includes the command you will
need for your check:

sensuctl asset add sensu/check-disk-usage:0.6.0

https://bonsai.sensu.io/assets/sensu/check-disk-usage

You will receive a response to confrm that the asset was added:

2. Create the check-disk-usage check:

fetching bonsai asset: sensu/check-disk-usage:0.6.0

added asset: sensu/check-disk-usage:0.6.0

You have successfully added the Sensu asset resource, but the asset will not

get downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset

to the appropriate

resource, populate the "runtime_assets" feld with ["sensu/check-disk-usage].

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: check-disk-usage

spec:

 check_hooks: []

 command: check-disk-usage -w {{index .labels "disk_warning" | default 80}} -

c

 {{.labels.disk_critical | default 90}}

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 output_metric_tags: null

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - sensu/check-disk-usage

 stdin: false

SHELL

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

EOF

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-disk-usage"

 },

 "spec": {

 "check_hooks": [],

 "command": "check-disk-usage -w {{index .labels "disk_warning" | default

80}} -c {{.labels.disk_critical | default 90}}",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "output_metric_tags": null,

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "sensu/check-disk-usage"

],

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

SHELL

This check will run on every entity with the subscription system .
According to the default values
in the command, the check will generate a warning event at 80% disk usage and a critical event
at 90% disk usage.

3. To receive alerts at different thresholds for an existing entity with the system subscription, add
disk_warning and disk_critical labels to the entity.

Use sensuctl to open an existing entity in a text editor:

And add the following labels in the entity metadata:

After you save your changes, the check-disk-usage check will substitute the disk_warning and
disk_critical label values to generate events at 65% and 75% of disk usage, respectively, for this

entity only.
The check will continue to use the 80% and 90% default values for other subscribed entities.

Add a hook that uses token substitution

Now you have a resusable check that will send disk usage alerts at default or entity-specifc thresholds.
You may want to add a hook to list more details about disk usage for warning and critical events.

The hook in this example will list disk usage in human-readable format, with error messages fltered
from the hook output.
By default, the hook will list details for the top directory and the frst layer of
subdirectories.
As with the check-disk-usage check, you can add a disk_usage_root label to
individual entities to specify a different directory for the hook via token substitution.

1. Add the hook defnition:

}

EOF

sensuctl edit entity ENTITY_NAME

 labels:

 disk_warning: "65"

 disk_critical: "75"

2. Add the hook to the check-disk-usage check.

Use sensuctl to open the check in a text editor:

cat << EOF | sensuctl create

type: HookConfg

api_version: core/v2

metadata:

 name: disk_usage_details

spec:

 command: du -h --max-depth=1 -c {{index .labels "disk_usage_root" | default

"/"}} 2>/dev/null

 runtime_assets: null

 stdin: false

 timeout: 60

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "disk_usage_details"

 },

 "spec": {

 "command": "du -h --max-depth=1 -c {{index .labels "disk_usage_root" |

default \"/\"}} 2>/dev/null",

 "runtime_assets": null,

 "stdin": false,

 "timeout": 60

 }

}

EOF

SHELL

Update the check defnition to include the disk_usage_details hook for non-zero events:

3. As with the disk usage check command, the hook command includes a token substitution option
To use a specifc directory instead of the default for specifc entities, edit the entity defnition to
add a disk_usage_root label and specify the directory:

Use sensuctl to open the entity in a text editor:

Add the disk_usage_root label with the desired substitute directory in the entity metadata:

After you save your changes, for this entity, the hook will substitute the directory you specifed for the
disk_usage_root label to provide additional disk usage details for every non-zero event the check-
disk-usage check generates.

Manage entity labels

You can use token substitution with any defned entity attributes, including custom labels.
read the
entities reference for information about managing entity labels for proxy entities and agent entities.

Manage dynamic runtime assets

sensuctl edit check check-disk-usage

 check_hooks:

 - non-zero:

 - disk_usage_details

sensuctl edit entity ENTITY_NAME

 labels:

 disk_usage_root: "/substitute-directory"

You can use token substitution in the URLs of your your dynamic runtime asset defnitions.
Token
substitution allows you to host your dynamic runtime assets at different URLs (such as at different
datacenters) without duplicating your assets, as shown in the following example:

With this asset defnition, which includes the .labels.asset_url token substitution, checks and
hooks can include sensu-go-hello-world as a dynamic runtime assets and Sensu Go will use the

type: Asset

api_version: core/v2

metadata:

 name: sensu-go-hello-world

spec:

 builds:

 - sha512:

07665fda5b7c75e15e4322820aa7ddb791cc9338e38444e976e601bc7d7970592e806a7b88733690a238

b7325437d31f85e98ae2fe47b008ca09c86530da9600

 url: "{{ .labels.asset_url }}/sensu-go-hello-world-0.0.1.tar.gz"

YML

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-go-hello-world"

 },

 "spec": {

 "builds": [

 {

 "sha512":

"07665fda5b7c75e15e4322820aa7ddb791cc9338e38444e976e601bc7d7970592e806a7b88733690a23

8b7325437d31f85e98ae2fe47b008ca09c86530da9600",

 "url": "{{ .labels.asset_url }}/sensu-go-hello-world-0.0.1.tar.gz"

 }

]

 }

}

JSON

token substitution for the agent’s entity.
Handlers and mutators can also include sensu-go-hello-

world as a dynamic runtime asset, but Sensu Go will use the token subtitution for the backend’s entity
instead of the agent’s entity.

You can also use token substitution to customize dynamic runtime asset headers (for example, to
include secure information for authentication).
Sensu also provides an assetPath function that allows
you to substitute a dynamic runtime asset’s local path on disk.

Token specifcation

Sensu Go uses the Go template package to implement token substitution.
Use double curly braces
around the token and a dot before the attribute to be substituted: {{ .system.hostname }} .

Token substitution syntax

Tokens are invoked by wrapping references to entity attributes and labels with double curly braces,
such as {{ .name }} to substitute an entity’s name.
Access nested Sensu entity attributes with dot
notation (for example, system.arch).

NOTE: To maintain security, you cannot use token substitution for a dynamic runtime asset’s
SHA512 value.

{{ .name }} would be replaced with the entity name attribute

{{ .labels.url }} would be replaced with a custom label called url

{{ .labels.disk_warning }} would be replaced with a custom label called disk_warning

{{ index .labels "disk_warning" }} would be replaced with a custom label called
disk_warning

{{ index .labels "cpu.threshold" }} would be replaced with a custom label called
cpu.threshold

NOTE: When an annotation or label name has a dot (for example, cpu.threshold), you must
use the template index function syntax to ensure correct processing because the dot notation is
also used for object nesting.

https://pkg.go.dev/text/template

Token substitution default values

If an attribute is not provided by the entity, a token’s default value will be substituted.
Token default
values are separated by a pipe character and the word “default” (| default).
Use token default
values to provide a fallback value for entities that are missing a specifed token attribute.

For example, {{.labels.url | default "https://sensu.io"}} would be replaced with a custom
label called url .
If no such attribute called url is included in the entity defnition, the default (or
fallback) value of https://sensu.io will be used to substitute the token.

Token substitution with quoted strings

You can escape quotes to express quoted strings in token substitution templates as shown in the Go
template package examples.
For example, to provide "substitution" as a default value for entities
that are missing the website attribute (including the quotation marks):

Unmatched tokens

If a token is unmatched during check preparation, the agent check handler will return an error, and the
check will not be executed.
Unmatched token errors are similar to this example:

Check confg token errors are logged by the agent and sent to Sensu backend message transport as
check failures.

Token data type limitations

As part of the substitution process, Sensu converts all tokens to strings.
This means that token
substitution cannot be applied to any non-string values like numbers or Booleans, although it can be
applied to strings that are nested inside objects and arrays.

{{ .labels.website | default "\"substitution\"" }}

error: unmatched token: template: :1:22: executing "" at <.system.hostname>: map has

no entry for key "System"

https://pkg.go.dev/text/template?tab=doc#hdr-Examples
https://pkg.go.dev/text/template?tab=doc#hdr-Examples

For example, token substitution cannot be used for specifying a check interval because the interval
attribute requires an integer value.
Token substitution can be used for alerting thresholds because those
values are included within the command string.

Business service monitoring SDK

Sensu’s business service monitoring (BSM) feature uses a dedicated SDK of JavaScript-based
expressions that provide additional functionality.
Use the BSM SDK to create custom JavaScript
expressions with complex logic.

BSM SDK expressions are defned in rule templates, so they act in the context of determining whether
aggregate data derived from a service component’s selection of Sensu Go events should trigger a rule-
based event.
They always receive a single event and some information about that event, like
event.timestamp or event.check.interval , and always return either true or false .

BSM SDK expressions are evaluated by the Otto JavaScript VM as JavaScript programs.

Syntax quick reference

operator description

=== Identity

!== Nonidentity

== Equality

!= Inequality

COMMERCIAL FEATURE : Access business service monitoring (BSM) in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

NOTE: Sensu query expressions also provide JavaScript functions for using nested parameters
and custom functions to retrieve events from the event store.

https://github.com/robertkrimen/otto

&& Logical AND

|| Logical OR

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Specifcation

BSM SDK expressions are valid ECMAScript 5 (JavaScript) expressions that return either true or
false .
Other values are not allowed.
If an expression returns a value besides true or false , the

Sensu backend log will record an error and the flter will evaluate to false .

The BSM SDK allows you to to express rules for the number or percentage of events with critical,
warning, OK, and unknown statuses.
You can also confgure expressions to ignore silenced events.

Custom functions

The Sensu BSM SDK includes two custom functions: sensu.Count() and sensu.Percentage() .

sensu.Count()

The custom function sensu.Count() returns the number of events with the specifed status.
For
example, to return the number of events with ok status:

sensu.Percentage()

The custom function sensu.Percentage() returns the percentage of events with the specifed status.

sensu.Count("ok")

For example, to return the percentage of events with critical status:

Example BSM SDK expression

The following BSM SDK expression creates a critical event if at least 35% of events generated by the
service component have critical status or creates a warning event if the service component
generates one or more events with warning status:

sensu.Percentage("critical")

if (sensu.Percentage("critical") >= 35) {

 event.check = {status: 2, output: "critical event"}

} else if (sensu.Count("warning") >= 1) {

 event.check = {status: 1, output: "warning event"}

}

Augment event data with check hooks

Check hooks are commands the Sensu agent runs in response to the result of check execution.
The
Sensu agent executes the appropriate confgured hook command based on the exit status code of the
check (for example, 1).

Check hooks allow you to automate data collection that operators would routinely perform to
investigate observability alerts, which frees up precious operator time.
Although you can use check
hooks for rudimentary auto-remediation tasks, they are intended to enrich observability event data.

Follow this guide to create a check hook that captures the process tree if a check returns a status of
2 (critical, not running).
You’ll need to install the Sensu backend, have at least one Sensu agent

running, and install and confgure sensuctl.

Confgure a Sensu entity

Every Sensu agent has a defned set of subscriptions that determine which checks the agent will
execute.
For an agent to execute a specifc check, you must specify the same subscription in the agent
confguration and the check defnition.
To run the nginx_service check used as an example in this
guide, you’ll need a Sensu entity with the subscription webserver .

To add the webserver subscription to the entity the Sensu agent is observing, frst fnd your agent
entity name:

The ID is the name of your entity.

Replace <entity_name> with the name of your agent entity in the following sensuctl command.
Run:

sensuctl entity list

sensuctl entity update <entity_name>

For Entity Class , press enter.

Confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Install and confgure NGINX

The nginx_service check requires a running NGINX service, so you’ll need to install and confgure
NGINX.

Install NGINX:

Enable and start the NGINX service:

Verify that NGINX is serving webpages:

The response should include HTTP/1.1 200 OK to indicate that NGINX processed your request as
expected:

For Subscriptions , type webserver and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

NOTE: You may need to install and update the EPEL repository with sudo yum install epel-

release and sudo yum update before you can install NGINX.

sudo yum install nginx

systemctl enable nginx && systemctl start nginx

curl -sI http://localhost

With your NGINX service running, you can confgure the webserver check.

Create a hook

Create a new hook that runs a specifc command to capture the process tree:

To confrm that the hook was added, run:

The response will include the complete hook resource defnition in the specifed format:

HTTP/1.1 200 OK

Server: nginx/1.20.1

Date: Wed, 06 Oct 2021 19:35:14 GMT

Content-Type: text/html

Content-Length: 4833

Last-Modifed: Fri, 16 May 2014 15:12:48 GMT

Connection: keep-alive

ETag: "xxxxxxxx-xxxx"

Accept-Ranges: bytes

sensuctl hook create process_tree \

--command 'ps aux' \

--timeout 10

sensuctl hook info process_tree --format yaml

SHELL

sensuctl hook info process_tree --format wrapped-json

SHELL

type: HookConfg

YML

Assign the hook to a check

Now that you’ve created the process_tree hook, you can assign it to the nginx_service check.
Setting the type to critical ensures that whenever the check command returns a critical status,
Sensu executes the process_tree hook and adds the output to the resulting event data.

To assign the hook to your nginx_service check, run:

api_version: core/v2

metadata:

 name: process_tree

spec:

 command: ps aux

 runtime_assets: null

 stdin: false

 timeout: 10

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "process_tree"

 },

 "spec": {

 "command": "ps aux",

 "runtime_assets": null,

 "stdin": false,

 "timeout": 10

 }

}

JSON

NOTE: Before you proceed, make sure you have added the sensu/sensu-processes-check
dynamic runtime asset and the nginx_service check from the Monitor server resources guide.
The hook you create in this step relies on the nginx_service check.

Examine the check defnition to confrm that it includes the hook.
Run:

You should fnd the process_tree hook listed in the check_hooks array, within the critical

array:

sensuctl check set-hooks nginx_service \

--type critical \

--hooks process_tree

sensuctl check info nginx_service --format yaml

SHELL

sensuctl check info nginx_service --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 name: nginx_service

spec:

 check_hooks:

 - critical:

 - process_tree

 command: |

 sensu-processes-check --search '[{"search_string": "nginx"}]'

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 15

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 pipelines: []

 proxy_entity_name: ""

 publish: true

YML

 round_robin: false

 runtime_assets:

 - sensu-processes-check

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - webserver

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "nginx_service"

 },

 "spec": {

 "check_hooks": [

 {

 "critical": [

 "process_tree"

]

 }

],

 "command": "sensu-processes-check --search '[{\"search_string\":

\"nginx\"}]'\n",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "pipelines": [],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "sensu-processes-check"

JSON

Simulate a critical event

After you confrm that the hook is attached to your check, stop the NGINX service to observe the check
hook in action on the next check execution.

To manually generate a critical event for your nginx_service check, run:

When you stop the service, the check will generate a critical event.
After a few moments, run:

The response should list the nginx_service check, returning a CRITICAL status (2):

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "webserver"

],

 "timeout": 0,

 "ttl": 0

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

systemctl stop nginx

sensuctl event list

 Entity Check Output Status Silenced Timestamp

UUID

─────────────── ───────────────

Validate the check hook

Verify that the check hook is behaving properly against a specifc event with sensuctl .
To view the
check hook command result within an event, replace <entity_name> in the following command with the
name of your entity and run:

The check hook command result is available in the hooks array, within the check scope:

── ────────

────────── ─────────────────────────────── ───────────────────────────────────────

 sensu-centos nginx_service CRITICAL | 0 >= 1 (found >= required) evaluated false for "nginx" 2 false 2021-

11-08 17:02:04 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

 Status - CRITICAL

sensuctl event info <entity_name> nginx_service --format yaml

SHELL

sensuctl event info <entity_name> nginx_service --format wrapped-json

SHELL

check:

 ...

 hooks:

 - command: ps aux

 duration: 0.00747112

 executed: 1645555463

 issued: 0

 metadata:

 name: process_tree

 output: |

 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

 sensu 17638 0.0 0.1 155452 1860 ? R 18:44 0:00 ps aux

 ...

 runtime_assets: null

YML

You can use sensuctl to query event info and send the response to jq so you can isolate the check
hook output.
In the following command, replace <entity_name> with the name of your entity and run:

 status: 0

 stdin: false

 timeout: 10

 ...

{

 "check": {

 "...": "...",

 "hooks": [

 {

 "command": "ps aux",

 "duration": 0.00747112,

 "executed": 1645555463,

 "issued": 0,

 "metadata": {

 "name": "process_tree"

 },

 "output": "USER PID %CPU %MEM VSZ RSS TTY STAT START TIME

COMMAND\nsensu 17638 0.0 0.1 155452 1860 ? R 18:44 0:00 ps aux\n",

 "...": "...",

 "runtime_assets": null,

 "status": 0,

 "stdin": false,

 "timeout": 10

 }

],

 "...": "..."

 }

}

JSON

sensuctl event info <entity_name> nginx_service --format json | jq -r

'.check.hooks[0].output'

This example output is truncated for brevity, but it refects the output of the ps aux command
specifed in the check hook you created:

You can also view check hook command results in the web UI.
On the Events page, click the
nginx_service event for your entity.
Scroll down to the HOOK section and click it to expand and

review hook command results.

Restart the NGINX service to clear the event:

After a moment, you can verify that the event cleared:

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.3 46164 6704 ? Ss Nov17 0:11

/usr/lib/systemd/systemd --switched-root --system --deserialize 20

root 2 0.0 0.0 0 0 ? S Nov17 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S Nov17 0:01 [ksoftirqd/0]

root 7 0.0 0.0 0 0 ? S Nov17 0:01 [migration/0]

root 8 0.0 0.0 0 0 ? S Nov17 0:00 [rcu_bh]

root 9 0.0 0.0 0 0 ? S Nov17 0:34 [rcu_sched]

systemctl start nginx

http://localhost:1313/images/go/augment_event_data/hook_command_results_webui.gif

The response should list the nginx_service check with an OK status (0).

Now when you are alerted that NGINX is not running, you can review the check hook output to confrm
this is true with no need to start up an SSH session to investigate.

Next steps

To learn more about data collection with check hooks, read the hooks reference.

You can also create pipelines with event flters, mutators, and handlers to send the event data your
checks generate to another service for analysis, tracking, and long-term storage.
For example:

sensuctl event list

Send data to Sumo Logic with Sensu

Send PagerDuty alerts with Sensu

Send Slack alerts with a pipeline

Collect Prometheus metrics with Sensu

The Prometheus ecosystem contains a number of actively maintained exporters, such as the node
exporter for reporting hardware and operating system metrics or Google’s cAdvisor exporter for
monitoring containers.
These exporters expose metrics that Sensu can collect and route to one or more
time-series databases.
Sensu and Prometheus can run in parallel, complementing each other and
making use of environments where Prometheus is already deployed.

You can use the sensu/sensu-prometheus-collector dynamic runtime asset to create checks that
collect metrics from a Prometheus exporter or the Prometheus query API.
This allows Sensu to route
the collected metrics to one or more time-series databases, such as InfuxDB or Graphite.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.

The examples in this guide use CentOS 7 as the operating system, with all components running on the
same compute resource.
Commands and steps may change for different distributions or if components
are running on different compute resources.

At the end of this guide, Prometheus will be scraping metrics.
The check that uses the sensu/sensu-
prometheus-collector asset will query the Prometheus API as a Sensu check and send the metrics to
an InfuxDB Sensu handler, which will send metrics to an InfuxDB instance.
Finally, Grafana will query
InfuxDB to display the collected metrics.

Confgure a Sensu entity

Use sensuctl to add an app_tier subscription to one of your entities.
Before you run the following
code, replace <ENTITY_NAME> with the name of the entity on your system.

NOTE: To fnd your entity name, run sensuctl entity list .
The ID is the name of your entity.

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

https://github.com/prometheus/node_exporter/
https://github.com/prometheus/node_exporter/
https://github.com/google/cadvisor/
https://bonsai.sensu.io/assets/sensu/sensu-prometheus-collector
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/prometheus/latest/querying/api/

Run this command to confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Install and confgure Prometheus

Download and extract Prometheus with these commands:

Replace the default prometheus.yml confguration fle with the following confguration:

For Subscriptions , type app_tier and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

wget https://github.com/prometheus/prometheus/releases/download/v2.6.0/prometheus-

2.6.0.linux-amd64.tar.gz

tar xvfz prometheus-*.tar.gz

cd prometheus-*

global:

 scrape_interval: 15s

 external_labels:

 monitor: 'codelab-monitor'

scrape_confgs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_confgs:

 - targets: ['localhost:9090']

Start Prometheus in the background:

Ensure Prometheus is running:

The response should be similar to this example:

Install and confgure InfuxDB

Add an InfuxDB repo:

Install InfuxDB:

Open /etc/infuxdb/infuxdb.conf and uncomment the http API line:

nohup ./prometheus --confg.fle=prometheus.yml > prometheus.log 2>&1 &

ps -ef | grep "[p]rometheus"

vagrant 7647 3937 2 22:23 pts/0 00:00:00 ./prometheus --

confg.fle=prometheus.yml

echo "[infuxdb]

name = InfuxDB Repository - RHEL \$releasever

baseurl = https://repos.infuxdata.com/rhel/\$releasever/\$basearch/stable

enabled = 1

gpgcheck = 1

gpgkey = https://repos.infuxdata.com/infuxdb.key" | sudo tee

/etc/yum.repos.d/infuxdb.repo

sudo yum -y install infuxdb

Start InfuxDB:

Add the Sensu user and database with these commands:

Install and confgure Grafana

Install Grafana:

Change Grafana’s listen port so that it does not confict with the Sensu web UI:

Create a /etc/grafana/provisioning/datasources/infuxdb.yaml fle, and add an InfuxDB data

[http]

 # Determines whether HTTP endpoint is enabled.

 enabled = true

sudo systemctl start infuxdb

infux -execute "CREATE DATABASE sensu"

infux -execute "CREATE USER sensu WITH PASSWORD 'sensu'"

infux -execute "GRANT ALL ON sensu TO sensu"

sudo yum install -y https://s3-us-west-2.amazonaws.com/grafana-

releases/release/grafana-5.1.4-1.x86_64.rpm

sudo sed -i 's/^;http_port = 3000/http_port = 4000/' /etc/grafana/grafana.ini

source:

Start Grafana:

Create a Sensu InfuxDB handler

Add the Sensu InfuxDB handler asset

To add the sensu/sensu-infuxdb-handler dynamic runtime asset to Sensu, run the following command:

The response will confrm that the asset was added:

apiVersion: 1

deleteDatasources:

 - name: InfuxDB

 orgId: 1

datasources:

 - name: InfuxDB

 type: infuxdb

 access: proxy

 orgId: 1

 database: sensu

 user: grafana

 password: grafana

 url: http://localhost:8086

sudo systemctl start grafana-server

sensuctl asset add sensu/sensu-infuxdb-handler:3.7.0 -r sensu-infuxdb-handler

fetching bonsai asset: sensu/sensu-infuxdb-handler:3.7.0

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
sensu-infuxdb-handler .

To confrm that the sensu-infuxdb-handler asset is ready to use, run:

The response should list the sensu-infuxdb-handler dynamic runtime asset:

Add an InfuxDB handler

To add the handler defnition that uses the Sensu InfuxDB Handler dynamic runtime asset, run:

added asset: sensu/sensu-infuxdb-handler:3.7.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["sensu-infuxdb-handler"].

sensuctl asset list

 Name URL Hash

─────────────────────────────

──

──────────

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_linux_386.tar.gz 6719527

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_linux_amd64.tar.gz d05650d

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_linux_armv7.tar.gz 38918c1

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_linux_arm64.tar.gz 944075f

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_windows_amd64.tar.gz 8228cbc

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_darwin_amd64.tar.gz 7c73e1d

cat << EOF | sensuctl create

type: Handler

SHELL

api_version: core/v2

metadata:

 name: infuxdb

spec:

 command: sensu-infuxdb-handler -a 'http://127.0.0.1:8086' -d sensu -u sensu -p

sensu

 timeout: 10

 type: pipe

 runtime_assets:

 - sensu-infuxdb-handler

EOF

cat << EOF | sensuctl create

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "infuxdb"

 },

 "spec": {

 "command": "sensu-infuxdb-handler -a 'http://127.0.0.1:8086' -d sensu -u sensu -

p sensu",

 "timeout": 10,

 "type": "pipe",

 "runtime_assets": [

 "sensu-infuxdb-handler"

]

 }

}

EOF

SHELL

PRO TIP: sensuctl create --fle also accepts fles that contain multiple resources’ defnitions.
You could save both the asset and handler defnitions in a single fle and use sensuctl create -

-fle FILE_NAME.EXT to add them.

Create a pipeline that includes the InfuxDB handler

Add your handler to a pipeline workfow.
A single pipeline workfow can include one or more flters, one
mutator, and one handler.

In this case, the pipeline includes only the InfuxDB handler you’ve already confgured.
To create the
pipeline, run:

cat << EOF | sensuctl create

type: Pipeline

api_version: core/v2

metadata:

 name: prometheus_metrics_workfows

spec:

 workfows:

 - name: infuxdb_metrics

 handler:

 name: infuxdb

 type: Handler

 api_version: core/v2

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "prometheus_metrics_workfows"

 },

 "spec": {

 "workfows": [

 {

 "name": "infuxdb_metrics",

 "handler": {

 "name": "infuxdb",

 "type": "Handler",

SHELL

Now you can add the prometheus_metrics_workfows pipeline to a check for check output metric
extraction.

Collect Prometheus metrics with Sensu

Add the sensu/sensu-prometheus-collector asset

To add the sensu/sensu-prometheus-collector dynamic runtime asset to Sensu, run the following
command:

The response will confrm that the asset was added:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
sensu-prometheus-collector .

 "api_version": "core/v2"

 }

 }

]

 }

}

EOF

sensuctl asset add sensu/sensu-prometheus-collector:1.3.2 -r sensu-prometheus-

collector

fetching bonsai asset: sensu/sensu-prometheus-collector:1.3.2

added asset: sensu/sensu-prometheus-collector:1.3.2

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["sensu-prometheus-collector"].

https://bonsai.sensu.io/assets/sensu/sensu-prometheus-collector

To confrm that the sensu-prometheus-collector asset is ready to use, run:

The response should list the sensu-prometheus-collector dynamic runtime asset along with the
previously added sensu-infuxdb-handler asset:

Add a Sensu check that references the pipeline

To add the check defnition that uses the sensu/sensu-prometheus-collector dynamic runtime asset
and your prometheus_metrics_workfows pipeline, run:

sensuctl asset list

 Name URL Hash

─────────────────────────────

──

──────────

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_linux_386.tar.gz 6719527

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_linux_amd64.tar.gz d05650d

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_linux_armv7.tar.gz 38918c1

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_linux_arm64.tar.gz 944075f

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_windows_amd64.tar.gz 8228cbc

 sensu-infuxdb-handler //assets.bonsai.sensu.io/.../sensu-infuxdb-handler_3.7.0_darwin_amd64.tar.gz 7c73e1d

 sensu-prometheus-collector //assets.bonsai.sensu.io/.../sensu-prometheus-collector_1.3.2_windows_amd64.tar.gz 77f47c9

 sensu-prometheus-collector //assets.bonsai.sensu.io/.../sensu-prometheus-collector_1.3.2_darwin_amd64.tar.gz 5e25a41

 sensu-prometheus-collector //assets.bonsai.sensu.io/.../sensu-prometheus-collector_1.3.2_linux_armv7.tar.gz 2ae6727

 sensu-prometheus-collector //assets.bonsai.sensu.io/.../sensu-prometheus-collector_1.3.2_linux_armv6.tar.gz acad256

 sensu-prometheus-collector //assets.bonsai.sensu.io/.../sensu-prometheus-collector_1.3.2_linux_arm64.tar.gz 6bfdbfc

 sensu-prometheus-collector //assets.bonsai.sensu.io/.../sensu-prometheus-collector_1.3.2_linux_386.tar.gz 69e6d02

 sensu-prometheus-collector //assets.bonsai.sensu.io/.../sensu-prometheus-collector_1.3.2_linux_amd64.tar.gz aca56fa

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

SHELL

metadata:

 name: prometheus_metrics

spec:

 command: sensu-prometheus-collector -prom-url http://localhost:9090 -prom-query up

 handlers: []

 interval: 10

 publish: true

 output_metric_format: infuxdb_line

 pipelines:

 - name: prometheus_metrics_workfows

 type: Pipeline

 api_version: core/v2

 subscriptions:

 - app_tier

 timeout: 0

 runtime_assets:

 - sensu-prometheus-collector

EOF

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "prometheus_metrics"

 },

 "spec": {

 "command": "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-

query up",

 "handlers": [],

 "interval": 10,

 "publish": true,

 "output_metric_format": "infuxdb_line",

 "pipelines": [

 {

 "name": "prometheus_metrics_workfows",

 "type": "Pipeline",

 "api_version": "core/v2"

 }

],

SHELL

The check subscription matches the subscription you added to your entity during set-up.
The Sensu
backend will coordinate check execution for you by comparing the subscriptions in your checks and
entities.
Sensu automatically executes a check when the check defnition includes a subscription that
matches a subscription for a Sensu entity.

Open the Sensu web UI to view the events generated by the prometheus_metrics check.
Visit
http://127.0.0.1:3000 , and log in as the admin user (created during the initialization step when

you installed the Sensu backend).

You can also view the metric event data using sensuctl.
Run:

The response should be similar to this example:

 "subscriptions": [

 "app_tier"

],

 "timeout": 0,

 "runtime_assets": [

 "sensu-prometheus-collector"

]

 }

}

EOF

sensuctl event list

 Entity Check Output Status Silenced Timestamp

UUID

─────────────── ────────────────────

── ────────

────────── ─────────────────────────────── ───────────────────────────────────────

 sensu-centos keepalive Keepalive last sent from sensu-centos at 2022-01-14 15:23:00 +0000 UTC 0 false

2022-01-14 15:23:00 +0000 UTC a9kr7kf8-21h8-459k-v6f8-ad93mf82mkfd

 sensu-centos prometheus_metrics up,instance=localhost:9090,job=prometheus value=1 1642173795 0 false

2022-01-14 15:23:15 +0000 UTC sd8j4ls9-34gf-fr77-456g-92384738jd72

Visualize metrics with Grafana

Confgure a dashboard in Grafana

Download the Grafana dashboard confguration fle from the Sensu docs:

Using the downloaded fle, add the dashboard to Grafana with an API call:

View metrics in Grafana

Confrm metrics in Grafana: log in at http://127.0.0.1:4000 .
Use admin for both username and
password.

Click Home in the upper left corner, then click the Up or Down Sample 2 dashboard.
The page should
include a graph with initial metrics, similar to this example:

curl -O https://docs.sensu.io/sensu-go/latest/fles/up_or_down_dashboard.json

curl -XPOST -H 'Content-Type: application/json' -d@up_or_down_dashboard.json

HTTP://admin:admin@127.0.0.1:4000/api/dashboards/db

Next steps

You should now have a working observability pipeline with Prometheus scraping metrics.
The
sensu/sensu-prometheus-collector dynamic runtime asset runs via the prometheus_metrics Sensu
check and collects metrics from the Prometheus API.

The check sends metrics to the prometheus_metrics_workfows pipeline, and the infuxdb handler
sends the metrics to InfuxDB.
You can visualize the metrics in a Grafana dashboard.

Add the sensu/sensu-prometheus-collector to your Sensu ecosystem and include it in your monitoring
as code repository.
Use Prometheus to gather metrics and use Sensu to send them to the proper fnal
destination.
Prometheus has a comprehensive list of additional exporters to pull in metrics.

http://localhost:1313/images/go/prometheus_metrics/grafana_up_or_down_detail.png
https://bonsai.sensu.io/assets/sensu/sensu-prometheus-collector
https://prometheus.io/docs/instrumenting/exporters/

Collect service metrics with Sensu checks

Sensu checks are commands (or scripts) that the Sensu agent executes that output data and produce
an exit code to indicate a state.
If you are unfamiliar with checks, read the checks reference for details
and examples.
You can also learn how to confgure monitoring checks in Monitor server resources.

This guide demonstrates how to use a check to extract service metrics for an NGINX webserver, with
output in Nagios Performance Data format.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.

Confgure a Sensu entity

Every Sensu agent has a defned set of subscriptions that determine which checks the agent will
execute.
For an agent to execute a specifc check, you must specify the same subscription in the agent
confguration and the check defnition.
To run the NGINX webserver check, you’ll need a Sensu entity
with the subscription webserver .

To add the webserver subscription to the entity the Sensu agent is observing, frst fnd your agent
entity name:

The ID is the name of your entity.

Replace <ENTITY_NAME> with the name of your agent entity in the following [sensuctl][17] command.
Run:

PRO TIP: You can use the HTTP Service Monitoring (Local) integration in the Sensu Catalog to
collect service metrics instead of following this guide.
Follow the Catalog prompts to confgure the
Sensu resources you need and start processing your observability data with a few clicks.

sensuctl entity list

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Register the dynamic runtime asset

To power the check to collect service metrics, you will use a check in the sensu/http-checks dynamic
runtime asset.
Use sensuctl to register the sensu/http-checks dynamic runtime asset:

The response will indicate that the asset was added:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset: http-
checks.

You can also download the dynamic runtime asset defnition from Bonsai and register the asset with
sensuctl create --fle flename.yml .

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

For Subscriptions , type webserver and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl asset add sensu/http-checks:0.5.0 -r http-checks

fetching bonsai asset: sensu/http-checks:0.5.0

added asset: sensu/http-checks:0.5.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["http-checks"].

https://bonsai.sensu.io/assets/sensu/http-checks
https://bonsai.sensu.io/assets/sensu/http-checks

Use sensuctl to confrm that both the http-checks dynamic runtime asset is ready to use:

The sensuctl response should list http-checks:

Install and confgure NGINX

The webserver check requires a running NGINX service, so you’ll need to install and confgure NGINX.

Install NGINX:

sensuctl asset list

 Name URL Hash

────────────── ───

──────────

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_windows_amd64.tar.gz 52ae075

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_darwin_amd64.tar.gz 72d0f15

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_armv7.tar.gz ef18587

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_arm64.tar.gz 3504ddf

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_386.tar.gz 60b8883

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_amd64.tar.gz 1db73a8

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

NOTE: You may need to install and update the EPEL repository with sudo yum install epel-

release and sudo yum update before you can install NGINX.

sudo yum install nginx

Enable and start the NGINX service:

Verify that NGINX is serving webpages:

The response should include HTTP/1.1 200 OK to indicate that NGINX processed your request as
expected:

With your NGINX service running, you can confgure the check to collect service metrics.

Create a check to collect metrics

The http-checks dynamic runtime asset includes the http-perf check.
To use this check, create the
collect-metrics check with a command that uses http-perf :

systemctl enable nginx && systemctl start nginx

curl -sI http://localhost

HTTP/1.1 200 OK

Server: nginx/1.20.1

Date: Tue, 02 Nov 2021 20:15:40 GMT

Content-Type: text/html

Content-Length: 4833

Last-Modifed: Fri, 16 May 2014 15:12:48 GMT

Connection: keep-alive

ETag: "xxxxxxxx-xxxx"

Accept-Ranges: bytes

NOTE: Read Monitor server resources with checks to learn how to monitor an NGINX webserver
rather than collect metrics.

sensuctl check create collect-metrics \

https://bonsai.sensu.io/assets/sensu/http-checks#http-perf

This example check specifes a 15-second interval for collecting metrics, a subscription to ensure the
check will run on any entity that includes the webserver subscription, the name of the dynamic
runtime asset the check needs to work properly, and the nagios_perfdata output metric format.

You should receive a confrmation response: Created .

To view the check resource you just created with sensuctl, run:

The sensuctl response will list the complete check resource defnition — you can add it to your
monitoring as code repository:

--command 'http-perf --url http://localhost --warning 1s --critical 2s' \

--interval 15 \

--subscriptions webserver \

--runtime-assets http-checks \

--output-metric-format nagios_perfdata

sensuctl check info collect-metrics --format yaml

SHELL

sensuctl check info collect-metrics --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 name: collect-metrics

spec:

 check_hooks: null

 command: http-perf --url http://localhost --warning 1s --critical 2s

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 15

 low_fap_threshold: 0

YML

 output_metric_format: nagios_perfdata

 output_metric_handlers: null

 pipelines: []

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - http-checks

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - webserver

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "collect-metrics"

 },

 "spec": {

 "check_hooks": null,

 "command": "http-perf --url http://localhost --warning 1s --critical 2s",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "output_metric_format": "nagios_perfdata",

 "output_metric_handlers": null,

 "pipelines": [],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "http-checks"

],

JSON

Confrm that your check is collecting metrics

If the check is collecting metrics correctly according to its output_metric_format , the metrics will be
extracted in Sensu metric format and passed to the observability pipeline for handling.
The Sensu agent
will log errors if it cannot parse the check output.

Add a debug handler to write metric events to a fle for inspection.
To confrm that the check extracted
metrics, inspect the event passed to the handler in the debug-event.json fle.
The event will include a
top-level metrics section populated with metrics points arrays if the Sensu agent correctly ingested the
metrics.

If you add the debug handler and confgure the collect-metrics check to use it, the metrics event
printed to the debug-event.json fle will be similar to this example:

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "webserver"

],

 "timeout": 0,

 "ttl": 0

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

{

 "check": {

 "command": "http-perf --url http://localhost --warning 1s --critical 2s",

 "handlers": [

 "debug"

],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "http-checks"

],

 "subscriptions": [

 "webserver"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 0.011235081,

 "executed": 1635886845,

 "history": [

 {

 "status": 0,

 "executed": 1635886785

 },

 {

 "status": 0,

 "executed": 1635886800

 },

 {

 "status": 0,

 "executed": 1635886815

 },

 {

 "status": 0,

 "executed": 1635886830

 },

 {

 "status": 0,

 "executed": 1635886845

 }

],

 "issued": 1635886845,

 "output": "http-perf OK: 0.001088s | dns_duration=0.000216,

tls_handshake_duration=0.000000, connect_duration=0.000140,

frst_byte_duration=0.001071, total_request_duration=0.001088\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1635886845,

 "occurrences": 5,

 "occurrences_watermark": 5,

 "output_metric_format": "nagios_perfdata",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "scheduler": "memory",

 "processed_by": "sensu-centos",

 "pipelines": []

 },

 "metrics": {

 "handlers": null,

 "points": [

 {

 "name": "dns_duration",

 "value": 0.000216,

 "timestamp": 1635886845,

 "tags": null

 },

 {

 "name": "tls_handshake_duration",

 "value": 0,

 "timestamp": 1635886845,

 "tags": null

 },

 {

 "name": "connect_duration",

 "value": 0.00014,

 "timestamp": 1635886845,

 "tags": null

 },

 {

 "name": "frst_byte_duration",

 "value": 0.001071,

 "timestamp": 1635886845,

 "tags": null

 },

 {

 "name": "total_request_duration",

 "value": 0.001088,

 "timestamp": 1635886845,

 "tags": null

 }

]

 },

 "metadata": {

 "namespace": "default"

 },

 "id": "d19ee7f9-8cc5-447b-9059-895e89e14667",

 "sequence": 146,

 "pipelines": null,

 "timestamp": 1635886845,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.9.2009",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::20b8:8cea:fa4:2e57/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:40:ab:31",

 "addresses": [

 "192.168.200.95/24",

 "fe80::a00:27ff:fe40:ab31/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "webserver",

 "entity:sensu-centos"

],

 "last_seen": 1635886845,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "sensu_agent_version": "6.5.4"

Next step: Send metrics to a handler

Now that you know how to extract metrics from check output, learn to use a metrics handler to
populate service and time-series metrics in InfuxDB.
For a turnkey experience with the Sensu InfuxDB
Handler plugin, use our curated, confgurable quick-start template to integrate Sensu with your existing
workfows and store Sensu metrics in InfuxDB.

Read the pipelines reference for information about confguring observability event processing
workfows with event flters, mutators, and handlers.

You can also learn to use Sensu to collect Prometheus metrics.

 }

}

https://github.com/sensu/catalog/blob/docs-archive/integrations/influxdb/influxdb.yaml

Monitor Business Services

Sensu’s business service monitoring (BSM) provides high-level visibility into the current health of any
number of your business services.
Use BSM to monitor every component in your system with a top-
down approach that produces meaningful alerts, prevents alert fatigue, and helps you focus on your
core business services.

BSM requires two resources that work together to achieve top-down monitoring: service components
and rule templates.
Service components are the elements that make up your business services.
Rule
templates defne the monitoring rules that produce events for service components based on
customized evaluation expressions.

An example of a business service might be a company website.
The website itself might have three
service components: the primary webserver that publishes website pages, a backup webserver in case
the primary webserver fails, and an inventory database for the shop section of the website.
At least one
webserver and the database must be in an OK state for the website to be fully available.

In this scenario, you could use BSM to create a current status page for this company website that
displays the website’s high-level status at a glance.
As long as one webserver and the database have
an OK status, the website status is OK.
Otherwise, the website status is not OK.
Most people probably
just want to know whether the website is currently available — it won’t matter to them whether the
website is functioning with one or both webservers.

At the same time, the company does want to make sure the right person addresses any webserver
failures, even if the website is technically still OK.
BSM allows you to customize rule templates that
apply a threshold for taking action for different service components as well as what action to take.

To continue the company website example, if the primary webserver fails but the backup webserver
does not, you might use a rule template that creates a service ticket to address the next workday (in
addition to the rule template that is emitting “OK” events for the current status page).
Another monitoring
rule might trigger an alert to the on-call operator should both webservers or the inventory database fail.

COMMERCIAL FEATURE : Access business service monitoring (BSM) in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

Service component example

Here is an example service component defnition that includes the website-services service and
applies the built-in aggregate rule template for events generated by checks with the webserver
subscription:

NOTE: BSM requires high event throughput.
Confgure a PostgreSQL datastore to achieve the
required throughput and use the BSM feature.

type: ServiceComponent

api_version: bsm/v1

metadata:

 name: webservers

spec:

 services:

 - website-services

 interval: 60

 query:

 - type: feldSelector

 value: webserver in event.check.subscriptions

 rules:

 - template: aggregate

 name: webservers_50-70

 arguments:

 critical_threshold: 70

 warning_threshold: 50

 handlers:

 - slack

YML

{

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "webservers"

JSON

Rule template example

This example lists the defnition for the built-in aggregate rule template:

 },

 "spec": {

 "services": [

 "website-services"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in event.check.subscriptions"

 }

],

 "rules": [

 {

 "template": "aggregate",

 "name": "webservers_50-70",

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 }

 }

],

 "handlers": [

 "slack"

]

 }

}

type: RuleTemplate

api_version: bsm/v1

metadata:

 name: aggregate

 namespace: default

YML

spec:

 arguments:

 properties:

 critical_count:

 description: create an event with a critical status if there the number of

 critical events is equal to or greater than this count

 type: number

 critical_threshold:

 description: create an event with a critical status if the percentage of

non-zero

 events is equal to or greater than this threshold

 type: number

 metric_handlers:

 default: {}

 description: metric handlers to use for produced metrics

 items:

 type: string

 type: array

 produce_metrics:

 default: {}

 description: produce metrics from aggregate data and include them in the

produced

 event

 type: boolean

 set_metric_annotations:

 default: {}

 description: annotate the produced event with metric annotations

 type: boolean

 warning_count:

 description: create an event with a warning status if there the number of

 critical events is equal to or greater than this count

 type: number

 warning_threshold:

 description: create an event with a warning status if the percentage of non-

zero

 events is equal to or greater than this threshold

 type: number

 required:

 description: Monitor a distributed service - aggregate one or more events into a

 single event. This BSM rule template allows you to treat the results of multiple

 disparate check executions – executed across multiple disparate systems – as a

 single event. This template is extremely useful in dynamic environments and/or

 environments that have a reasonable tolerance for failure. Use this template

when

 a service can be considered healthy as long as a minimum threshold is satisfed

 (e.g. at least 5 healthy web servers? at least 70% of N processes healthy?).

 eval: |2

 if (events && events.length == 0) {

 event.check.output = "WARNING: No events selected for aggregate

 ";

 event.check.status = 1;

 return event;

 }

 event.annotations["io.sensu.bsm.selected_event_count"] = events.length;

 percentOK = sensu.PercentageBySeverity("ok");

 if (!!args["produce_metrics"]) {

 var ts = Math.foor(new Date().getTime() / 1000);

 event.timestamp = ts;

 var tags = [

 {

 name: "service",

 value: event.entity.name

 },

 {

 name: "entity",

 value: event.entity.name

 },

 {

 name: "check",

 value: event.check.name

 }

];

 event.metrics = sensu.NewMetrics({

 points: [

 {

 name: "percent_non_zero",

 timestamp: ts,

 value: sensu.PercentageBySeverity("non-zero"),

 tags: tags

 },

 {

 name: "percent_ok",

 timestamp: ts,

 value: percentOK,

 tags: tags

 },

 {

 name: "percent_warning",

 timestamp: ts,

 value: sensu.PercentageBySeverity("warning"),

 tags: tags

 },

 {

 name: "percent_critical",

 timestamp: ts,

 value: sensu.PercentageBySeverity("critical"),

 tags: tags

 },

 {

 name: "percent_unknown",

 timestamp: ts,

 value: sensu.PercentageBySeverity("unknown"),

 tags: tags

 },

 {

 name: "count_non_zero",

 timestamp: ts,

 value: sensu.CountBySeverity("non-zero"),

 tags: tags

 },

 {

 name: "count_ok",

 timestamp: ts,

 value: sensu.CountBySeverity("ok"),

 tags: tags

 },

 {

 name: "count_warning",

 timestamp: ts,

 value: sensu.CountBySeverity("warning"),

 tags: tags

 },

 {

 name: "count_critical",

 timestamp: ts,

 value: sensu.CountBySeverity("critical"),

 tags: tags

 },

 {

 name: "count_unknown",

 timestamp: ts,

 value: sensu.CountBySeverity("unknown"),

 tags: tags

 }

]

 });

 if (!!args["metric_handlers"]) {

 event.metrics.handlers = args["metric_handlers"].slice();

 }

 if (!!args["set_metric_annotations"]) {

 var i = 0;

 while(i \u003c event.metrics.points.length) {

 event.annotations["io.sensu.bsm.selected_event_" +

event.metrics.points[i].name] = event.metrics.points[i].value.toString();

 i++;

 }

 }

 }

 if (!!args["critical_threshold"] && percentOK \u003c=

args["critical_threshold"]) {

 event.check.output = "CRITICAL: Less than " +

args["critical_threshold"].toString() + "% of selected events are OK (" +

percentOK.toString() + "%)

 ";

 event.check.status = 2;

 return event;

 }

 if (!!args["warning_threshold"] && percentOK \u003c= args["warning_threshold"])

{

 event.check.output = "WARNING: Less than " +

args["warning_threshold"].toString() + "% of selected events are OK (" +

percentOK.toString() + "%)

 ";

 event.check.status = 1;

 return event;

 }

 if (!!args["critical_count"]) {

 crit = sensu.CountBySeverity("critical");

 if (crit \u003e= args["critical_count"]) {

 event.check.output = "CRITICAL: " + args["critical_count"].toString() +

" or more selected events are in a critical state (" + crit.toString() + ")

 ";

 event.check.status = 2;

 return event;

 }

 }

 if (!!args["warning_count"]) {

 warn = sensu.CountBySeverity("warning");

 if (warn \u003e= args["warning_count"]) {

 event.check.output = "WARNING: " + args["warning_count"].toString() + "

or more selected events are in a warning state (" + warn.toString() + ")

 ";

 event.check.status = 1;

 return event;

 }

 }

 event.check.output = "Everything looks good (" + percentOK.toString() + "% OK)";

 event.check.status = 0;

 return event;

{

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate",

 "namespace": "default"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a critical status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a critical status if the percentage

of non-zero events is equal to or greater than this threshold",

JSON

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers to use for produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from aggregate data and include them in

the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a warning status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a warning status if the percentage of

non-zero events is equal to or greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed service - aggregate one or more events

into a single event. This BSM rule template allows you to treat the results of

multiple disparate check executions – executed across multiple disparate systems –

as a single event. This template is extremely useful in dynamic environments and/or

environments that have a reasonable tolerance for failure. Use this template when a

service can be considered healthy as long as a minimum threshold is satisfed (e.g.

at least 5 healthy web servers? at least 70% of N processes healthy?).",

 "eval": "\nif (events \\u0026\\u0026 events.length == 0) {\n

event.check.output = \"WARNING: No events selected for aggregate\n\";\n

event.check.status = 1;\n return

event;\n}\n\nevent.annotations[\"io.sensu.bsm.selected_event_count\"] =

events.length;\n\npercentOK = sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var ts = Math.foor(new Date().getTime() /

1000);\n\n event.timestamp = ts;\n\n var tags = [\n {\n

name: \"service\",\n value: event.entity.name\n },\n {\n

name: \"entity\",\n value: event.entity.name\n },\n {\n

name: \"check\",\n value: event.check.name\n }\n];\n\n

event.metrics = sensu.NewMetrics({\n points: [\n {\n

name: \"percent_non_zero\",\n timestamp: ts,\n value:

sensu.PercentageBySeverity(\"non-zero\"),\n tags: tags\n

},\n {\n name: \"percent_ok\",\n timestamp:

ts,\n value: percentOK,\n tags: tags\n },\n

{\n name: \"percent_warning\",\n timestamp: ts,\n

value: sensu.PercentageBySeverity(\"warning\"),\n tags: tags\n

},\n {\n name: \"percent_critical\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"critical\"),\n

tags: tags\n },\n {\n name:

\"percent_unknown\",\n timestamp: ts,\n value:

sensu.PercentageBySeverity(\"unknown\"),\n tags: tags\n

},\n {\n name: \"count_non_zero\",\n

timestamp: ts,\n value: sensu.CountBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n name: \"count_ok\",\n

timestamp: ts,\n value: sensu.CountBySeverity(\"ok\"),\n

tags: tags\n },\n {\n name:

\"count_warning\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"warning\"),\n tags: tags\n },\n

{\n name: \"count_critical\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"critical\"),\n tags: tags\n

},\n {\n name: \"count_unknown\",\n

timestamp: ts,\n value: sensu.CountBySeverity(\"unknown\"),\n

tags: tags\n }\n]\n });\n\n if

(!!args[\"metric_handlers\"]) {\n event.metrics.handlers =

args[\"metric_handlers\"].slice();\n }\n\n if

(!!args[\"set_metric_annotations\"]) {\n var i = 0;\n\n while(i

\\u003c event.metrics.points.length) {\n

event.annotations[\"io.sensu.bsm.selected_event_\" + event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n i++;\n }\n

}\n}\n\nif (!!args[\"critical_threshold\"] \\u0026\\u0026 percentOK \\u003c=

args[\"critical_threshold\"]) {\n event.check.output = \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of selected events are OK (\" +

Confgure BSM via the web UI

The Sensu web UI BSM module allows you to create, edit, and delete service components and rule
templates inside the web UI.

Confgure BSM via APIs and sensuctl

BSM service components and rule templates are Sensu resources with complete defnitions, so you
can use Sensu’s service component and rule template APIs to create, retrieve, update, and delete
service components and rule templates.

You can also use sensuctl to create and manage service components and rule templates via the APIs
from the command line.

percentOK.toString() + \"%)\n\";\n event.check.status = 2;\n return

event;\n}\n\nif (!!args[\"warning_threshold\"] \\u0026\\u0026 percentOK \\u003c=

args[\"warning_threshold\"]) {\n event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 1;\n return

event;\n}\n\nif (!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n if (crit \\u003e=

args[\"critical_count\"]) {\n event.check.output = \"CRITICAL: \" +

args[\"critical_count\"].toString() + \" or more selected events are in a critical

state (\" + crit.toString() + \")\n\";\n event.check.status = 2;\n

return event;\n }\n}\n\nif (!!args[\"warning_count\"]) {\n warn =

sensu.CountBySeverity(\"warning\");\n\n if (warn \\u003e=

args[\"warning_count\"]) {\n event.check.output = \"WARNING: \" +

args[\"warning_count\"].toString() + \" or more selected events are in a warning

state (\" + warn.toString() + \")\n\";\n event.check.status = 1;\n

return event;\n }\n}\n\nevent.check.output = \"Everything looks good (\" +

percentOK.toString() + \"% OK)\";\nevent.check.status = 0;\n\nreturn event;\n"

 }

}

Monitor server resources with checks

Sensu checks are commands (or scripts) the Sensu agent executes that output data and produce an
exit code to indicate a state.

You can use checks to monitor server resources (for example, to learn how much disk space you have
left), services, and application health (for example, to check whether NGINX is running) and collect and
analyze metrics.
This guide includes two check examples to help you monitor server resources
(specifcally, CPU usage and NGINX status).

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.

Confgure a Sensu entity

Every Sensu agent has a defned set of subscriptions that determine which checks the agent will
execute.
For an agent to execute a specifc check, you must specify the same subscription in the agent
confguration and the check defnition.
To run the CPU and NGINX webserver checks, you’ll need a
Sensu entity with the subscriptions system and webserver .

To add the system and webserver subscriptions to the entity the Sensu agent is observing, frst
fnd your agent entity name:

The ID is the name of your entity.

Replace <ENTITY_NAME> with the name of your agent entity in the following sensuctl command.
Run:

NOTE: In production, your CPU and NGINX servers would be different entities, with the system
subscription specifed for the CPU entity and the webserver subscription specifed for the NGINX
entity.
To keep things streamlined, this guide uses one entity to represent both.

sensuctl entity list

Confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Register dynamic runtime assets

You can write shell scripts in the command feld of your check defnitions, but we recommend using
existing check plugins instead.
Check plugins must be available on the host where the agent is running
for the agent to execute the check.
This guide uses dynamic runtime assets to manage plugin
installation.

Register the sensu/check-cpu-usage asset

The sensu/check-cpu-usage dynamic runtime asset includes the check-cpu-usage command, which
your CPU check will rely on.

To register the sensu/check-cpu-usage dynamic runtime asset, run:

The response will confrm that the asset was added:

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

For Subscriptions , type system,webserver and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl asset add sensu/check-cpu-usage:0.2.2 -r check-cpu-usage

fetching bonsai asset: sensu/check-cpu-usage:0.2.2

added asset: sensu/check-cpu-usage:0.2.2

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

https://bonsai.sensu.io/assets/sensu/check-cpu-usage

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
check-cpu-usage .

You can also download dynamic runtime asset defnitions from Bonsai and register the asset with
sensuctl create --fle flename.yml .

Register the sensu/sensu-processes-check asset

Then, use this command to register the sensu/sensu-processes-check dynamic runtime asset, which
you’ll use later for your webserver check:

To confrm that both dynamic runtime assets are ready to use, run:

The response should list the renamed check-cpu-usage and sensu-processes-check dynamic runtime
assets:

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["check-cpu-usage"].

sensuctl asset add sensu/sensu-processes-check:0.2.0 -r sensu-processes-check

sensuctl asset list

 Name URL Hash

────────────────────────

───

──────────

 check-cpu-usage //assets.bonsai.sensu.io/.../check-cpu-usage_0.2.2_windows_amd64.tar.gz 900cfdf

 check-cpu-usage //assets.bonsai.sensu.io/.../check-cpu-usage_0.2.2_darwin_amd64.tar.gz db81ee7

 check-cpu-usage //assets.bonsai.sensu.io/.../check-cpu-usage_0.2.2_linux_armv7.tar.gz 400aacc

 check-cpu-usage //assets.bonsai.sensu.io/.../check-cpu-usage_0.2.2_linux_arm64.tar.gz bef7802

 check-cpu-usage //assets.bonsai.sensu.io/.../check-cpu-usage_0.2.2_linux_386.tar.gz a2dcb53

 check-cpu-usage //assets.bonsai.sensu.io/.../check-cpu-usage_0.2.2_linux_amd64.tar.gz 2453973

 sensu-processes-check //assets.bonsai.sensu.io/.../sensu-processes-check_0.2.0_windows_amd64.tar.gz 42e2d71

https://bonsai.sensu.io/
https://bonsai.sensu.io/assets/sensu/sensu-processes-check

Because plugins are published for multiple platforms, including Linux and Windows, the output will
include multiple entries for each of the dynamic runtime assets.

Create a check to monitor a server

Now that the dynamic runtime assets are registered, create a check named check_cpu that runs the
command check-cpu-usage -w 75 -c 90 with the check-cpu-usage dynamic runtime asset at an
interval of 60 seconds for all entities subscribed to the system subscription.
This check generates a
warning event (-w) when CPU usage reaches 75% and a critical alert (-c) at 90%.

You should receive a confrmation message:

To view the complete resource defnition for check_cpu , run:

 sensu-processes-check //assets.bonsai.sensu.io/.../sensu-processes-check_0.2.0_darwin_amd64.tar.gz 957c008

 sensu-processes-check //assets.bonsai.sensu.io/.../sensu-processes-check_0.2.0_linux_armv7.tar.gz 20cc5b1

 sensu-processes-check //assets.bonsai.sensu.io/.../sensu-processes-check_0.2.0_linux_arm64.tar.gz c68b5f0

 sensu-processes-check //assets.bonsai.sensu.io/.../sensu-processes-check_0.2.0_linux_386.tar.gz 4c47caa

 sensu-processes-check //assets.bonsai.sensu.io/.../sensu-processes-check_0.2.0_linux_amd64.tar.gz 70e830f

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

sensuctl check create check_cpu \

--command 'check-cpu-usage -w 75 -c 90' \

--interval 60 \

--subscriptions system \

--runtime-assets check-cpu-usage

Created

sensuctl check info check_cpu --format yaml

SHELL

The sensuctl response will include the complete check_cpu resource defnition in the specifed
format:

sensuctl check info check_cpu --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 name: check_cpu

spec:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 60

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 pipelines: []

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - check-cpu-usage

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

YML

JSON

If you want to share, reuse, and maintain this check just like you would code, you can save it to a fle
and start building a monitoring as code repository.

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "pipelines": [],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

Validate the CPU check

The Sensu agent uses WebSocket to communicate with the Sensu backend, sending event data as
JSON messages.
As your checks run, the Sensu agent captures check standard output (stdout) or
standard error (stderr).
This data will be included in the JSON payload the agent sends to your Sensu
backend as the event data.

It might take a few moments after you create the check for the check to be scheduled on the entity and
the event to return to the Sensu backend.
Use sensuctl to view the event data and confrm that Sensu is
monitoring CPU usage:

The response should list the check_cpu check, returning an OK status (0)

Create a check to monitor a webserver

In this section, you’ll create a check to monitor an NGINX webserver, similar to the CPU check you
created in the previous section but using the webserver subscription rather than system .

Install and confgure NGINX

The webserver check requires a running NGINX service, so you’ll need to install and confgure NGINX.

sensuctl event list

 Entity Check Output

Status Silenced Timestamp UUID

─────────────── ───────────

──

──

────────────────────────────────── ──────── ────────── ───────────────────────────────

───────────────────────────────────────

 sensu-centos check_cpu check-cpu-usage OK: 1.02% CPU usage | cpu_idle=98.98, cpu_system=0.51, cpu_user=0.51,

cpu_nice=0.00, cpu_iowait=0.00, cpu_irq=0.00, cpu_softirq=0.00, cpu_steal=0.00, cpu_guest=0.00, cpu_guestnice=0.00

0 false 2021-10-06 19:25:43 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

Install NGINX:

Enable and start the NGINX service:

Verify that NGINX is serving webpages:

The response should include HTTP/1.1 200 OK to indicate that NGINX processed your request as
expected:

With your NGINX service running, you can confgure the webserver check.

Create the webserver check defnition

NOTE: You may need to install and update the EPEL repository with sudo yum install epel-

release and sudo yum update before you can install NGINX.

sudo yum install nginx

systemctl enable nginx && systemctl start nginx

curl -sI http://localhost

HTTP/1.1 200 OK

Server: nginx/1.20.1

Date: Wed, 06 Oct 2021 19:35:14 GMT

Content-Type: text/html

Content-Length: 4833

Last-Modifed: Fri, 16 May 2014 15:12:48 GMT

Connection: keep-alive

ETag: "xxxxxxxx-xxxx"

Accept-Ranges: bytes

Create a check that uses sensu-processes-check in the command to search for the string nginx .
The nginx_service check will run at an interval of 15 seconds and determine whether the nginx
service is among the running processes for all entities subscribed to the webserver subscription.

To create the nginx_service check, run the following command:

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: nginx_service

spec:

 command: >

 sensu-processes-check

 --search

 '[{"search_string": "nginx"}]'

 subscriptions:

 - webserver

 interval: 15

 publish: true

 runtime_assets:

 - sensu-processes-check

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "nginx_service"

 },

 "spec": {

 "command": "sensu-processes-check --search '[{\"search_string\":

\"nginx\"}]'\n",

 "subscriptions": [

 "webserver"

],

SHELL

You should receive a confrmation message:

To view the complete resource defnition for nginx_service , run:

The sensuctl response will include the complete nginx_service resource defnition in the specifed
format:

 "interval": 15,

 "publish": true,

 "runtime_assets": [

 "sensu-processes-check"

]

 }

}

EOF

Created

sensuctl check info nginx_service --format yaml

SHELL

sensuctl check info nginx_service --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 name: nginx_service

spec:

 check_hooks: null

 command: |

 sensu-processes-check --search '[{"search_string": "nginx"}]'

YML

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 15

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 pipelines: []

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - sensu-processes-check

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - webserver

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "nginx_service"

 },

 "spec": {

 "check_hooks": null,

 "command": "sensu-processes-check --search '[{\"search_string\":

\"nginx\"}]'\n",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "pipelines": [],

 "proxy_entity_name": "",

JSON

As with the check_cpu check, you can share, reuse, and maintain this check just like code.

Validate the webserver check

It might take a few moments after you create the check for the check to be scheduled on the entity and
the event to return to the Sensu backend.
Use sensuctl to view event data and confrm that Sensu is
monitoring the NGINX webserver status:

The response should list the nginx_service check, returning an OK status (0):

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "sensu-processes-check"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "webserver"

],

 "timeout": 0,

 "ttl": 0

 }

}

sensuctl event list

 Entity Check Output Status Silenced Timestamp

UUID

─────────────── ───────────────

── ────────

────────── ─────────────────────────────── ───────────────────────────────────────

 sensu-centos nginx_service OK | 2 >= 1 (found >= required) evaluated true for "nginx" 0 false 2021-11-

08 16:59:34 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

 Status - OK

Simulate a critical event

To manually generate a critical event for your nginx_service check, stop the NGINX service.
Run:

When you stop the service, the check will generate a critical event.
After a few moments, run:

The response should list the nginx_service check, returning a CRITICAL status (2):

Restart the NGINX service to clear the event:

After a moment, you can verify that the event cleared:

The response should list the nginx_service check with an OK status (0).

systemctl stop nginx

sensuctl event list

 Entity Check Output Status Silenced Timestamp

UUID

─────────────── ───────────────

── ────────

────────── ─────────────────────────────── ───────────────────────────────────────

 sensu-centos nginx_service CRITICAL | 0 >= 1 (found >= required) evaluated false for "nginx" 2 false 2021-

11-08 17:02:04 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

 Status - CRITICAL

systemctl start nginx

sensuctl event list

Next steps

Now that you know how to create checks to monitor CPU usage and NGINX webserver status, read
the checks reference and assets reference for more detailed information.
Or, learn how to monitor
external resources with proxy checks and entities.

You can also create pipelines to send alerts to email, PagerDuty, or Slack based on the status events
your checks are generating.

Read the pipelines reference for information about confguring observability event processing
workfows with event flters, mutators, and handlers.

Filter your observation data

Next or click any element in the pipeline to jump to it.

In the flter stage, Sensu executes event flters.

The flter stage of the Sensu observability pipeline applies the conditions, triggers, and thresholds you
specify in your event flter defntions to the events your checks generate.
Event flters give you control
over which events continue through your pipeline and become alerts.
For example, use the built-in
is_incident event flter to allow only high-priority events through your Sensu pipeline and reduce noise
for operators.

To tell Sensu which event flters you want to apply, you list them in your pipeline defnitions.
Sensu
compares your observation data in events against the expressions in your event flters to determine
whether each event should continue through the pipeline or be removed.
Event flters can be inclusive
or exclusive, so you can require events to match or not match your flter expressions.

Here’s an example that shows the resource defnition for an event flter that would allow handling for
only events with the custom entity label "region": "us-west-1" :

type: EventFilter

api_version: core/v2

metadata:

 name: production_flter

spec:

 action: allow

YML

http://localhost:1313/images/observability-pipeline-filter.png

Sensu applies event flters in the order that they are listed in your pipeline defnition.
Any events that the
flters do not remove from your pipeline will be processed according to your handler confguration.

As soon as an event flter removes an event from your pipeline because it does not meet the
conditions, triggers, or thresholds you specifed, the Sensu observability pipeline ceases analysis for
the event.
Sensu will not transform or process events that your event flter removes from your pipeline.

Use Bonsai, the Sensu asset hub, to discover, download, and share Sensu event flter dynamic
runtime assets.
Read Use assets to install plugins to get started.

 expressions:

 - event.entity.labels['region'] == 'us-west-1'

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "production_flter"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.entity.labels['region'] == 'us-west-1'"

]

 }

}

JSON

https://bonsai.sensu.io/

Event flters reference

Sensu executes event flters during the flter stage of the observability pipeline.

Sensu event flters are applied when you confgure a pipeline with a workfow that uses one or more
flters.
Before executing the handler in a pipeline workfow, the Sensu backend will apply any event
flters listed in the same pipeline workfow to the observation data in events.
If the flters do not remove
the event, the handler will be executed.

The event flter analysis performs these steps:

Event flters can be inclusive (only matching events are handled) or exclusive (matching events are not
handled).
Read Inclusive and exclusive event flters for details.

As soon as a flter removes an event, no further analysis is performed and the pipeline workfow’s
handler will not be executed.

Event flter example (minimum required attributes)

This example shows the minimum required attributes for an event flter resource:

When the Sensu backend is processing an event, it checks for flters in the pipeline (or
pipelines) specifed in the event’s check defnition.
Before executing any handlers listed in the
pipeline, Sensu applies any event flters and mutators listed in the pipeline.

If multiple flters are confgured for a pipeline, they are executed sequentially.

Filter expressions are compared with event data.

type: EventFilter

api_version: core/v2

metadata:

 name: flter_minimum

spec:

 action: allow

YML

Inclusive and exclusive event flters

Event flters can be inclusive or exclusive:

Use the action attribute in the event flter defnition to control whether the flter is inclusive or
exclusive:

Multiple inclusive or exclusive event flters

 expressions:

 - event.check.occurrences == 1

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_minimum"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

]

 }

}

JSON

In inclusive fltering, only events that match the defned flter expressions will be handled.

In exclusive fltering, events will be handled only if they do not match the defned flter
expressions.

To use inclusive fltering, set the action attribute to allow in the event flter defnition
("action": "allow").

To use exclusive fltering, set the action attribute to deny in the event flter defnition
("action": "deny").

Multiple inclusive event flters are equivalent to using an AND query operator: Sensu will only handle
events if they match all of the inclusive flters (x AND y AND z).

Multiple exclusive event flters are equivalent to using an OR operator: Sensu will only handle events
if they don’t match any of the exclusive flters (x OR y OR z).

Filter expression comparison

Event flter expressions are compared directly with their event data counterparts.

Filter expression evaluation

When more complex conditional logic is needed than direct flter expression comparison, Sensu event
flters provide support for expression evaluation using Otto.
Otto is an ECMAScript 5 (JavaScript) virtual
machine that evaluates JavaScript expressions provided in an event flter.

In event flter expressions, place string values inside single or double quotes.
These flter expressions
are equivalent in EMCAScript:

There are some caveats to using Otto: not all of the regular expressions (regex) specifed in
ECMAScript 5 will work.
Review the Otto README for more details.

Use Go regex syntax to create event flter expressions that combine any available event, check, or
entity attributes with match(<regex>) .
For example, this event flter allows handling for events whose
event.check.name ends with metrics :

For inclusive event flter defnitions ("action": "allow"), matching expressions will result in
the flter returning a true value. The event will pass through the flter and continue to be
processed with additional flters (if defned), mutators (if defned), and handlers.

For exclusive event flter defnitions ("action": "deny"), matching expressions will result in
the flter returning a false value, and the event will not pass through the flter.

event.check.annotations['service_priority'] == 1

event.check.annotations["service_priority"] == 1

YML

https://github.com/robertkrimen/otto
https://github.com/robertkrimen/otto/blob/master/README.markdown#regular-expression-incompatibility
https://github.com/google/re2/wiki/Syntax

Here’s another example that uses regex matching for event entity labels.
This event flter allows
handling for events created by entities with the region label us-west-1 , us-west-2 , or us-
west-3 :

type: EventFilter

api_version: core/v2

metadata:

 name: metrics-checks-only

spec:

 action: allow

 expressions:

 - event.check.name.match(/metrics$/)

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "metrics-checks-only"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.name.match(/metrics$/)"

]

 }

}

JSON

type: EventFilter

api_version: core/v2

metadata:

 name: us-west-events

spec:

 action: allow

 expressions:

YML

Filter dynamic runtime assets

Sensu event flters can include dynamic runtime assets in their execution context.
When valid dynamic
runtime assets are associated with an event flter, Sensu evaluates any fles it fnds that have a .js

extension before executing the flter.
The result of evaluating the scripts is cached for a given asset set
for the sake of performance.
For an example of how to implement an event flter as an asset, read
Reduce alert fatigue.

Built-in event flters

Sensu includes built-in event flters to help you customize event pipelines for metrics and alerts.
To start
using built-in event flters, read Send Slack alerts and Plan maintenance.

Built-in flter: is_incident

 - event.entity.labels.region.match(/us-west-\b[1-3]\b/)

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "us-west-events"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.entity.labels.region.match(/us-west-\b[1-3]\b/)"

]

 }

}

JSON

NOTE: Sensu Go does not include the built-in occurrence-based event flter in Sensu Core 1.x, but
you can replicate its functionality with the repeated events flter defnition.

The is_incident event flter is included in every installation of the Sensu backend.
You can use the
is_incident flter to allow only high-priority events through a Sensu pipeline.
For example, you can use
the is_incident flter to reduce noise when sending notifcations to Slack.
When applied to a pipeline
workfow, the is_incident flter allows warning ("status": 1), critical ("status": 2), other
(unknown or custom status), and resolution events to be processed.

To use the is_incident event flter, include is_incident in the pipeline flters object:

type: Pipeline

api_version: core/v2

metadata:

 name: incident_alerts

spec:

 workfows:

 - name: slack_alerts

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 handler:

 name: slack

 type: Handler

 api_version: core/v2

YML

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "incident_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "slack_alerts",

 "flters": [

 {

JSON

The is_incident event flter applies the following fltering logic:

status allow discard

0

1

2

other (unknown or
custom status)

resolution event
such as 1 –> 0
or 3 –> 0

Built-in flter: not_silenced

Sensu silencing lets you suppress handler execution on an on-demand basis so you can quiet
incoming alerts and plan maintenance.

To allow silencing for a pipeline workfow, add not_silenced to the pipeline flters object:

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "slack",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

YML

type: Pipeline

api_version: core/v2

metadata:

 name: incident_alerts

spec:

 workfows:

 - name: slack_alerts

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 handler:

 name: slack

 type: Handler

 api_version: core/v2

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "incident_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "slack_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "not_silenced",

JSON

When applied in a pipeline confguration, the not_silenced event flter silences events that include the
silenced attribute.
The pipeline in the example above uses both the not_silenced and is_incident

event flters, preventing low-priority and silenced events from being sent to Slack.

Built-in flter: has_metrics

The has_metrics event flter is included in every installation of the Sensu backend.
When applied in a
pipeline workfow, the has_metrics flter allows only events that contain Sensu metrics to be processed.
You can use the has_metrics flter to prevent handlers that require metrics from failing in case of an
error in metric collection.

To use the has_metrics event flter, include has_metrics in the pipeline flters array:

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "slack",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

type: Pipeline

api_version: core/v2

metadata:

 name: metrics_pipeline

spec:

 workfows:

 - name: infuxdb_metrics

 flters:

 - name: has_metrics

 type: EventFilter

YML

When applied in a pipeline confguration, the has_metrics event flter allows only events that include a
metrics scope.

 api_version: core/v2

 handler:

 name: infuxdb

 type: Handler

 api_version: core/v2

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "metrics_pipeline"

 },

 "spec": {

 "workfows": [

 {

 "name": "infuxdb_metrics",

 "flters": [

 {

 "name": "has_metrics",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "infuxdb",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

JSON

Build event flter expressions with Sensu query expressions

You can write custom event flter expressions as Sensu query expressions using the event data
attributes described in this section.
For more information about event attributes, read the event
reference.

Syntax quick reference

operator description

=== / !== Identity operator / Nonidentity operator

== / != Equality operator / Inequality operator

&& / || Logical AND / Logical OR

< / > Less than / Greater than

<= / >= Less than or equal to / Greater than or equal to

Event attributes available to flters

attribute type description

event.has_check Bool
ean

Returns true if the event contains check data

event.has_metric

s

Bool
ean

Returns true if the event contains metrics

event.is_inciden

t

Bool
ean

Returns true for critical alerts (status 2), warnings (status 1),
and resolution events (status 0 transitioning from status 1 or
2)

event.is_resoluti

on

Bool
ean

Returns true if the event status is OK (0) and the previous
event was of a non-zero status

event.is_silence

d

Bool
ean

Returns true if the event matches an active silencing entry

event.timestamp integ
er

Time that the event occurred in seconds since the Unix epoch

Check attributes available to flters

attribute type description

event.check.annot

ations

map Custom annotations applied to the check

event.check.comma

nd

strin
g

The command executed by the check

event.check.cron strin
g

Check execution schedule using cron syntax

event.check.disca

rd_output

Bool
ean

Whether the check is confgured to discard check output from
event data

event.check.durat

ion

foat Command execution time in seconds

event.check.env_v

ars

array Environment variables used with command execution

event.check.execu

ted

integ
er

Time that the check was executed in seconds since the Unix
epoch

event.check.handl

ers

array Sensu event handlers assigned to the check

event.check.high_

fap_threshold

integ
er

The check’s fap detection high threshold in percent state
change

event.check.histo

ry

array Check status history for the last 21 check executions

event.check.hook

s

array Check hook execution data

event.check.inter

val

integ
er

The check execution frequency in seconds

event.check.issue

d

integ
er

Time that the check request was issued in seconds since the
Unix epoch

event.check.label

s

map Custom labels applied to the check

event.check.last_

ok

integ
er

The last time that the check returned an OK status (0) in
seconds since the Unix epoch

event.check.low_f

ap_threshold

integ
er

The check’s fap detection low threshold in percent state
change

event.check.max_o

utput_size

integ
er

Maximum size of stored check outputs in bytes

event.check.name strin
g

Check name

event.check.occur

rences

integ
er

The number of preceding events with the same status as the
current event

event.check.occur

rences_watermark

integ
er

For resolution events, the number of preceding events with a
non-OK status

event.check.outpu

t

strin
g

The output from the execution of the check command

event.check.outpu

t_metric_format

strin
g

The metric format generated by the check command:
nagios_perfdata , graphite_plaintext , infuxdb_line ,
opentsdb_line , or prometheus_text

event.check.outpu

t_metric_handlers

array Sensu metric handlers assigned to the check

event.check.proxy

_entity_name

strin
g

The entity name, used to create a proxy entity for an external
resource

event.check.proxy

_requests

map Proxy request confguration

event.check.publi

sh

Bool
ean

Whether the check is scheduled automatically

event.check.round Bool Whether the check is confgured to be executed in a round-

_robin ean robin style

event.check.runti

me_assets

array Sensu dynamic runtime assets used by the check

event.check.stat

e

strin
g

The state of the check: passing (status 0), failing
(status other than 0), or fapping

event.check.statu

s

integ
er

Exit status code produced by the check: 0 (OK), 1
(warning), 2 (critical), or other status (unknown or custom
status)

event.check.stdi

n

Bool
ean

Whether the Sensu agent writes JSON-serialized entity and
check data to the command process’ stdin

event.check.subsc

riptions

array Subscriptions that the check belongs to

event.check.timeo

ut

integ
er

The check execution duration timeout in seconds

event.check.total

_state_change

integ
er

The total state change percentage for the check’s history

event.check.ttl integ
er

The time-to-live (TTL) until the event is considered stale, in
seconds

event.metrics.han

dlers

array Sensu metric handlers assigned to the check

event.metrics.poi

nts

array Metrics data points including a name, timestamp, value, and
tags

Entity attributes available to flters

attribute type description

event.entity.anno

tations

map Custom annotations assigned to the entity

event.entity.dere

gister

Bool
ean

Whether the agent entity should be removed when it stops
sending keepalive messages

event.entity.dere

gistration

map A map that contains a handler name for use when an entity is
deregistered

event.entity.enti

ty_class

strin
g

The entity type: usually agent or proxy

event.entity.labe

ls

map Custom labels assigned to the entity

event.entity.last

_seen

integ
er

Timestamp the entity was last seen in seconds since the Unix
epoch

event.entity.nam

e

strin
g

Entity name

event.entity.reda

ct

array List of items to redact from log messages

event.entity.subs

criptions

array List of subscriptions assigned to the entity

event.entity.syst

em

map Information about the entity’s system

event.entity.syst

em.arch

strin
g

The entity’s system architecture

event.entity.syst

em.hostname

strin
g

The entity’s hostname

event.entity.syst

em.network

map The entity’s network interface list

event.entity.syst

em.os

strin
g

The entity’s operating system

event.entity.syst

em.platform

strin
g

The entity’s operating system distribution

event.entity.syst

em.platform_famil

y

strin
g

The entity’s operating system family

event.entity.syst strin The entity’s operating system version

em.platform_versio

n

g

event.entity.use

r

strin
g

Sensu RBAC username used by the agent entity

Build event flter expressions with JavaScript execution
functions

In addition to Sensu query expressions, Sensu includes several built-in JavaScript functions for event
flter execution:

Use these functions to query your event stores for other events in the same namespace.

For example, to handle only events for the server01 entity and the disk check, use the
sensu.FetchEvent function in your event flter expressions:

sensu.EventStatus

The sensu.EventStatus function takes zero or more checks as arguments.
It returns an array of
status codes for the events associated with the specifed checks.

If you do not specify any checks, the function always returns an empty array.

COMMERCIAL FEATURE : Access built-in JavaScript event flter execution functions in the
packaged Sensu Go distribution.
For more information, read Get started with commercial features.

sensu.FetchEvent

sensu.CheckStatus

sensu.ListEvents

"expressions": [

 '(function () { var diskEvent = sensu.FetchEvent("server01", "disk"); if

(diskEvent == nil) { return false; } return diskEvent.check.status == 0; })()'

]

You can refer to the checks as strings:

If you pass the check names as strings, Sensu assumes that the entities are the same as those in the
events being fltered.

You can also refer to the checks in objects that include both the entity and check name.
For example:

In both cases, if no event matches the specifed entities and checks, Sensu will raise an error.

sensu.FetchEvent

The sensu.FetchEvent function loads the Sensu event that corresponds to the specifed entity and
check names.

The format is sensu.FetchEvent(entity, check) .
For example:

You can only load events from the same namespace as the event being fltered.
The returned object
uses the same format as responses for the core/v2/events API.

If an event does not exist for the specifed entity and check names, Sensu will raise an error.

sensu.ListEvents

The sensu.ListEvents function returns an array of all events in the same namespace as the event
being fltered.

sensu.EventStatus("database", "disk")

sensu.EventStatus({entity: "server01", check: "disk"}, {entity: "server01", check:

"database"})

sensu.FetchEvent("server01", "disk")

For example:

The events in the returned array use the same format as responses for the core/v2/events API.

Event flter specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
event flters in this version of Sensu, this attribute should always be
core/v2 .

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

NOTE: If you have many events in the namespace, this function may require a substantial amount
of time to return them.

sensu.ListEvents()

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

metadata

description Top-level collection of metadata about the event flter, including name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

flter defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. Read metadata
attributes for details.

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example
metadata:

 name: flter-weekdays-only

 namespace: default

 created_by: admin

 labels:

 region: us-west-1

 annotations:

 slack-channel: "#monitoring"

YML

{

 "metadata": {

 "name": "flter-weekdays-only",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel": "#monitoring"

 }

 }

}

JSON

spec

description Top-level map that includes the event flter spec attributes.

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

type

description Top-level attribute that specifes the sensuctl create resource type.
Event flters should always be type EventFilter .

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

spec:

 action: allow

 expressions:

 - event.entity.namespace == 'production'

 runtime_assets: []

YML

{

 "spec": {

 "action": "allow",

 "expressions": [

 "event.entity.namespace == 'production'"

],

 "runtime_assets": []

 }

}

JSON

example

Metadata attributes

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

type: EventFilter

YML

{

 "type": "EventFilter"

}

JSON

annotations:

 managed-by: ops

 playbook: www.example.url

YML

{

 "annotations": {

 "managed-by": "ops",

JSON

created_by

description Username of the Sensu user who created the flter or last updated the
flter. Sensu automatically populates the created_by feld when the
flter is created or updated.

required false

type String

example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

 "playbook": "www.example.url"

 }

}

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

name

description Unique string used to identify the event flter. Filter names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each flter must have a unique name within its namespace.

required true

type String

example

labels:

 environment: development

 region: us-west-2

YML

{

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 }

}

JSON

name: flter-weekdays-only

YML

{

JSON

https://regex101.com/r/zo9mQU/2

namespace

description Sensu RBAC namespace that the event flter belongs to.

required false

type String

default default

example

Spec attributes

action

description Action to take with the event if the event flter expressions match. Read
Inclusive and exclusive event flters for more information.

required true

type String

allowed values allow , deny

 "name": "flter-weekdays-only"

}

namespace: production

YML

{

 "namespace": "production"

}

JSON

example

expressions

description Event flter expressions to be compared with event data. You can
reference event metadata without including the metadata scope (for
example, event.entity.namespace).

In flter expressions, place string values inside single or double quotes.

required true

type Array

example

action: allow

YML

{

 "action": "allow"

}

JSON

expressions:

- event.check.team == 'ops'

- event.check.annotations["service_priority"] == 1

YML

{

 "expressions": [

 "event.check.team == 'ops'",

 "event.check.annotations[\"service_priority\"] == 1"

]

}

JSON

runtime_assets

description Dynamic runtime assets to apply to the event flter’s execution context.
JavaScript fles in the lib directory of the dynamic runtime asset will be
evaluated.

required false

type Array of string

default []

example

Use JavaScript libraries with Sensu flters

You can include JavaScript libraries in their event flter execution context with dynamic runtime assets.
For instance, if you package underscore.js into a Sensu asset, you can use functions from the
underscore library for flter expressions:

runtime_assets:

- underscore

YML

{

 "runtime_assets": [

 "underscore"

]

}

JSON

type: EventFilter

api_version: core/v2

metadata:

YML

Filter for production events

The following event flter allows handling for only events with a custom entity label "environment":
"production" :

 name: deny_if_failure_in_history

spec:

 action: deny

 expressions:

 - _.reduce(event.check.history, function(memo, h) { return (memo || h.status !=

 0); })

 runtime_assets:

 - underscore

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "deny_if_failure_in_history"

 },

 "spec": {

 "action": "deny",

 "expressions": [

 "_.reduce(event.check.history, function(memo, h) { return (memo || h.status !=

0); })"

],

 "runtime_assets": ["underscore"]

 }

}

JSON

type: EventFilter

api_version: core/v2

metadata:

 name: production_flter

YML

Filter for non-production events

The following event flter discards events with a custom entity label "environment": "production" ,
allowing handling only for events without an environment label or events with environment set to
something other than production .

spec:

 action: allow

 expressions:

 - event.entity.labels['environment'] == 'production'

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "production_flter"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.entity.labels['environment'] == 'production'"

]

 }

}

JSON

NOTE: The value for the action attribute is deny , so this is an exclusive event flter.
If
evaluation returns false, the event is handled.

type: EventFilter

api_version: core/v2

metadata:

 name: not_production

spec:

 action: deny

YML

Filter for state change only

This example demonstrates how to use the state_change_only inclusive event flter to reproduce
the behavior of a monitoring system that alerts only on state change:

 expressions:

 - event.entity.labels['environment'] == 'production'

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "not_production"

 },

 "spec": {

 "action": "deny",

 "expressions": [

 "event.entity.labels['environment'] == 'production'"

]

 }

}

JSON

type: EventFilter

api_version: core/v2

metadata:

 name: state_change_only

spec:

 action: allow

 expressions:

 - event.check.occurrences == 1

 runtime_assets: []

YML

JSON

Filter for repeated events

In this example, the flter_interval_60_hourly event flter will match event data with a check
interval of 60 seconds AND an occurrences value of 1 (the frst occurrence) OR any
occurrences value that is evenly divisible by 60 via a modulo operator calculation (calculating the

remainder after dividing occurrences by 60):

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "state_change_only"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 name: flter_interval_60_hourly

spec:

 action: allow

 expressions:

 - event.check.interval == 60

 - event.check.occurrences == 1 || event.check.occurrences % 60 == 0

 runtime_assets: []

YML

{

JSON

https://en.wikipedia.org/wiki/Modulo_operation

This example will apply the same logic as the previous example but for checks with a 30-second
interval :

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_interval_60_hourly"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.interval == 60",

 "event.check.occurrences == 1 || event.check.occurrences % 60 == 0"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 name: flter_interval_30_hourly

spec:

 action: allow

 expressions:

 - event.check.interval == 30

 - event.check.occurrences == 1 || event.check.occurrences % 120 == 0

 runtime_assets: []

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_interval_30_hourly"

 },

JSON

Filter to reduce alert fatigue for keepalive events

This example keepalive_timeouts event flter will match event data with an occurrences value of 1
OR any occurrences value that matches 15 minutes via a modulo operator calculation.
This limits
keepalive timeout event alerts to the frst occurrence and every 15 minutes thereafter.

This example uses conditional JavaScript logic to check for an entity-level annotation,
keepalive_alert_minutes , and if it exists, parses the annotation value as an integer. If the

annotation does not exist, the event flter uses 15 minutes for the alert cadence.

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.interval == 30",

 "event.check.occurrences == 1 || event.check.occurrences % 120 == 0"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 name: keepalive_timeouts

spec:

 action: allow

 expressions:

 - is_incident

 - event.check.occurrences == 1 || event.check.occurrences % parseInt(60 * (

'keepalive_alert_minutes' in event.entity.annotations ?

parseInt(event.entity.annotations.keepalive_alert_minutes): 15) /

event.check.timeout) == 0

 runtime_assets: []

YML

JSON

Filter for events during offce hours only

This event flter evaluates the event timestamp to determine if the event occurred between 9 AM and 5
PM UTC on a weekday.
Remember that action is equal to allow , so this is an inclusive event flter.
I
evaluation returns false, the event will not be handled.

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "keepalive_timeouts"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "is_incident",

 "event.check.occurrences == 1 || event.check.occurrences % parseInt(60 * (

'keepalive_alert_minutes' in event.entity.annotations ?

parseInt(event.entity.annotations.keepalive_alert_minutes): 15) /

event.check.timeout) == 0"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 name: nine_to_fver

spec:

 action: allow

 expressions:

 - weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5

 - hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17

 runtime_assets: []

YML

Add flter expressions that use the minute and second custom functions for more granular control.
For example, if offce hours are 8:30 AM to 5:30 PM:

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "nine_to_fver"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5",

 "hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17"

],

 "runtime_assets": []

 }

}

JSON

type: EventFilter

api_version: core/v2

metadata:

 name: 830_to_530

spec:

 action: allow

 expressions:

 - weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5

 - hour(event.timestamp) >= 8 && minute(event.timestamp) >= 30

 - hour(event.timestamp) <= 17 && minute(event.timestamp) <= 30

 runtime_assets: []

YML

{

 "type": "EventFilter",

JSON

Filter for events not processed within 30 seconds

This event flter evaluates the event timestamp to determine if the event was created more than 30
seconds since the current time.
In other words, this flter sets a 30-second time budget for event
processing so you can identify and handle events that aren’t processed within 30 seconds.

 "api_version": "core/v2",

 "metadata": {

 "name": "830_to_530"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5",

 "hour(event.timestamp) >= 8 && minute(event.timestamp) >= 30",

 "hour(event.timestamp) <= 17 && minute(event.timestamp) <= 30"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 name: budget_30

spec:

 action: allow

 expressions:

 - seconds_since(event.timestamp) > 30

 runtime_assets: []

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

JSON

Disable alerts without a silence

This flter allows you to disable alerts without creating silences.

Add the flter name to the flters object for any pipeline whose handler you want to control.
To disable
alerts, change the flter’s action attribute value from allow to deny .

 "metadata": {

 "name": "budget_30"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "seconds_since(event.timestamp) > 30"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 name: emergency_alert_control

spec:

 action: allow

 expressions:

 - event.has_check

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "emergency_alert_control"

 },

JSON

 "spec": {

 "action": "allow",

 "expressions": [

 "event.has_check"

]

 }

}

Sensu query expressions reference

Sensu query expressions (SQEs) are JavaScript-based expressions that provide additional
functionality for using Sensu, like nested parameters and custom functions.

SQEs are defned in event flters, so they act in the context of determining whether a given event
should be passed to the handler.
SQEs always receive a single event and some information about that
event, like event.timestamp or event.check.interval .

SQEs always return either true or false .
They are evaluated by the Otto JavaScript VM as
JavaScript programs.

Syntax quick reference

operator description

=== Identity

!== Nonidentity

== Equality

!= Inequality

&& Logical AND

|| Logical OR

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

https://github.com/robertkrimen/otto

Specifcation

SQEs are valid ECMAScript 5 (JavaScript) expressions that return either true or false .
Other
values are not allowed.
If an SQE returns a value besides true or false , an error is recorded in the
Sensu backend log and the flter evaluates to false .

Custom functions for weekday, hour, minute, and second

Together, the weekday , hour , minute , and second custom functions provide granular control of
time-based flter expressions, comparable to cron scheduling.

weekday

The custom function weekday returns a number that represents the day of the week of a UNIX epoch
time.
Sunday is 0 .

For example, if an event.timestamp equals 1520275913, which is Monday, March 5, 2018 6:51:53
PM UTC, the following SQE returns false :

hour

The custom function hour returns the hour of a UNIX epoch time (in UTC and 24-hour time notation).

For example, if an event.timestamp equals 1520275913, which is Monday, March 5, 2018 6:51:53
PM UTC, the following SQE returns true :

minute

The custom function minute returns the minute of the hour (0 through 59) of a UNIX epoch time in

weekday(event.timestamp) == 0

hour(event.timestamp) >= 17

UTC and 24-hour time notation.

For example, if an event.timestamp equals 1520275913, which is Monday, March 5, 2018 6:51:53
PM UTC, the following SQE returns false :

second

The custom function second returns the second of the minute (0 through 59) of a UNIX epoch time in
UTC and 24-hour time notation.

For example, if an event.timestamp equals 1520275913, which is Monday, March 5, 2018 6:51:53
PM UTC, the following SQE returns true :

seconds_since custom function

The custom function seconds_since returns the number of seconds (using foat64) between the
current time and an event’s timestamp.

For systems with event processing pressure, you can use seconds_since to create alerts for events
that are not handled within a certain period.
For example, the following SQE represents a 30-second
time budget for event processing:

sensu.CheckDependencies custom function

Use the sensu.CheckDependencies SQE to flter events based on the results of a different check.

minute(event.timestamp) <= 30

second(event.timestamp) >= 30

seconds_since(event.timestamp) > 30

The sensu.CheckDependencies SQE takes zero or more checks as arguments against the event
being fltered.
It returns true if all the specifed checks are passing or false if any of the specifed
checks are failing.

If you do not specify any checks, the sensu.CheckDependencies SQE always returns true .
If no
event matches the specifed checks, Sensu will raise an error.

You can refer to checks as strings, objects, arrays of strings, and arrays of objects in the
sensu.CheckDependencies SQE.
If you pass the check names as strings, Sensu assumes that the

entities are the same as those in the events being fltered.
You can also pass entity names and check
names in objects to reference checks on specifc entities.

String example

In this example, if all checks named database or disk are passing, the SQE returns true :

Object example

You can refer to the checks in objects that include both the entity and check name.
For example:

String and object example

This example mixes string and object references in the same expression.
It passes a check name
(disk) as well as an object that includes entity and check names:

sensu.CheckDependencies("database", "disk")

sensu.CheckDependencies({entity: "server01", check: "disk"}, {entity: "server01",

check: "database"})

sensu.CheckDependencies("disk", {entity: "server01", check: "database"})

Array examples

You can use sensu.CheckDependencies to evaluate a check that contains an array of elements,
which is useful for evaluating arrays parsed from event annotations.

This example references an array of three check names:

This example references an array of objects that each include both an entity and a check name:

Examples

Evaluate an event attribute

This SQE returns true if the event’s entity contains a custom attribute named namespace that is
equal to production :

Evaluate an array

To evaluate an attribute that contains an array of elements, use the .indexOf method.
For example,
this expression returns true if an entity includes the subscription system :

sensu.CheckDependencies(["port1", "port2", "port3"])

sensu.CheckDependencies([{entity: "router", check: "port1"}, {entity: "router",

check: "port2"}])

event.entity.namespace == 'production'

entity.subscriptions.indexOf('system') >= 0

Evaluate the day of the week

This expression returns true if the event occurred on a weekday:

Evaluate offce hours

This expression returns true if the event occurred between 9 AM and 5 PM UTC:

Evaluate labels and annotations

Although you can use annotations to create SQEs, we recommend using labels because labels
provide identifying information.

This expression returns true if the event’s entity includes the label webserver :

Likewise, this expression returns true if the event’s entity includes the annotation
www.company.com :

weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5

hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17

!!event.entity.labels.webserver

!!event.entity.annotations['www.company.com']

Reduce alert fatigue with event flters

Sensu event flters allow you to flter events destined for one or more event handlers.
Filters evaluate
their expressions against the observation data in events to determine whether the event should be
passed to an event handler.

Use event flters to customize alert policies, improve contact routing, eliminate notifcation noise from
recurring events, and flter events from systems in pre-production environments.

In this guide, you’ll learn how to reduce alert fatigue by confguring an event flter named hourly .
You’ll then add the flter to a pipeline workfow that includes a handler named slack to prevent alerts
from being sent to Slack every minute.

You can take either of two approaches to create the event flter to handle occurrences: use sensuctl or
use a flter dynamic runtime asset.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.
In addition, if you don’t already have a Slack handler in place, follow
Send Slack alerts with handlers to create one before continuing with this guide.

Confgure a Sensu entity

Every Sensu agent has a defned set of subscriptions that determine which checks the agent will
execute.
For an agent to execute a specifc check, you must specify the same subscription in the agent
confguration and the check defnition.

The examples for both approaches in this guide use the check_cpu check from Monitor server
resources with checks, which includes the subscription system .
Use sensuctl to add a system
subscription to one of your entities.

Before you run the following code, replace <ENTITY_NAME> with the name of the entity on your
system.

NOTE: To fnd your entity name, run sensuctl entity list .
The ID is the name of your entity.

Run this command to confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Approach 1: Use sensuctl to create an event flter

First, create an event flter called hourly that matches new events (where the event’s occurrences

is equal to 1) or hourly events (every hour after the frst occurrence, calculated with the check’s
interval and the event’s occurrences).

Events in Sensu Go are handled regardless of check execution status.
Even successful check events
are passed through the pipeline, so you’ll need to add a clause for non-zero status.

You should receive a confrmation message:

To view the event flter resource defnition, run:

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

For Subscriptions , type system and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl flter create hourly \

--action allow \

--expressions "event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0"

Created

sensuctl flter info hourly --format yaml

SHELL

The event flter defnition will be similar to this example:

sensuctl flter info hourly --format wrapped-json

SHELL

type: EventFilter

api_version: core/v2

metadata:

 name: hourly

spec:

 action: allow

 expressions:

 - event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0

 runtime_assets: null

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "hourly"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0"

],

 "runtime_assets": null

 }

}

JSON

If you want to share and reuse this event flter like code, you can save it to a fle and start building a
monitoring as code repository.

Add the event flter to a pipeline

Now that you’ve created the hourly event flter, you can include it in a new pipeline, along with the
slack handler created in Send Slack alerts with handlers.
You’ll also include the built-in
is_incident flter so that only failing events are handled, which will further reduce the number of

Slack messages Sensu sends.

To create a new pipeline that includes the hourly and is_incident event flters as well as the
slack handler, run:

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

NOTE: If you haven’t already created the slack handler, follow Send Slack alerts with handlers
before continuing with this step.

echo '---

type: Pipeline

api_version: core/v2

metadata:

 name: reduce_alerts

spec:

 workfows:

 - name: slack_alerts

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 - name: hourly

 type: EventFilter

 api_version: core/v2

 handler:

 name: slack

 type: Handler

 api_version: core/v2' | sensuctl create

SHELL

Assign the pipeline to a check

To use the reduce_alerts pipeline, list it in a check defnition’s pipelines array.
This example uses the
check_cpu check created in Monitor server resources with checks).
All the observability events that

echo '{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "reduce_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "slack_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "hourly",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "slack",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}' | sensuctl create

SHELL

the check produces will be processed according to the pipeline’s workfows.

Assign your reduce_alerts pipeline to the check_cpu check to receive Slack alerts when the CPU
usage of your system reaches the specifc thresholds set in the check command.

To open the check defnition in your text editor, run:

Replace the pipelines: [] line with the following array and save the updated check defnition:

You should see a response to confrm the update:

To view the updated check_cpu resource defnition, run:

The updated check defnition will be similar to this example:

sensuctl edit check check_cpu

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: reduce_alerts

Updated /api/core/v2/namespaces/default/checks/check_cpu

sensuctl check info check_cpu --format yaml

SHELL

sensuctl check info check_cpu --format wrapped-json

SHELL

YML

type: CheckConfg

api_version: core/v2

metadata:

 name: check_cpu

spec:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 env_vars: null

 handlers: null

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 pipelines:

 - api_version: core/v2

 name: reduce_alerts

 type: Pipeline

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - check-cpu-usage

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

JSON

The check will now send events to the reduce_alerts pipeline.
Skip to Confrm the event flter to learn
how to verify that the flter is working.

Approach 2: Use an event flter dynamic runtime asset

If you’re not already familiar with dynamic runtime assets, read Use assets to install plugins.
This will
help you understand what dynamic runtime assets are and how they are used in Sensu.

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "pipelines": [

 {

 "api_version": "core/v2",

 "name": "reduce_alerts",

 "type": "Pipeline"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

In this approach, the frst step is to obtain an event flter dynamic runtime asset that will allow you to
replicate the behavior of the hourly event flter created in Approach 1 via sensuctl .

Use sensuctl asset add to register the sensu/sensu-go-fatigue-check-flter dynamic runtime asset:

This example uses the -r (rename) fag to specify a shorter name for the asset: fatigue-flter .

The response will indicate that the asset was added:

You can also download the asset directly from Bonsai, the Sensu asset hub.

You’ve registered the dynamic runtime asset, but you still need to create the flter.

Create a fle named sensu-fatigue-check-flter.yml or sensu-fatigue-check-flter.json in
your Sensu installation to store the event flter defnition.
Copy this this flter defnition into the fle and
save it:

sensuctl asset add sensu/sensu-go-fatigue-check-flter:0.8.1 -r fatigue-flter

fetching bonsai asset: sensu/sensu-go-fatigue-check-flter:0.8.1

added asset: sensu/sensu-go-fatigue-check-flter:0.8.1

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["fatigue-flter"].

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

type: EventFilter

api_version: core/v2

YML

https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter
https://bonsai.sensu.io/

Then, use sensuctl to create a flter named fatigue_check from the fle:

metadata:

 name: fatigue_check

spec:

 action: allow

 expressions:

 - fatigue_check(event)

 runtime_assets:

 - fatigue-flter

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "fatigue_check"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "fatigue_check(event)"

],

 "runtime_assets": [

 "fatigue-flter"

]

 }

}

JSON

sensuctl create -f sensu-fatigue-check-flter.yml

SHELL

sensuctl create -f sensu-fatigue-check-flter.json

SHELL

Now that you’ve added the dynamic runtime asset and created the event flter defnition and pipeline,
you can create the check annotations you need for the dynamic runtime asset to work properly.

Update a check for flter dynamic runtime asset use

Next, you’ll need to make some additions to any checks you want to use the fatigue_check flter
with.
This example uses the check_cpu check created in Monitor server resources with checks).
All the
observability events that the check produces will be processed according to the pipeline’s workfows.

Assign your reduce_alerts pipeline to the check_cpu check to receive Slack alerts when the CPU
usage of your system reaches the specifc thresholds set in the check command.

To open the check defnition in your text editor, run:

In the check defnition, update the pipelines: [] line with the following array:

Add the following annotations in the check metadata:

sensuctl edit check check_cpu

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: cpu_check_alerts

SHELL

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "cpu_check_alerts"

 }

]

SHELL

SHELL

After you add the pipeline array and annotations, save the updated check defnition.
To confrm your
updates, run this command to retrieve the check defnition:

The check defnition should be similar to this example:

 annotations:

 fatigue_check/occurrences: '1'

 fatigue_check/interval: '3600'

 fatigue_check/allow_resolution: 'false'

 "annotations": {

 "fatigue_check/occurrences": "1",

 "fatigue_check/interval": "3600",

 "fatigue_check/allow_resolution": "false"

 }

SHELL

sensuctl check info check_cpu --format yaml

SHELL

sensuctl check info check_cpu --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 name: cpu-check

 annotations:

 fatigue_check/occurrences: '1'

 fatigue_check/interval: '3600'

 fatigue_check/allow_resolution: 'false'

YML

spec:

 command: check-cpu -w 75 c 95

 env_vars: null

 handlers: null

 high_fap_threshold: 0

 interval: 60

 low_fap_threshold: 0

 output_metric_format: ''

 output_metric_handlers: null

 output_metric_tags: null

 pipelines:

 - api_version: core/v2

 name: reduce_alerts

 type: Pipeline

 proxy_entity_name: ''

 publish: true

 round_robin: false

 runtime_assets:

 - check_cpu_usage

 stdin: false

 subdue:

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "cpu-check",

 "annotations": {

 "fatigue_check/occurrences": "1",

 "fatigue_check/interval": "3600",

 "fatigue_check/allow_resolution": "false"

 }

 },

 "spec": {

 "command": "check-cpu -w 75 c 95",

 "env_vars": null,

JSON

The annotations are required for the flter dynamic runtime asset to work the same way as the
interactively created event flter.
Specifcally, the annotations in this check defnition are doing several
things:

1. fatigue_check/occurrences : Tells the event flter on which occurrence to send the event for
further processing

2. fatigue_check/interval : Tells the event flter the interval at which to allow additional events
to be processed (in seconds)

3. fatigue_check/allow_resolution : Determines whether to pass a resolve event through
to the flter

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "output_metric_tags": null,

 "pipelines": [

 {

 "api_version": "core/v2",

 "name": "reduce_alerts",

 "type": "Pipeline"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check_cpu_usage"

],

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

For more information about confguring these values, read the Sensu Go Fatigue Check Filter
README.
Next, you’ll add the newly minted event flter and an existing handler to a pipeline.

Add the event flter to a pipeline

Now that you’ve created the fatigue_check event flter, you can add it to a pipeline along with the
slack handler created in Send Slack alerts with handlers.
You’ll also add the built-in is_incident

flter so that only failing events are handled, which will further reduce the number of Slack messages
Sensu sends.

NOTE: If you haven’t already created the slack handler, follow Send Slack alerts with handlers
before continuing with this step.

echo '---

type: Pipeline

api_version: core/v2

metadata:

 name: reduce_alerts

spec:

 workfows:

 - name: slack_alerts

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 - name: fatigue_check

 type: EventFilter

 api_version: core/v2

 handler:

 name: slack

 type: Handler

 api_version: core/v2' | sensuctl create

SHELL

echo '{

 "type": "Pipeline",

 "api_version": "core/v2",

SHELL

https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter

Confrm the event flter

Instead of waiting to receive a Slack alert, you can verify the proper behavior of these event flters with
sensu-backend logs.
The default location of these logs varies based on your platform.
Read

Troubleshoot Sensu for details about the log location.

Whenever an event is being handled, two log entries are added:

 "metadata": {

 "name": "reduce_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "slack_alerts",

 "flters": [

 {

 "name": "fatigue_check",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "hourly",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "slack",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}' | sensuctl create

"handler":"slack","level":"debug","msg":"sending event to handler"

"msg":"pipelined executed event pipe handler","output":"","status":0

However, if the event is being discarded by the event flter, a log entry with the message event

fltered will appear instead.

Next steps

Now that you know how to add event flters to pipelines and use a dynamic runtime asset to help
reduce alert fatigue, read the flters reference for in-depth information about event flters.

Route alerts with event flters

Every alert has an ideal frst responder: a team or person who knows how to triage and address the
issue.
Sensu contact routing lets you alert the right people using their preferred contact methods and
reduce mean time to response and recovery.

In this guide, you’ll set up alerts for two teams (dev and ops) with separate Slack channels.
Each team
wants to be alerted only for the things they care about, using their team’s Slack channel.
There’s also a
fallback option for alerts that should not be routed to either the dev or ops team.
To achieve this, you’ll
use a pipeline resource with three workfows, one for each contact option.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.
You will also need cURL and a Slack webhook URL and three
different Slack channels to receive test alerts (one for each team).

Routing alerts requires three types of Sensu resources:

Here’s a quick overview of the confguration to set up contact routing with a pipeline.
Two of the check
defnitions include a contacts label, which allows the pipeline to route alerts to the correct Slack
channel based each workfow’s event flter and handler.

Handlers to store contact preferences for the dev and ops teams, plus a fallback option

Event flters to match contact labels to the right handler

A pipeline to organize the event flters and handlers into workfows that route alerts to the right
contacts

https://curl.haxx.se/
https://api.slack.com/incoming-webhooks

Confgure a Sensu entity

Every Sensu agent has a defned set of subscriptions that determine which checks the agent will
execute.
For an agent to execute a specifc check, you must specify the same subscription in the agent
confguration and the check defnition.

This guide uses an example check that includes the subscription system .
Use sensuctl to add a
system subscription to one of your entities.

Before you run the following code, replace <ENTITY_NAME> with the name of the entity on your
system.

NOTE: To fnd an entity’s name, run sensuctl entity list .
The ID is the name of the entity.

sensuctl entity update <ENTITY_NAME>

http://localhost:1313/images/go/route_alerts/contact_routing_pipeline.png

Run this command to confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Register dynamic runtime assets

Contact routing is powered by the sensu/sensu-go-has-contact-flter dynamic runtime asset.
To add the
asset to Sensu, use sensuctl asset add:

The response will indicate that the asset was added:

This example uses the -r (rename) fag to specify a shorter name for the asset: contact-flter .

Next, add the sensu/sensu-slack-handler dynamic runtime asset to Sensu with sensuctl:

For Entity Class , press enter.

For Subscriptions , type system and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl asset add sensu/sensu-go-has-contact-flter:0.3.0 -r contact-flter

fetching bonsai asset: sensu/sensu-go-has-contact-flter:0.3.0

added asset: sensu/sensu-go-has-contact-flter:0.3.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["contact-flter"].

sensuctl asset add sensu/sensu-slack-handler:1.5.0 -r sensu-slack-handler

https://bonsai.sensu.io/assets/sensu/sensu-go-has-contact-filter
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

The response will confrm that the asset was added:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
sensu-slack-handler .

Run sensuctl asset list to confrm that the dynamic runtime assets are ready to use.
The
response will confrm the available assets:

Create contact flters

fetching bonsai asset: sensu/sensu-slack-handler:1.5.0 -r sensu-slack-handler

added asset: sensu/sensu-slack-handler:1.5.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["sensu-slack-handler"].

 Name URL Hash

──────────────────────

───

──────────

 contact-flter //assets.bonsai.sensu.io/.../sensu-go-has-contact-flter_0.3.0.tar.gz d35c6c4

 sensu-slack-handler //assets.bonsai.sensu.io/.../sensu-slack-handler_1.0.3_windows_amd64.tar.gz 53359fa

 sensu-slack-handler //assets.bonsai.sensu.io/.../sensu-slack-handler_1.0.3_darwin_386.tar.gz e2d7d0d

 sensu-slack-handler //assets.bonsai.sensu.io/.../sensu-slack-handler_1.0.3_linux_armv7.tar.gz 362fe51

 sensu-slack-handler //assets.bonsai.sensu.io/.../sensu-slack-handler_1.0.3_linux_arm64.tar.gz b492ae2

 sensu-slack-handler //assets.bonsai.sensu.io/.../sensu-slack-handler_1.0.3_darwin_amd64.tar.gz 88bbdca

 sensu-slack-handler //assets.bonsai.sensu.io/.../sensu-slack-handler_1.0.3_linux_386.tar.gz d9040ae

 sensu-slack-handler //assets.bonsai.sensu.io/.../sensu-slack-handler_1.0.3_linux_amd64.tar.gz 6872086

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

The Bonsai documentation explains that the sensu/sensu-go-has-contact-flter dynamic runtime asset
supports two functions:

You’ll use these functions to create event flters that represent the three actions that the Sensu Slack
handler can take on an event: contact the ops team, contact the dev team, and contact the fallback
option.

event flter name expression description

contact_ops has_contact(event,

"ops")

Allow events with the entity or check label
contacts: ops

contact_dev has_contact(event,

"dev")

Allow events with the entity or check label
contacts: dev

contact_fallback no_contacts(event) Allow events without an entity or check
contacts label

Use sensuctl to create the three event flters:

has_contact , which takes the Sensu event and the contact name as arguments

no_contact , which is available as a fallback in the absence of contact labels and takes only
the event as an argument

echo '---

type: EventFilter

api_version: core/v2

metadata:

 name: contact_ops

spec:

 action: allow

 runtime_assets:

 - contact-flter

 expressions:

 - has_contact(event, "ops")

type: EventFilter

api_version: core/v2

metadata:

SHELL

https://bonsai.sensu.io/assets/sensu/sensu-go-has-contact-filter

 name: contact_dev

spec:

 action: allow

 runtime_assets:

 - contact-flter

 expressions:

 - has_contact(event, "dev")

type: EventFilter

api_version: core/v2

metadata:

 name: contact_fallback

spec:

 action: allow

 runtime_assets:

 - contact-flter

 expressions:

 - no_contacts(event)' | sensuctl create

echo '{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "contact_ops"

 },

 "spec": {

 "action": "allow",

 "runtime_assets": [

 "contact-flter"

],

 "expressions": [

 "has_contact(event, \"ops\")"

]

 }

}

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

SHELL

You can also save these event flter resource defnitions to a fle named flters.yml or
flters.json in your Sensu installation.
When you’re ready to manage your observability

confgurations the same way you do any other code, your flters.yml or flters.json fle can
become a part of your monitoring as code repository.

Use sensuctl to confrm that the event flters were added:

The response should list the new contact_ops , contact_dev , and contact_fallback event

 "name": "contact_dev"

 },

 "spec": {

 "action": "allow",

 "runtime_assets": [

 "contact-flter"

],

 "expressions": [

 "has_contact(event, \"dev\")"

]

 }

}

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "contact_fallback"

 },

 "spec": {

 "action": "allow",

 "runtime_assets": [

 "contact-flter"

],

 "expressions": [

 "no_contacts(event)"

]

 }

}' | sensuctl create

sensuctl flter list

flters:

Create a handler for each contact

With your contact flters in place, you can create a handler for each contact: ops, dev, and fallback.
In
each handler defnition, you will specify:

Before you run the following code to create the handlers with sensuctl, make these changes:

After you update the code to use your preferred Slack channels and webhook URL, run:

 Name Action Expressions

 ────────────────── ──────── ─────────────────────────────

 contact_dev allow (has_contact(event, "dev"))

 contact_fallback allow (no_contacts(event))

 contact_ops allow (has_contact(event, "ops"))

A unique name: ops_handler , dev_handler , or fallback_handler

A customized command with the contact’s preferred Slack channel

An environment variable that contains your Slack webhook URL

The sensu-slack-handler dynamic runtime asset

Replace <ALERT_OPS> , <ALERT_DEV> , and <ALERT_ALL> with the names of the channels
you want to use to receive alerts in your Slack instance.

Replace <SLACK_WEBHOOK_URL> with your Slack webhook URL.

echo '---

type: Handler

api_version: core/v2

metadata:

 name: ops_handler

spec:

 command: sensu-slack-handler --channel "#<ALERT_OPS>"

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxxxxxxxx

SHELL

 handlers: null

 runtime_assets:

 - sensu-slack-handler

 secrets: null

 timeout: 0

 type: pipe

type: Handler

api_version: core/v2

metadata:

 name: dev_handler

spec:

 command: sensu-slack-handler --channel "#<ALERT_DEV>"

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxxxxxxxx

 handlers: null

 runtime_assets:

 - sensu-slack-handler

 secrets: null

 timeout: 0

 type: pipe

type: Handler

api_version: core/v2

metadata:

 name: fallback_handler

spec:

 command: sensu-slack-handler --channel "#<ALERT_ALL>"

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxxxxxxxx

 handlers: null

 runtime_assets:

 - sensu-slack-handler

 secrets: null

 timeout: 0

 type: pipe' | sensuctl create

echo '{

 "type": "Handler",

 "api_version": "core/v2",

SHELL

 "metadata": {

 "name": "ops_handler"

 },

 "spec": {

 "command": "sensu-slack-handler --channel \"#<ALERT_OPS>\"",

 "env_vars": [

 "SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxxxxxxxx"

],

 "handlers": null,

 "runtime_assets": [

 "sensu-slack-handler"

],

 "secrets": null,

 "timeout": 0,

 "type": "pipe"

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "dev_handler"

 },

 "spec": {

 "command": "sensu-slack-handler --channel \"#<ALERT_DEV>\"",

 "env_vars": [

 "SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxxxxxxxx"

],

 "handlers": null,

 "runtime_assets": [

 "sensu-slack-handler"

],

 "secrets": null,

 "timeout": 0,

 "type": "pipe"

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "fallback_handler"

Just like the event flters, you can save these handlers to a YAML or JSON fle to create a handlers
confguration fle if you’re implementing monitoring as code.

Use sensuctl to confrm that the handlers were added:

The response should list the new dev_handler , ops_handler , and fallback_handler handlers:

 },

 "spec": {

 "command": "sensu-slack-handler --channel \"#<ALERT_ALL>\"",

 "env_vars": [

 "SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxxxxxxxx"

],

 "handlers": null,

 "runtime_assets": [

 "sensu-slack-handler"

],

 "secrets": null,

 "timeout": 0,

 "type": "pipe"

 }

}' | sensuctl create

sensuctl handler list

 Name Type Timeout Filters Mutator Execute Environment

Variables Assets

─────────────────── ────── ───────── ───────── ─────────

───

─── ──────────────────────

 dev_handler pipe 0 RUN:  sensu-slack-handler --channel "#<ALERT_DEV>"

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxxxxxxxx sensu-slack-handler

 fallback_handler pipe 0 RUN:  sensu-slack-handler --channel "#<ALERT_ALL>"

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxxxxxxxx sensu-slack-handler

 ops_handler pipe 0 RUN:  sensu-slack-handler --channel "#<ALERT_OPS>"

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/xxxxxxxxx sensu-slack-handler

Create a pipeline

Create a pipeline with a three workfows: one for each contact group.

Each workfow includes the contact event flter and the corresponding handler for one contact group.
All
of the workfows also include the built-in is_incident event flter to reduce noise.

echo '---

type: Pipeline

api_version: core/v2

metadata:

 name: slack_contact_routing

spec:

 workfows:

 - name: dev

 flters:

 - name: contact_dev

 type: EventFilter

 api_version: core/v2

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 handler:

 name: dev_handler

 type: Handler

 api_version: core/v2

 - name: ops

 flters:

 - name: contact_ops

 type: EventFilter

 api_version: core/v2

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 handler:

 name: ops_handler

 type: Handler

 api_version: core/v2

 - name: fallback

SHELL

 flters:

 - name: contact_fallback

 type: EventFilter

 api_version: core/v2

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 handler:

 name: fallback_handler

 type: Handler

 api_version: core/v2' | sensuctl create

echo '{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack_contact_routing"

 },

 "spec": {

 "workfows": [

 {

 "name": "dev",

 "flters": [

 {

 "name": "contact_dev",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "dev_handler",

 "type": "Handler",

 "api_version": "core/v2"

 }

SHELL

 },

 {

 "name": "ops",

 "flters": [

 {

 "name": "contact_ops",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "ops_handler",

 "type": "Handler",

 "api_version": "core/v2"

 }

 },

 {

 "name": "fallback",

 "flters": [

 {

 "name": "contact_fallback",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "fallback_handler",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

With your pipeline in place, you can send ad hoc events to test your confguration and make sure the
right contact groups receive the right alerts in Slack.

Send events to test your confguration

Use the agent API to create ad hoc events and send them to your Slack pipeline.

First, create an event without a contacts label.
You may need to modify the URL with your Sensu
agent address.

Since this event doesn’t include a contacts label, you should also receive an alert in the Slack
channel specifed in your fallback_handler handler.
Behind the scenes, Sensu uses the
contact_fallback flter to match the event to the fallback_handler handler.

 }

}' | sensuctl create

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "example-check-fallback"

 },

 "status": 1,

 "output": "You should receive this example event in the Slack channel specifed

by your fallback handler."

 },

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "contact_routing"

 }

]

}' \

http://127.0.0.1:3031/events

Now, create an event with a contacts label:

Because this event contains the contacts: dev label, you should receive an alert in the Slack
channel specifed by the dev_handler handler.

Resolve the events by sending the same API requests with status set to 0 .

Manage contact labels in checks and entities

To assign a check’s alerts to a contact, you can add the contacts labels to checks or entities.

Route contacts with checks

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "example-check-dev",

 "labels": {

 "contacts": "dev"

 }

 },

 "status": 1,

 "output": "You should receive this example event in the Slack channel specifed

by your dev handler."

 },

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "contact_routing"

 }

]

}' \

http://127.0.0.1:3031/events

To test contact routing with check-generated events, update the check_cpu check created in Monitor
server resources to include the ops and dev contacts and the slack_contact_routing pipeline.

Use sensuctl to open the check in a text editor:

Edit the check metadata to add the following labels:

Update the pipelines array to add slack_contact_routing :

sensuctl edit check check_cpu

labels:

 contacts: dev, ops

YML

{

 "labels": {

 "contacts": "dev, ops"

 }

}

JSON

pipelines:

 - type: Pipeline

 api_version: core/v2

 name: slack_contact_routing

YML

{

 "pipelines": {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "slack_contact_routing"

JSON

Save and close the updated check defnition.
A response will confrm the check was updated.
For
example:

To view the updated resource defnition for check_cpu and confrm that it includes the contacts
labels and slack_contact_routing pipeline, run:

The sensuctl response will include the updated check_cpu resource defnition in the specifed format:

 }

}

Updated /api/core/v2/namespaces/default/checks/check_cpu

sensuctl check info check_cpu --format yaml

SHELL

sensuctl check info check_cpu --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 created_by: admin

 labels:

 contacts: dev, ops

 name: check_cpu

 namespace: default

spec:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 env_vars: null

 handlers: []

YML

 high_fap_threshold: 0

 interval: 60

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 pipelines:

 - api_version: core/v2

 name: slack_contact_routing

 type: Pipeline

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - check-cpu-usage

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu",

 "namespace": "default",

 "labels": {

 "contacts": "dev, ops"

 },

 "created_by": "admin"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

JSON

Now when the check_cpu check generates an event, Sensu will flter the event according to the
contact_dev and contact_ops event flters and send alerts to the #dev and #ops Slack channels:

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "pipelines": [

 {

 "api_version": "core/v2",

 "name": "slack_contact_routing",

 "type": "Pipeline"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

Entities

You can specify contacts in entity labels instead of in check labels.
The check defnition should still
include the pipeline.
For more information about managing entity labels, read the entities reference.

If contact labels are present in both the check and entity, the check contacts override the entity
contacts.
In this example, the dev label in the check confguration overrides the ops label in the
agent defnition, resulting in an alert sent to #dev but not to #ops or #fallback:

http://localhost:1313/images/go/route_alerts/contact_routing_dev_ops_teams.png

Next steps

Now that you’ve set up contact routing for two example teams, you can create additional flters,
handlers, and labels to represent your team’s contacts.
Learn how to use Sensu to Reduce alert fatigue.

http://localhost:1313/images/go/route_alerts/contact_routing_label_override.png

Transform your observation data

Next or click any element in the pipeline to jump to it.

In the transform stage, Sensu executes mutators.

The transform stage of the Sensu observability pipeline executes any mutators you have specifed in
your pipeline confguration to transform your observability data so other technologies can consume it.
For example, if you’re sending metrics to Graphite using a TCP handler, Graphite expects data that
follows the Graphite plaintext protocol.
You can use Sensu’s built-in only_check_output mutator to
transform the data into the format Graphite can accept.

Here’s how transform stage of the pipeline works: frst, the Sensu backend receives an event and
executes the flter stage of the observability pipeline.
If the event data meets the conditions, triggers, or
thresholds you specifed in your event flters, Sensu checks the pipeline for a mutator.
If the pipeline
includes a mutator, the Sensu backend executes the mutator.

There are two types of mutators: pipe and JavaScript.

Pipe mutators

Pipe mutator defnitions include executable commands that will be executed on a Sensu backend.
Pipe
mutators produce an exit status code to indicate state.

If the mutator executes successfully (that is, returns an exit status code of 0), Sensu applies
the mutator to transform the event data, returns the transformed event data to the handler
specifed in the pipeline, and executes the handler.

http://localhost:1313/images/observability-pipeline-transform.png

This example pipe mutator resource defnition uses the Sensu Check Status Metric Mutator dynamic
runtime asset:

Most pipe mutator commands are provided by Sensu plugins, which you can deploy with dynamic
runtime assets.
Use Bonsai, the Sensu asset hub, to discover, download, and share dynamic runtime
assets for Sensu pipe mutators.
Read Use assets to install plugins to get started.

If the mutator fails to execute (that is, returns a non-zero exit status code or fails to complete
within its confgured timeout), Sensu logs an error and does not execute the handler specifed
in the pipeline.

type: Mutator

api_version: core/v2

metadata:

 name: sensu-check-status-metric-mutator

spec:

 command: sensu-check-status-metric-mutator

 runtime_assets:

 - nixwiz/sensu-check-status-metric-mutator

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-check-status-metric-mutator"

 },

 "spec": {

 "command": "sensu-check-status-metric-mutator",

 "runtime_assets": [

 "nixwiz/sensu-check-status-metric-mutator"

]

 }

}

JSON

https://bonsai.sensu.io/assets/nixwiz/sensu-check-status-metric-mutator
https://bonsai.sensu.io/

JavaScript mutators

JavaScript mutators allow you to write your own evaluation expressions and do not require an
executable command attribute.
Each Sensu JavaScript mutator defnition includes the eval attribute,
whose value must be an ECMAScript 5 expression.

This example uses a JavaScript mutator to remove event attributes (in this case, the check name and
entity app_id label):

type: Mutator

api_version: core/v2

metadata:

 name: remove_checkname_entitylabel

spec:

 eval: >-

 data = JSON.parse(JSON.stringify(event)); delete data.check.metadata.name;

 delete data.entity.metadata.labels.app_id; return JSON.stringify(data)

 type: javascript

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "remove_checkname_entitylabel"

 },

 "spec": {

 "eval": "data = JSON.parse(JSON.stringify(event)); delete

data.check.metadata.name; delete data.entity.metadata.labels.app_id; return

JSON.stringify(data)",

 "type": "javascript"

 }

}

JSON

Mutators reference

Sensu executes mutators during the transform stage of the observability pipeline.

Pipelines can specify a mutator to execute and transform observability event data before any handlers
are applied.
When the Sensu backend processes an event, it checks the pipeline for the presence of a
mutator and executes that mutator before executing the handler.

Mutators accept input/data via stdin and can parse JSON event data.
They output JSON data (modifed
event data) to stdout or stderr.

There are two types of mutators: pipe and JavaScript.

Pipe mutator examples

This example shows a pipe mutator resource defnition with the minimum required attributes:

type: Mutator

api_version: core/v2

metadata:

 name: mutator_minimum

spec:

 command: example_mutator.go

 type: pipe

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "mutator_minimum"

 },

JSON

The following mutator defnition uses an imaginary Sensu plugin, example_mutator.go , to modify
event data prior to handling the event:

 "spec": {

 "command": "example_mutator.go",

 "type": "pipe"

 }

}

type: Mutator

api_version: core/v2

metadata:

 name: example-mutator

spec:

 command: example_mutator.go

 eval: ""

 env_vars: []

 runtime_assets:

 - example-mutator-asset

 secrets: null

 timeout: 0

 type: pipe

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "example-mutator"

 },

 "spec": {

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": [

 "example-mutator-asset"

JSON

JavaScript mutator example

JavaScript mutators use the eval attribute instead of the command attribute.
The eval value must be an
ECMAScript 5 (JavaScript) expression.

This example uses a JavaScript mutator to remove event attributes that are not required — in this
case, the check name and entity app_id label:

],

 "secrets": null,

 "type": "pipe",

 "eval": ""

 }

}

type: Mutator

api_version: core/v2

metadata:

 name: remove_checkname_entitylabel

spec:

 eval: >-

 data = JSON.parse(JSON.stringify(event)); delete data.check.metadata.name;

 delete data.entity.metadata.labels.app_id; return JSON.stringify(data)

 type: javascript

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "remove_checkname_entitylabel"

 },

 "spec": {

 "eval": "data = JSON.parse(JSON.stringify(event)); delete

data.check.metadata.name; delete data.entity.metadata.labels.app_id; return

JSON

You can also use JavaScript mutators to do things like add new attributes and combine existing
attributes into a single new attribute.

Pipe mutators

Pipe mutators produce an exit status code to indicate state.
A code of 0 indicates OK status.
If the
mutator executes successfully (returns an exit status code of 0), the modifed event data return to the
pipeline and the handler is executed.

Exit codes other than 0 indicate failure.
If the mutator fails to execute (returns a non-zero exit status
code or fails to complete within its confgured timeout), an error is logged and the handler will not
execute.

Pipe mutator commands

Each Sensu mutator defnition defnes a command to be executed.
Mutator commands are executable
commands that will be executed on a Sensu backend, run as the sensu user.
Most mutator
commands are provided by Sensu plugins.

Sensu mutator command attributes may include command line arguments for controlling the behavior
of the command executable.
Many Sensu mutator plugins provide support for command line arguments
for reusability.

All mutator commands are executed by a Sensu backend as the sensu user.
Commands must be
executable fles that are discoverable on the Sensu backend system (installed in a system $PATH
directory).

JSON.stringify(data)",

 "type": "javascript"

 }

}

NOTE: By default, Sensu installer packages will modify the system $PATH for the Sensu
processes to include /etc/sensu/plugins .
As a result, executable scripts (like plugins) located in
/etc/sensu/plugins will be valid commands.
This allows command attributes to use “relative

paths” for Sensu plugin commands (for example, "command": "check-http.go -u
https://sensuapp.org").

JavaScript mutators

Mutators that use JavaScript are an effcient alternative to pipe mutators, which fork a process on each
invocation.
JavaScript mutators are evaluated by the Otto JavaScript VM as JavaScript programs, which
enables greater mutator throughput at scale.

JavaScript mutators do not require you to return any value — you can mutate the events that are
passed to the mutator instead.
However, if you do return a value with a JavaScript mutator, it must be a
string.
If a JavaScript mutator returns a non-string value (an array, object, integer, or Boolean), an error
is recorded in the Sensu backend log.

JavaScript mutators can use dynamic runtime assets as long as they are valid JavaScript assets.

Secrets are not available to JavaScript mutators.
JavaScript mutators cannot look up events from the
event store.

JavaScript mutator eval attribute

Each Sensu JavaScript mutator defnition includes the eval attribute, whose value must be an
ECMAScript 5 (JavaScript) expression.
JavaScript mutators do not use the command attribute.

All mutator eval expressions are executed by a Sensu backend as the sensu user.

JavaScript mutator eval expressions can use the environment variables listed in the env_vars attribute.
For JavaScript mutators, you can defne environment variables and list the names of any environment
variables that are available in your environment in the env_vars attribute.

Built-in mutators

Sensu includes built-in mutators to help you customize event pipelines for metrics and alerts.

Built-in mutator: only_check_output

To process an event, some handlers require only the check output, not the entire event defnition.
For
example, when sending metrics to Graphite using a TCP handler, Graphite expects data that follows
the Graphite plaintext protocol.
By using the built-in only_check_output mutator, Sensu reduces the

https://github.com/robertkrimen/otto

event to only the check output so Graphite can accept it.

To use only check output, include the only_check_output mutator in the pipeline mutator array:

type: Pipeline

api_version: core/v2

metadata:

 name: graphite_pipeline

spec:

 workfows:

 - name: graphite_check_output

 flters:

 - name: has_metrics

 type: EventFilter

 api_version: core/v2

 mutator:

 name: only_check_output

 type: Mutator

 api_version: core/v2

 handler:

 name: graphite

 type: Handler

 api_version: core/v2

YML

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "graphite_pipeline"

 },

 "spec": {

 "workfows": [

 {

 "name": "graphite_check_output",

 "flters": [

 {

 "name": "has_metrics",

JSON

Mutator specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
mutators in this version of Sensu, the api_version should always be
core/v2 .

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "only_check_output",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "graphite",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

api_version: core/v2

YML

JSON

metadata

description Top-level collection of metadata about the mutator that includes name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

mutator defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. Review
the metadata attributes reference for details.

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

{

 "api_version": "core/v2"

}

metadata:

 name: example-mutator

 namespace: default

 created_by: admin

 labels:

 region: us-west-1

 annotations:

 slack-channel: "#monitoring"

YML

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

JSON

spec

description Top-level map that includes the mutator spec attributes.

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

 "annotations": {

 "slack-channel": "#monitoring"

 }

 }

}

spec:

 command: example_mutator.go

 timeout: 0

 env_vars: []

 runtime_assets: []

 secrets: null

 type: pipe

YML

{

 "spec": {

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": [],

 "secrets": null,

 "type": "pipe"

 }

}

JSON

type

description Top-level attribute that specifes the sensuctl create resource type.
Mutators should always be type Mutator .

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

Metadata attributes

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

type: Mutator

YML

{

 "type": "Mutator"

}

JSON

YML

example

created_by

description Username of the Sensu user who created the mutator or last updated the
mutator. Sensu automatically populates the created_by feld when the
mutator is created or updated.

required false

type String

example

labels

annotations:

 managed-by: ops

 playbook: www.example.url

{

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

 }

}

JSON

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

name

description Unique string used to identify the mutator. Mutator names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each mutator must have a unique name within its namespace.

labels:

 environment: development

 region: us-west-2

YML

{

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 }

}

JSON

https://regex101.com/r/zo9mQU/2

required true

type String

example

namespace

description Sensu RBAC namespace that the mutator belongs to.

required false

type String

default default

example

Spec attributes

name: example-mutator

YML

{

 "name": "example-mutator"

}

JSON

namespace: production

YML

{

 "namespace": "production"

}

JSON

command

description Mutator command to be executed by the Sensu backend.

required true, for pipe mutators

type String

example

env_vars

description Array of environment variables to use with command or eval expression
execution.

required false

type Array

example

NOTE: JavaScript mutators require the eval attribute instead of the
command attribute.

command: /etc/sensu/plugins/mutated.go

YML

{

 "command": "/etc/sensu/plugins/mutated.go"

}

JSON

env_vars:

- APP_VERSION=2.5.0

YML

{

JSON

As of Sensu Go 6.5.2, for JavaScript mutators, you can list any
environment variables that are available in your environment in addition
to defning environment variables:

eval

description ECMAScript 5 (JavaScript) expression to be executed by the Sensu
backend.

required true, for JavaScript mutators

 "env_vars": [

 "APP_VERSION=2.5.0"

]

}

env_vars:

- APP_VERSION=2.5.0

- SHELL

YML

{

 "env_vars": [

 "APP_VERSION=2.5.0",

 "SHELL"

]

}

JSON

NOTE: Pipe mutators require the command attribute instead of the
eval attribute.

type String

example

runtime_assets

description Array of Sensu dynamic runtime assets (by their names) required at
runtime for execution of the command .

required false

type Array

example

secrets

eval: 'return JSON.stringify({"some stuff": "is here"});'

YML

{

 "eval": "return JSON.stringify({\"some info\": \"is

here\"});"

}

JSON

runtime_assets:

- metric-mutator

YML

{

 "runtime_assets": [

 "metric-mutator"

]

}

JSON

description Array of the name/secret pairs to use with command execution.

required false

type Array

example

timeout

description Mutator execution duration timeout (hard stop). In seconds.

required false

secrets:

- name: ANSIBLE_HOST

 secret: sensu-ansible-host

- name: ANSIBLE_TOKEN

 secret: sensu-ansible-token

YML

{

 "secrets": [

 {

 "name": "ANSIBLE_HOST",

 "secret": "sensu-ansible-host"

 },

 {

 "name": "ANSIBLE_TOKEN",

 "secret": "sensu-ansible-token"

 }

]

}

JSON

WARNING: The timeout attribute is available for JavaScript mutators
but may not work properly if the mutator is in a loop.

type integer

example

type

description Mutator type.

required false

type String

default pipe

allowed values pipe and javascript

example

timeout: 30

YML

{

 "timeout": 30

}

JSON

NOTE: Make sure to specify the type is javascript when you
create a JavaScript mutator. If you do not specify the type, Sensu
uses pipe as the default, expects a command attribute in the
mutator defnition, and ignores any eval attribute you provide.

type: pipe

YML

{

 "type": "pipe"

JSON

secrets attributes

name

description Name of the secret defned in the executable command. Becomes the
environment variable presented to the mutator. Read Use secrets
management in Sensu for more information.

required true

type String

example

secret

description Name of the Sensu secret resource that defnes how to retrieve the
secret.

required true

type String

example

}

name: ANSIBLE_HOST

YML

{

 "name": "ANSIBLE_HOST"

}

JSON

secret: sensu-ansible-host

YML

Use secrets management in a mutator

Learn more about secrets management for your Sensu confguration in the secrets and secrets
providers references.

{

 "secret": "sensu-ansible-host"

}

JSON

type: Mutator

api_version: core/v2

metadata:

 name: ansible-tower

 namespace: ops

spec:

 command: sensu-ansible-mutator -h $ANSIBLE_HOST -t $ANSIBLE_TOKEN

 secrets:

 - name: ANSIBLE_HOST

 secret: sensu-ansible-host

 - name: ANSIBLE_TOKEN

 secret: sensu-ansible-token

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "ansible-tower",

 "namespace": "ops"

 },

JSON

Add new event attributes with JavaScript mutators

Use a JavaScript mutator to rewrite events with a new attribute added.

This example adds a new “organization” attribute to events at the top level, with a value of sec_ops :

 "spec": {

 "command": "sensu-ansible-mutator -h $ANSIBLE_HOST -t $ANSIBLE_TOKEN",

 "secrets": [

 {

 "name": "ANSIBLE_HOST",

 "secret": "sensu-ansible-host"

 },

 {

 "name": "ANSIBLE_TOKEN",

 "secret": "sensu-ansible-token"

 }

]

 }

}

type: Mutator

api_version: core/v2

metadata:

 name: add_org_sec_ops

spec:

 eval: >-

 data = JSON.parse(JSON.stringify(event)); data['organization'] = 'sec_ops';

 return JSON.stringify(data)

 type: javascript

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

JSON

Combine existing attributes with JavaScript mutators

Use a JavaScript mutator to create a new attribute from a combination of multiple existing attributes
and add the new attribute to events.

This example combines the event namespace and the name of the check that generated the event into
a single new attribute, origination :

 "metadata": {

 "created_by": "admin",

 "name": "add_org_sec_ops"

 },

 "spec": {

 "eval": "data = JSON.parse(JSON.stringify(event)); data['organization'] =

'sec_ops'; return JSON.stringify(data)",

 "type": "javascript"

 }

}

type: Mutator

api_version: core/v2

metadata:

 name: add_origination_attribute

spec:

 eval: >-

 data = JSON.parse(JSON.stringify(event)); data.origination =

 data.metadata.namespace + data.check.metadata.name; return

 JSON.stringify(data)

 type: javascript

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

JSON

 "name": "add_origination_attribute"

 },

 "spec": {

 "eval": "data = JSON.parse(JSON.stringify(event)); data.origination =

data.metadata.namespace + data.check.metadata.name; return JSON.stringify(data)",

 "type": "javascript"

 }

}

Process your observation data

Back to start or click any element in the pipeline to jump to it.

In the process stage, Sensu executes pipelines and handlers.

In the process stage of Sensu’s observability pipeline, the Sensu backend executes pipelines and
handlers to take action on your observation data.
Your pipeline or handler confguration determines
what happens to the events that comes through your observability pipeline.
For example, your pipeline
or handler might route incidents to a specifc Slack channel or PagerDuty notifcation workfow, or send
metrics to InfuxDB or Prometheus.

Pipelines

Pipelines are Sensu resources composed of observation event processing workfows made up of
flters, mutators, and handlers.
Instead of specifying flters and mutators in handler defnitions, you can
specify all three in a single pipeline workfow.

This example shows a pipeline resource defnition that includes an event flter, a mutator, and a
handler:

type: Pipeline

api_version: core/v2

metadata:

 name: incident_alerts

YML

http://localhost:1313/images/observability-pipeline-process.png

spec:

 workfows:

 - name: labeled_email_alerts

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 mutator:

 name: add_labels

 type: Mutator

 api_version: core/v2

 handler:

 name: email

 type: Handler

 api_version: core/v2

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "incident_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "labeled_email_alerts",

 "flters": [

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

JSON

To use pipelines, list them in check defnitions in the pipelines array.
All the observability events that the
check produces will be processed according to the pipeline’s workfows.

Handlers

Handlers are actions the Sensu backend executes on events.
Sensu also checks your handlers for the
event flters and mutators to apply in the flter and transform stages.

A few different types of handlers are available in Sensu.
The most common are pipe handlers, which
work similarly to checks and enable Sensu to interact with almost any computer program via standard
streams.

Here’s an example resource defnition for a pipe handler — read Send Slack alerts with handlers to
learn how to confgure your own version of this handler:

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

type: Handler

api_version: core/v2

metadata:

 name: slack

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX

 runtime_assets:

 - sensu-slack-handler

 secrets: null

 timeout: 0

YML

https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams

Other types of handlers include Sumo Logic metrics handlers and TCP stream handlers, which provide
persistent connections for transmitting Sensu observation data to remote data storage services to help
prevent data bottlenecks.
Sensu’s Sumo Logic metrics handlers and TCP stream handlers are available
for use only in pipelines.

You can also use traditional TCP/UDP handlers to send your observation data to remote sockets and
handler sets to streamline groups of actions to execute for certain types of events.

Discover, download, and share Sensu handler dynamic runtime assets in Bonsai, the Sensu asset hub
Read Use assets to install plugins to get started.

 type: pipe

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

 "SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX"

],

 "runtime_assets": [

 "sensu-slack-handler"

],

 "secrets": null,

 "timeout": 0,

 "type": "pipe"

 }

}

JSON

https://bonsai.sensu.io/

Handlers reference

Sensu executes handlers during the process stage of the observability pipeline.

Handlers are actions the Sensu backend executes on events.
Several types of handlers are available.
The most common are pipe handlers, which work similarly to checks and enable Sensu to interact
with almost any computer program via standard streams.

The handler stack concept describes a group of handlers or a handler set that escalates events
through a series of different handlers.

Discover, download, and share Sensu handler dynamic runtime assets using Bonsai, the Sensu asset
hub.
Read Use dynamic runtime assets to install plugins to get started.

Pipe handlers

Pipe handlers are external commands that can consume event data via stdin.

Pipe handler example

This example shows a pipe handler resource defnition with the minimum required attributes:

Pipe handlers send observation data (events) into arbitrary commands via stdin

TCP/UDP handlers send observation data (events) to a remote socket

Handler sets group event handlers and streamline groups of actions to execute for certain
types of events (also called “set handlers”)

type: Handler

api_version: core/v2

metadata:

 name: pipe_handler_minimum

spec:

YML

https://en.wikipedia.org/wiki/Standard_streams
https://bonsai.sensu.io/

Pipe handler command

Pipe handler defnitions include a command attribute, which is a command for the Sensu backend to
execute.

Pipe handler command arguments

Pipe handler command attributes may include command line arguments for controlling the behavior of
the command executable.

TCP/UDP handlers

TCP and UDP handlers enable Sensu to forward event data to arbitrary TCP or UDP sockets for
external services to consume.

TCP/UDP handler example

This handler will send event data to a TCP socket (10.0.1.99:4444) and timeout if an
acknowledgement (ACK) is not received within 30 seconds:

 command: command-example

 type: pipe

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "pipe_handler_minimum"

 },

 "spec": {

 "command": "command-example",

 "type": "pipe"

 }

}

JSON

Change the type from tcp to udp to confgure a UDP handler:

type: Handler

api_version: core/v2

metadata:

 name: tcp_handler

spec:

 socket:

 host: 10.0.1.99

 port: 4444

 type: tcp

 timeout: 30

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "tcp_handler"

 },

 "spec": {

 "type": "tcp",

 "timeout": 30,

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 }

 }

}

JSON

type: Handler

api_version: core/v2

metadata:

YML

Handler sets

Handler set defnitions allow you to use a single named handler set to refer to groups of handlers.
The
handler set becomes a collection of individual actions to take (via each included handler) on event
data.

For example, suppose you have already created these two handlers:

 name: udp_handler

spec:

 socket:

 host: 10.0.1.99

 port: 4444

 type: udp

 timeout: 30

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "udp_handler"

 },

 "spec": {

 "type": "udp",

 "timeout": 30,

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 }

 }

}

JSON

NOTE: We recommend using pipelines to confgure multiple workfows for different handlers
instead of handler sets.

elasticsearch to send all observation data to Elasticsearch.

You can list both of these handlers in a handler set to automate and streamline your workfow,
specifying type: set :

Now you can route observation data to Elasticsearch and alerts to OpsGenie with a single handler
defnition, the send_events_notify_operator handler set.

opsgenie to send non-OK status alerts to your OpsGenie notifcation channel.

type: Handler

api_version: core/v2

metadata:

 name: send_events_notify_operator

spec:

 handlers:

 - elasticsearch

 - opsgenie

 type: set

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "send_events_notify_operator"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "elasticsearch",

 "opsgenie"

]

 }

}

JSON

NOTE: Attributes defned in handler sets do not apply to the handlers they include.
For example,

Handler stacks

The handler stack concept refers to a group of handlers or a handler set that escalates events through
a series of different handlers.
For example, suppose you want a handler stack with three levels of
escalation:

A handler stack for this scenario requires three handlers to take the desired actions based on three
corresponding event flters that control the escalation levels:

With these event flters and handlers confgured, you can create a handler set that includes the three
handlers in your stack.
You can also list the three handlers in the handlers array in your check defnition
instead.

flters and mutator attributes defned in a handler set will have no effect on handlers.
Defne
these attributes in individual handlers instead, or use pipelines.

NOTE: We recommend using pipelines to confgure multiple workfows for escalating events
through a series of handlers instead of handler stacks.

Level 1: On the frst occurrence, attempt remediation.

Level 2: On the ffth occurrence, send an alert to Slack.

Level 3: On the tenth occurrence, send an alert to PagerDuty.
Continue to send this alert on
every tenth occurrence thereafter until the incident is resolved.

Level 1 requires an event flter with the built-in is_incident flter plus an occurrence-based
flter that uses an expression like event.check.occurrences ==1 and a corresponding
remediation handler.

Level 2 requires an event flter with is_incident plus an occurrence-based flter that uses an
expression like event.check.occurrences == 5 and a corresponding Slack handler.

Level 3 requires an event flter with is_incident plus an occurrence-based flter that uses an
expression like event.check.occurrences % 10 == 0 to match event data with an
occurrences value that is evenly divisible by 10 via a modulo operator calculation and a
corresponding PagerDuty handler.

PRO TIP: This scenario relies on six different resources, three event flters and three handlers, to
describe the handler stack concept, but you can use Sensu dynamic runtime assets and
integrations to achieve the same escalating alert levels in other ways.

Keepalive event handlers

Sensu keepalives are the heartbeat mechanism used to ensure that all registered Sensu agents are
operational and can reach the Sensu backend.
You can connect keepalive events to your monitoring
workfows using a keepalive handler.
Sensu looks for an event handler named keepalive and
automatically uses it to process keepalive events.

Suppose you want to receive Slack notifcations for keepalive alerts, and you already have a Slack
handler set up to process events.
To process keepalive events using the Slack pipeline, create a
handler set named keepalive and add the slack handler to the handlers array.
The resulting
keepalive handler set confguration will look like this example:

For example, you can use the is_incident event flter in conjunction with the sensu/sensu-go-
fatigue-check-flter asset to control event escalation.
The sensu/sensu-ansible-handler,
sensu/sensu-rundeck-handler, and sensu/sensu-saltstack-handler auto-remediation integrations
and the sensu/sensu-remediation-handler asset also include built-in occurrence- and severity-
based event fltering.

type: Handler

api_version: core/v2

metadata:

 name: keepalive

spec:

 handlers:

 - slack

 type: set

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "keepalive"

 },

 "spec": {

JSON

https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter
https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter
https://bonsai.sensu.io/assets/sensu/sensu-ansible-handler
https://bonsai.sensu.io/assets/sensu/sensu-rundeck-handler
https://bonsai.sensu.io/assets/sensu/sensu-saltstack-handler
https://bonsai.sensu.io/assets/sensu/sensu-remediation-handler

You can also use the keepalive-handlers confguration option to send keepalive events to any
handler you have confgured.
If you do not specify a keepalive handler with the keepalive-handlers
confguration option, the Sensu backend will use the default keepalive handler and create an event
in sensuctl and the Sensu web UI.

Handler specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
handlers in this version of Sensu, the api_version should always be
core/v2 .

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

 "type": "set",

 "handlers": [

 "slack"

]

 }

}

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

metadata

description Top-level collection of metadata about the handler that includes name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

handler defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. Read
metadata attributes for details.

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example
metadata:

 name: handler-slack

 namespace: default

 created_by: admin

 labels:

 region: us-west-1

 annotations:

 slack-channel: "#monitoring"

YML

{

 "metadata": {

 "name": "handler-slack",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel": "#monitoring"

 }

 }

}

JSON

spec

description Top-level map that includes the handler spec attributes.

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example
spec:

 type: tcp

 socket:

 host: 10.0.1.99

 port: 4444

 metadata:

 name: tcp_handler

 namespace: default

YML

{

 "spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 },

 "metadata": {

 "name": "tcp_handler",

 "namespace": "default"

 }

 }

}

JSON

type

description Top-level attribute that specifes the sensuctl create resource type.
Handlers should always be type Handler .

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

Metadata attributes

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

type: Handler

YML

{

 "type": "Handler"

}

JSON

annotations:

YML

created_by

description Username of the Sensu user who created the handler or last updated the
handler. Sensu automatically populates the created_by feld when the
handler is created or updated.

required false

type String

example

labels

description Custom attributes to include with observation event data that you can

 managed-by: ops

 playbook: www.example.url

{

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

 }

}

JSON

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

name

description Unique string used to identify the handler. Handler names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each handler must have a unique name within its namespace.

required true

labels:

 environment: development

 region: us-west-2

YML

{

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 }

}

JSON

https://regex101.com/r/zo9mQU/2

type String

example

namespace

description Sensu RBAC namespace that the handler belongs to.

required false

type String

default default

example

Spec attributes

command

name: handler-slack

YML

{

 "name": "handler-slack"

}

JSON

namespace: production

YML

{

 "namespace": "production"

}

JSON

description Handler command to be executed. The event data is passed to the
process via stdin.

required true (if type equals pipe)

type String

example

env_vars

description Array of environment variables to use with command execution.

required false

type Array

example

NOTE: The command attribute is only supported for pipe handlers
(that is, handlers confgured with "type": "pipe").

command: /etc/sensu/plugins/pagerduty.go

YML

{

 "command": "/etc/sensu/plugins/pagerduty.go"

}

JSON

NOTE: The env_vars attribute is only supported for pipe handlers
(that is, handlers confgured with "type": "pipe").

env_vars:

- API_KEY=0428d6b8nb51an4d95nbe28nf90865a66af5

YML

flters

description Array of Sensu event flters (by names) to use when fltering events for
the handler. Each array item must be a string.

required false

type Array

example

{

 "env_vars": [

 "API_KEY=0428d6b8nb51an4d95nbe28nf90865a66af5"

]

}

JSON

NOTE: We recommend using pipelines, which allow you to list event
flters directly in the pipeline resource defnition instead of in
handlers.

Pipelines ignore any event flters specifed in handler defnitions, so
you do not need to remove them to use your existing handlers — just
make sure to defne the event flters you want to use in the pipeline
workfow.

flters:

- is_incident

- not_silenced

- state_change_only

YML

{

 "flters": [

JSON

handlers

description Array of Sensu event handlers (by their names) to use for events using
the handler set. Each array item must be a string.

required true (if type equals set)

type Array

example

 "is_incident",

 "not_silenced",

 "state_change_only"

]

}

NOTE: The handlers attribute is only supported for handler sets
(that is, handlers confgured with "type": "set").

We recommend using pipelines to confgure multiple workfows
instead of handler sets.

handlers:

- pagerduty

- email

- ec2

YML

{

 "handlers": [

 "pagerduty",

 "email",

 "ec2"

]

}

JSON

mutator

description Name of the Sensu event mutator to use to mutate event data for the
handler.

required false

type String

example

runtime_assets

description Array of Sensu dynamic runtime assets (by names) required at runtime
to execute the command

required false

NOTE: We recommend using pipelines, which allow you to list
mutators directly in the pipeline resource defnition instead of in
handlers.

Pipelines ignore any mutators specifed in handler defnitions, so you
do not need to remove them to use your existing handlers — just
make sure to defne the mutator you want to use in the pipeline
workfow.

mutator: only_check_output

YML

{

 "mutator": "only_check_output"

}

JSON

type Array

example

secrets

description Array of the name/secret pairs to use with command execution.

required false

type Array

example

runtime_assets:

- metric-handler

YML

{

 "runtime_assets": [

 "metric-handler"

]

}

JSON

secrets:

- name: ANSIBLE_HOST

 secret: sensu-ansible-host

- name: ANSIBLE_TOKEN

 secret: sensu-ansible-token

YML

{

 "secrets": [

 {

 "name": "ANSIBLE_HOST",

 "secret": "sensu-ansible-host"

 },

JSON

socket

description Scope for socket defnition used to confgure the TCP/UDP handler
socket.

required true (if type equals tcp or udp)

type Hash

example

timeout

description Handler execution duration timeout (hard stop). In seconds. Only used by
pipe , tcp , and udp handler types.

 {

 "name": "ANSIBLE_TOKEN",

 "secret": "sensu-ansible-token"

 }

]

}

NOTE: The socket attribute is only supported for TCP/UDP
handlers (that is, handlers confgured with "type": "tcp" or
"type": "udp").

socket: {}

YML

{

 "socket": {}

}

JSON

required false

type Integer

default 60 (for tcp and udp handlers)

example

type

description Handler type.

required true

type String

allowed values pipe , tcp , udp , and set

example

timeout: 30

YML

{

 "timeout": 30

}

JSON

type: pipe

YML

{

 "type": "pipe"

}

JSON

socket attributes

host

description Socket host address (IP or hostname) to connect to.

required true

type String

example

port

description Socket port to connect to.

required true

type Integer

example

host: 8.8.8.8

YML

{

 "host": "8.8.8.8"

}

JSON

port: 4242

YML

{

 "port": 4242

}

JSON

secrets attributes

name

description Name of the secret defned in the executable command. Becomes the
environment variable presented to the handler. Read Use secrets
management in Sensu for more information.

required true

type String

example

secret

description Name of the Sensu secret resource that defnes how to retrieve the
secret.

required true

type String

example

name: ANSIBLE_HOST

YML

{

 "name": "ANSIBLE_HOST"

}

JSON

secret: sensu-ansible-host

YML

JSON

Send Slack alerts

This handler will send alerts to a channel named monitoring with the confgured webhook URL,
using the handler-slack executable command.
The handler uses the sensu/sensu-slack-handler
dynamic runtime asset.
Read Send Slack alerts with handlers for detailed instructions for adding the
required asset and confguring this handler.

{

 "secret": "sensu-ansible-host"

}

type: Handler

api_version: core/v2

metadata:

 name: slack

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 handlers: []

 runtime_assets:

 - sensu/sensu-slack-handler

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack"

JSON

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

Send registration events

If you confgure a Sensu event handler named registration , the Sensu backend will create and
process an event for the agent registration, apply any confgured flters and mutators, and execute the
registration handler.

Read Automatically register and deregister entities for more information and a registration handler
example.

Execute multiple handlers (handler set)

The following example creates a handler set, notify_all_the_things , that will execute three
handlers: slack , tcp_handler , and udp_handler .

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "handlers": [],

 "runtime_assets": [

 "sensu/sensu-slack-handler"

],

 "timeout": 0,

 "type": "pipe"

 }

}

NOTE: We recommend using pipelines to confgure multiple workfows for different handlers
instead of handler sets.

YML

Use secrets management in a handler

Learn more about secrets management for your Sensu confguration in the secrets and secrets
providers references.

type: Handler

api_version: core/v2

metadata:

 name: notify_all_the_things

spec:

 handlers:

 - slack

 - tcp_handler

 - udp_handler

 type: set

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "notify_all_the_things"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "slack",

 "tcp_handler",

 "udp_handler"

]

 }

}

JSON

type: Handler

api_version: core/v2

YML

metadata:

 name: ansible-tower

spec:

 type: pipe

 command: sensu-ansible-handler -h $ANSIBLE_HOST -t $ANSIBLE_TOKEN

 secrets:

 - name: ANSIBLE_HOST

 secret: sensu-ansible-host

 - name: ANSIBLE_TOKEN

 secret: sensu-ansible-token

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "ansible-tower"

 },

 "spec": {

 "type": "pipe",

 "command": "sensu-ansible-handler -h $ANSIBLE_HOST -t $ANSIBLE_TOKEN",

 "secrets": [

 {

 "name": "ANSIBLE_HOST",

 "secret": "sensu-ansible-host"

 },

 {

 "name": "ANSIBLE_TOKEN",

 "secret": "sensu-ansible-token"

 }

]

 }

}

JSON

Pipelines reference

Sensu executes pipelines during the process stage of the observability pipeline.

Pipelines are Sensu resources composed of observation event processing workfows made up of
flters, mutators, and handlers.
Instead of specifying flters and mutators in handler defnitions, you can
specify all three in a single pipeline workfow.

To use a pipeline, list it in a check defnition’s pipelines array.
All the observability events that the check
produces will be processed according to the pipeline’s workfows.

Pipelines can replace handler sets and handler stacks.
We recommend migrating your existing handler
sets and stacks to pipeline workfows.

Pipeline example

This example shows a pipeline resource defnition that includes event flters, a mutator, and a handler:

IMPORTANT : The pipelines described on this page are different from the resources you can
create and manage with the enterprise/pipeline/v1 API.
The enterprise/pipeline/v1 API
allows you to create and manage resources that can only be used in pipelines rather than
pipelines themselves.

Read the Sumo Logic metrics handlers reference and TCP stream handlers reference for more
information about enterprise pipeline resources.

NOTE: To use pipelines, upgrade your agents to Sensu Go 6.5.0.

type: Pipeline

api_version: core/v2

metadata:

 name: incident_alerts

YML

spec:

 workfows:

 - name: labeled_email_alerts

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 - name: state_change_only

 type: EventFilter

 api_version: core/v2

 mutator:

 name: add_labels

 type: Mutator

 api_version: core/v2

 handler:

 name: email

 type: Handler

 api_version: core/v2

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "incident_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "labeled_email_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "not_silenced",

JSON

To use this pipeline in a check, list it in the check’s pipelines array.
For example:

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 name: incident_pipelines

spec:

 command: collect.sh

 interval: 10

 publish: true

 subscriptions:

 - system

 pipelines:

 - type: Pipeline

YML

Workfows

The workfow attribute is an array of event processing workfows that Sensu will apply for events
produced by any check that references the pipeline.

Workfows do not have to include an event flter or mutator, but they must specify at least one handler.

Workfows can include more than one event flter.
If a workfow has more than one flter, Sensu applies
the flters in a series, starting with the flter that is listed frst.

You can use your existing event flters, mutators, and handlers in pipeline workfows.
Pipelines ignore

 api_version: core/v2

 name: incident_alerts

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "incident_pipelines"

 },

 "spec": {

 "command": "collect.sh",

 "interval": 10,

 "publish": true,

 "subscriptions": [

 "system"

],

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "incident_alerts"

 }

]

 }

}

JSON

any flters and mutators specifed in handler defnitions, so you do not need to remove them to use
your existing handlers — just make sure to defne the event flters and mutators you want to use in the
pipeline workfow.

Pipelines with multiple workfows

Pipelines can include more than one workfow.

In this example, the pipeline includes labeled_email_alerts and slack_alerts workfows:

type: Pipeline

api_version: core/v2

metadata:

 name: incident_alerts

spec:

 workfows:

 - name: labeled_email_alerts

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 - name: state_change_only

 type: EventFilter

 api_version: core/v2

 mutator:

 name: add_labels

 type: Mutator

 api_version: core/v2

 handler:

 name: email

 type: Handler

 api_version: core/v2

 - name: slack_alerts

 flters:

 - name: is_incident

YML

 type: EventFilter

 api_version: core/v2

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 - name: state_change_only

 type: EventFilter

 api_version: core/v2

 handler:

 name: slack

 type: Handler

 api_version: core/v2

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "incident_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "labeled_email_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

JSON

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 },

 {

 "name": "slack_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "slack",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

All events from checks that specify this pipeline will be processed with both workfows, in series,
starting with the workfow that is listed frst in the resource defnition.

Read Route alerts with event flters for another pipeline example that includes multiple workfows for
contact-based routing.

Pipeline specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
pipelines in this version of Sensu, the api_version should always be
core/v2 .

required Required for pipeline defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the pipeline that includes name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

pipeline defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. Read
metadata attributes for details.

required Required for pipeline defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the pipeline spec attributes.

metadata:

 name: incident_alerts

 namespace: default

 created_by: admin

 labels:

 region: us-west-1

 annotations:

 slack-channel: "#incidents"

YML

{

 "metadata": {

 "name": "incident_alerts",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel": "#incidents"

 }

 }

}

JSON

required Required for pipeline defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example
spec:

 workfows:

 - name: labeled_email_alerts

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 - name: state_change_only

 type: EventFilter

 api_version: core/v2

 mutator:

 name: add_labels

 type: Mutator

 api_version: core/v2

 handler:

 name: email

 type: Handler

 api_version: core/v2

YML

{

 "spec": {

 "workfows": [

 {

 "name": "labeled_email_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

JSON

type

description Top-level attribute that specifes the sensuctl create resource type.
Pipelines should always be type Pipeline .

required Required for pipeline defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

type: Pipeline

YML

Metadata attributes

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

{

 "type": "Pipeline"

}

JSON

annotations:

 managed-by: ops

 slack-channel: "#incidents"

YML

{

 "annotations": {

 "managed-by": "ops",

 "slack-channel": "#incidents"

 }

}

JSON

created_by

description Username of the Sensu user who created the pipeline or last updated the
handler. Sensu automatically populates the created_by feld when the
pipeline is created or updated.

required false

type String

example

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

string.

default null

example

name

description Unique string used to identify the pipeline. Pipeline names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z). Each pipeline must have a unique name within its

namespace.

required true

type String

example

labels:

 environment: production

 region: us-west-1

YML

{

 "labels": {

 "environment": "production",

 "region": "us-west-1"

 }

}

JSON

name: incident_alerts

YML

{

 "name": "incident_alerts"

}

JSON

https://regex101.com/r/zo9mQU/2

namespace

description Sensu RBAC namespace that the pipeline belongs to.

required false

type String

default default

example

Spec attributes

workfows

description Array of workfows (by names) to use when fltering, mutating, and
handling observability events with a pipeline. Each array item must be a
string. Read workfows attributes for details.

required false

type Array

example

namespace: default

YML

{

 "namespace": "default"

}

JSON

workfows:

 - name: labeled_email_alerts

 flters:

YML

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 - name: state_change_only

 type: EventFilter

 api_version: core/v2

 mutator:

 name: add_labels

 type: Mutator

 api_version: core/v2

 handler:

 name: email

 type: Handler

 api_version: core/v2

{

 "workfows": [

 {

 "name": "labeled_email_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

JSON

Workfows attributes

flters

description Reference for the Sensu event flters to use when fltering events for the
pipeline. Each pipeline workfow can reference more than one event
flter. If a workfow has more than one flter, Sensu applies the flters in a
series, starting with the flter that is listed frst. Read flters attributes for
details.

required false

type Map of key-value pairs

default null

example

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

}

flters:

- name: is_incident

 type: EventFilter

 api_version: core/v2

- name: not_silenced

 type: EventFilter

 api_version: core/v2

YML

handler

description Reference for the Sensu handler to use for event processing in the
workfow. Each pipeline workfow must reference one handler. Pipelines
ignore any flters and mutators specifed in handler defnitions. Read
handler attributes for details.

required true

type Map of key-value pairs

example

- name: state_change_only

 type: EventFilter

 api_version: core/v2

{

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

]

}

JSON

YML

mutator

description Reference for the Sensu mutator to use to mutate event data for the
workfow. Each pipeline workfow can reference only one mutator. Read
mutator attributes for details.

required false

type Map of key-value pairs

default null

example

handler:

 name: email

 type: Handler

 api_version: core/v2

{

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

}

JSON

mutator:

 name: add_labels

 type: Mutator

 api_version: core/v2

YML

{

 "mutator": {

 "name": "add_labels",

JSON

Filters attributes

api_version

description The Sensu API group and version for the event flter. For event flters in
this version of Sensu, the api_version should always be core/v2 .

required true

type String

default null

example

name

description Name of the Sensu event flter to use for the workfow. You can use the
built-in event flters, as well as your existing event flters, in pipeline
workfows.

required true

 "type": "Mutator",

 "api_version": "core/v2"

 }

}

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

type String

default null

example

type

description The sensuctl create resource type for the event flter. Event flters
should always be type EventFilter .

required true

type String

default null

example

Handler attributes

name: is_incident

YML

{

 "name": "is_incident"

}

JSON

type: EventFilter

YML

{

 "type": "EventFilter"

}

JSON

api_version

description The Sensu API group and version for the handler.

required true

type String

allowed values core/v2 for a pipe handler, TCP or UDP handler, or handler set

pipeline/v1 for a TCP stream handler or Sumo Logic metrics handler

default null

example

name

description Name of the Sensu handler to use for the workfow. You can use your
existing handlers in pipeline workfows — pipelines ignore any flters and
mutators specifed in handler defnitions.

required true

type String

default null

example

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

name: email

YML

type

description The sensuctl create resource type for the handler.

required true

type String

allowed values Handler for a pipe handler, TCP or UDP handler, or handler set

TCPStreamHandler for a TCP stream handler

SumoLogicMetricsHandler for a Sumo Logic metrics handler

default null

example

Mutator attributes

api_version

{

 "name": "email"

}

JSON

type: Handler

YML

{

 "type": "Handler"

}

JSON

description The Sensu API group and version for the mutator. For mutators in this
version of Sensu, the api_version should always be core/v2 .

required true

type String

default null

example

name

description Name of the Sensu mutator to use for the workfow. You can use your
existing mutators in pipeline workfows.

required true

type String

default null

example

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

name: add_labels

YML

{

 "name": "add_labels"

}

JSON

type

description The sensuctl create resource type for the mutator. Mutators should
always be type Mutator .

required true

type String

default null

example
type: Mutator

YML

{

 "type": "Mutator"

}

JSON

Silencing reference

Sensu’s silencing capability allows you to suppress event handler execution on an ad hoc basis so you
can plan maintenance and reduce alert fatigue.
Silences are created on an ad hoc basis using sensuctl,
the web UI, and the core/v2/silenced API endpoints.

Successfully created silencing entries are assigned a name in the format $SUBSCRIPTION:$CHECK ,
where $SUBSCRIPTION is the name of a Sensu entity subscription and $CHECK is the name of a
Sensu check.
You can use silences to silence checks on specifc entities by taking advantage of per-
entity subscriptions (for example, entity:$ENTITY_NAME).

When creating a silencing entry, you can specify a combination of checks and subscriptions, but only
one or the other is strictly required.
For example, if you create a silencing entry specifying only a check,
its name will contain an asterisk (or wildcard) in the $SUBSCRIPTION position.
This indicates that any
event with a matching check name will be marked as silenced, regardless of the originating entities’
subscriptions.

Conversely, a silencing entry that specifes only a subscription will have a name with an asterisk in the
$CHECK position.
This indicates that any event where the originating entities’ subscriptions match the

subscription specifed in the entry will be marked as silenced, regardless of the check name.

These silences are persisted in the Sensu datastore.
When the Sensu server processes subsequent
check results, it retrieves matching silences from the store.
If there are one or more matching entries,
the event is updated with a list of silenced entry names.
When the check name or subscription
described in a silencing entry matches an event, the event will include the silenced attribute, which
lists the silencing entries that match the event.

Silenced checks still create events, and events from silenced checks are still passed to handlers.
To
prevent handler execution for events from silenced checks, make sure the handler defnition includes
the built-in not_silenced event flter.
The not_silenced event flter prevents handlers from
processing events that include the silenced attribute.

Silencing examples

This example shows a silencing resource defnition that uses a per-entity subscription to silence any
alerts on a single Sensu entity, i-424242 :

YML

Silence a specifc check on a specifc entity

The following example shows how to silence a check named check_ntp on entity i-424242 ,

type: Silenced

api_version: core/v2

metadata:

 name: entity:i-424242:*

spec:

 begin: 1542671205

 check: null

 creator: admin

 expire: -1

 expire_at: 0

 expire_on_resolve: false

 reason: null

 subscription: entity:i-424242

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "entity:i-424242:*"

 },

 "spec": {

 "expire": -1,

 "expire_at": 0,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": null,

 "check": null,

 "subscription": "entity:i-424242",

 "begin": 1542671205

 }

}

JSON

ensuring the silencing entry is deleted after the underlying issue is resolved:

The optional expire_on_resolve attribute used in this example indicates that when the server
processes a matching check from the specifed entity with status OK, the silencing entry will be
removed automatically.

When used in combination with other attributes (like creator and reason), this gives Sensu
operators a way to acknowledge that they received an alert, suppress additional notifcations, and
automatically clear the silencing entry when the check status returns to normal.

Silencing specifcation

type: Silenced

api_version: core/v2

metadata:

 name: entity:i-424242:check_ntp

spec:

 subscription: entity:i-424242

 check: check_ntp

 expire_on_resolve: true

YML

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "entity:i-424242:check_ntp"

 },

 "spec": {

 "subscription": "entity:i-424242",

 "check": "check_ntp",

 "expire_on_resolve": true

 }

}

JSON

Silenced entry names

Silences must contain either a subscription or check name and are identifed by the combination of
$SUBSCRIPTION:$CHECK .
If a check or subscription is not provided, it will be substituted with a wildcard

(asterisk): $SUBSCRIPTION:* or *:$CHECK .

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Silences should always be type Silenced .

required Required for silencing entry defnitions in wrapped-json or yaml
format for use with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
silences in this version of Sensu, the api_version should always be
core/v2 .

required Required for silencing entry defnitions in wrapped-json or yaml
format for use with sensuctl create .

type: Silenced

YML

{

 "type": "Silenced"

}

JSON

type String

example

metadata

description Top-level collection of metadata about the silencing entry that includes
name , namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

silencing entry defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. Read
metadata attributes for details.

required Required for silencing entry defnitions in wrapped-json or yaml
format for use with sensuctl create .

type Map of key-value pairs

example

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

metadata:

 name: appserver:mysql_status

 namespace: default

 created_by: admin

 labels:

 region: us-west-1

YML

{

 "metadata": {

 "name": "appserver:mysql_status",

JSON

spec

description Top-level map that includes the silencing entry spec attributes.

required Required for silences in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 }

 }

}

spec:

 expire: -1

 expire_at: 0

 expire_on_resolve: false

 creator: admin

 reason:

 check:

 subscription: entity:i-424242

 begin: 1542671205

YML

{

 "spec": {

 "expire": -1,

 "expire_at": 0,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": null,

 "check": null,

JSON

Metadata attributes

name

description Silencing identifer generated from the combination of a subscription
name and check name.

required false - This value cannot be modifed.

type String

example

namespace

description Sensu RBAC namespace that the silencing entry belongs to.

required false

type String

default default

 "subscription": "entity:i-424242",

 "begin": 1542671205

 }

}

name: appserver:mysql_status

YML

{

 "name": "appserver:mysql_status"

}

JSON

example

created_by

description Username of the Sensu user who created the silence or last updated the
silence. Sensu automatically populates the created_by feld when the
silence is created or updated.

required false

type String

example

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

namespace: production

YML

{

 "namespace": "production"

}

JSON

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

labels:

 environment: development

 region: us-west-2

YML

{

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 }

}

JSON

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

check

description Name of the check the entry should match.

required true, unless subscription is provided

type String

example

annotations:

 managed-by: ops

 playbook: www.example.url

YML

{

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

 }

}

JSON

check: haproxy_status

YML

{

 "check": "haproxy_status"

JSON

subscription

description Name of the subscription the entry should match.

required true, unless check is provided

type String

example

begin

description Time at which silence entry goes into effect. In epoch.

required false

type Integer

example

}

subscription: entity:i-424242

YML

{

 "subscription": "entity:i-424242"

}

JSON

begin: 1512512023

YML

{

 "begin": 1512512023

}

JSON

expire

description Number of seconds until the entry should be deleted.

If the silence is set to expire when a check resolves, the expire value
will be -1 .

If the silence is set to expire at a specifc time, the expire value will be
0 .

required false

type Integer

default -1

example

expire_at

description Time at which the entry should be deleted. In seconds since the Unix
epoch.

Use expire_at in conjunction with expire_on_resolve to create
silences that expire either when a check resolves or at a specifc time,
whichever comes frst.

expire: 3600

YML

{

 "expire": 3600

}

JSON

required false

type Integer

default 0

example

expire_on_resolve

description true if the entry should be deleted when the specifed check begins to
return OK status (resolves). Otherwise, false .

Use expire_on_resolve in conjunction with expire_at to create
silences that expire either when a check resolves or at a specifc time,
whichever comes frst.

required false

type Boolean

default false

example

expire_at: 1664550303

YML

{

 "expire_at": 1664550303

}

JSON

expire_on_resolve: true

YML

{

 "expire_on_resolve": true

}

JSON

creator

description Person, application, or entity responsible for creating the entry.

required false

type String

default null

example

reason

description Explanation of the reason for creating the entry.

required false

type String

default null

example

creator: Application Deploy Tool 5.0

YML

{

 "creator": "Application Deploy Tool 5.0"

}

JSON

reason: rebooting the world

YML

JSON

Silence all checks with a specifc subscription

Use this example to create a silencing entry for all checks with the appserver subscription:

{

 "reason": "rebooting the world"

}

type: Silenced

api_version: core/v2

metadata:

 name: appserver

spec:

 subscription: appserver

YML

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "appserver"

 },

 "spec": {

 "subscription": "appserver"

 }

}

JSON

NOTE: This example will not silence entities with the appserver subscription.
Checks that do not
include the appserver subscription will still run on entities that include the appserver
subscription.

Silence all checks for entities with a specifc subscription

To silence all checks for entities with a particular subscription:

1. Open the Entities page in the Sensu web UI.
2. Use the search feld to search the entities by subscription.
For example, to search for entities

with the system subscription, enter "system" in entity.subscriptions .
3. Click the box to select all.
4. Click SILENCE.
5. In the New Silencing Entry dialog window, add any desired silence confguration options.
6. Click CREATE.

The silencing entries will be listed on the Silences page in the Sensu web UI.

Silence a specifc check on entities with a specifc
subscription

To silence all checks for entities with a particular subscription, use the Sensu web UI.

http://localhost:1313/images/go/silencing_reference/silence_entities_by_subscription_660.gif

To silence a check mysql_status that is running on Sensu entities with the subscription
appserver :

Silence a specifc check on every entity

To silence the check mysql_status on every entity in your infrastructure, regardless of subscriptions,
you only need to provide the check name:

type: Silenced

api_version: core/v2

metadata:

 name: appserver:mysql_status

spec:

 subscription: appserver

 check: mysql_status

YML

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "appserver:mysql_status"

 },

 "spec": {

 "subscription": "appserver",

 "check": "mysql_status"

 }

}

JSON

type: Silenced

api_version: core/v2

metadata:

 name: mysql_status

YML

Delete a silence

To delete a silencing entry, you must provide its name.

Subscription-only silencing entry names will contain an asterisk (or wildcard) in the $SUBSCRIPTION
position, similar to this example:

Check-only silencing entry names will contain an asterisk (or wildcard) in the $CHECK position, similar
to this example:

spec:

 check: mysql_status

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "mysql_status"

 },

 "spec": {

 "check": "mysql_status"

 }

}

JSON

name: appserver:*

YML

{

 "name": "appserver:*"

}

JSON

YML

name: '*:mysql_status'

{

 "name": "*:mysql_status"

}

JSON

Sumo Logic metrics handlers reference

Sensu executes Sumo Logic metrics handlers during the process stage of the observability pipeline.

Sumo Logic metrics handlers provide a persistent connection to transmit Sensu observability metrics to
a Sumo Logic HTTP Logs and Metrics Source, which helps prevent the data bottlenecks you may
experience with traditional handlers.

Traditional handlers start a new UNIX process for every Sensu event they receive and require a new
connection to send every event.
As you scale up and process more events per second, the rate at which
the handler can transmit observability event data decreases.

Sumo Logic metrics handlers allow you to confgure a connection pool with a maximum number of
connections for the handler to use and a time limit for request completion.
For example, if 1000 events
are queued for transmission, as each connection fnishes transmitting an event, it becomes available
again and returns to the pool so the handler can use it to send the next event in the queue.

Sumo Logic metrics handlers will reuse the available connections as long as they can rather than
requiring a new connection for every event, which increases event throughput.

Sumo Logic metrics handler examples

This example shows a Sumo Logic metrics handler resource defnition confgured to send Sensu
observability data to a Sumo Logic HTTP Logs and Metrics Source via the url attribute:

COMMERCIAL FEATURE : Access Sumo Logic metrics handlers in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

NOTE: Sumo Logic metrics handlers only accept metrics events.
To send status events, use the
Sensu Sumo Logic Handler integration instead.

type: SumoLogicMetricsHandler

YML

https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source

You can also use secrets management to avoid exposing the URL in your Sumo Logic metrics handler
confguration:

api_version: pipeline/v1

metadata:

 name: sumologic_http_log_metrics

spec:

 url: "https://endpoint5.collection.us2.sumologic.com/receiver/v1/http/xxxxxxxx"

 max_connections: 10

 timeout: 30s

{

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "sumologic_http_log_metrics"

 },

 "spec": {

 "url":

"https://endpoint5.collection.us2.sumologic.com/receiver/v1/http/xxxxxxxx",

 "max_connections": 10,

 "timeout": "30s"

 }

}

JSON

type: SumoLogicMetricsHandler

api_version: pipeline/v1

metadata:

 name: sumologic_http_log_metrics

spec:

 url: $SUMO_LOGIC_SOURCE_URL

 secrets:

 - name: SUMO_LOGIC_SOURCE_URL

 secret: sumologic_metrics_us2

 max_connections: 10

YML

Use Sumo Logic metrics handlers

Sumo Logic metrics handlers are commercial resources and are available for use only in pipelines.

To use a Sumo Logic metrics handler, list it as the handler in a pipeline defnition.
For example, this
pipeline defnition uses the sumologic_http_log_metrics example along with the built-in has_metrics
event flter:

 timeout: 30s

{

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "sumologic_http_log_metrics"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us2"

 }

],

 "max_connections": 10,

 "timeout": "30s"

 }

}

JSON

NOTE: Sumo Logic metrics handlers are not used by listing the handler name in the check
handlers attribute.

type: Pipeline

YML

api_version: core/v2

metadata:

 name: metrics_workfows

spec:

 workfows:

 - name: metrics_to_sumologic

 flters:

 - name: has_metrics

 type: EventFilter

 api_version: core/v2

 handler:

 name: sumologic_http_log_metrics

 type: SumoLogicMetricsHandler

 api_version: pipeline/v1

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "metrics_workfows"

 },

 "spec": {

 "workfows": [

 {

 "name": "metrics_to_sumologic",

 "flters": [

 {

 "name": "has_metrics",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "sumologic_http_log_metrics",

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1"

 }

 }

]

 }

JSON

Sumo Logic metrics handler specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Sumo Logic metrics handlers should always be type
SumoLogicMetricsHandler .

required Required for Sumo Logic metrics handler defnitions in wrapped-json
or yaml format for use with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
Sumo Logic metrics handlers in this version of Sensu, the api_version
should always be pipeline/v1 .

required Required for Sumo Logic metrics handler defnitions in wrapped-json
or yaml format for use with sensuctl create .

}

type: SumoLogicMetricsHandler

YML

{

 "type": "SumoLogicMetricsHandler"

}

JSON

type String

example

metadata

description Top-level collection of metadata about the Sumo Logic metrics handler
that includes name , namespace , and created_by as well as custom
labels and annotations . The metadata map is always at the top

level of the handler defnition. This means that in wrapped-json and
yaml formats, the metadata scope occurs outside the spec scope.

Read metadata attributes for details.

required Required for Sumo Logic metrics handler defnitions in wrapped-json
or yaml format for use with sensuctl create .

type Map of key-value pairs

example

api_version: pipeline/v1

YML

{

 "api_version": "pipeline/v1"

}

JSON

metadata:

 name: sumologic_http_log_metrics

 namespace: default

 created_by: admin

 labels:

 environment: development

 region: us-west-2

 annotations:

 managed-by: ops

YML

JSON

spec

description Top-level map that includes the Sumo Logic metrics handler spec
attributes.

required Required for Sumo Logic metrics handler defnitions in wrapped-json
or yaml format for use with sensuctl create .

type Map of key-value pairs

example

{

 "metadata": {

 "name": "sumologic_http_log_metrics",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 },

 "annotations": {

 "managed-by": "ops"

 }

 }

}

spec:

 url: $SUMO_LOGIC_SOURCE_URL

 secrets:

 - name: SUMO_LOGIC_SOURCE_URL

 secret: sumologic_metrics_us2

 max_connections: 10

 timeout: 30s

YML

{

 "spec": {

JSON

Metadata attributes

name

description Unique string used to identify the Sumo Logic metrics handler. Sumo
Logic metrics handler names cannot contain special characters or
spaces (validated with Go regex \A[\w\.\-]+\z). Each Sumo Logic
metrics handler must have a unique name within its namespace.

required true

type String

example

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us2"

 }

],

 "max_connections": 10,

 "timeout": "30s"

 }

}

name: sumologic_http_log_metrics

YML

{

 "name": "sumologic_http_log_metrics"

}

JSON

https://regex101.com/r/zo9mQU/2

namespace

description Sensu RBAC namespace that the Sumo Logic metrics handler belongs
to.

required false

type String

default default

example

created_by

description Username of the Sensu user who created the Sumo Logic metrics
handler or last updated the Sumo Logic metrics handler. Sensu
automatically populates the created_by feld when the Sumo Logic
metrics handler is created or updated.

required false

type String

example

namespace: default

YML

{

 "namespace": "default"

}

JSON

created_by: admin

YML

{

 "created_by": "admin"

JSON

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

}

labels:

 environment: development

 region: us-west-2

YML

{

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 }

}

JSON

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

url

description The URL for the Sumo Logic HTTP Logs and Metrics Source where
Sensu should transmit the observability metrics. You can also provide
the URL as a secret.

required true

annotations:

 managed-by: ops

YML

{

 "annotations": {

 "managed-by": "ops"

 }

}

JSON

type String

example without
secrets

example with secrets

secrets

description Array of the name/secret pairs to use with command execution. Read
secrets attributes for details. You can also provide the Sumo Logic HTTP
Logs and Metrics Source URL directly in the url attribute instead of
confguring a secret.

required false

type String

url:

https://endpoint5.collection.us2.sumologic.com/receiver/v1/

http/xxxxxxxx

YML

{

 "url":

"https://endpoint5.collection.us2.sumologic.com/receiver/v1

/http/xxxxxxxx"

}

JSON

url: $SUMO_LOGIC_SOURCE_URL

YML

{

 "url": "$SUMO_LOGIC_SOURCE_URL"

}

JSON

YML

example

max_connections

description Maximum number of connections to keep alive in the connection pool. If
set to 0 , there is no limit to the number of connections in the pool.

required false

type Integer

example

secrets:

- name: SUMO_LOGIC_SOURCE_URL

 secret: sumologic_metrics_us2

{

 "secrets": [

 {

 "name": "SUMOLOGIC_METRICS_URL",

 "secret": "sumologic_metrics_us2"

 }

]

}

JSON

max_connections: 10

YML

{

 "max_connections": 10

}

JSON

timeout

description Duration to allow for processing a Sumo Logic call. In seconds.

required true

type String

example

Secrets attributes

name

description Name of the secret defned in the handler’s URL attribute. Becomes the
environment variable presented to the handler. Read Use secrets
management in Sensu for more information.

required true

type String

example

timeout: 10s

YML

{

 "timeout": "10s"

}

JSON

name: SUMOLOGIC_METRICS_URL

YML

{

 "name": "SUMOLOGIC_METRICS_URL"

}

JSON

secret

description Name of the Sensu secret resource that defnes how to retrieve the
secret.

required true

type String

example
secret: sumologic_metrics_us2

YML

{

 "secret": "sumologic_metrics_us2"

}

JSON

TCP stream handlers reference

Sensu executes TCP stream handlers during the process stage of the observability pipeline.

Like traditional TCP handlers, TCP stream handlers send observability event data to TCP sockets for
external services to consume.
However, TCP stream handlers can help prevent the data bottlenecks
you may experience with traditional TCP handlers.

Traditional TCP handlers start a new UNIX process for every Sensu event they receive and require a
new connection to send every event.
As you scale up and process more events per second, the rate at
which the TCP handler can transmit observability event data decreases.

TCP stream handlers allow you to confgure a connection pool with a maximum number of connections
for the handler to use.
For example, suppose you confgure a TCP stream handler with a pool of 10
connections, and 1000 events are queued for transmission.
As each connection fnishes transmitting an
event, it becomes available again and returns to the pool so the handler can use it to send the next
event in the queue.

TCP stream handlers will reuse the available connections as long as they can rather than requiring a
new connection for every event, which increases event throughput.
In addition to providing a persistent
TCP connection to transmit Sensu observation events to a remote data storage service, TCP stream
handlers allow you to use transport layer security (TLS) for secure data transmission.

TCP stream handlers are commercial resources available for use in pipeline defnitions.

TCP stream handler example

This example shows a TCP stream handler resource defnition confgured to use TLS:

COMMERCIAL FEATURE : Access TCP stream handlers in the packaged Sensu Go distribution.
For more information, read Get started with commercial features.

type: TCPStreamHandler

YML

Use TCP stream handlers

TCP stream handlers are commercial resources and are available for use only in pipelines.

api_version: pipeline/v1

metadata:

 name: logstash

spec:

 address: 127.0.0.1:4242

 tls_ca_cert_fle: "/path/to/tls/ca.pem"

 tls_cert_fle: "/path/to/tls/cert.pem"

 tls_key_fle: "/path/to/tls/key.pem"

 max_connections: 10

 min_reconnect_delay: 10ms

 max_reconnect_delay: 10s

{

 "type": "TCPStreamHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "logstash"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "tls_ca_cert_fle": "/path/to/tls/ca.pem",

 "tls_cert_fle": "/path/to/tls/cert.pem",

 "tls_key_fle": "/path/to/tls/key.pem",

 "max_connections": 10,

 "min_reconnect_delay": "10ms",

 "max_reconnect_delay": "10s"

 }

}

JSON

NOTE: TCP stream handlers are not used by listing the handler name in the check handlers
attribute.

To use a TCP stream handler, list it as the handler in a pipeline defnition.
For example, this pipeline
defnition uses the logstash example along with the built-in is_incident event flter:

type: Pipeline

api_version: core/v2

metadata:

 name: tcp_logging_workfows

spec:

 workfows:

 - name: log_all_incidents

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 handler:

 name: logstash

 type: TCPStreamHandler

 api_version: pipeline/v1

YML

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "tcp_logging_workfows"

 },

 "spec": {

 "workfows": [

 {

 "name": "log_all_incidents",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

JSON

TCP stream handler specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
TCP stream handlers should always be type TCPStreamHandler .

required Required for TCP stream handler defnitions in wrapped-json or
yaml format for use with sensuctl create .

type String

example

api_version

 "name": "logstash",

 "type": "TCPStreamHandler",

 "api_version": "pipeline/v1"

 }

 }

]

 }

}

type: TCPStreamHandler

YML

{

 "type": "TCPStreamHandler"

}

JSON

description Top-level attribute that specifes the Sensu API group and version. For
TCP stream handlers in this version of Sensu, the api_version should
always be pipeline/v1 .

required Required for TCP stream handler defnitions in wrapped-json or
yaml format for use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the TCP stream handler that
includes name , namespace , and created_by as well as custom
labels and annotations . The metadata map is always at the top

level of the handler defnition. This means that in wrapped-json and
yaml formats, the metadata scope occurs outside the spec scope.

Read metadata attributes for details.

required Required for TCP stream handler defnitions in wrapped-json or
yaml format for use with sensuctl create .

type Map of key-value pairs

example

api_version: pipeline/v1

YML

{

 "api_version": "pipeline/v1"

}

JSON

metadata:

 name: logstash

 namespace: default

 created_by: admin

 labels:

 environment: development

YML

spec

description Top-level map that includes the TCP stream handler spec attributes.

required Required for TCP stream handler defnitions in wrapped-json or
yaml format for use with sensuctl create .

type Map of key-value pairs

example

 region: us-west-2

 annotations:

 managed-by: ops

{

 "metadata": {

 "name": "logstash",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 },

 "annotations": {

 "managed-by": "ops"

 }

 }

}

JSON

spec:

 address: 127.0.0.1:4242

 tls_ca_cert_fle: "/path/to/tls/ca.pem"

 tls_cert_fle: "/path/to/tls/cert.pem"

 tls_key_fle: "/path/to/tls/key.pem"

 max_connections: 10

 min_reconnect_delay: 10ms

YML

Metadata attributes

name

description Unique string used to identify the TCP stream handler. TCP stream
handler names cannot contain special characters or spaces (validated
with Go regex \A[\w\.\-]+\z). Each TCP stream handler must have a
unique name within its namespace.

required true

type String

example

 max_reconnect_delay: 10s

{

 "spec": {

 "address": "127.0.0.1:4242",

 "tls_ca_cert_fle": "/path/to/tls/ca.pem",

 "tls_cert_fle": "/path/to/tls/cert.pem",

 "tls_key_fle": "/path/to/tls/key.pem",

 "max_connections": 10,

 "min_reconnect_delay": "10ms",

 "max_reconnect_delay": "10s"

 }

}

JSON

name: logstash

YML

{

 "name": "logstash"

}

JSON

https://regex101.com/r/zo9mQU/2

namespace

description Sensu RBAC namespace that the TCP stream handler belongs to.

required false

type String

default default

example

created_by

description Username of the Sensu user who created the TCP stream handler or last
updated the TCP stream handler. Sensu automatically populates the
created_by feld when the TCP stream handler is created or updated.

required false

type String

example

namespace: default

YML

{

 "namespace": "default"

}

JSON

created_by: admin

YML

JSON

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

{

 "created_by": "admin"

}

labels:

 environment: development

 region: us-west-2

YML

{

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 }

}

JSON

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

address

description The hostname:port combination the TCP stream handler should connect
to.

annotations:

 managed-by: ops

YML

{

 "annotations": {

 "managed-by": "ops"

 }

}

JSON

required true

type String

example

tls_ca_cert_fle

description Path to the PEM-format CA certifcate to use for TLS client
authentication.

required false

type String

example

tls_cert_fle

description Path to the PEM-format certifcate to use for TLS client authentication.

address: 127.0.0.1:4242

YML

{

 "address": "127.0.0.1:4242"

}

JSON

tls_ca_cert_fle: "/path/to/tls/ca.pem"

YML

{

 "tls_ca_cert_fle": "/path/to/tls/ca.pem"

}

JSON

This certifcate and its corresponding key are required for secure client
communication.

required false

type String

example

tls_key_fle

description Path to the PEM-format key fle associated with the tls_cert_fle to use for
TLS client authentication. This key and its corresponding certifcate are
required for secure client communication.

required false

type String

example

tls_cert_fle: "/path/to/tls/cert.pem"

YML

{

 "tls_cert_fle": "/path/to/tls/cert.pem"

}

JSON

tls_key_fle: "/path/to/tls/key.pem"

YML

{

 "tls_key_fle": "/path/to/tls/key.pem"

}

JSON

max_connections

description Maximum number of connections to keep alive in the connection pool. If
set to 0 , connection pooling is disabled.

required true

type Integer

example

max_reconnect_delay

description Maximum time to wait while retrying a broken connection. In seconds
(s) or milliseconds (ms).

required true

type String

example

max_connections: 10

YML

{

 "max_connections": 10

}

JSON

max_reconnect_delay: 10s

YML

{

 "max_reconnect_delay": "10s"

}

JSON

min_reconnect_delay

description Minimum time to wait while retrying a broken connection. In seconds
(s) or milliseconds (ms).

required true

type String

example
min_reconnect_delay: 10ms

YML

{

 "min_reconnect_delay": "10ms"

}

JSON

Aggregate metrics with the Sensu StatsD
listener

StatsD is a daemon, tool, and protocol that you can use to send, collect, and aggregate custom metrics
Services that implement StatsD typically expose UDP port 8125 to receive metrics according to the line
protocol <metricname>:<value>|<type> .

With StatsD, you can measure anything and everything.
Collect custom metrics in your code and send
them to a StatsD server to monitor applicaton performance.
Monitor CPU, I/O, and network system
levels with collection daemons.
You can feed the metrics that StatsD aggregates to multiple different
backends to store or visualize the data.

Use Sensu to implement StatsD

Sensu implements a StatsD listener on its agents.
Each sensu-agent listens on the default port 8125
for UDP messages that follow the StatsD line protocol.
StatsD aggregates the metrics, and Sensu
translates them to Sensu metrics and events that can be passed to the event pipeline.
You can
confgure the StatsD listener and access it with the netcat utility command:

Metrics received through the StatsD listener are not stored in etcd.
Instead, you must confgure event
handlers to send the data to a storage solution (for example, a time-series database like InfuxDB).

Confgure the StatsD listener

Use confguration fags to confgure the Sensu StatsD Server when you start up a sensu-agent .

The following fags allow you to confgure event handlers, fush interval, address, and port:

echo 'abc.def.g:10|c' | nc -w1 -u localhost 8125

--statsd-disable disables the statsd listener and metrics

server

https://github.com/statsd/statsd

For example:

Next steps

Now that you know how to feed StatsD metrics into Sensu, check out these resources to learn how to
handle the StatsD metrics:

--statsd-event-handlers stringSlice comma-delimited list of event handlers for

statsd metrics

--statsd-fush-interval int number of seconds between statsd fush (default

10)

--statsd-metrics-host string address used for the statsd metrics server

(default "127.0.0.1")

--statsd-metrics-port int port used for the statsd metrics server

(default 8125)

sensu-agent start --statsd-event-handlers infux-db --statsd-fush-interval 1 --

statsd-metrics-host "123.4.5.6" --statsd-metrics-port 8125

Handlers reference: in-depth documentation for Sensu handlers

InfuxDB handler guide: instructions on Sensu’s built-in metric handler

Pipelines reference: information about the Sensu pipeline resource, which you can use to
create event processing workfows with event flters, mutators, and handlers

Create handler templates

Sensu Go uses the Go template package, which allows you to generate text output that includes
observation data from events.
Sensu handler templates include HTML-formatted text and data derived
from event attributes like event.entity.name and event.check.output .
This allows you to add
meaningful, actionable context to alerts.

For example, a template for a brief Slack alert might include information about the affected entity and
its status, as well as a link to the organization’s playbook for resolving observability alerts:

Template syntax and format

Handler templates use dot notation syntax to access event attributes, with the event attribute wrapped
in double curly braces.
The initial dot indicates event .

For example, in a handler template, a reference to the event attribute event.check.occurrences
becomes {{.Check.Occurrences}} .

Use HTML to format the text and spacing in your templates.
All text outside double curly braces is
copied directly into the template output, with HTML formatting applied.

Available event attributes

If you are using a plugin that supports template output, every attribute in the Sensu event is available.
However, the attribute capitalization pattern is different for handler templates than for event format.

<html>

The entity {{.Entity.Name}} has a status of {{.Check.State}}. The entity has

reported the same status for {{.Check.Occurrences}} preceding events.

The playbook for managing this alert is available at

https://example.com/observability/alerts/playbook.

</html>

https://pkg.go.dev/text/template
https://bonsai.sensu.io/

The table below lists the event attributes that are available to use in handler templates, in the correct
dot notation and capitalization pattern.
You can also use the template toolkit command to print available
event attributes for a specifc event.

attribute attribute attribute

.HasCheck .HasMetrics .IsIncident

.IsResolution .IsSilenced .Timestamp

.Check.Annotation

s

.Check.CheckHooks .Check.Command

.Check.Cron .Check.DiscardOutput .Check.Duration

.Check.EnvVars .Check.Executed .Check.ExtendedAttributes

.Check.Handlers .Check.HighFlapThreshold .Check.History

.Check.Hooks .Check.Interval .Check.Issued

.Check.Labels .Check.LastOK .Check.LowFlapThreshold

.Check.MaxOutputS

ize

.Check.Name .Check.Namespace

.Check.Occurrence

s

.Check.OccurrencesWatermark .Check.Output

.Check.OutputMetr

icFormat

.Check.OutputMetricHandlers .Check.ProxyEntityName

.Check.ProxyReque

sts

.Check.Publish .Check.RoundRobin

.Check.RuntimeAss

ets

.Check.Secrets .Check.Silenced

.Check.State .Check.Status .Check.Stdin

NOTE: The entity and events specifcations describe each attribute in detail.

.Check.Subdue .Check.Subscriptions .Check.Timeout

.Check.TotalState

Change

.Check.Ttl .Entity.Annotations

.Entity.Deregiste

r

.Entity.Deregistration .Entity.EntityClass

.Entity.ExtendedA

ttributes

.Entity.KeepaliveHandlers .Entity.Labels

.Entity.LastSeen .Entity.Name .Entity.Namespace

.Entity.Redact .Entity.SensuAgentVersion .Entity.Subscriptions

.Entity.System .Entity.System.Arch .Entity.System.ARMVersion

.Entity.System.Cl

oudProvider

.Entity.System.Hostname .Entity.System.LibcType

.Entity.System.Ne

twork

.Entity.System.OS .Entity.System.Platform

.Entity.System.Pl

atformFamily

.Entity.System.PlatformVersio

n

.Entity.System.Processes

.Entity.System.VM

Role

.Entity.System.VMSystem .Entity.User

.Metrics.Handler

s

.Metrics.Points

Template toolkit command

The sensu/template-toolkit-command dynamic runtime asset provides a sensuctl command plugin you
can use to print a list of available event attributes in handler template dot notation syntax and validate
your handler template output.

The template toolkit command uses event data you supply via stdin in JSON format.

Add the Sensu template toolkit command asset to Sensu:

https://bonsai.sensu.io/assets/sensu/template-toolkit-command

This example uses the -r (rename) fag to specify a shorter name for the asset: template-
toolkit-command .

You can also download the latest asset defnition from Bonsai.

Run sensuctl asset list to confrm that the asset is ready to use:

Print available event attributes

Use the template toolkit command to print a list of the available event attributes as well as the correct
dot notation and capitalization pattern for a specifc event (in this example, event.json):

The response lists the available attributes for the event:

sensuctl asset add sensu/template-toolkit-command:0.4.0 -r template-toolkit-command

 Name URL Hash

 ──────────────────────────

──

───────── ─────────

 template-toolkit-command //assets.bonsai.sensu.io/.../template-toolkit-command_0.4.0_windows_amd64.tar.gz

019ccf3

 template-toolkit-command //assets.bonsai.sensu.io/.../template-toolkit-command_0.4.0_darwin_amd64.tar.gz

b771813

 template-toolkit-command //assets.bonsai.sensu.io/.../template-toolkit-command_0.4.0_linux_armv7.tar.gz

4e7ad65

 template-toolkit-command //assets.bonsai.sensu.io/.../template-toolkit-command_0.4.0_linux_arm64.tar.gz

02eca1f

 template-toolkit-command //assets.bonsai.sensu.io/.../template-toolkit-command_0.4.0_linux_386.tar.gz 56ed603

 template-toolkit-command //assets.bonsai.sensu.io/.../template-toolkit-command_0.4.0_linux_amd64.tar.gz

7dbd2c6

cat event.json | sensuctl command exec template-toolkit-command -- --dump-names

https://bonsai.sensu.io/assets/sensu/template-toolkit-command

In this example, the response lists the available event attributes .Timestamp ,
.Entity.EntityClass , .Entity.System , .Check.Command , .Check.Handlers , and
.Check.HighFlapThreshold .

You can also use sensuctl event info <entity_name> <check_name> to print the correct notation
and pattern: template output for a specifc event (in this example, an event for entity server01 and
check server-health):

The response lists the available attributes for the event:

INFO[0000] asset includes builds, using builds instead of asset asset=template-

toolkit-command component=asset-manager entity=sensuctl

.Event{

 .Timestamp: 1580310179,

 .Entity{

 .EntityClass: "agent",

 .System: .System{

 [...]

 .Check{

 .Command: "",

 .Handlers: {"keepalive"},

 .HighFlapThreshold: 0x0,

 [...]

sensuctl event info server01 server-health --format json | sensuctl command exec

template-toolkit -- --dump-names

INFO[0000] asset includes builds, using builds instead of asset asset=template-

toolkit-command component=asset-manager entity=sensuctl

.Event{

 .Timestamp: 1580310179,

 .Entity:{

 .EntityClass: "proxy",

 .System: .System{

 [...]

 .Check:{

 .Command: "health.sh",

 .Handlers: {"slack"},

Validate handler template output

Use the template toolkit command to validate the dot notation syntax and output for any event attribute.

For example, to test the output for the {{.Check.Name}} attribute for the event event.json :

The response will list the template output:

In this example, the command validates that for the event.json event, the handler template will
replace {{.Check.Name}} with keepalive in template output.

You can also use sensuctl event info <entity_name> <check_name> to validate template output
for a specifc event (in this example, an event for entity webserver01 and check check-http):

The response will list the template output:

 .HighFlapThreshold: 0x0,

 [...]

cat event.json | sensuctl command exec template-toolkit-command -- --template "

{{.Check.Name}}"

INFO[0000] asset includes builds, using builds instead of asset asset=template-

toolkit-command component=asset-manager entity=sensuctl

executing command with --template {{.Check.Name}}

Template String Output: keepalive

sensuctl event info webserver01 check-http --format json | sensuctl command exec

template-toolkit-command -- --template "Server: {{.Entity.Name}} Check:

{{.Check.Name}} Status: {{.Check.State}}"

Executing command with --template Server: {{.Entity.Name}} Check: {{.Check.Name}}

Status: {{.Check.State}}

Template String Output: Server: "webserver01 Check: check-http Status: passing"

Sensu Email Handler plugin

The Sensu Email Handler plugin allows you to provide a template for the body of the email.
For
example, this template will produce an email body that includes the name of the check and entity
associated with the event, the status and number of occurrences, and other event details:

The sensu/sensu-email-handler dynamic runtime asset also includes a UnixTime function that allows
you to print timestamp values from events in human-readable format.
Read the sensu/sensu-email-
handler Bonsai page for details.

Sensu PagerDuty Handler example

<html>

Greetings,

<h3>Informational Details</h3>

Check: {{.Check.Name}}

Entity: {{.Entity.Name}}

State: {{.Check.State}}

Occurrences: {{.Check.Occurrences}}

Playbook: https://example.com/monitoring/wiki/playbook

<h3>Check Output Details</h3>

Check Output: {{.Check.Output}}

<h4>Check Hook(s)</h4>

{{range .Check.Hooks}}Hook Name: {{.Name}}

Hook Command: {{.Command}}

Hook Output: {{.Output}}

{{end}}

#monitoringlove,

Sensu

</html>

https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler

The sensu/sensu-pagerduty-handler dynamic runtime asset includes a basic template for the
PagerDuty alert summary:

With this template, the summary for every alert in PagerDuty will include:

Read the Sensu PagerDuty Handler Bonsai page for details.

"{{.Entity.Name}}/{{.Check.Name}} : {{.Check.Output}}"

The name of the affected entity.

The name of the check that produced the event.

The check output for the event.

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

Plan maintenance windows with silencing

As the Sensu backend processes check results, the server executes handlers to send alerts or
otherwise relay observation events and metrics data to external services.
Sensu’s built-in silencing
capability allows you to suppress event handler execution as needed.
This feature is useful when you’re
planning maintenance.

You can confgure silences to prevent handlers from taking actions based on check name, entity
subscription, entity name, or a combination of these factors.
In this guide, you’ll create a silenced entry
for a specifc entity and its associated check to prevent alerts and create a time window for
maintenance.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.

Confgure a Sensu entity

Before you create a check, you’ll need a Sensu entity with the subscription website to run the check.
Use sensuctl to add the website subscription to an entity the Sensu agent is observing.

Before you run the following code, replace <ENTITY_NAME> with the name of the entity on your
system.

NOTE: If you already have an entity and running check to use as the silencing target, skip ahead
to Create the silenced entry.

NOTE: To fnd your entity name, run sensuctl entity list .
The ID is the name of your entity.

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

For Subscriptions , type website and press enter.

Before you continue, confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Register the http-checks dynamic runtime asset

To power the check in your silenced entry, you’ll use the sensu/http-checks dynamic runtime asset.
This
community-tier asset includes http-check , the http status check command that your check will rely
on.

Register the sensu/http-checks dynamic runtime asset:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
http-checks .
The response will indicate that the asset was added.

Use sensuctl to confrm that the dynamic runtime asset is ready to use:

The response should list the sensu/http-checks dynamic runtime asset (renamed to http-checks):

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl asset add sensu/http-checks:0.5.0 -r http-checks

sensuctl asset list

 Name URL Hash

────────────── ───

──────────

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_windows_amd64.tar.gz 52ae075

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_darwin_amd64.tar.gz 72d0f15

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_armv7.tar.gz ef18587

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_arm64.tar.gz 3504ddf

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_386.tar.gz 60b8883

https://bonsai.sensu.io/assets/sensu/http-checks

Create the check

With the dynamic runtime asset registered, you can create a check named check-website to run the
command http-check --url https://sensu.io , at an interval of 15 seconds, for all agents
subscribed to the website subscription, using the sensu-site proxy entity name.

To add the check, run:

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_amd64.tar.gz 1db73a8

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: check-website

spec:

 command: http-check --url https://sensu.io

 interval: 15

 proxy_entity_name: sensu-site

 publish: true

 round_robin: true

 runtime_assets:

 - http-checks

 subscriptions:

 - website

EOF

SHELL

cat << EOF | sensuctl create

{

SHELL

Use sensuctl to confrm that Sensu added the check:

The response should list check-sensu-site :

Create the silenced entry

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-website"

 },

 "spec": {

 "command": "http-check --url https://sensu.io",

 "interval": 15,

 "proxy_entity_name": "sensu-site",

 "publish": true,

 "round_robin": true,

 "runtime_assets": [

 "http-checks"

],

 "subscriptions": [

 "website"

]

 }

}

EOF

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets Hooks

Publish? Stdin? Metric Format Metric Handlers

──────────────── ─────────────────────────────────── ────────── ────── ───────── ─────

─────────────── ────────── ───────────── ─────── ────────── ──────── ───────────────

──────────────────

 check-website http-check --url https://sensu.io 15 0 0 website http-checks true false

The silenced entry will silence the check check-http on the entity sensu-site for a planned
maintenance window that:

To create the silenced entry, run:

Use sensuctl to verify that the silenced entry against the entity sensu-site was created properly:

The response will list the silenced resource defnition, similar to the following:

Starts at 04:00 UTC on March 14, 2022

Automatically ends 1 hour later

Adds your username as the creator of the silenced entry

sensuctl silenced create \

--subscription 'entity:sensu-site' \

--check 'check-http' \

--begin '2022-03-14 04:00:00 -00:00' \

--expire 3600 \

--reason 'Planned site maintenance'

NOTE: Sensuctl supports several time formats for the begin fag.
This example uses RFC 3339
format with space delimiters and numeric zone offset.

sensuctl silenced info 'entity:sensu-site:check-http' --format yaml

SHELL

sensuctl silenced info 'entity:sensu-site:check-http' --format wrapped-json

SHELL

type: Silenced

api_version: core/v2

metadata:

YML

https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt

Next steps

When your silence goes into effect at the designated begin time, you will still see events for check-
http on the sensu-site entity in the Sensu web UI.
This is because silences do not stop events
from being produced — they stop events from being handled.

If you followed this guide to create the check-http check on the sensu-site entity, you might have
noticed that the check does not include a pipeline.
To observe the silenced entry’s effect, add a pipeline

 name: entity:sensu-site:check-http

spec:

 begin: 1647230400

 check: check-http

 creator: admin

 expire: 3600

 expire_at: 1647234000

 expire_on_resolve: false

 reason: Planned site maintenance

 subscription: entity:sensu-site

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "entity:sensu-site:check-http"

 },

 "spec": {

 "begin": 1647230400,

 "check": "check-http",

 "creator": "admin",

 "expire": 3600,

 "expire_at": 1647234000,

 "expire_on_resolve": false,

 "reason": "Planned site maintenance",

 "subscription": "entity:sensu-site"

 }

}

JSON

to the check-http check defnition (or recreate the silenced entry with your own entity and a check
that includes a pipeline).
The pipeline must include a workfow with the built-in not_silenced event
flter and a handler.

Follow one of these guides to add a pipeline to your check:

Read the silencing reference for in-depth documentation about silenced entries and more examples:

WARNING: By default, silenced events will be handled unless the pipeline workfow includes the
built-in not_silenced event flter to discard silenced events.

Send data to Sumo Logic with Sensu

Send email alerts with a pipeline

Send PagerDuty alerts with Sensu

Send Slack alerts with a pipeline

Silence all checks on a specifc entity

Silence a specifc check on a specifc entity

Silence all checks with a specifc subscription

Silence all checks for entities with a specifc subscription

Silence a specifc check on entities with a specifc subscription

Silence a specifc check on every entity

Populate metrics in InfuxDB with handlers

A Sensu event handler is an action the Sensu backend executes when a specifc event occurs.
In this
guide, you’ll use a handler to populate the time-series database InfuxDB with Sensu observability
event data.

Metrics can be collected from check output (in this guide, a check that generates Prometheus metrics)
or the Sensu StatsD Server.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.

Confgure a Sensu entity

Every Sensu agent has a defned set of subscriptions that determine which checks the agent will
execute.
For an agent to execute a specifc check, you must specify the same subscription in the agent
confguration and the check defnition.

The example in this guide uses the prometheus_metrics check from Collect Prometheus metrics
with Sensu, which includes the subscription app_tier .
Use sensuctl to add an app_tier
subscription to one of your entities.

Before you run the following code, replace <ENTITY_NAME> with the name of the entity on your
system.

PRO TIP: You can use the InfuxDB Metrics integration in the Sensu Catalog to send Sensu event
data to InfuxDB instead of following this guide.
Follow the Catalog prompts to confgure the Sensu
resources you need and start processing your observability data with a few clicks.

NOTE: To fnd your entity name, run sensuctl entity list .
The ID is the name of your entity.

sensuctl entity update <ENTITY_NAME>

https://github.com/influxdata/influxdb
https://github.com/sensu/sensu-influxdb-handler#installation
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Run this command to confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Register the dynamic runtime asset

Dynamic runtime assets are shareable, reusable packages that make it easier to deploy Sensu plugins.
This example uses the sensu/sensu-infuxdb-handler dynamic runtime asset to power an InfuxDB
handler.

Use sensuctl asset add to register the sensu/sensu-infuxdb-handler dynamic runtime asset:

The response will confrm that the asset was added:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
sensu-infuxdb-handler .

You can also download the latest dynamic runtime asset defnition for your platform from Bonsai and

For Entity Class , press enter.

For Subscriptions , type app_tier and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl asset add sensu/sensu-infuxdb-handler:3.7.0 -r sensu-infuxdb-handler

fetching bonsai asset: sensu/sensu-infuxdb-handler:3.7.0 -r sensu-infuxdb-handler

added asset: sensu/sensu-infuxdb-handler:3.7.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["sensu-infuxdb-handler"].

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

register the asset with sensuctl create --fle flename.yml or sensuctl create --fle
flename.json .

Run sensuctl asset list to confrm that the dynamic runtime asset is ready to use.

Create the handler

Now that you have registered the dynamic runtime asset, use sensuctl to create a handler called
infuxdb-handler that pipes observation data (events) to InfuxDB with the sensu/sensu-infuxdb-

handler dynamic runtime asset.
Edit the command below to replace the placeholders for database
name, address, username, and password with the information for your own InfuxDB database.
For
more information about the Sensu InfuxDB handler, read the asset page in Bonsai.

You should receive a confrmation message:

To review the complete resource defnition for the handler resource you just created with sensuctl, run:

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

sensuctl handler create infuxdb-handler \

--type pipe \

--command "sensu-infuxdb-handler -d sensu" \

--env-vars "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086,

INFLUXDB_USER=sensu, INFLUXDB_PASS=password" \

--runtime-assets sensu-infuxdb-handler

Created

sensuctl handler info infuxdb-handler --format yaml

SHELL

SHELL

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

The infuxdb-handler resource defnition will be similar to this example:

sensuctl handler info infuxdb-handler --format wrapped-json

type: Handler

api_version: core/v2

metadata:

 name: infuxdb-handler

spec:

 command: sensu-infuxdb-handler -d sensu

 env_vars:

 - INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086

 - INFLUXDB_USER=sensu

 - INFLUXDB_PASS=password

 flters: null

 handlers: null

 runtime_assets:

 - sensu-infuxdb-handler

 secrets: null

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "infuxdb-handler"

 },

 "spec": {

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASS=password"

],

JSON

You can share, reuse, and maintain this handler just like you would code: save it to a fle and start
building a monitoring as code repository.

Create a pipeline that includes the InfuxDB handler

With your handler confgured, you can add it to a pipeline workfow.
A single pipeline workfow can
include one or more flters, one mutator, and one handler.

In this case, the pipeline includes the built-in has_metrics and not_silenced event flters and the
InfuxDB handler you’ve already confgured.
To create the pipeline, run:

 "flters": null,

 "handlers": null,

 "runtime_assets": [

 "sensu-infuxdb-handler"

],

 "secrets": null,

 "timeout": 0,

 "type": "pipe"

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

cat << EOF | sensuctl create

type: Pipeline

api_version: core/v2

metadata:

 name: metrics_pipeline

spec:

 workfows:

 - name: infuxdb_metrics

 flters:

 - name: has_metrics

 type: EventFilter

SHELL

 api_version: core/v2

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 handler:

 name: infuxdb-handler

 type: Handler

 api_version: core/v2

EOF

cat << EOF | sensuctl create

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "metrics_pipeline"

 },

 "spec": {

 "workfows": [

 {

 "name": "infuxdb_metrics",

 "flters": [

 {

 "name": "has_metrics",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "infuxdb-handler",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

SHELL

Now you can add the metrics_pipeline pipeline to a check for check output metric extraction.

Add the pipeline to a check

Add the metrics_pipeline pipeline to a check to use it for check output metric extraction.
For
example, if you followed Collect Prometheus metrics with Sensu, you created the
prometheus_metrics check.

The prometheus_metrics check already uses the infuxdb_line output metric format, but you will
need to add the pipeline to extract the metrics and process them according to the pipeline’s workfows.

To open the check defnition in your text editor, run:

Make two changes in the prometheus_metrics check defnition:

1. Delete the output_metrics_handlers attribute and value.

2. Replace the pipelines: [] line with the following array to reference your
metrics_pipeline pipeline:

]

 }

}

EOF

sensuctl edit check prometheus_metrics

pipelines:

- type: Pipeline

 api_version: core/v2

 name: metrics_pipeline

YML

{

JSON

Save the two changes and exit the text editor.
You should receive a confrmation message:

To review the updated check resource defnition, run:

The updated prometheus_metrics check defnition will be similar to this example:

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "metrics_pipeline"

 }

]

}

Updated /api/core/v2/namespaces/default/checks/prometheus_metrics

sensuctl check info prometheus_metrics --format yaml

SHELL

sensuctl check info prometheus_metrics --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 name: prometheus_metrics

spec:

 check_hooks: null

 command: sensu-prometheus-collector -prom-url http://localhost:9090 -prom-query up

 env_vars: null

 handlers: []

YML

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: infuxdb_line

 output_metric_handlers: null

 pipelines:

 - api_version: core/v2

 name: metrics_pipeline

 type: Pipeline

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - sensu-prometheus-collector

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - app_tier

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "prometheus_metrics"

 },

 "spec": {

 "check_hooks": null,

 "command": "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-

query up",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "output_metric_format": "infuxdb_line",

 "output_metric_handlers": null,

 "pipelines": [

JSON

Assign the InfuxDB handler to the Sensu StatsD listener

To assign your infuxdb-handler resource to the Sensu StatsD listener at agent startup and pass all
StatsD metrics into InfuxDB:

Validate the InfuxDB handler

 {

 "api_version": "core/v2",

 "name": "metrics_pipeline",

 "type": "Pipeline"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "sensu-prometheus-collector"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "app_tier"

],

 "timeout": 0,

 "ttl": 0

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

sensu-agent start --statsd-event-handlers infuxdb-handler

It might take a few moments for Sensu to receive metrics after you assign the pipeline to the check or
assign the handler to the StatsD server.
After an event is handled, metrics should start populating
InfuxDB.
You can verify proper handler behavior with sensu-backend logs.
Read Troubleshoot Sensu
for log locations by platform.

Whenever an event is being handled, a log entry is added with the message "handler":"infuxdb-
handler","level":"debug","msg":"sending event to handler" , followed by a second log entry
with the message "msg":"pipelined executed event pipe handler","output":"","status":0 .

Next steps

Now that you know how to apply an InfuxDB handler to metrics, read Aggregate metrics with the
Sensu StatsD listener to learn more about using Sensu to implement StatsD and take action on
observability events.

Send data to Sumo Logic with Sensu

Follow this guide to create a pipeline that sends data from a Sensu check to Sumo Logic for long-term
logs and metrics storage.
Sensu checks are commands the Sensu agent executes that generate
observability data in a status or metric event.
Sensu pipelines defne the event flters and actions the
Sensu backend executes on the events.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.

In addition, this guide uses an example check named check_cpu .
If you don’t already have this check
in place, follow Monitor server resources to add it.

Confgure a Sensu entity

Sensu checks have a subscriptions attribute, where you specify strings to indicate which subscribers
will execute the checks.
For Sensu to execute a check, at least one entity must include a subscription
that matches a subscription in the check defnition.
In the example in this guide, the check_cpu check
includes the system subscription, so at least one entity must subscribe to system to run the check.

First, select the entity whose data you want to send to Sumo Logic.
To list all of your entities in the
current namespace, run:

The ID in the response is the entity name.
Select one of the listed entities.

Before you run the following sensuctl command, replace <ENTITY_NAME> with the name of your entity.
Then run the command to add the system subscription to your entity:

PRO TIP: You can use the Sumo Logic Analytics integration in the Sensu Catalog to send Sensu
event data to Sumo Logic instead of following this guide.
Follow the Catalog prompts to confgure
the Sensu resources you need and start processing your observability data with a few clicks.

sensuctl entity list

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Finally, confrm that both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Register the dynamic runtime asset

The sensu/sensu-sumologic-handler dynamic runtime asset includes the scripts your handler will need
to send observability data to Sumo Logic.

To add the sensu/sensu-sumologic-handler asset, run:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
sumologic-handler .

The response will indicate that the asset was added:

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

For Subscriptions , type system and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl asset add sensu/sensu-sumologic-handler:0.3.0 -r sumologic-handler

fetching bonsai asset: sensu/sensu-sumologic-handler:0.3.0

added asset: sensu/sensu-sumologic-handler:0.3.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["sumologic-handler"].

https://bonsai.sensu.io/assets/sensu/sensu-sumologic-handler

To confrm that the asset was added to your Sensu backend, run:

The response will list the available builds for the sensu/sensu-sumologic-handler dynamic runtime
asset.

Set up an HTTP Logs and Metrics Source

Set up a Sumo Logic HTTP Logs and Metrics Source to collect your Sensu observability data.

Log in to your Sumo Logic account and follow these instructions:

1. In the Sumo Logic left-navigation menu, click Manage Data and then Collection to open the
Collection tab.

sensuctl asset info sumologic-handler

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

NOTE: If you have an existing Sumo Logic HTTP Logs and Metrics Source, you can send Sensu
data there instead of creating a new source if you wish.
Copy the HTTP Source Address URL for
your existing source and skip to Add the Sumo Logic handler.

https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source

2. At the top-right of the Collection tab, click Add Collector.

3. In the Click Selector Type modal window, click Hosted Collector.

http://localhost:1313/images/go/sensu_plus/manage_data_collection.png
http://localhost:1313/images/go/sensu_plus/add_collector.png

4. In the Add Hosted Collector modal window:

Type sensu in the Name feld.

Click Save.

http://localhost:1313/images/go/sensu_plus/hosted_collector_option.png

5. In the Confrm prompt, click OK.

6. Under Cloud APIs, click HTTP Logs & Metrics.

http://localhost:1313/images/go/sensu_plus/add_hosted_collector.png
http://localhost:1313/images/go/sensu_plus/confirm_prompt.png

7. In the HTTP Logs & Metrics form:

Type sensu-http in the Name feld.

Type sensu-events in the Source Category feld.

Click Save.

http://localhost:1313/images/go/sensu_plus/cloud_apis_http_logs_and_metrics.png

8. In the HTTP Source Address prompt, copy the listed URL and click OK.
You will use this URL in
the next step as the SUMOLOGIC_URL value for the secret in your Sensu handler defnition.

http://localhost:1313/images/go/sensu_plus/http_logs_and_metrics_source.png

Add the Sumo Logic handler

Now that you’ve set up a Sumo Logic HTTP Logs and Metrics Source, you can create a handler that
uses the sensu/sensu-sumologic-handler dynamic runtime asset to send observability data to Sumo
Logic.

The Sensu Sumo Logic Handler asset requires a SUMOLOGIC_URL variable.
The value for the
SUMOLOGIC_URL variable is the Sumo Logic HTTP Source Address URL, which you retrieved in the

last step of setting up an HTTP Logs and Metrics Source.

Confgure the SUMOLOGIC_URL environment variable

To save your Sumo Logic HTTP Source Address URL as an environment variable:

1. Create the fles from which the sensu-backend service will read environment variables.
If you
have already created this fle on your system, skip to step 2.

NOTE: This example shows how to set your Sumo Logic HTTP Source Address URL as an
environment variable and use it as a secret with Sensu’s Env secrets provider.
Read Use secrets
management in Sensu for more information about using the Env secrets provider.

sudo touch /etc/default/sensu-backend

SHELL

SHELL

http://localhost:1313/images/go/sensu_plus/http_source_address_url.png
https://bonsai.sensu.io/assets/sensu/sensu-sumologic-handler

2. In the following code, replace <SumoLogic_HTTPSourceAddress_URL> with your Sumo Logic
HTTP Source Address URL.
Run:

3. Restart the sensu-backend:

This confgures the SUMOLOGIC_URL environment variable to your Sumo Logic HTTP Source Address
URL in the context of the sensu-backend process.

Create the Env secret

Create a secret named sumologic_url that refers to the environment variable ID SUMOLOGIC_URL .
Run:

sudo touch /etc/sysconfg/sensu-backend

echo 'SUMOLOGIC_URL=<SumoLogic_HTTPSourceAddress_URL>' | sudo tee -a

/etc/default/sensu-backend

SHELL

echo 'SUMOLOGIC_URL=<SumoLogic_HTTPSourceAddress_URL>' | sudo tee -a

/etc/sysconfg/sensu-backend

SHELL

sudo systemctl restart sensu-backend

cat << EOF | sensuctl create

type: Secret

api_version: secrets/v1

metadata:

 name: sumologic_url

spec:

SHELL

Now you can refer to the sumologic_url secret in your handler to securely pass your Sumo Logic
HTTP Source Address URL.

Create a Sumo Logic handler

Run the following command to create a handler to send Sensu observability data to your Sumo Logic
HTTP Logs and Metrics Source:

 id: SUMOLOGIC_URL

 provider: env

EOF

cat << EOF | sensuctl create

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sumologic_url"

 },

 "spec": {

 "id": "SUMOLOGIC_URL",

 "provider": "env"

 }

}

EOF

SHELL

cat << EOF | sensuctl create

type: Handler

api_version: core/v2

metadata:

 name: sumologic

spec:

 command: >-

 sensu-sumologic-handler --send-log --send-metrics

SHELL

Make sure that your handler was added by retrieving the complete handler defnition in YAML or JSON
format:

 --source-host "{{ .Entity.Name }}"

 --source-name "{{ .Check.Name }}"

 type: pipe

 runtime_assets:

 - sumologic-handler

 secrets:

 - name: SUMOLOGIC_URL

 secret: sumologic_url

EOF

cat << EOF | sensuctl create

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "sumologic"

 },

 "spec": {

 "command": "sensu-sumologic-handler --send-log --send-metrics --source-host \"{{

.Entity.Name }}\" --source-name \"{{ .Check.Name }}\"",

 "type": "pipe",

 "runtime_assets": [

 "sumologic-handler"

],

 "secrets": [

 {

 "name": "SUMOLOGIC_URL",

 "secret": "sumologic_url"

 }

]

 }

}

EOF

SHELL

SHELL

The response will list the complete handler resource defnition:

sensuctl handler info sumologic --format yaml

sensuctl handler info sumologic --format wrapped-json

SHELL

type: Handler

api_version: core/v2

metadata:

 name: sumologic

spec:

 command: sensu-sumologic-handler --send-log --send-metrics --source-host "{{

.Entity.Name }}" --source-name "{{ .Check.Name }}"

 env_vars: null

 flters: null

 handlers: null

 runtime_assets:

 - sumologic-handler

 secrets:

 - name: SUMOLOGIC_URL

 secret: sumologic_url

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "sumologic"

 },

 "spec": {

 "command": "sensu-sumologic-handler --send-log --send-metrics --source-host \"{{

JSON

Create a pipeline with the Sumo Logic handler

With your Sumo Logic handler confgured, you can add it to a pipeline workfow.
A single pipeline
workfow can include one or more event flters, one mutator, and one handler.

To send data for all events (as opposed to only incidents), create a pipeline that includes only the
Sumo Logic handler you’ve already confgured and the built-in not_silenced event flter — no mutators.
To add the pipeline, run:

.Entity.Name }}\" --source-name \"{{ .Check.Name }}\"",

 "env_vars": null,

 "flters": null,

 "handlers": null,

 "runtime_assets": [

 "sumologic-handler"

],

 "secrets": [

 {

 "name": "SUMOLOGIC_URL",

 "secret": "sumologic_url"

 }

],

 "timeout": 0,

 "type": "pipe"

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

cat << EOF | sensuctl create

type: Pipeline

api_version: core/v2

metadata:

 name: sensu_to_sumo

spec:

SHELL

 workfows:

 - name: logs_to_sumologic

 flters:

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 handler:

 name: sumologic

 type: Handler

 api_version: core/v2

EOF

cat << EOF | sensuctl create

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu_to_sumo"

 },

 "spec": {

 "workfows": [

 {

 "name": "logs_to_sumologic",

 "flters": [

 {

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "sumologic",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

EOF

SHELL

Assign the pipeline to a check

To use the sensu_to_sumo pipeline, list it in a check defnition’s pipelines array.
This example uses the
check_cpu check created in Monitor server resources, but you can add the pipeline to any Sensu

check you wish.
All the observability events that the check produces will be processed according to the
pipeline’s workfows.

Assign your sensu_to_sumo pipeline to the check_cpu check to start sending Sensu data to Sumo
Logic.

To open the check defnition in your text editor, run:

Replace the pipelines: [] line with the following array:

To confrm that the updated check_cpu resource defnition includes the pipelines reference, run:

The updated check defnition will be similar to this example:

sensuctl edit check check_cpu

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: sensu_to_sumo

sensuctl check info check_cpu --format yaml

SHELL

sensuctl check info check_cpu --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 created_by: admin

 name: check_cpu

spec:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 15

 low_fap_threshold: 0

 output_metric_format: prometheus_text

 output_metric_handlers: null

 pipelines:

 - api_version: core/v2

 name: sensu_to_sumo

 type: Pipeline

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - check-cpu-usage

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

JSON

View your Sensu data in Sumo Logic

 "name": "check_cpu",

 "created_by": "admin"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "output_metric_format": "prometheus_text",

 "output_metric_handlers": null,

 "pipelines": [

 {

 "api_version": "core/v2",

 "name": "sensu_to_sumo",

 "type": "Pipeline"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

It will take a few moments after you add the pipeline to the check for your Sensu observability data to
appear in Sumo Logic.
Use the Live Tail feature to confrm that your data is reaching Sumo Logic.

1. In Sumo Logic, click the + New button and select Live Tail from the drop-down menu.

2. In the Live Tail search feld, enter _collector=sensu and click Run.

Within a few seconds, the Live Tail page should begin to display your Sensu observability data.

https://help.sumologic.com/05Search/Live-Tail
http://localhost:1313/images/go/send_data_to_sumo_logic/new_button_live_tail.png
http://localhost:1313/images/go/send_data_to_sumo_logic/live_tail_run_button.png

If you see Sensu data on the Live Tail page, well done!
You have a successful workfow that sends
Sensu observability data to your Sumo Logic account.

Next steps

To share and reuse the check, handler, and pipeline like code, save them to fles and start building a
monitoring as code repository.

Learn more about the sensu/sensu-sumologic-handler dynamic runtime asset.
You can also confgure a
Sumo Logic dashboard to search, view, and analyze the Sensu data you’re sending to your Sumo
Logic HTTP Logs and Metrics Source.

In addition to the traditional handler we used in this example, you can use Sensu Plus, our built-in
integration, to send metrics to Sumo Logic with a streaming Sumo Logic metrics handler.

http://localhost:1313/images/go/send_data_to_sumo_logic/live_tail_running.png
https://help.sumologic.com/Visualizations-and-Alerts/Dashboards

Send email alerts with a pipeline

Pipelines are Sensu resources composed of observation event processing workfows that include
flters, mutators, and handlers.
You can use pipelines to send email alerts, create or resolve incidents (in
PagerDuty, for example), or store metrics in a time-series database like InfuxDB.

When you are using Sensu in production, events will come from a check or metric you confgure.
For
this guide, you will create an ad hoc event that you can trigger manually to test your email handler.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running
on Linux, and install and confgure sensuctl.

Your backend will execute a pipeline with a handler that sends notifcations to the email address you
specify.
The pipeline will also include an event flter to make sure you only receive a notifcation when
your event represents a status change.

Add the email handler dynamic runtime asset

Dynamic runtime assets are shareable, reusable packages that help you deploy Sensu plugins.
In this
guide, you’ll use the sensu/sensu-email-handler dynamic runtime asset to power an email handler.

Use the following sensuctl example to register the sensu/sensu-email-handler dynamic runtime asset:

The response will confrm that the asset was added:

PRO TIP: You can use the Email Alerts integration in the Sensu Catalog to send email alerts
based on Sensu event data instead of following this guide.
Follow the Catalog prompts to confgure
the Sensu resources you need and start processing your observability data with a few clicks.

sensuctl asset add sensu/sensu-email-handler:1.2.2 -r email-handler

fetching bonsai asset: sensu/sensu-email-handler:1.2.2

added asset: sensu/sensu-email-handler:1.2.2

https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

The -r (rename) fag allows you to specify a shorter name for the dynamic runtime asset (in this case,
email-handler).

You can also download the latest dynamic runtime asset defnition for your platform from Bonsai and
register the asset with sensuctl create --fle flename.yml .

To confrm that the handler dynamic runtime asset was added correctly, run:

The list should include the email-handler dynamic runtime asset.
For a detailed list of everything
related to the asset that Sensu added automatically, run:

The sensu/sensu-email-handler dynamic runtime asset includes the sensu-email-handler
command, which you will use when you create the email handler defnition later in this guide.

Add an event flter

Event flters allow you to fne-tune how your events are handled and reduce alert fatigue.
In this guide,
your event flter will send notifcations only when your event’s state changes (for example, for any
change between 0 OK, 1 warning, and 2 critical).

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["email-handler"].

sensuctl asset list

sensuctl asset info email-handler

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

https://bonsai.sensu.io/assets/sensu/sensu-email-handler

Here’s an overview of how the state_change_only flter will work:

To create the event flter, run:

If your event status changes from 0 to 1 , you will receive one email notifcation for the
change to warning status.

If your event status stays at 1 for the next hour, you will not receive repeated email
notifcations during that hour.

If your event status changes to 2 after 1 hour at 1 , you will receive one email notifcation for
the change from warning to critical status.

If your event status fuctuates between 0 , 1 , and 2 for the next hour, you will receive one
email notifcation each time the status changes.

cat << EOF | sensuctl create

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: state_change_only

spec:

 action: allow

 expressions:

 - event.check.occurrences == 1

 runtime_assets: []

EOF

TEXT

cat << EOF | sensuctl create

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "annotations": null,

 "labels": null,

 "name": "state_change_only"

TEXT

Create the email handler defnition

After you add an event flter, create the email handler defnition to specify the email address where the
handler will send notifcations.
In the handler defnition’s command value, you’ll need to change a few
things:

After you update the command with your email, server, username, and password values in the
example below, run the updated code to create the email handler defnition:

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": [

]

 }

}

EOF

<sender@example.com> : Replace with the email address you want to use to send email
alerts.

<recipient@example.com> : Replace with the email address you want to receive email alerts.

<smtp_server@example.com> : Replace with the hostname of your SMTP server.

<username> : Replace with your SMTP username, typically your email address.

<password> : Replace with your SMTP password, typically the same as your email password.

NOTE: To use Gmail or G Suite as your SMTP server, follow Google’s instructions to send email
via SMTP.
If you have enabled 2-step verifcation on your Google account, use an app password
instead of your login password.
If you have not enabled 2-step verifcation, you may need to adjust
your app access settings to follow the example in this guide.

cat << EOF | sensuctl create

TEXT

https://support.google.com/a/answer/176600?hl=en
https://support.google.com/a/answer/176600?hl=en
https://support.google.com/accounts/answer/185833?hl=en
https://support.google.com/accounts/answer/6010255

The sensu/sensu-email-handler dynamic runtime asset makes it possible to add a template that
provides context for your email notifcations.
The email template functionality uses tokens to populate
the values provided by the event, and you can use HTML to format the email.

api_version: core/v2

type: Handler

metadata:

 name: email

spec:

 type: pipe

 command: sensu-email-handler -f <sender@example.com> -t <recipient@example.com> -s

<smtp_server@example.com> -u username -p password

 timeout: 10

 runtime_assets:

 - email-handler

EOF

cat << EOF | sensuctl create

{

 "api_version": "core/v2",

 "type": "Handler",

 "metadata": {

 "name": "email"

 },

 "spec": {

 "type": "pipe",

 "command": "sensu-email-handler -f <sender@example.com> -t

<recipient@example.com> -s <smtp_server@example.com> -u username -p password",

 "timeout": 10,

 "runtime_assets": [

 "email-handler"

]

 }

}

EOF

TEXT

https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler#templates

Create a pipeline

With your event flter and handler confgured, you can build a pipeline workfow.
A single pipeline
workfow can include one or more flters, one mutator, and one handler.

In this case, the pipeline includes your state_change_only event flter and email handler, as well
as two built-in event flters, is_incident and not_silenced.
These two built-in flters are included in every
Sensu backend installation, so you don’t have to create them.
The is_incident and not_silenced event
flters ensure that you receive alerts for unsilenced events with only warning (1) or critical (2)
status:

To create the pipeline, run:

cat << EOF | sensuctl create

type: Pipeline

api_version: core/v2

metadata:

 name: alerts_pipeline

spec:

 workfows:

 - name: email_alerts

 flters:

 - name: state_change_only

 type: EventFilter

 api_version: core/v2

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 handler:

 name: email

 type: Handler

 api_version: core/v2

EOF

SHELL

SHELL

Before your pipeline can send alerts to your email, you need an event that generates the alerts.
In the

cat << EOF | sensuctl create

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "alerts_pipeline"

 },

 "spec": {

 "workfows": [

 {

 "name": "email_alerts",

 "flters": [

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

EOF

fnal step, you will create an ad hoc event that you can trigger manually.

Create and trigger an ad hoc event

To create an ad hoc event, frst use sensuctl env to set up environment variables.
The environment
variables will provide the required Sensu API access token credential for the Sensu API:

Verify that the SENSU_ACCESS_TOKEN environment variable is set by echoing its value:

The response will list the SENSU_ACCESS_TOKEN value.

With the environment variables set, you can use the Sensu API to create your ad hoc observability
event.

This event outputs the message “Everything is OK.” when it occurs:

eval $(sensuctl env)

echo $SENSU_ACCESS_TOKEN

NOTE: The example events use the default namespace.
If you are using a different namespace,
replace default in the event defnitions and the API URLs with the name of the desired
namespace.

curl -sS -H 'Content-Type: application/json' \

-H "Authorization: Bearer $SENSU_ACCESS_TOKEN" \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server01",

 "namespace": "default"

 }

 },

As confgured, the event status is 0 (OK).
Now it’s time to trigger an event and view the results!

To generate a status change event, use the update event endpoint to create a 1 (warning) event.
Run:

 "check": {

 "metadata": {

 "name": "server-health"

 },

 "output": "Everything is OK.",

 "status": 0

 }

}' \

http://localhost:8080/api/core/v2/namespaces/default/events

curl -sS -X PUT \

-H "Authorization: Bearer $SENSU_ACCESS_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server01",

 "namespace": "default"

 }

 },

 "check": {

 "metadata": {

 "name": "server-health"

 },

 "output": "This is a warning.",

 "status": 1

 },

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "alerts_pipeline"

 }

]

}' \

Check your email — you should receive a message from Sensu!

Create another event with status set to 0 . Run:

You should receive another email because the event status changed to 0 (OK).

http://localhost:8080/api/core/v2/namespaces/default/events/server01/server-health

NOTE: If you receive an invalid credentials error, refresh your token.
Run eval $(sensuctl

env) .

curl -sS -X PUT \

-H "Authorization: Bearer $SENSU_ACCESS_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server01",

 "namespace": "default"

 }

 },

 "check": {

 "metadata": {

 "name": "server-health"

 },

 "output": "Everything is OK.",

 "status": 0

 },

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "alerts_pipeline"

 }

]

}' \

http://localhost:8080/api/core/v2/namespaces/default/events/server01/server-health

Next steps

Now that you know how to apply a handler to a check and take action on events:

Reuse this email handler with the check_cpu check from our Monitor server resources guide.

Learn how to use the event flter, handler, and pipeline resources you created to start
developing a monitoring as code repository.

Read the pipelines reference for in-depth pipeline documentation.

Check out Route alerts with event flters for a complex pipeline example that includes several
workfows with different event flters and handlers.

Send PagerDuty alerts with Sensu

Follow this guide to create a pipeline that sends incident alerts to PagerDuty.
Sensu checks are
commands the Sensu agent executes that generate observability data in a status or metric event.
Sensu
pipelines defne the event flters and actions the Sensu backend executes on the events.

This guide will help you send alerts to PagerDuty by confguring a pipeline and adding it to a check
named check_cpu .
If you don’t already have this check in place, follow Monitor server resources to
add it.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.
You’ll also need your PagerDuty API integration key to set up the
handler in this guide.

Confgure a Sensu entity

Every Sensu agent has a defned set of subscriptions that determine which checks the agent will
execute.
For an agent to execute a specifc check, you must specify the same subscription in the agent
confguration and the check defnition.
To run the check_cpu check, you’ll need a Sensu entity with the
subscription system .

First, fnd your entity name:

The ID in the response is the name of your entity.

Replace <ENTITY_NAME> with the name of your entity in the sensuctl command below.
Then run the
command to add the system subscription to your entity:

PRO TIP: You can use the PagerDuty integration in the Sensu Catalog to send alerts based on
Sensu event data instead of following this guide.
Follow the Catalog prompts to confgure the Sensu
resources you need and start processing your observability data with a few clicks.

sensuctl entity list

https://support.pagerduty.com/docs/generating-api-keys#section-events-api-keys
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Register the dynamic runtime asset

The sensu/sensu-pagerduty-handler dynamic runtime asset includes the scripts you will need to send
events to PagerDuty.

To add the sensu/sensu-pagerduty-handler asset, run:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
pagerduty-handler .

The response will indicate that the asset was added:

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

For Subscriptions , type system and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl asset add sensu/sensu-pagerduty-handler:2.2.0 -r pagerduty-handler

fetching bonsai asset: sensu/sensu-pagerduty-handler:2.2.0

added asset: sensu/sensu-pagerduty-handler:2.2.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["pagerduty-handler"].

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

To confrm that the asset was added to your Sensu backend, run:

The response will list the available builds for the Sensu PagerDuty Handler dynamic runtime asset.

Add the PagerDuty handler

Now that you’ve added the dynamic runtime asset, you can create a handler that uses the asset to
send non-OK events to PagerDuty.

In the following command, replace <PAGERDUTY_KEY> with your PagerDuty API integration key.
Then
run the updated command:

sensuctl asset info pagerduty-handler

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

sensuctl handler create pagerduty \

--type pipe \

--runtime-assets pagerduty-handler \

--command "sensu-pagerduty-handler -t <PAGERDUTY_KEY>"

NOTE: For checks whose handlers use the Sensu PagerDuty Handler dynamic runtime asset (like
the one you’ve created in this guide), you can use an alternative method for authenticating and
routing alerts based on PagerDuty teams.

To use this option, list the teams’ PagerDuty API integration keys in the handler defnition as
environment variables or secrets or in the /etc/default/sensu-backend confguration fle as
environment variables.
Then, add check or agent annotations to specify which PagerDuty teams
should receive alerts based on check events.
Sensu will look up the key in the handler defnition or
backend confguration fle that corresponds to the team name in the check annotation to
authenticate and send alerts.

https://support.pagerduty.com/docs/generating-api-keys#section-events-api-keys
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler#pager-teams
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler#pager-teams

Make sure that your handler was added by retrieving the complete handler defnition in YAML or JSON
format:

The response will list the complete handler resource defnition:

sensuctl handler info pagerduty --format yaml

SHELL

sensuctl handler info pagerduty --format wrapped-json

SHELL

type: Handler

api_version: core/v2

metadata:

 name: pagerduty

spec:

 command: sensu-pagerduty-handler -t <PAGERDUTY_KEY>

 env_vars: null

 handlers: null

 runtime_assets:

 - pagerduty-handler

 secrets: null

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "pagerduty"

 },

 "spec": {

 "command": "sensu-pagerduty-handler -t <PAGERDUTY_KEY>",

JSON

Create a pipeline with event flters and a handler

With your handler confgured, you can add it to a pipeline workfow.
A single pipeline workfow can
include one or more flters, one mutator, and one handler.

In this case, the pipeline includes the built-in is_incident and not_silenced event flters, as well as the
pagerduty handler you’ve already confgured.
To create the pipeline, run:

 "env_vars": null,

 "handlers": null,

 "runtime_assets": [

 "pagerduty-handler"

],

 "secrets": null,

 "timeout": 0,

 "type": "pipe"

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

cat << EOF | sensuctl create

type: Pipeline

api_version: core/v2

metadata:

 name: cpu_check_alerts

spec:

 workfows:

 - name: pagerduty_alerts

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 - name: not_silenced

 type: EventFilter

SHELL

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler#pager-teams

 api_version: core/v2

 handler:

 name: pagerduty

 type: Handler

 api_version: core/v2

EOF

cat << EOF | sensuctl create

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "cpu_check_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "pagerduty_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "pagerduty",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

EOF

SHELL

Assign the pipeline to a check

To use the cpu_check_alerts pipeline, list it in a check defnition’s pipelines array (in this case, the
check_cpu check created in Monitor server resources).
All the observability events that the check

produces will be processed according to the pipeline’s workfows.

Assign your cpu_check_alerts pipeline to the check_cpu check to receive Slack alerts when the
CPU usage of your system reaches the specifc thresholds set in the check command.

To open the check defnition in your text editor, run:

Replace the pipelines: [] line with the following array:

To view the updated check_cpu resource defnition, run:

The updated check defnition will be similar to this example:

sensuctl edit check check_cpu

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: cpu_check_alerts

sensuctl check info check_cpu --format yaml

SHELL

sensuctl check info check_cpu --format wrapped-json

SHELL

YML

type: CheckConfg

api_version: core/v2

metadata:

 name: check_cpu

spec:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 pipelines:

 - api_version: core/v2

 name: cpu_check_alerts

 type: Pipeline

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - check-cpu-usage

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu"

 },

 "spec": {

JSON

Observe an alert in PagerDuty

It might take a few moments after you add the pipeline to the check for the check to be scheduled on
entities with the system subscription and the result sent back to Sensu backend.

As confgured, the cpu_check command requires CPU usage to reach 75% capacity to send a non-

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "pipelines": [

 {

 "api_version": "core/v2",

 "name": "cpu_check_alerts",

 "type": "Pipeline"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

OK event.
To trigger an alert and confrm that the check and pipeline are working properly, adjust the
check command to reduce the usage percentage required for a non-OK event.

To open the check defnition in your text editor, run:

Replace the -w value in the command line with 1 and save the updated check defnition:

You should see a response to confrm the update:

After Sensu detects a non-OK event, the handler in your pipeline will send the alert to your PagerDuty
account, where you should see an event similar to this one:

Resolve the alert in PagerDuty

To complete your workfow, restore the CPU usage command to 75% so Sensu sends a resolution to
PagerDuty.
Open the check defnition in your text editor:

Replace the -w value in the command line with 75 and save the updated check defnition:

sensuctl edit check check_cpu

 command: check-cpu-usage -w 1 -c 90

Updated /api/core/v2/namespaces/default/checks/check_cpu

sensuctl edit check check_cpu

http://localhost:1313/images/go/send_pagerduty_alerts/pipeline_pagerduty_alert_example.png

In your PagerDuty account, the alert should now be listed under the “Resolved” tab.

To view the resolved event with sensuctl, run:

The response should show that cpu_check has an OK (0) status:

The web UI Events page will also show that the cpu_check check is passing.

Next steps

You should now have a working set-up with a check and a pipeline that sends alerts to your PagerDuty
account.
To share and reuse the check, handler, and pipeline like code, save them to fles and start
building a monitoring as code repository.

You can customize your PagerDuty handler with confguration options like severity mapping,
PagerDuty team-based routing and authentication via check and agent annotations, and event-based
templating.
Learn more about the Sensu PagerDuty integration and our curated, confgurable quick-star
template for incident management to integrate Sensu with your existing PagerDuty workfows.

 command: check-cpu-usage -w 75 -c 90

sensuctl event list

 Entity Check Output

Status Silenced Timestamp UUID

─────────────── ───────────

──

──

────────────────────────────────── ──────── ────────── ───────────────────────────────

───────────────────────────────────────

 sensu-centos check_cpu check-cpu-usage OK: 4.17% CPU usage | cpu_idle=95.83, cpu_system=1.04, cpu_user=3.13,

cpu_nice=0.00, cpu_iowait=0.00, cpu_irq=0.00, cpu_softirq=0.00, cpu_steal=0.00, cpu_guest=0.00, cpu_guestnice=0.00

0 false 2021-11-17 21:09:07 +0000 UTC xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler#pagerduty-severity-mapping
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler#pager-teams

Send Slack alerts with a pipeline

Pipelines are Sensu resources composed of observation event processing workfows that include
flters, mutators, and handlers.
You can use pipelines to send email alerts, create or resolve incidents (in
PagerDuty, for example), or store metrics in a time-series database like InfuxDB.

This guide will help you send alerts to Slack in the channel monitoring by confguring a pipeline and
adding it to a check named check_cpu .
If you don’t already have this check in place, follow Monitor
server resources to add the check.

Before you start, follow the RHEL family install instructions to install and confgure the Sensu backend,
the Sensu agent, and sensuctl.

Confgure a Sensu entity

Every Sensu agent has a defned set of subscriptions that determine which checks the agent will
execute.
For an agent to execute a specifc check, you must specify the same subscription in the agent
confguration and the check defnition.
To run the check_cpu check, you’ll need a Sensu entity with the
subscription system .

First, fnd your entity name:

The ID in the response is the name of your entity.

Replace <ENTITY_NAME> with the name of your entity in the sensuctl command below.
Then run the
command to add the system subscription to your entity:

PRO TIP: You can use the Slack Alerts integration in the Sensu Catalog to send Slack alerts
based on Sensu event data instead of following this guide.
Follow the Catalog prompts to confgure
the Sensu resources you need and start processing your observability data with a few clicks.

sensuctl entity list

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Confrm both Sensu services are running:

The response should indicate active (running) for both the Sensu backend and agent.

Register the dynamic runtime asset

Dynamic runtime assets are shareable, reusable packages that help you deploy Sensu plugins.
In this
guide, you’ll use the sensu/sensu-slack-handler dynamic runtime asset to power a slack handler.

Use sensuctl asset add to register the sensu/sensu-slack-handler dynamic runtime asset:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
sensu-slack-handler .

The response will indicate that the asset was added:

sensuctl entity update <ENTITY_NAME>

For Entity Class , press enter.

For Subscriptions , type system and press enter.

systemctl status sensu-backend && systemctl status sensu-agent

sensuctl asset add sensu/sensu-slack-handler:1.5.0 -r sensu-slack-handler

fetching bonsai asset: sensu/sensu-slack-handler:1.5.0

added asset: sensu/sensu-slack-handler:1.5.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["sensu-slack-handler"].

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

You can also download the latest dynamic runtime asset defnition for your platform from Bonsai and
register the asset with sensuctl create --fle flename.yml or sensuctl create --fle
flename.json .

Get a Slack webhook

If you’re already the admin of a Slack, visit
https://YOUR_WORKSPACE_NAME_HERE.slack.com/services/new/incoming-webhook and follow the

steps to add the Incoming WebHooks integration, choose a channel, and save the settings.
If you’re not
yet a Slack admin, create a new workspace and then create and save your webhook.

After you save your webhook, you can fnd the webhook URL under Integration Settings.

Create a handler

Use sensuctl to create a handler called slack that pipes observation data (events) to Slack using the
sensu/sensu-slack-handler dynamic runtime asset.
Before you run the sensuctl command below, edit it
to include your Slack webhook URL and the channel where you want to receive events:

You should receive a confrmation message:

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

sensuctl handler create slack \

--type pipe \

--env-vars "SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX"

\

--command "sensu-slack-handler --channel '#monitoring'" \

--runtime-assets sensu-slack-handler

Created

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://slack.com/get-started#/create

The sensuctl handler create slack command creates a handler resource.
To view the slack

handler defnition, run:

The slack handler resource defnition will be similar to this example:

sensuctl handler info slack --format yaml

SHELL

sensuctl handler info slack --format wrapped-json

SHELL

type: Handler

api_version: core/v2

metadata:

 name: slack

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX

 flters: null

 handlers: null

 runtime_assets:

 - sensu-slack-handler

 secrets: null

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack"

 },

JSON

You can share and reuse this handler like code — save it to a fle and start building a monitoring as
code repository.

Create a pipeline that includes the handler

With your handler confgured, you can add it to a pipeline workfow.
A single pipeline workfow can
include one or more flters, one mutator, and one handler.

For now, the pipeline includes only the slack handler and the built-in not_silenced event flter so that
you receive an alert for every event the check generates (including events with OK status).
To create
the pipeline, run:

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

 "SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX"

],

 "flters": null,

 "handlers": null,

 "runtime_assets": [

 "sensu-slack-handler"

],

 "secrets": null,

 "timeout": 0,

 "type": "pipe"

 }

}

PRO TIP: You can also view complete resource defnitions in the Sensu web UI.

cat << EOF | sensuctl create

type: Pipeline

api_version: core/v2

metadata:

 name: cpu_check_alerts

SHELL

spec:

 workfows:

 - name: slack_alerts

 flters:

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 handler:

 name: slack

 type: Handler

 api_version: core/v2

EOF

cat << EOF | sensuctl create

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "cpu_check_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "slack_alerts",

 "flters": [

 {

 "name": "not_silenced",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "slack",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

SHELL

Assign the pipeline to a check

To use the cpu_check_alerts pipeline, list it in a check defnition’s pipelines array (in this case, the
check_cpu check created in Monitor server resources).
All the observability events that the check

produces will be processed according to the pipeline’s workfows.

Assign your cpu_check_alerts pipeline to the check_cpu check to receive Slack alerts when the
CPU usage of your system reaches the specifc thresholds set in the check command.

To open the check defnition in your text editor, run:

Replace the pipelines: [] line with the following array and save the updated check defnition:

You should see a response to confrm the update:

EOF

sensuctl edit check check_cpu

 pipelines:

 - type: Pipeline

 api_version: core/v2

 name: cpu_check_alerts

SHELL

 "pipelines": [

 {

 "type": "Pipeline",

 "api_version": "core/v2",

 "name": "cpu_check_alerts"

 }

]

SHELL

To view the updated check_cpu resource defnition, run:

The updated check defnition will be similar to this example:

Updated /api/core/v2/namespaces/default/checks/check_cpu

sensuctl check info check_cpu --format yaml

SHELL

sensuctl check info check_cpu --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 name: check_cpu

spec:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 pipelines:

 - api_version: core/v2

 name: cpu_check_alerts

 type: Pipeline

 proxy_entity_name: ""

 publish: true

 round_robin: false

YML

 runtime_assets:

 - check-cpu-usage

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "pipelines": [

 {

 "api_version": "core/v2",

 "name": "cpu_check_alerts",

 "type": "Pipeline"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

 "secrets": null,

JSON

Validate the pipeline

It might take a few moments after you add the pipeline to the check for the check to be scheduled on
entities with the system subscription and the result sent back to Sensu backend.
After an event is
handled, you should receive a message like this in Slack:

Verify proper handler behavior with sensu-backend logs.
Read Troubleshoot Sensu for log locations
by platform.

Whenever an event is being handled, a log entry is added with the message
"handler":"slack","level":"debug","msg":"sending event to handler" , followed by a second

log entry with the message "msg":"event pipe handler executed","output":"","status":0 .

Add another event flter to the pipeline

At this point, the cpu_check_alerts pipeline has probably sent quite a few Slack messages for
events with OK (0) status.
To receive alerts for events with only warning (1) or critical (2) status,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

http://localhost:1313/images/go/send_slack_alerts/check_cpu_usage_example_alert.png

add the built-in is_incident event flter to the pipeline:

cat << EOF | sensuctl create

type: Pipeline

api_version: core/v2

metadata:

 name: cpu_check_alerts

spec:

 workfows:

 - name: slack_alerts

 flters:

 - name: not_silenced

 type: EventFilter

 api_version: core/v2

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 handler:

 name: slack

 type: Handler

 api_version: core/v2

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "cpu_check_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "slack_alerts",

 "flters": [

 {

 "name": "not_silenced",

SHELL

Adding the is_incident flter to your pipeline should quickly reduce the number of alerts you receive in
Slack.

Next steps

Now that you know how to apply a pipeline to a check and take action on events, read the pipelines
reference for in-depth documentation.
Read Route alerts with event flters for a more complex example
with multiple flters and handlers organized into several pipeline workfows.

For more information about customizing your Slack alerts, read the Sensu Slack Handler page in
Bonsai.

Follow Send PagerDuty alerts with Sensu to confgure a check that generates status events and a
handler that sends Sensu alerts to PagerDuty for non-OK events.

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "slack",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

}

EOF

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

Operations

The Operations category will help you get Sensu up and running, from your frst installation in your
local development environment through a large-scale Sensu deployment using secrets management.
You’ll also learn how to keep your Sensu implementation running, with guides for upgrading,
monitoring, and troubleshooting.

Monitoring as code

Monitoring as code with Sensu explains how to use Sensu’s end-to-end monitoring as code approach
to manage your observability confguration the same way you build, test, and deploy your applications
and infrastructure.

Deploy Sensu

Deploy Sensu describes how to plan, install, confgure, and deploy Sensu’s fexible monitoring and
observability pipeline.

To plan your Sensu deployment, read the hardware requirements and deployment architecture pages.
To start using Sensu locally or in development environments, follow the steps in the Install Sensu
guide.

When you’re ready to deploy Sensu in production, learn to generate certifcates, secure your Sensu
installation, run a Sensu cluster, and reach multi-cluster visibility.
You’ll also fnd guides for scaling your
implementation with Sensu’s Enterprise datastore and using confguration management tools to ensure
repeatable Sensu deployments and consistent confguration.

Control Access

Control Access explains how Sensu administrators control access by authentication (verifying user
identities) and authorization (establishing and managing user permissions for Sensu resources).

Sensu requires username and password authentication to access the web UI, API, and sensuctl
command line tool.
Use Sensu’s built-in basic authentication or confgure external authentication

providers via Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or OpenID Connect
1.0 protocol (OIDC) to authenticate your Sensu users.

Next, learn to confgure authorization for your authenticated Sensu users with role-based access
control (RBAC) and set up user permissions for interacting with Sensu resources.

Maintain Sensu

Maintain Sensu includes upgrade, migration, troubleshooting, and license management information to
keep your Sensu implementation running smoothly.

Follow our step-by-step instructions to upgrade to the latest version of Sensu from any earlier version.
If
you’re still using Sensu Core or Sensu Enterprise, read Migrate from Sensu Core and Sensu
Enterprise to Sensu Go.
You can also learn how to activate and and view your commercial Sensu
license or troubleshoot to identify and resolve problems with your Sensu implementation, from reading
and confguring Sensu service logs to using Sensu handlers and flters to test and debug your
implementation.

Monitor Sensu

Monitor Sensu covers how to log Sensu services, monitor your Sensu backend with a secondary
instance, and retrieve and process health data for your Sensu cluster.
You can also learn about Tessen
the Sensu call-home service, which helps us understand how Sensu is being used and make informed
decisions about product improvements.

Manage Secrets

Manage Secrets explains how to use Sensu’s secrets management to eliminate the need to expose
secrets like usernames, passwords, and access keys in your Sensu confguration.
Learn to confgure
secrets and secrets providers resources to obtain secrets from one or more external secrets providers,
refer to external secrets, and consume secrets via backend environment variables.

Monitoring as code with Sensu

Sensu’s end-to-end monitoring as code solution allows you to manage your monitoring and
observability confgurations the same way you build, test, and deploy your applications and
infrastructure, like Kubernetes and Terraform.
Monitoring as code combines composable building blocks
with robust APIs so you can defne your entire observability confguration as declarative YAML or
JSON code and improve visibility, reliability, portability, and repeatability.

When a new endpoint starts up, like a cloud compute instance or Kubernetes Pod, the endpoint’s
agent automatically registers it with the platform and starts collecting observability data according to
the code in your confguration fles.
Teams can share and remix observability confgurations for
collecting events and metrics, diagnosing issues, sending alerts, and automatically remediating
problems.

To get started with monitoring as code, you’ll need a repository and confguration fles that contain your
resource defnitions.

Create a monitoring as code repository

Create a monitoring as code repository for the confguration fles that contain the Sensu resource
defnitions you use for monitoring and observability.
You can use any source control repository.

The way you will use your confguration fles will help you choose the best structure for your monitoring
as code repository.
For example, if you are likely to share observability components or manage your

Share, edit, review, and version your observability confguration fles just like you would with
other “as code” solutions, within one team or among teams across your organization.

Maintain revision control and change history for your observability confgurations.

Export the Sensu confguration for one environment and replicate the same confguration in
other environments.

Remove, restore, back up, and recover Sensu instances based on your Sensu confguration
fles.

Include your observability confguration in your centralized continuous integration/continuous
delivery (CI/CD) pipeline to keep your confguration fles aligned with your product and
services.

confguration fles as part of your CI/CD workfow, it probably makes sense to use individual
confguration fles for different types of resources: one fle for all of your checks, one fle for all of your
handlers, and so on.
If you want to facilitate more granular sharing, you can save one resource
defnition per fle.

If you want to share complete end-to-end observability confgurations with your colleagues, you might
save all of the resource defnitions for each observability confguration in a single confguration fle.
This
allows others to read through an entire confguration without interruption, and it’s convenient for
demonstrating a complete Sensu confguration.
However, a single confguration fle that includes every
resource type isn’t the best structure for CI/CD management or sharing resources among teams.

SensuFlow, our GitHub Action for managing Sensu resources via repository commits, requires a
repository structure organized by clusters and namespaces.
All resources of each type for each
namespace are saved in a single confguration fle:

Adopt a confguration fle strategy

Confguration fles contain your Sensu resource defnitions.
You can build confguration fles as you go,
adding resource defnitions as you create them.
You can also create your entire observability
confguration frst, then export some or all of your resource defnitions to a fle.
Or, you can use a mix:
export all of your existing resource defnitions to confguration fles and append new resources as you
create them.

When you are ready to replicate your exported resource defnitions, use sensuctl create .

.sensu/

 cluster/

 namespaces.yml

 namespaces/

 <namespace>/

 checks/

 hooks/

 flters/

 handlers/

 handlersets/

 mutators/

 pipelines/

Build as you go

To build as you go, use sensuctl commands to retrieve your Sensu resource defnitions as you create
them and copy the defnitions into your confguration fles.

For example, if you follow Monitor server resources and create a check named check_cpu , you can
retrieve that check defnition in YAML or JSON format with sensuctl:

The sensuctl response will include the complete check_cpu resource defnition in the specifed
format:

NOTE: You cannot replicate API key or user resources from a sensuctl dump export.

API keys must be reissued, but you can use your exported confguration fle as a reference for
granting new API keys to replace the exported keys.

When you export users, required password attributes are not included.
You must add a
password_hash or password to users resources before replicating them with the sensuctl
create command.

sensuctl check info check_cpu --format yaml

SHELL

sensuctl check info check_cpu --format wrapped-json

SHELL

type: CheckConfg

api_version: core/v2

metadata:

 name: check_cpu

spec:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 env_vars: null

YML

 handlers: null

 high_fap_threshold: 0

 interval: 60

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 pipelines:

 - api_version: core/v2

 name: reduce_alerts

 type: Pipeline

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - check-cpu-usage

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

 "env_vars": null,

 "handlers": null,

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "pipelines": [

JSON

If you prefer, you can also view JSON resource defnitions in the Sensu web UI.

You can copy these resource defnitions and paste them into manually created confguration fles
located anywhere on your system.

Alternatively, you can view resource defnitions and copy them into a new or existing confguration fle
with a single sensuctl command.
To use the following examples, replace <resource> with the
resource type (like check) and replace <resource_name> with the name of the resource (like
check_cpu).

 {

 "api_version": "core/v2",

 "name": "reduce_alerts",

 "type": "Pipeline"

 }

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "check-cpu-usage"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

Copy the resource defntion to a new fle (or overwrite an existing fle with the same name):

sensuctl <resource> info <resource_name> --format yaml > resource.yml

SHELL

SHELL

sensuctl <resource> info <resource_name> --format wrapped-json >

resource.json

Copy the resource defntion to a new fle (or overwrite an existing fle with the same name) and
show the resource defnition in stdout:

sensuctl <resource> info <resource_name> --format yaml | tee resource.yml

SHELL

sensuctl <resource> info <resource_name> --format wrapped-json | tee

resource.json

SHELL

Append the resource defntion to an existing fle:

sensuctl <resource> info <resource_name> --format yaml >> resource.yml

SHELL

sensuctl <resource> info <resource_name> --format wrapped-json >>

resource.json

SHELL

Append the resource defntion to an existing fle and show the resource defnition in stdout:

sensuctl <resource> info <resource_name> --format yaml | tee -a resource.yml

SHELL

sensuctl <resource> info <resource_name> --format wrapped-json | tee -a

resource.json

SHELL

Export existing resources

If you’ve already created observability resources, use sensuctl dump to create a copy of your
existing resource defnitions.

First, create a sensu directory:

Then, copy your observability resource defnitions according to the repository structure you are using.
For example, if you want to save resources according to type and namespace, this command will save
all of your check defnitions for the production namespace in one confguration fle:

Repeat this command for each resource type in each of your namespaces.

Strip namespaces from resource defnitions

To replicate and reuse resources in any namespace without manual editing, create a copy of your
existing resources with the namespaces stripped from their defnitions:

mkdir sensu

sensuctl dump core/v2.CheckConfg \

--namespace production \

--format yaml | > sensu/namespaces/production/checks.yml

SHELL

sensuctl dump core/v2.CheckConfg \

--namespace production \

--format wrapped-json | > sensu/namespaces/production/checks.json

SHELL

sensuctl dump all \

SHELL

Best practices for monitoring as code

Sensu’s monitoring as code solution is fexible — you can use any source control repository and
choose your own directory structure — but following a few best practices will contribute to a successful
implementation.

Implement CI/CD with monitoring as code

When you’re ready, expand your monitoring as code practices to include managing your Sensu
confguration fles with a CI/CD workfow.
CI/CD takes the manual work out of maintaining and updating
your monitoring as code repository so that any updates to the Sensu resources in your monitoring as
code repository are refected in your Sensu confguration in a timely manner.

If you’re already using CI/CD, you already have workfows for versioning, building, testing, and

--all-namespaces \

--format yaml | grep -v "^\s*namespace:" > sensu/resources.yml

sensuctl dump all \

--all-namespaces \

--format wrapped-json | grep -v "^\s*namespace:" > sensu/resources.json

SHELL

To maintain consistency, save all of your resources as only one fle type: YAML or JSON.

Include all dependencies within a resource defnition.
For example, if a handler requires a
dynamic runtime asset and a secret, include the asset and secret defnitions with the defnition
for the handler itself.

Choose the labels you use in your resource defnitions with care.
CI/CD systems like SensuFlow
rely on labels to determine which resources to delete, so if all of your resources have the same
labels, you could delete resources you didn’t intend to be managed in a particular CI/CD
workfow.

Establish a resource-labeling schema throughout your organization to facilitate CI/CD.
Following
the same method for applying labels helps keep unmanaged Sensu resources from multiplying
and allows different teams to confdently deploy their own CI/CD workfows without the risk of
accidentally deleting another team’s resources.

deploying your code.
Integrating monitoring as code means your monitoring and observability can go
through those same CI/CD workfows.

There’s no one “correct” way to implement CI/CD with monitoring as code, but the SensuFlow GitHub
Action offers a turnkey reference implementation that helps you create your own monitoring as code
workfow and start managing Sensu resources via repository commits.

Use SensuFlow for CI/CD monitoring as code

SensuFlow is a git-based, prescriptive monitoring as code workfow that uses sensuctl (including
sensuctl prune) to synchronize your monitoring and observability code with your Sensu deployments.

SensuFlow requires:

Read the SensuFlow GitHub Action marketplace page and Monitoring as code with Sensu Go and
SensuFlow to get started with SensuFlow as your monitoring as code workfow.

NOTE: SensuFlow is available for technical preview, and individual components in the workfow
may change.
Before you use SensuFlow in production, test it in a development environment or a
dedicated test namespace in your current environment.

A code repository of Sensu resource defnitions

A Sensu role-based access control (RBAC) service account with permission to manage all
resources in your repository

A resource labeling convention to designate which resources the SensuFlow workfow should
manage

Integration with your CI/CD system to run sensuctl commands as the service account user from
the repository of resource defnitions

https://github.com/marketplace/actions/sensuflow
https://sensu.io/blog/monitoring-as-code-with-sensu-flow
https://sensu.io/blog/monitoring-as-code-with-sensu-flow

Deploy Sensu

Use the information and instructions in the Deploy Sensu category to plan, install, confgure, and
deploy Sensu’s fexible monitoring and observability pipeline.

Plan your Sensu deployment

Find Sensu agent and backend requirements and networking and cloud recommendations in the
hardware requirements.

Deployment architecture for Sensu describes planning considerations and recommendations for a
production-ready Sensu deployment, along with communication security details and diagrams showing
single, clustered, and large-scale deployment architectures.

Install Sensu

When you’re ready to start using Sensu, the pathway you follow will depend on your monitoring and
observability needs.
No matter which pathway you choose, you should begin with the Install Sensu
guide.
If you just want to use Sensu locally, you can do that by installing Sensu according to the steps in
the guide.
You can also use the Install Sensu guide to set up proof-of-concept and testing in a
development environment.

Deploy Sensu in production

To deploy Sensu for use outside of a local development environment, install Sensu and follow these
guides to achieve a production-ready installation:

1. Generate certifcates, which you will need to secure a Sensu cluster and its agents.
2. Secure your Sensu installation using the certifcates you generate to make Sensu production-

ready.
3. Run a Sensu cluster, a group of three or more sensu-backend nodes connected to a shared

database, to improve Sensu’s availability, reliability, and durability.
4. Reach multi-cluster visibility with federation so you can gain visibility into the health of your

infrastructure and services across multiple distinct Sensu instances within a single web UI and

mirror your changes in one cluster to follower clusters.

Read the etcd replicators reference to learn how the etcd-replicators datatype in the
enterprise/federation/v1 API allows you to manage role-based access control (RBAC) resources in one
place and mirror your changes to follower clusters.

Scale your Sensu implementation

As the number of entities and checks in your Sensu implementation grows, so does the rate of events
being written to the datastore.
In clustered etcd deployments, each event must be replicated to each
cluster member, which increases network and disk IO utilization.

Sensu’s Enterprise datastore allows you to confgure an external PostgreSQL instance for event
storage so you can scale your monitoring and observability workfows beyond etcd’s 8GB limit.
Scale
your Sensu implementation to many thousands of events per second, achieve much higher rates of
event processing, and minimize the replication communication between etcd peers.

Read the datastore reference for the Enterprise datastore requirements and specifcations.

For deployments at scale, confguration management tools can help ensure repeatable Sensu
deployments and consistent confguration among Sensu backends.
Ansible, Chef, and Puppet have
well-defned Sensu modules to help you get started.

Hardware requirements

Sensu backend requirements

Backend minimum requirements

This confguration is the minimum required to run the Sensu backend (although it is insuffcient for
production use):

Review the backend recommended confguration for production recommendations.

Backend recommended confguration

This backend confguration is recommended as a baseline for production use to ensure a good user
and operator experience:

Using additional resources (and even over-provisioning) further improves stability and scalability.

The Sensu backend is typically CPU- and storage-intensive.
In general, the backend’s use of these
resources scales linearly with the total number of checks executed by all Sensu agents connecting to
the backend.

64-bit Intel or AMD CPU

4 GB RAM

4 GB free disk space

10 mbps network link

64-bit four-core Intel or AMD CPU

8 GB RAM

SSD [non-volatile memory express (NVMe) or serial advanced technology attachment 3
(SATA3)]

Gigabit ethernet

The Sensu backend is a massively parallel application that can scale to any number of CPU cores.
Provision approximately one CPU core for every 50 checks per second (including agent keepalives).
For
most installations, four CPU cores are suffcient.
Larger installations may fnd that more CPU cores (8+)
are necessary.

Every executed Sensu check results in storage writes.
When provisioning storage, a good guideline is to
have twice as many sustained disk input/output operations per second (IOPS) as you expect to
have events per second.

Don’t forget to include agent keepalives in your calculation.
Each agent publishes a keepalive every 20
seconds.
For example, in a cluster of 100 agents, you can expect the agents to consume 10 write IOPS
for keepalives.

The Sensu backend uses a relatively modest amount of RAM in most circumstances.
Larger production
deployments use more RAM (8+ GB).

Sensu agent requirements

Agent minimum requirements

This confguration is the minimum required to run the Sensu agent (although it is insuffcient for
production use):

Review the agent recommended confguration for production recommendations.

Agent recommended confguration

This agent confguration is recommended as a baseline for production use to ensure a good user and
operator experience:

386, amd64, ARMv5, or MIPS CPU

128 MB RAM

10 mbps network link

64-bit four-core Intel or AMD CPU

512 MB RAM

The Sensu agent itself is lightweight and should be able to run on all but the most modest hardware.
However, because the agent is responsible for executing checks, you should factor the agent’s
responsibilities into your hardware provisioning.

Networking recommendations

Sensu uses WebSockets for communication between the agent and backend.
All communication occurs
over a single TCP socket.

We recommend that you connect backends and agents via gigabit ethernet, but any reliable network
link should work (for example, WiFi and 4G).
If the backend logs include WebSocket timeouts, you may
need to use a more reliable network link between the backend and agents.

Cloud recommendations

For all cloud providers, we recommend using local NVMe SSDs for storage and deploying all Sensu
backends and etcd instances in the same region.

Sensu is compatible with all cloud provider database instances.
We recommend using PostgreSQL with
high availability for the event store.

Amazon EC2

For Sensu backends or etcd nodes, the recommended Amazon EC2 instance type and size is
M5d.xlarge.
The M5d.xlarge instance provides four vCPU, 16 GB of RAM, up to 10 gbps network
connectivity, and a 150-GB NVMe SSD directly attached to the instance host, which is optimal for
sustained disk IOPS.

Microsoft Azure

Use the D4ds v4 Microsoft Azure virtual machine for Sensu backends or etcd nodes.
The D4ds v4
virtual machine provides four vCPU, 16 GB of RAM, and a 150-GB SSD directly attached to the

Gigabit ethernet

NOTE: Sensu does not require a particular CPU manufacturer for cloud storage.

https://aws.amazon.com/ec2/instance-types/m5/
https://docs.microsoft.com/en-us/azure/virtual-machines/ddv4-ddsv4-series
https://docs.microsoft.com/en-us/azure/virtual-machines/ddv4-ddsv4-series

instance host (optimal for sustained disk IOPS).

Digital Ocean

Use Digital Ocean Storage-Optimized Droplets for Sensu backends or etcd.
The minimum Storage-
Optimized Droplet plan provides two vCPU, 16 GB of RAM, and a 300-GB NVMe SSD.
Storage is
directly attached to the hypervisor rather than connected via network.

Google Cloud

For Sensu backends or etcd nodes, the recommended Google Cloud Compute Engine type and size is
n2-standard-4, with SSD provisioned space.
The n2-standard-4 compute engine provides four vCPU,
16 GB of RAM, and up to 10 gbps network connectivity.

Google Cloud offers disk space separately, and we recommend at least 150 GB of SSD provisioned
space for Sensu backends running embedded etcd.

You can use Google Cloud’s regional managed instance groups (MIGs) to deploy Sensu backends
and etcd instances.

https://docs.digitalocean.com/products/droplets/resources/choose-plan/#dedicated-cpu-storage-optimized-droplet
https://www.digitalocean.com/pricing
https://www.digitalocean.com/pricing
https://cloud.google.com/compute/docs/general-purpose-machines#n2_machines
https://cloud.google.com/compute/disks-image-pricing#disk
https://cloud.google.com/compute/disks-image-pricing#disk

Install Sensu

This installation guide describes how to install the Sensu backend, Sensu agent, and sensuctl
command line tool.

These instructions explain how to install Sensu for proof-of-concept purposes or testing in a
development environment.
We recommend using a supported package to follow this guide.

To build Sensu Go from source (OSS), follow the Sensu Go installation instructions on GitHub.

Sensu downloads are provided under the Sensu commercial license.

Sensu Go is packaged for Linux, Windows (agent and sensuctl only), macOS (sensuctl only), and
Docker.
Review supported platforms for more information.

Architecture overview

Sensu works differently from other monitoring and observability solutions.
Instead of provisioning each
device, server, container, or sidecar you want to monitor, you install the Sensu agent on each
infrastructure component.

Sensu agents are lightweight clients that run on the infrastructure components you want to monitor.
Agents are responsible for creating status and metric events to send to the Sensu backend event
pipeline.
Agents automatically register with Sensu as entities when you start them up and connect to the
Sensu backend with no need for further provisioning.
You only need to specify the IP address for the
Sensu backend server — you do not need to list the components to monitor in the backend.

NOTE: If you’re trying Sensu for the frst time, consider following the the Sensu Go workshop
instead.
The workshop includes a local sandbox environment and a collection of resources
designed to help new users learn and test Sensu.

If you will deploy Sensu to your infrastructure, we recommend securing your installation with
transport layer security (TLS) in addition to using one of our supported packages, Docker images,
or confguration management integrations.
Read Generate certifcates next to get the certifcates
you will need for TLS.

https://github.com/sensu/sensu-go#installation
https://sensu.io/licenses
https://github.com/sensu/sensu-go-workshop#overview

The Sensu backend is powered by an an embedded transport and etcd datastore.
The backend sends
specifc checks for each agent to execute according to the subscriptions you defne in the agent
confguration.
Sensu automatically downloads the fles needed to run the checks from an asset
repository like Bonsai or a local repo and schedules the checks on each agent.
The agents execute the
checks the backend sends to their subscriptions and send the resulting status and metric events to the
backend event pipeline, which gives you fexible, automated workfows to route these events.

The Sensu backend keeps track of all self-registered agents.
If the backend loses a keepalive signal
from any of the agents, it fags the agent and generates an event.
You can confgure your instance so
that when an agent (for example, a server) shuts down gracefully, the agent automatically de-registers
from the backend and does not generate an alert.

Sensu backends require persistent storage for their embedded database, disk space for local asset
caching, and several exposed ports.
Agents that use Sensu dynamic runtime assets require some disk
space for a local cache.

For more information, read Secure Sensu.
Read deployment architecture and hardware requirements
for deployment recommendations.

Ports

Sensu backends require the following ports:

Port Protocol Description

2379 gRPC Sensu storage client: Required for Sensu backends using
an external etcd instance

2380 gRPC Sensu storage peer: Required for etcd cluster members to
communicate directly with their peers

3000 HTTP/HT Sensu web UI: Required for all Sensu backends using a

https://etcd.io/
https://bonsai.sensu.io/
http://localhost:1313/images/go/install_sensu/basic_architecture.png

TPS Sensu web UI

6060 HTTP/HT
TPS

Required for all Sensu backends when performance
profling is enabled via debug setting

8080 HTTP/HT
TPS

Sensu API: Required for all users accessing the Sensu API

8081 WS/WSS Agent API (backend WebSocket): Required for all Sensu
agents connecting to a Sensu backend

The Sensu agent uses the following ports:

Port Protocol Description

3030 TCP/UD
P

Sensu agent socket: Required for Sensu agents using the
agent socket

3031 HTTP Sensu agent API: Required for all users accessing the
agent API

8125 UDP StatsD listener: Required for all Sensu agents using the
StatsD listener

The agent TCP and UDP sockets are deprecated in favor of the agent API.

Install the Sensu backend

The Sensu backend is available for Debian- and RHEL-family distributions and Docker.
Review
supported platforms for more information.

1. Download

All Sensu Docker images contain a Sensu backend and a Sensu agent

Pull the Alpine-based image

docker pull sensu/sensu

DOCKER

2. Confgure and start

You can confgure the Sensu backend with sensu-backend start fags (recommended) or an
/etc/sensu/backend.yml fle.
The Sensu backend requires the state-dir fag at minimum, but

other useful confgurations and templates are available.

Pull the image based on Red Hat Enterprise Linux

docker pull sensu/sensu-rhel

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

Install the sensu-go-backend package

sudo apt-get install sensu-go-backend

SHELL

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

Install the sensu-go-backend package

sudo yum install sensu-go-backend

SHELL

NOTE: If you are using Docker, intitialization is included in this step when you start the backend
rather than in 3. Initialize.
For details about intialization in Docker, read the backend reference.

Replace `<username>` and `<password>` with the username and password

you want to use for your admin user credentials.

docker run -v /var/lib/sensu:/var/lib/sensu \

-d --name sensu-backend \

-p 3000:3000 -p 8080:8080 -p 8081:8081 \

-e SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username> \

-e SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password> \

DOCKER

sensu/sensu:latest \

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug

Replace `<username>` and `<password>` with the username and password

you want to use for your admin user credentials.

version: "3"

services:

 sensu-backend:

 ports:

 - 3000:3000

 - 8080:8080

 - 8081:8081

 volumes:

 - "sensu-backend-data:/var/lib/sensu/sensu-backend/etcd"

 command: "sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-

level debug"

 environment:

 - SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username>

 - SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password>

 image: sensu/sensu:latest

volumes:

 sensu-backend-data:

 driver: local

DOCKER

Copy the confg template from the docs

sudo curl -L https://docs.sensu.io/sensu-go/latest/fles/backend.yml -o

/etc/sensu/backend.yml

Start sensu-backend using a service manager

sudo systemctl start sensu-backend

Verify that the backend is running

sudo systemctl status sensu-backend

SHELL

SHELL

The backend reference includes a complete list of confguration options and backend initialization
details.

3. Initialize

With the backend running, run sensu-backend init to set up your Sensu administrator username
and password.
In this initialization step, you only need to set environment variables with a username
and password string — no need for role-based access control (RBAC).

Replace <username> and <password> with the username and password you want to use:

Copy the confg template from the docs

sudo curl -L https://docs.sensu.io/sensu-go/latest/fles/backend.yml -o

/etc/sensu/backend.yml

Start sensu-backend using a service manager

sudo systemctl start sensu-backend

Verify that the backend is running

sudo systemctl status sensu-backend

WARNING: If you plan to run a Sensu cluster, make sure that each of your backend nodes is
confgured, running, and a member of the cluster before you continue the installation process.

NOTE: If you are using Docker, you already completed intitialization in 2. Confgure and start.
Skip
ahead to 4. Open the web UI to continue the backend installation process.
If you did not use
environment variables to override the default admin credentials in step 2, skip ahead to Install
sensuctl so you can change your default admin password immediately.

export SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username>

export SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password>

sensu-backend init

SHELL

SHELL

For details about initializing the Sensu backend, read the backend reference.

4. Open the web UI

The web UI provides a unifed view of your observability events and user-friendly tools to reduce alert
fatigue.
After starting the Sensu backend, open the web UI by visiting http://localhost:3000.
You may
need to replace localhost with the hostname or IP address where the Sensu backend is running.

To log in to the web UI, enter your Sensu user credentials.
If you are using Docker and you did not
specify environment variables to override the default admin credentials, your user credentials are
username admin and password P@ssw0rd! .
Otherwise, your user credentials are the username and
password you provided with the SENSU_BACKEND_CLUSTER_ADMIN_USERNAME and
SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD environment variables.

Select the ☰ icon to explore the web UI.

5. Make a request to the /health API

To make sure the backend is up and running, use the Sensu /health API to check the backend’s health.
You should receive a response that includes "Healthy": true .

export SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=<username>

export SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=<password>

sensu-backend init

NOTE: You may need to allow access to the ports Sensu requires in your local server frewall.
Refer
to the documentation for your operating system to confgure port access as needed.

COMMERCIAL FEATURE : Access the Sensu web UI in the packaged Sensu Go distribution.
For
more information, read Get started with commercial features.

curl http://127.0.0.1:8080/health

Now that you’ve installed the Sensu backend, install and confgure sensuctl to connect to your
backend URL.
Then you can install a Sensu agent and start monitoring your infrastructure.

Install sensuctl

Sensuctl is a command line tool for managing resources within Sensu.
It works by calling Sensu’s HTTP
API to create, read, update, and delete resources, events, and entities.
Sensuctl is available for Linux,
Windows, and macOS.

To install sensuctl:

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

Install the sensu-go-cli package

sudo apt-get install sensu-go-cli

SHELL

Add the Sensu repository

curl https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh | sudo

bash

Install the sensu-go-cli package

sudo yum install sensu-go-cli

SHELL

Download sensuctl for Windows amd64

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_windows_amd64.zip -OutFile C:\Users\Administrator\sensu-

go_6.8.2_windows_amd64.zip

Or for Windows 386

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_windows_386.zip -OutFile C:\Users\Administrator\sensu-

go_6.8.2_windows_386.zip

POWERSHELL

To start using sensuctl, run sensuctl confgure and log in with your user credentials, namespace,
and Sensu backend URL.
To confgure sensuctl using default values:

Here, the -n fag triggers non-interactive mode.
Run sensuctl confg view to view your user profle

For more information about sensuctl, read the sensuctl documentation.

Change default admin password

If you are using Docker and you did not use environment variables to override the default admin

Unzip the fle with PowerShell for Windows amd64

Expand-Archive -LiteralPath 'C:\Users\Administrator\sensu-

go_6.8.2_windows_amd64.zip' -DestinationPath 'C:\\Program Files\sensu\sensuctl\bin'

or for Windows 386

Expand-Archive -LiteralPath 'C:\Users\Administrator\sensu-go_6.8.2_windows_386.zip'

-DestinationPath 'C:\\Program Files\sensu\sensuctl\bin'

Download the latest release

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go_6.8.2_darwin_amd64.tar.gz

Extract the archive

tar -xvf sensu-go_6.8.2_darwin_amd64.tar.gz

Copy the executable into your PATH

sudo cp sensuctl /usr/local/bin/

SHELL

sensuctl confgure -n \

--username 'YOUR_USERNAME' \

--password 'YOUR_PASSWORD' \

--namespace default \

--url 'http://127.0.0.1:8080'

credentials in step 2 of the backend installation process, we recommend that you change the default
admin password as soon as you have installed sensuctl.
Run:

Install Sensu agents

The Sensu agent is available for Debian- and RHEL-family distributions, Windows, and Docker.
Review
supported platforms for more information.

1. Download

sensuctl user change-password --interactive

All Sensu images contain a Sensu backend and a Sensu agent

Pull the Alpine-based image

docker pull sensu/sensu

Pull the RHEL-based image

docker pull sensu/sensu-rhel

DOCKER

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

Install the sensu-go-agent package

sudo apt-get install sensu-go-agent

SHELL

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

Install the sensu-go-agent package

SHELL

2. Confgure and start

You can confgure the Sensu agent with sensu-agent start fags (recommended) or an
/etc/sensu/agent.yml fle.
The Sensu agent requires the --backend-url fag at minimum, but

other useful confgurations and templates are available.

sudo yum install sensu-go-agent

Download the Sensu agent for Windows amd64

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go-agent_6.8.2.6788_en-US.x64.msi -OutFile "$env:userprofle\sensu-go-

agent_6.8.2.6788_en-US.x64.msi"

Or for Windows 386

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.8.2/sensu-

go-agent_6.8.2.6788_en-US.x86.msi -OutFile "$env:userprofle\sensu-go-

agent_6.8.2.6788_en-US.x86.msi"

Install the Sensu agent for Windows amd64

msiexec.exe /i $env:userprofle\sensu-go-agent_6.8.2.6788_en-US.x64.msi /qn

Or for Windows 386

msiexec.exe /i $env:userprofle\sensu-go-agent_6.8.2.6788_en-US.x86.msi /qn

Or via Chocolatey

choco install sensu-agent

POWERSHELL

If you are running the agent locally on the same system as the Sensu backend,

add `--link sensu-backend` to your Docker arguments and change the backend

URL to `--backend-url ws://sensu-backend:8081`.

Start an agent with the system subscription

docker run -v /var/lib/sensu:/var/lib/sensu -d \

--name sensu-agent sensu/sensu:latest \

sensu-agent start --backend-url ws://sensu.yourdomain.com:8081 --log-level debug --

subscriptions system --api-host 0.0.0.0 --cache-dir /var/lib/sensu

DOCKER

Start an agent with the system subscription

version: "3"

services:

 sensu-agent:

 image: sensu/sensu:latest

 ports:

 - 3031:3031

 volumes:

 - "sensu-agent-data:/var/lib/sensu"

 command: "sensu-agent start --backend-url ws://sensu-backend:8081 --log-level

debug --subscriptions system --api-host 0.0.0.0 --cache-dir /var/lib/sensu"

volumes:

 sensu-agent-data:

 driver: local

DOCKER

Copy the confg template from the docs

sudo curl -L https://docs.sensu.io/sensu-go/latest/fles/agent.yml -o

/etc/sensu/agent.yml

Start sensu-agent using a service manager

sudo systemctl start sensu-agent

SHELL

Copy the confg template from the docs

sudo curl -L https://docs.sensu.io/sensu-go/latest/fles/agent.yml -o

/etc/sensu/agent.yml

Start sensu-agent using a service manager

sudo systemctl start sensu-agent

SHELL

POWERSHELL

The agent reference includes a complete list of confguration options.

3. Verify keepalive events

Sensu keepalives are the heartbeat mechanism used to ensure that all registered agents are operating
and can reach the Sensu backend.
To confrm that the agent is registered with Sensu and is sending
keepalive events, open the entity page in the Sensu web UI or run sensuctl entity list .

4. Verify an example event

With your backend and agent still running, send this request to the Sensu core/v2/events API:

Copy the example agent confg fle from

%ALLUSERSPROFILE%\sensu\confg\agent.yml.example

(default: C:\ProgramData\sensu\confg\agent.yml.example) to

C:\ProgramData\sensu\confg\agent.yml

cp C:\ProgramData\sensu\confg\agent.yml.example C:\ProgramData\sensu\confg\agent.yml

Change to the sensu\sensu-agent\bin directory where you installed Sensu

cd 'C:\Program Files\sensu\sensu-agent\bin'

Run the sensu-agent executable

./sensu-agent.exe

Install and start the agent

./sensu-agent service install

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "check-mysql-status"

 },

 "status": 1,

 "output": "could not connect to mysql"

 }

}' \

This request creates a warning event that you can view in your web UI Events page.

To create an OK event, change the status to 0 and resend.
You can change the output value to
connected to mysql to use a different message for the OK event.

Next steps

Now that you have installed Sensu, you’re ready to build your observability pipelines!
Here are some
ideas for next steps.

Get started with Sensu

If you’re ready to try Sensu, one of these pathways can get you started:

Deploy Sensu outside your local development environment

To deploy Sensu for use outside of a local development environment, frst decide whether you want to
run a Sensu cluster.
A Sensu cluster is a group of three or more sensu-backend nodes, each connected
to a shared database provided either by Sensu’s embedded etcd or an external etcd cluster.

Clustering allows you to absorb the loss of a backend node, prevent data loss, and distribute the
network load of agents.
However, scaling a single backend to a cluster or migrating a cluster from
cleartext HTTP to encrypted HTTPS without downtime can require a number of tedious steps.
For this
reason, we recommend that you decide whether your deployment will require clustering as part of your
initial planning effort.

No matter whether you deploy a single backend or a clustered confguration, begin by securing Sensu
with transport layer security (TLS).
The frst step in setting up TLS is to generate the certifcates you

http://127.0.0.1:3031/events

Manually trigger an event that sends alerts to your email inbox.

Create a check to monitor CPU usage and send Slack alerts based on your check.

Collect metrics with a Sensu check and use a handler to populate metrics in InfuxDB.

Use the sensuctl dump command to export all of your events and resources as a backup —
then use sensuctl create to restore if needed.

http://localhost:3000/
https://etcd.io/docs/latest/op-guide/runtime-configuration/

need.
Then, follow our Secure Sensu guide to make Sensu production-ready.

After you’ve secured Sensu, read Run a Sensu cluster if you are setting up a clustered confguration.

Commercial features

Sensu Inc. offers support packages for Sensu Go and commercial features designed for monitoring at
scale.

All commercial features are free for your frst 100 entities.
To learn more about Sensu Go commercial
licenses for more than 100 entities, contact the Sensu sales team.

If you already have a Sensu commercial license, log in to your Sensu account and download your
license fle.
Save your license to a fle such as sensu_license.yml or sensu_license.json .

Use sensuctl to activate your license:

You can use sensuctl to view your license details at any time.

sensuctl create --fle sensu_license.yml

SHELL

sensuctl create --fle sensu_license.json

SHELL

sensuctl license info

https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/contact?subject=contact-sales/
https://account.sensu.io/

Deployment architecture for Sensu

This guide describes various planning considerations and recommendations for a production-ready
Sensu deployment, including details related to communication security and common deployment
architectures.

etcd is a key-value store that is used by applications of varying complexity, from simple web apps to
Kubernetes.
The Sensu backend uses an embedded etcd instance for storing both confguration and
observability event data, so you can get Sensu up and running without external dependencies.

By building atop etcd, Sensu’s backend inherits a number of characteristics to consider when you’re
planning for a Sensu deployment.

Create and maintain clusters

Sensu’s embedded etcd supports initial cluster creation via a static list of peer URLs.
After you create a
cluster, you can add and remove cluster members with etcdctl tooling.

If you have a healthy clustered backend, you only need to make Sensu API calls to any one of the
cluster members.
The cluster protocol will replicate your changes to all cluster members.

Read Run a Sensu cluster and the etcd documentation for more information.

Hardware sizing

Because etcd’s design prioritizes consistency across a cluster, the speed with which write operations
can be completed is very important to the Sensu cluster’s performance and health.
This means that you
should provision Sensu backend infrastructure to provide sustained input/output operations per second
(IOPS) appropriate for the rate of observability events the system will be required to process.

To maximize Sensu Go performance, we recommend that you:

Follow our recommended backend hardware confguration.

Implement documented etcd system tuning practices.

https://etcd.io/docs/
https://etcd.io/docs/latest/tuning/#disk

Communications security

Whether you’re using using a single Sensu backend or multiple Sensu backends in a cluster,
communication with the backend’s various network ports (web UI, HTTP API, WebSocket API, etcd
client and peer) occurs in cleartext by default.
We recommend that you encrypt network
communications via TLS, which requires planning and explicit confguration.

Plan TLS for etcd

The URLs for each member of an etcd cluster are persisted to the database after initialization.
As a
result, moving a cluster from cleartext to encrypted communications requires resetting the cluster,
which destroys all confguration and event data in the database.
Therefore, we recommend planning for
encryption before initiating a clustered Sensu backend deployment.

As described in Secure Sensu, the backend uses a shared certifcate and key for web UI and agent
communications.
You can secure communications with etcd using the same certifcate and key.
The
certifcate’s Common Name (CN) or Subject Alternative Name (SAN) must include the network
interfaces and DNS names that will point to those systems.

Read Run a Sensu cluster and the etcd documentation for more information about TLS setup and
confguration, including a walkthrough for generating TLS certifcates for your cluster.

Common Sensu architectures

Depending on your infrastructure and the type of environments you’ll be monitoring, you may use one
or a combination of these architectures to best ft your needs.

Benchmark your etcd storage volume to establish baseline IOPS for your system.

Scale event storage using PostgreSQL to reduce the overall volume of etcd transactions.

WARNING: Reconfguring a Sensu cluster for TLS post-deployment will require resetting all etcd
cluster members, resulting in the loss of all data.

NOTE: As of Go 1.15, certifcates must include their CN as an SAN feld.
To prevent connection
errors, follow Generate certifcates to make sure your certifcates’ SAN felds include their CNs.

https://etcd.io/docs/
https://www.ibm.com/cloud/blog/using-fio-to-tell-whether-your-storage-is-fast-enough-for-etcd
https://golang.google.cn/doc/go1.15#commonname

Single backend (standalone)

The single backend (standalone) with embedded etcd architecture requires minimal resources but
provides no redundancy in the event of failure.

Single Sensu Go backend or standalone architecture

You can reconfgure a single backend as a member of a cluster, but this operation requires destroying
the existing database.

The single backend (standalone) architecture may be a good ft for small- to medium-sized
deployments (such as monitoring a remote offce or datacenter), deploying alongside individual auto-
scaling groups, or deploying in various segments of a logical environment spanning multiple cloud
providers.

For example, in environments with unreliable WAN connectivity, having agents connect to a local
backend may be more reliable than having agents connect over WAN or VPN tunnel to a backend
running in a central location.

Clustered deployment for single availability zone

To increase availability and replicate both confguration and data, join the embedded etcd databases of
multiple Sensu backend instances together in a cluster.
Read Run a Sensu cluster for more information.

http://localhost:1313/images/go/deployment_architecture/single_backend_standalone_architecture.png

Clustered Sensu Go architecture for a single availability zone

Clustering requires an odd number of backend instances.
Although larger clusters provide better fault
tolerance, write performance suffers because data must be replicated across more machines.
The etcd
maintainers recommend clusters of 3, 5, or 7 backends.
Read the etcd documentation for more
information.

Clustered deployment for multiple availability zones

Distributing infrastructure across multiple availability zones in a given region helps ensure continuous
availability of customer infrastructure in the region if any one availability zone becomes unavailable.
With this in mind, you can deploy a Sensu cluster across multiple availability zones in a given region,
confgured to tolerate reasonable latency between those availability zones.

Clustered Sensu Go architecture for multiple availability zones

http://localhost:1313/images/go/deployment_architecture/clustered_single_availability_zone.png
https://etcd.io/docs/
http://localhost:1313/images/go/deployment_architecture/clustered_multiple_availability_zones.png

Large-scale clustered deployment for multiple availability zones

In a large-scale clustered Sensu Go deployment, you can use as many backends as you wish.
Use one
etcd node per availiability zone, with a minimum of three etcd nodes and a maximum of fve.
Three etcd
nodes allow you to tolerate the loss of a single node with minimal effect on performance.
Five etcd
nodes allow you to tolerate the loss of two nodes, but with a greater effect on performance.

Large-scale clustered Sensu Go architecture for multiple availability zones

Scaled cluster performance with PostgreSQL

To achieve the high rate of event processing that many enterprises require, Sensu supports
PostgreSQL event storage as a commercial feature.
Read the datastore reference to confgure the
Sensu backend to use PostgreSQL for event storage.

http://localhost:1313/images/go/deployment_architecture/large_scale_clustered_multiple_availability_zones.png

Clustered Sensu Go architecture with PostgreSQL event storage

In load testing, Sensu Go has proven capable of processing 36,000 events per second when using
PostgreSQL as the event store.
Review the sensu-perf project repository for a detailed explanation of
our testing methodology and results.

Large-scale cloud deployment for multiple regions

In a large-scale cloud deployment for multiple regions, place all backends, etcd nodes, and event
datastores in a single region.
The backends communicate with agents in other regions via WebSocket
transport.
This confguration allows you to load-balance traffc between the backends in the main
regions and the agents in other regions.

This diagram depicts an example architecture for a Google Cloud Platform (GCP) deployment, but you

NOTE: Do not use read replicas in a cloud deployment.
Sensu is write-heavy, and the brief,
unavoidable replication delays will cause inconsistency between etcd data and PostgreSQL data.

http://localhost:1313/images/go/deployment_architecture/clustered_postgresql.png
https://github.com/sensu/sensu-perf

can reproduce this architecture with your preferred cloud provider:

Example Sensu Go architecture for multi-region cloud deployments

In this example, the load balancer translates traffc on port 80 to port 3000 so that users do not need to
include :3000 in the web UI URL.
API traffc is load-balanced to the backends as well.

Architecture considerations

Networking

Clustered deployments beneft from a fast and reliable network.
Ideally, they should be co-located in the
same network segment with as little latency as possible between all the nodes.
We do not recommend
clustering backends across disparate subnets or WAN connections.

Although 1GbE is suffcient for common deployments, larger deployments will beneft from 10GbE,
which allows a shorter mean time to recovery.

As the number of agents connected to a backend cluster grows, so will the amount of communication
between members of the cluster required for data replication.
With this in mind, clusters with a thousand
or more agents should use a discrete network interface for peer communication.

http://localhost:1313/images/go/deployment_architecture/cloud_multiregion_arch.png

Load balancing

Although you can confgure each Sensu agent with the URLs for multiple backend instances, we
recommend that you confgure agents to connect to a load balancer.
This approach gives operators
more control over agent connection distribution and makes it possible to replace members of the
backend cluster without updates to agent confguration.

Conversely, you cannot confgure the sensuctl command line tool with multiple backend URLs.
Under
normal conditions, sensuctl communications and browser access to the web UI should be routed via a
load balancer.

Load balancing algorithms

If the load balancer uses round robin mode, when an agent comes online, the load balancer sends the
agent’s traffc to whichever backend is next in the pattern, regardless of load.
This can result in slow
load balancing among backends, especially after restarting a backend.

In least connection mode, the load balancer sends new agent traffc to the backend with the least
traffc.
This helps to evenly distribute the load among backends more quickly.

Confguration management

We recommend using confguration management tools to deploy Sensu in production and at scale.

The confguration management tools listed here have well-defned Sensu modules to help you get
started.

Ansible

The Ansible role to deploy and manage Sensu Go is available in the Sensu Go Ansible Collection.

The Sensu Go Ansible Collection documentation site includes installation instructions, example
playbooks, and module references.

Chef

The Chef cookbook for installing and confguring Sensu is available in the Sensu Go Chef Cookbook.

Contact us for more information about Sensu + Chef.

Puppet

The Puppet module to install Sensu is available in the Sensu Puppet Module.

Sensu partnered with Tailored Automation to enhance the Puppet module with new features and bug
fxes.

Pin versions of Sensu-related software to ensure repeatable Sensu deployments.

Ensure consistent confguration between Sensu backends.

https://www.ansible.com/
https://galaxy.ansible.com/sensu/sensu_go
https://sensu.github.io/sensu-go-ansible/
https://www.chef.io/
https://supermarket.chef.io/cookbooks/sensu-go
https://monitoringlove.sensu.io/chef
https://puppet.com/
https://forge.puppet.com/modules/sensu/sensu
https://tailoredautomation.io/

Generate certifcates for your Sensu
installation

This guide explains how to generate the certifcates you need to secure a Sensu cluster and its agents.

When deploying Sensu for use outside of a local development environment, you should secure it using
transport layer security (TLS).
TLS uses encryption to provide security for communication between
Sensu backends and agents as well as communication between human operators and the Sensu
backend, such as web UI or sensuctl access.

Because reconfguring an existing Sensu deployment from cleartext to TLS can be time-consuming,
we recommend that you confgure TLS for your backend from the very beginning.

TLS is also required to use some of Sensu’s commercial features, like secrets management and
mutual TLS authentication (mTLS).

Prerequisites

To use this guide, you must have already installed Sensu on:

Public key infrastructure (PKI)

To use TLS, you must either possess existing public key infrastructure (PKI) or generate your own
Certifcate Authority (CA) for issuing certifcates.

This guide describes how to set up a minimal CA and generate the certifcates you need to secure
Sensu communications for a clustered backend and agents.

If your organization has existing PKI for certifcate issuance, you can adapt the suggestions in this
guide to your organization’s PKI.
Recommended practices for deploying and maintaining production PKI
can be complex and case-specifc, so they are not included in the scope of this guide.

One backend system or three backend systems that you plan to cluster together.

One or more agents.

https://en.wikipedia.org/wiki/Public_key_infrastructure

Issue certifcates

Use a CA certifcate and key to generate certifcates and keys to use with Sensu backends and agents.

This guide uses the CloudFlare cfssl toolkit to generate a CA and self-signed certifcates from that CA.
The examples assume that you’ll install the certifcates and keys in the /etc/sensu/tls directory.

Install TLS

The CloudFlare cfssl toolkit is released as a collection of command-line tools.

These tools only need to be installed on one system to generate your CA and issue certifcates.

You may install the toolkit on your laptop or workstation and store the fles there for safekeeping or
install the toolkit on one of the systems where you’ll run the Sensu backend.
The example in this guide
installs cfssl on a Linux system.

1. Download the cfssl executable:

2. Download the cfssljson executable:

3. Install the cfssl and cfssljson executables in /usr/local/bin:

sudo curl -L

https://github.com/cloudfare/cfssl/releases/download/v1.4.1/cfssl_1.4.1_linux_

amd64 -o /usr/local/bin/cfssl

sudo curl -L

https://github.com/cloudfare/cfssl/releases/download/v1.4.1/cfssljson_1.4.1_li

nux_amd64 -o /usr/local/bin/cfssljson

sudo chmod +x /usr/local/bin/cfssl*

https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl

4. Verify the cfssl executable is version 1.4.1 and runtime go1.12.12:

5. Verify the cfssljson executable is version 1.4.1 and runtime go1.12.12:

Create a Certifcate Authority (CA)

Follow these steps to create a CA with cfssl and cfssljson:

1. Create /etc/sensu/tls (which does not exist by default):

2. Navigate to the new /etc/sensu/tls directory:

3. Create the CA:

4. Defne signing parameters and profles (the agent profle provides the “client auth” usage
required for mTLS):

cfssl version

cfssljson -version

mkdir -p /etc/sensu/tls

cd /etc/sensu/tls

echo '{"CN":"Sensu Test CA","key":{"algo":"rsa","size":2048}}' | cfssl gencert

-initca - | cfssljson -bare ca -

echo '{"signing":{"default":{"expiry":"17520h","usages":["signing","key

encipherment","client auth"]},"profles":{"backend":{"usages":["signing","key

You should now have a directory at /etc/sensu/tls that contains the following fles:

flename description

ca.pem CA root certifcate. Required for all systems running the Sensu backend
or agent. The agent and backend use ca.pem to validate server
certifcates at connection time.

ca-key.pem CA root certifcate private key.

ca-confg.json CA signing parameters and profles. Not used by Sensu.

ca.csr Certifcate signing request for the CA root certifcate. Not used by Sensu.

Generate backend cluster certifcates

Now that you’ve generated a CA, you will use it to generate certifcates and keys for each backend
server (etcd peer).

For each backend server, document the IP addresses and hostnames to use in backend and agent
communications.
During initial confguration of a cluster of Sensu backends, you must describe every
member of the cluster with a URL passed as the value of the etcd-initial-cluster parameter.

In issuing certifcates for cluster members, the IP address or hostname used in these URLs must be
represented in either the Common Name (CN) or Subject Alternative Name (SAN) records in the
certifcate.

encipherment","server auth","client auth"],"expiry":"4320h"},"agent":

{"usages":["signing","key encipherment","client auth"],"expiry":"4320h"}}}}' >

ca-confg.json

NOTE: We suggest a 6-month expiry duration for security, but you can use any duration
you prefer when you defne the expiry attribute value in the signing parameters.

NOTE: As of Go 1.15, certifcates must include their CN as an SAN feld.
Follow the instructions in
this guide to make sure your certifcates’ SAN felds include their CNs.

https://golang.google.cn/doc/go1.15#commonname

This guide assumes a scenario with three backend members that are reachable via a 10.0.0.x IP
address, a fully qualifed name (for example, backend-1.example.com), and an unqualifed name (for
example, backend-1):

Unqualifed
name

IP address Fully qualifed
domain name
(FQDN)

Additional
names

backend-1 10.0.0.1 backend-1.example.com localhost, 127.0.0.1

backend-2 10.0.0.2 backend-2.example.com localhost, 127.0.0.1

backend-3 10.0.0.3 backend-3.example.com localhost, 127.0.0.1

The additional names for localhost and 127.0.0.1 are added here for convenience and are not strictly
required.

Use these name and address details to create two *.pem fles and one *.csr fle for each backend.

For example, to create certifcate and key fles for the three backends:

backend-1

backend-2

The values provided for the ADDRESS variable will be used to populate the certifcate’s SAN
records.
For systems with multiple hostnames and IP addresses, add each to the comma-
delimited value of the ADDRESS variable.

The value provided for the NAME variable will be used to populate the certifcate’s CN record.
It
will also be used in the names for the *.pem and *.csr fles.

export ADDRESS=localhost,127.0.0.1,10.0.0.1,backend-1

export NAME=backend-1.example.com

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -profle="backend" -ca=ca.pem -ca-key=ca-key.pem -

hostname="$ADDRESS" - | cfssljson -bare $NAME

export ADDRESS=localhost,127.0.0.1,10.0.0.2,backend-2

backend-3

The /etc/sensu/tls directory should now include three fles for each backend, in addition to the
four original CA fles:

flename description required on backend?

backend-*.pem Backend server certifcate

backend-*-

key.pem

Backend server private key

backend-*.csr Certifcate signing request

In our example with three backends, the directory listing for /etc/sensu/tls would include 13 fles:

export NAME=backend-2.example.com

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -profle="backend" -ca=ca.pem -ca-key=ca-key.pem -

hostname="$ADDRESS" - | cfssljson -bare $NAME

export ADDRESS=localhost,127.0.0.1,10.0.0.3,backend-3

export NAME=backend-3.example.com

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -profle="backend" -ca=ca.pem -ca-key=ca-key.pem -

hostname="$ADDRESS" - | cfssljson -bare $NAME

/etc/sensu/tls/

├── backend-1.example.com-key.pem

├── backend-1.example.com.pem

├── backend-1.example.com.csr

├── backend-2-key.example.com.pem

├── backend-2.example.com.pem

├── backend-2.example.com.csr

├── backend-3-key.example.com.pem

├── backend-3.example.com.pem

├── backend-3.example.com.csr

├── ca.pem

To make sure the backend fles in /etc/sensu/tls are accessible only by the sensu user, run:

And:

Generate agent certifcate

Now you will generate a certifcate that agents can use to connect to the Sensu backend.
Sensu’s
commercial distribution offers support for authenticating agents via TLS certifcates instead of a
username and password.

For this certifcate, you only need to specify a CN (here, agent) — you don’t need to specify an
address.
You will create the fles agent.pem , agent-key.pem , and agent.csr :

├── ca-key.pem

├── ca-confg.json

└── ca.csr

WARNING: If you are not setting up agent mTLS authentication, delete the ca-key.pem fle from
the /etc/sensu/tls directory.
The ca-key.pem fle contains sensitive information and is no
longer needed unless you are setting up agent mTLS authentication.

chown sensu /etc/sensu/tls/*.pem

chmod 400 /etc/sensu/tls/*.pem

NOTE: Agent certifcates are only required for agent mTLS authentication.
If you are not confguring
mTLS for Sensu agents, you do not need to generate agent certifcates.

export NAME=agent

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="" -

profle=agent - | cfssljson -bare $NAME

The /etc/sensu/tls directory should now include a set of fles for use by Sensu agents:

flename description required on agent?

agent.pem Agent certifcate

agent-key.pem Agent private key

agent.csr Certifcate signing request

To continue the example with three backends, the directory listing for /etc/sensu/tls will include 15
fles after deleting the ca-key.pem fle:

To make sure the agent /etc/sensu/tls fles are accessible only by the sensu user, run:

WARNING: Before you continue, delete the ca-key.pem fle from the /etc/sensu/tls
directory.
This fle contains sensitive information and is no longer needed.

/etc/sensu/tls/

├── agent-key.pem

├── agent.pem

├── agent.csr

├── backend-1.example.com-key.pem

├── backend-1.example.com.pem

├── backend-1.example.com.csr

├── backend-2-key.example.com.pem

├── backend-2.example.com.pem

├── backend-2.example.com.csr

├── backend-3-key.example.com.pem

├── backend-3.example.com.pem

├── backend-3.example.com.csr

├── ca.pem

├── ca-confg.json

└── ca.csr

chown sensu /etc/sensu/tls/*.pem

And:

Install CA certifcates

Before you install the CA certifcates, make sure that the /etc/sensu/tls directory does not
contain the ca-key.pem fle.
The ca-key.pem fle contains sensitive information that is no longer
needed, so you should delete it.

Also, make sure that /etc/sensu/tls includes the CA root certifcate and key, as well as a
certifcate and key for each backend and agent you are securing.

We recommend installing the CA root certifcate in the trust store of both your Sensu systems and
those systems used by operators to manage Sensu.
Installing the CA certifcate in the trust store for
these systems makes it easier to connect via web UI or sensuctl without being prompted to accept
certifcates signed by your self-generated CA.

chmod 400 /etc/sensu/tls/*.pem

chmod 644 /etc/sensu/tls/ca.pem

chown root /etc/sensu/tls/ca.pem

sudo apt-get install ca-certifcates -y

sudo ln -sfv /etc/sensu/tls/ca.pem /usr/local/share/ca-certifcates/sensu-ca.crt

sudo update-ca-certifcates

SHELL

chmod 644 /etc/sensu/tls/ca.pem

chown root /etc/sensu/tls/ca.pem

sudo yum install -y ca-certifcates

sudo update-ca-trust force-enable

sudo ln -s /etc/sensu/tls/ca.pem /etc/pki/ca-trust/source/anchors/sensu-ca.pem

sudo update-ca-trust

SHELL

SHELL

Renew self-generated certifcates

To keep your Sensu deployment running smoothly, renew your self-generated certifcates before they
expire.
Depending on how your certifcates are confgured, one backend certifcate may expire before
the others or all three backend certifcates may expire at the same time.
The agent certifcate also
expires.

This section explains how to fnd certifcate expiration dates, confrm whether certifcates have already
expired, and renew certifcates.

Find certifcate expiration dates

Use this check to fnd certifcate expiration dates so you can renew certifcates before they expire and

Import the root CA certifcate on the Mac.

Double-click the root CA certifcate to open it in Keychain Access.

The root CA certifcate appears in login.

Copy the root CA certifcate to System to ensure that it is trusted by all users and

local system processes.

Open the root CA certifcate, expand Trust, select Use System Defaults, and save your

changes.

Reopen the root CA certifcate, expand Trust, select Always Trust, and save your

changes.

Delete the root CA certifcate from login.

Press Windows+R to open the Run dialog.

Type "MMC" (without quotation marks) in the Run dialog and press Enter to open the

MMC console.

In the MMC console, expand the Certifcates (Local Computer) node and navigate to

Trusted Root Certifcation Authorities > Certifcates.

Right-click the Trusted Root Certifcation Authorities > Certifcates folder and

select All Tasks > Import to open the Certifcate Import dialog.

In the Certifcate Import dialog, click Next and browse to the location where the

root CA certifcate is stored.

Select the root CA certifcate fle and click Open.

Click Next, click Next, and click Finish.

SHELL

avoid observability interruptions.

Before you run the check, replace <cert-name>.pem in the command with the name of the certifcate
you want to check (for example, backend-1.example.com.pem).

The check output will be in the format notAfter=Month Day HH:MM:SS Year Timezone .
For example:

type: CheckConfg

api_version: core/v2

metadata:

 name: expired_certs

spec:

 command: openssl x509 -noout -enddate -in <cert-name>.pem

 subscriptions:

 - system

 publish: true

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "expired_certs"

 },

 "spec": {

 "command": "openssl x509 -noout -enddate -in <cert-name>.pem",

 "subscriptions": [

 "system"

],

 "publish": true

 }

}

JSON

notAfter=Jul 3 22:23:50 2021 GMT

Add a handler to send the check output as a notifcation or to a log fle.

Identify expired certifcates

The following sensuctl cluster health response indicates that one backend certifcate is expired:

The log for the expired backend will be similar to this example:

If you restart the cluster with one expired backend certifcate, the sensuctl cluster health
response will include an error:

When all three backend certifcates are expired, the log will be similar to this example:

Error: GET "/health": Get https://localhost:8080/health?timeout=3: x509: certifcate

has expired or is not yet valid

backend-1.example.com | {"component":"etcd","level":"warning","msg":"health check

for peer a95ca1cdb0b1fcc3 could not connect: remote error: tls: bad certifcate

(prober \"ROUND_TRIPPER_RAFT_MESSAGE\")","pkg":"rafthttp","time":"2021-06-

22T20:40:54Z"}

backend-1.example.com | {"component":"etcd","level":"warning","msg":"health check

for peer a95ca1cdb0b1fcc3 could not connect: remote error: tls: bad certifcate

(prober \"ROUND_TRIPPER_RAFT_MESSAGE\")","pkg":"rafthttp","time":"2021-06-

22T20:40:54Z"}

Error: GET "/health": failed to request new refresh token; client returned 'Post

https://localhost:8080/auth/token: EOF'

backend-1.example.com | {"component":"etcd","level":"warning","msg":"health check

for peer a95ca1cdb0b1fcc3 could not connect: x509: certifcate has expired or is not

yet valid (prober \"ROUND_TRIPPER_RAFT_MESSAGE\")","pkg":"rafthttp","time":"2021-06-

25T17:49:53Z"}

backend-2.example.com | {"component":"etcd","level":"warning","msg":"health check

for peer 4cc36e198efb22e8 could not connect: x509: certifcate has expired or is not

If you restart the cluster with three expired backend certifcates, the sensuctl cluster health
response will include an error:

The following sensuctl cluster health response helps confrm that all three backend certifcates
are expired, together with the log warning and restart error examples:

An expired agent certifcate does not cause any errors or log messages to indicate the expiration.
Use
the certifcate expiration check to fnd the agent certifcate expiration date.

Renew certifcates

To renew your certifcates, whether they expired or not, follow the steps to create a CA, generate
backend certifcates, or generate an agent certifcate.
The new certifcate will override the existing
certifcate.

After you save the new certifcates, restart each backend:

yet valid (prober \"ROUND_TRIPPER_RAFT_MESSAGE\")","pkg":"rafthttp","time":"2021-06-

25T17:49:16Z"}

backend-3.example.com | {"component":"etcd","level":"warning","msg":"health check

for peer 8425a7b2d2ee8597 could not connect: x509: certifcate has expired or is not

yet valid (prober \"ROUND_TRIPPER_RAFT_MESSAGE\")","pkg":"rafthttp","time":"2021-06-

25T17:49:16Z"}

Error: GET "/health": Get https://127.0.0.1:8080/health?timeout=3: EOF

=== Etcd Cluster ID: 45c04eab9efc0d11

 ID Name Error Healthy

 ────────────────── ──────────────────────── ─────────────────────────── ─────────

 a95ca1cdb0b1fcc3 backend-1.example.com context deadline exceeded false

 8425a7b2d2ee8597 backend-2.example.com context deadline exceeded false

 4cc36e198efb22e8 backend-3.example.com context deadline exceeded false

sudo systemctl start sensu-backend

Next step: Secure Sensu

Now that you have generated the required certifcates, follow Secure Sensu to make your Sensu
installation production-ready.

Secure Sensu

As with any piece of software, it is critical to minimize any attack surface the software exposes.
Sensu is
no different.

This reference describes the components you need to secure to make Sensu production-ready,
including etcd peer communication, the Sensu API and web UI, and Sensu agent-to-server
communication.
It also describes agent mutual transport layer security (mTLS) authentication, which is
required for secrets management.

Before you can secure Sensu, you must generate the certifcates you will need.
After you generate
certifcates, follow this reference to secure Sensu for production.

Secure etcd peer communication

To properly secure etcd communication, replace the default confguration option values in your
backend store confguration in /etc/sensu/backend.yml as follows:

1. Replace the placeholder with the path to your certifcate and key for the etcd-cert-fle and
etcd-key-fle to secure client communication:

NOTE: As of Go 1.15, certifcates must include their Common Name (CN) as a Subject Alternative
Name (SAN) feld.
To prevent connection errors, follow Generate certifcates to make sure your
certifcates’ SAN felds include their CNs.

WARNING: You must update the default confguration for Sensu’s embedded etcd with an explicit,
non-default confguration to secure etcd communication in transit.
If you do not properly confgure
secure etcd communication, your Sensu confguration will be vulnerable to unauthorized
manipulation via etcd client connections.

etcd-cert-fle: "/etc/sensu/tls/backend-1.example.com.pem"

etcd-key-fle: "/etc/sensu/tls/backend-1.example.com-key.pem"

https://golang.google.cn/doc/go1.15#commonname

2. Replace the placeholder with the path to your certifcate and key for the etcd-peer-cert-fle
and etcd-peer-key-fle to secure cluster communication:

3. Replace the placeholder with the path to your ca.pem certifcate for the etcd-trusted-ca-
fle and etcd-peer-trusted-ca-fle to secure communication with the etcd client server
and between etcd cluster members:

4. Add non-default values for etcd-listen-client-urls , etcd-listen-peer-urls , and
etcd-initial-advertise-peer-urls :

5. Set etcd-client-cert-auth and etcd-peer-client-cert-auth to true to ensure that
etcd only allows connections from clients and peers that present a valid, trusted certifcate:

Because etcd does not require authentication by default, you must set the etcd-client-cert-
auth and etcd-peer-client-cert-auth confguration options to true to secure Sensu’s

etcd-peer-cert-fle: "/etc/sensu/tls/backend-1.example.com.pem"

etcd-peer-key-fle: "/etc/sensu/tls/backend-1.example.com-key.pem"

etcd-trusted-ca-fle: "/etc/sensu/tls/ca.pem"

etcd-peer-trusted-ca-fle: "/etc/sensu/tls/ca.pem"

etcd-listen-client-urls: "https://localhost:2379"

etcd-listen-peer-urls: "https://localhost:2380"

etcd-advertise-client-urls: "https://localhost:2379"

etcd-initial-advertise-peer-urls: "https://localhost:2380"

NOTE: If you are securing a cluster, use your backend node IP address instead of
localhost in the non-default values for etcd-listen-client-urls , etcd-listen-
peer-urls , and etcd-initial-advertise-peer-urls .

etcd-client-cert-auth: "true"

etcd-peer-client-cert-auth: "true"

embedded etcd datastore against unauthorized access.

Secure the Sensu agent API, HTTP API, and web UI

The Sensu Go agent API, HTTP API, and web UI use a common stanza in
/etc/sensu/backend.yml to provide the certifcate, key, and CA fle needed to provide secure

communication.

Confgure the following backend secure sockets layer (SSL) attributes in /etc/sensu/backend.yml :

1. Replace the placeholders with the paths to your CA root, backend certifcate, and backend key
fles for the trusted-ca-fle , cert-fle , and key-fle confguration options:

2. Set the insecure-skip-tls-verify confguration option to false :

3. When you provide these cert-fle and key-fle confguration options, the agent WebSocket API
and HTTP API will serve requests over SSL/TLS (https).
For this reason, you must also specify
https:// schema for the api-url confguration option for backend API confguration:

NOTE: The Sensu backend reference includes more information about each etcd store
confguration option.

NOTE: By changing these confguration options, the server will communicate using transport layer
security (TLS) and expect agents that connect to it to use the WebSocket secure protocol.
For
communication to continue, you must complete the confguration in this section and in the Sensu
agent-to-server communication section.

trusted-ca-fle: "/etc/sensu/tls/ca.pem"

cert-fle: "/etc/sensu/tls/backend-1.example.com.pem"

key-fle: "/etc/sensu/tls/backend-1.example.com-key.pem"

insecure-skip-tls-verify: false

Restart the sensu-backend service:

After you restart the sensu-backend service, the confguration options will load and you will able to
access the web UI at https://localhost:3000.
Confguring these options will also ensure that agents can
communicate securely.

Specify a separate web UI certifcate and key

You can use the same certifcates and keys to secure etcd, the HTTP API, and the web UI.
However, if
you prefer, you can use a separate certifcate and key for the web UI (for example, a commercially
purchased certifcate and key).

To do this, add the dashboard-cert-fle and dashboard-key-fle confguration options for
backend SSL confguration in /etc/sensu/backend.yml :

Secure Sensu agent-to-server communication

api-url: "https://localhost:8080"

sudo systemctl restart sensu-backend

NOTE: The Sensu backend reference includes more information about each API and web UI
security confguration option.

dashboard-cert-fle: "/etc/sensu/tls/separate-webui-cert.pem"

dashboard-key-fle: "/etc/sensu/tls/separate-webui-key.pem"

NOTE: If you do not specify a separate certifcate and key for the web UI with dashboard-cert-
fle and dashboard-key-fle , Sensu uses the certifcate and key specifed for the cert-fle
and key-fle confguration options for the web UI.
The Sensu backend reference includes more
information about the dashboard-cert-fle and dashboard-key-fle web UI confguration
options.

By default, an agent uses the insecure ws:// transport.
Here’s an example for agent confguration in
/etc/sensu/agent.yml :

To use WebSocket over SSL/TLS (wss), change the backend-url value to the wss:// schema in
/etc/sensu/agent.yml :

The agent will connect to Sensu backends over wss.
Remember, if you change the confguration to wss,
plaintext communication will not be possible.

You can also provide a trusted CA root certifcate fle as part of the agent confguration (named
ca.pem in the example in Generate certifcates).
If you will start the agent via sensu-agent start ,

pass the --trusted-ca-fle fag with the start command.
Otherwise, include the trusted-ca-fle

confguration option in the agent confguration in /etc/sensu/agent.yml :

Optional: Confgure Sensu agent mTLS authentication

NOTE: If you change the agent confguration to communicate via WebSocket Secure protocol, the
agent will no longer communicate over a plaintext connection.
For communication to continue, you
must complete the steps in this section and secure the Sensu agent API, HTTP API, and web UI .

backend-url:

 - "ws://127.0.0.1:8081"

backend-url:

 - "wss://127.0.0.1:8081"

trusted-ca-fle: "/etc/sensu/tls/ca.pem"

NOTE: If you are creating a Sensu cluster, every cluster member needs to be present in the
confguration.
Read Run a Sensu cluster for more information about how to confgure agents for a
clustered confguration.

By default, Sensu agents require username and password authentication to communicate with Sensu
backends.
For Sensu’s default user credentials and details about confguring Sensu role-based access
control (RBAC), read the RBAC reference.

Alternatively, Sensu agents can use mTLS for authenticating to the backend WebSocket transport.
When agent mTLS authentication is enabled, agents do not need to send password credentials to
backends when they connect.
To use secrets management, Sensu agents must be secured with mTLS.
In addition, when using mTLS authentication, agents do not require an explicit user in Sensu.
Sensu
agents default to authenticating as the agent user and using permissions granted to the
system:agents group by the system:agents cluster role and cluster role binding.

You can still bind agents to a specifc user when the system:agents group is problematic.
For this use
case, create a user that matches the Common Name (CN) of the agent’s certifcate.

For example, if you have a certifcate named client.pem , you can run the following command to
view the certifcate’s CN with openssl:

The response should be similar to this example:

COMMERCIAL FEATURE : Access client mutual transport layer security (mTLS) authentication in
the packaged Sensu Go distribution.
For more information, read Get started with commercial
features.

NOTE: Sensu agents need to be able to create events in the agent’s namespace.
To ensure that
agents with incorrect CN felds can’t access the backend, remove the default system:agents
group.

openssl x509 -in client.pem -text -noout

Certifcate:

 Data:

 Version: 3 (0x2)

 Serial Number:

 37:57:7b:04:1d:67:63:7b:ff:ae:39:19:5b:55:57:80:41:3c:ec:ff

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: CN = CA

 Validity

 Not Before: Sep 26 18:58:00 2019 GMT

The Subject: feld indicates the certifcate’s CN is client , so to bind the agent to a particular user
in Sensu, create a user called client .

To enable agent mTLS authentication:

1. Create and distribute a new Certifcate Authority (CA) root certifcate and new agent and
backend certifcates and keys according to the Generate certifcates guide.

2. Add the following confguration options and values to the backend confguration
/etc/sensu/backend.yml :

3. Add the following confguration options and values to the agent confguration in
/etc/sensu/agent.yml :

You can use use certifcates for authentication that are distinct from other communication channels
used by Sensu, like etcd or the API.
However, deployments can also use the same certifcates and keys
for etcd peer and client communication, the HTTP API, and agent authentication without issues.

Certifcate revocation check

The Sensu backend checks certifcate revocation list (CRL) and Online Certifcate Status Protocol
(OCSP) endpoints for agent mTLS, etcd client, and etcd peer connections whose remote sides present
X.509 certifcates that provide CRL and OCSP revocation information.

 Not After : Sep 24 18:58:00 2024 GMT

 Subject: CN = client

...

agent-auth-cert-fle: "/etc/sensu/tls/backend-1.example.com.pem"

agent-auth-key-fle: "/etc/sensu/tls/backend-1.example.com-key.pem"

agent-auth-trusted-ca-fle: "/etc/sensu/tls/ca.pem"

cert-fle: "/etc/sensu/tls/agent.pem"

key-fle: "/etc/sensu/tls/agent-key.pem"

trusted-ca-fle: "/etc/sensu/tls/ca.pem"

Optional: Confgure Sensu for FIPS compliance

Sensu provides a Linux amd64 OpenSSL-linked build that supports the Federal Information
Processing Standard (FIPS) for Federal Risk and Authorization Management Program (FedRAMP)
compliance.

The Sensu build with FIPS-mode confguration options is linked with the FIPS 140-2 validated
cryptographic library.
Sensu builds comply with the FIPS-mode kernel option to enforce FIPS
systemwide in Red Hat Enterprise Linux (RHEL).
Contact Sensu to request the build with FIPS support.

Sensu backends and agents will work on systems with FIPS kernel mode if the require-fps and
require-openssl confguration options are set to true in the backend and agent confguration fles

Sensu backends and agents that have require-fps enabled will not work on systems without FIPS
kernel mode.

Sensu backends on systems with FIPS kernel mode will work with PostgreSQL on systems with FIPS
kernel mode.
For PostgreSQL on systems without FIPS kernel mode, Sensu backends with FIPS kernel
mode will work as long as the PostgreSQL system supports FIPS-compliant ciphers/cipher suites.

Sensu agents and sensuctl on systems with and without FIPS kernel mode can connect to Sensu
backends on systems with FIPS kernel mode.

Confguration example for embedded etcd

To confgure the Sensu backend for FIPS mode with embedded etcd, update the backend
confguration fle at /etc/sensu/backend.yml to use the following settings:

fps confguration

require-openssl: true

require-fps: true

etcd confguration

etcd-listen-client-urls: "https://localhost:2379"

etcd-listen-peer-urls: "https://localhost:2380"

etcd-advertise-client-urls: "https://localhost:2379"

etcd-initial-advertise-peer-urls: "https://localhost:2380"

etcd client tls confguration

etcd-client-cert-auth: "true"

https://sensu.io/contact

Confguration example for external etcd

To confgure the Sensu backend for FIPS mode with external etcd, update the backend confguration
fle at /etc/sensu/backend.yml to use the following settings:

etcd-trusted-ca-fle: "/etc/sensu/tls/ca.pem"

etcd-cert-fle: "/etc/sensu/tls/centos-7-fps-1-backend.pem"

etcd-key-fle: "/etc/sensu/tls/centos-7-fps-1-backend-key.pem"

etcd peer tls confguration

etcd-peer-client-cert-auth: "true"

etcd-peer-trusted-ca-fle: "/etc/sensu/tls/ca.pem"

etcd-peer-cert-fle: "/etc/sensu/tls/centos-7-fps-1-backend.pem"

etcd-peer-key-fle: "/etc/sensu/tls/centos-7-fps-1-backend-key.pem"

api confguration

api-url: "https://localhost:8080"

api tls confguration

insecure-skip-tls-verify: false

trusted-ca-fle: "/etc/sensu/tls/ca.pem"

cert-fle: "/etc/sensu/tls/centos-7-fps-1-backend.pem"

key-fle: "/etc/sensu/tls/centos-7-fps-1-backend-key.pem"

NOTE: If you are securing a cluster, use your backend node IP address instead of localhost .

fps confguration

require-openssl: true

require-fps: true

etcd confguration

etcd-trusted-ca-fle: "/etc/sensu/tls/ca.pem"

etcd-cert-fle: "/etc/sensu/tls/centos-7-fps-1-backend.pem"

etcd-key-fle: "/etc/sensu/tls/centos-7-fps-1-backend-key.pem"

etcd-client-urls: "https://localhost:2379"

no-embed-etcd: true

api confguration

Use the following settings in your etcd confguration:

api-url: "https://localhost:8080"

api tls confguration

insecure-skip-tls-verify: false

trusted-ca-fle: "/etc/sensu/tls/ca.pem"

cert-fle: "/etc/sensu/tls/centos-7-fps-1-backend.pem"

key-fle: "/etc/sensu/tls/centos-7-fps-1-backend-key.pem"

name: "centos-7-fps-1"

data-dir: "/var/lib/etcd-external"

auto-compaction-mode: "revision"

auto-compaction-retention: "2"

cluster confg

initial-cluster-token: "sup3rs3cr3t"

initial-cluster: "centos-7-fps-1=https://centos-7-fps-1:2380"

initial-cluster-state: "new"

etcd confguration

listen-client-urls: "https://localhost:2379"

listen-peer-urls: "https://localhost:2380"

advertise-client-urls: "https://localhost:2379"

initial-advertise-peer-urls: "https://localhost:2380"

etcd client tls confguration

client-transport-security:

 client-cert-auth: true

 trusted-ca-fle: /etc/etcd/tls/ca.pem

 cert-fle: /etc/etcd/tls/centos-7-fps-1-backend.pem

 key-fle: /etc/etcd/tls/centos-7-fps-1-backend-key.pem

 auto-tls: false

etcd peer tls confguration

peer-transport-security:

 client-cert-auth: true

 trusted-ca-fle: /etc/etcd/tls/ca.pem

 cert-fle: /etc/etcd/tls/centos-7-fps-1-backend.pem

 key-fle: /etc/etcd/tls/centos-7-fps-1-backend-key.pem

Next step: Run a Sensu cluster

Well done!
Your Sensu installation should now be secured with TLS.
The last step before you deploy
Sensu is to set up a Sensu cluster.

 auto-tls: false

NOTE: If you are securing a cluster, use your backend node IP address instead of localhost .

Secure PostgreSQL

This guide describes how to secure communication between Sensu and the PostgreSQL event store
using certifcate authentication.
When deploying Sensu for use outside of a local development
environment, you should secure it using transport layer security (TLS).

To learn how to secure communications between Sensu and its agents, read Generate certifcates for
your Sensu installation and Secure Sensu.

Prerequisites

To use this guide, you must have:

Install cfssl

The CloudFlare cfssl toolkit is released as a collection of command-line tools.

If you followed Generate certifcates for your Sensu installation, you already downloaded and installed
the Cloudfare cfssl toolkit.
If not, run the following commands:

NOTE: This guide describes one option for securing communication between Sensu and
PostgreSQL and is intended as a starting point.
Your organization’s needs may require a different
approach.

A running Sensu deployment.

A running PostgreSQL instance that you’ve confgured according to Scale Sensu Go with
Enterprise datastore.
The commands in this guide use PostgreSQL version 14.

sudo curl -s -L -o /bin/cfssl

https://github.com/cloudfare/cfssl/releases/download/v1.6.2/cfssl_1.6.2_linux_amd64

sudo curl -s -L -o /bin/cfssljson

https://github.com/cloudfare/cfssl/releases/download/v1.6.2/cfssljson_1.6.2_linux_am

SHELL

https://github.com/cloudflare/cfssl

To verify that cfssl is installed, run:

Create a Certifcate Authority (CA)

Follow these steps to create a CA with cfssl and cfssljson:

1. Create /etc/sensu/tls (which does not exist by default):

2. Navigate to the new /etc/sensu/tls directory:

3. Create the CA:

d64

sudo curl -s -L -o /bin/cfssl-certinfo

https://github.com/cloudfare/cfssl/releases/download/v1.6.2/cfssl-

certinfo_1.6.2_linux_amd64

sudo chmod +x /bin/cfssl*

Update apt repos

sudo apt-get update

Install cfssl

sudo apt-get install golang-cfssl

SHELL

cfssl version

mkdir -p /etc/sensu/tls

cd /etc/sensu/tls

4. Defne signing parameters and profles:

You should now have a directory at /etc/sensu/tls that contains the following fles:

flename description

ca.pem CA root certifcate. Required for all systems running the Sensu backend
or agent. The agent and backend use ca.pem to validate server
certifcates at connection time.

ca-key.pem CA root certifcate private key.

ca-confg.json CA signing parameters and profles. Not used by Sensu.

ca.csr Certifcate signing request for the CA root certifcate. Not used by Sensu.

Generate certifcate and key for PostgreSQL

Next, generate the certifcates you need for PostgreSQL.

This guide assumes your PostgreSQL instance is reachable via a 10.0.0.x IP address, a fully
qualifed name (for example, postgres.example.com), and an unqualifed name (for example,
postgres):

echo '{"CN":"Sensu Test CA","key":{"algo":"rsa","size":2048}}' | cfssl gencert

-initca - | cfssljson -bare ca -

echo '{"signing":{"default":{"expiry":"17520h","usages":["signing","key

encipherment","client auth"]},"profles":{"postgresql":{"usages":

["signing","key encipherment","server auth","client

auth"],"expiry":"4320h"},"backend":{"usages":["signing","key

encipherment","client auth"],"expiry":"4320h"}}}}' > ca-confg.json

NOTE: We suggest a 6-month expiry duration for security, but you can use any duration
you prefer when you defne the expiry attribute value in the signing parameters.

Unqualifed
name

IP address Fully qualifed
domain name
(FQDN)

Additional
names

postgres 10.0.0.43 postgres.example.com localhost, 127.0.0.1

The additional names for localhost and 127.0.0.1 are added here for convenience and are not strictly
required.

For example:

The /etc/sensu/tls directory should now include the following fles for your PostgreSQL instance:

flename description

postgres.example.

com.pem

The certifcate that your PostgreSQL instance will use.

postgres.example.

com-key.pem

The private key that your PostgreSQL instance will use.

postgres.example.

com.csr

Certifcate signing request for the PostgreSQL certifcate. Not used.

The values provided for the ADDRESS variable will be used to populate the certifcate’s SAN
records.
For systems with multiple hostnames and IP addresses, add each to the comma-
delimited value of the ADDRESS variable.

The value provided for the NAME variable will be used to populate the certifcate’s CN record.
It
will also be used in the names for the *.pem and *.csr fles.

export ADDRESS=localhost,127.0.0.1,10.0.0.43,postgres,postgres.example.com

export NAME=postgres.example.com

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -profle="postgresql" -ca=ca.pem -ca-key=ca-key.pem -

hostname="$ADDRESS" - | cfssljson -bare $NAME

Generate certifcate and key for your Sensu backend

Just like the certifcate and key for PostgreSQL, you’ll need a certifcate and key for the Sensu
backend.

To generate the backend certifcate and key, run:

You’ll also need to change the ownership of the certifcate fles to the sensu user:

You should now have the following fles in your /etc/sensu/tls directory, which the Sensu backend
will use to communicate with PostgreSQL:

flename description

sensu.pem The certifcate that your Sensu backend will use.

sensu-key.pem The private key that your Sensu backend will use.

sensu.csr Certifcate signing request for the Sensu backend certifcate. Not used.

Now that you have the required certifcates and keys, you can confgure Sensu to use certifcate
authentication with PostgreSQL.

export POSTGRES_USERNAME=sensu

echo '{"CN":"'$POSTGRES_USERNAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' |

cfssl gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="" -

profle=backend - | cfssljson -bare $POSTGRES_USERNAME

chown -R sensu:sensu /etc/sensu/tls

WARNING: Once you’ve generated all of your certifcates, delete the ca-key.pem fle from the
/etc/sensu/tls directory.
The ca-key.pem fle contains sensitive information and is only

needed on your PostgreSQL instance.

Confgure Sensu to use certifcate authentication with
PostgreSQL

Working from your Sensu backend, follow these steps to confgure Sensu to use certifcate
authentication with PostgreSQL:

1. Defne the environment variables that tell the Sensu backend to use a certifcate to authenticate
to PostgreSQL:

Do not restart your backend to load the environment variables yet.

2. Adjust the Sensu datastore connection with sensuctl:

NOTE: The Sensu backend uses the libpq library to make connections to PostgreSQL.
This library
supports a number of environment variables that can be injected into the PostgreSQL data source
name (DSN) and are loaded at runtime using the system’s environment variable fle.
These
environment variables allow you to customize the Sensu backend’s PostgreSQL DSN construction
to suit your needs.

echo 'PGUSER=sensu

PGSSLMODE="verify-full"

PGSSLCERT="/etc/sensu/tls/sensu.pem"

PGSSLKEY="/etc/sensu/tls/sensu-key.pem"

PGSSLROOTCERT="/etc/sensu/tls/ca.pem"' | sudo tee /etc/sysconfg/sensu-backend

SHELL

echo 'PGUSER=sensu

PGSSLMODE="verify-full"

PGSSLCERT="/etc/sensu/tls/sensu.pem"

PGSSLKEY="/etc/sensu/tls/sensu-key.pem"

PGSSLROOTCERT="/etc/sensu/tls/ca.pem"' | sudo tee /etc/default/sensu-backend

SHELL

echo 'type: PostgresConfg

api_version: store/v1

https://www.postgresql.org/docs/current/libpq-envars.html

3. Confrm that the connection to your PostgreSQL instance is healthy:

The response should be similar to this example, with true values for both Active and
Healthy :

metadata:

 name: sensu_postgres

spec:

 dsn: "postgresql://sensu:mypass@postgres.example.com:5432/sensu_events"

 pool_size: 20

 strict: false' | sudo tee postgresconfg.yml

sensuctl create -f postgresconfg.yml

NOTE: Setting strict: false in the confguration helps ensure that the Sensu backend
will remain active and able to process events even in case of a confguration mistake.

curl http://localhost:8080/health

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 13217573501179607000,

 "MemberIDHex": "b76e4111d26d35e2",

 "Name": "sensu.example.com",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 11959078708079102000,

 "member_id": 6370351775894128000,

 "raft_term": 4242

 },

 "PostgresHealth": [

 {

Now that you’ve confrmed that the Sensu backend can connect to your PostgreSQL instance,
you can confgure PostgreSQL to use TLS.

Confgure PostgreSQL to use TLS

To confgure your PostgreSQL instance to use TLS:

1. Copy your PostgreSQL certifcate fles from your Sensu backend.
From the /etc/sensu/tls

directory, run:

2. From your PostgreSQL instance, create a new directory and move your PostgreSQL certifcate
fles from your Sensu backend:

 "Name": "sensu_postgres",

 "Active": true,

 "Healthy": true

 }

]

}

scp postgres.example.com* postgres.example.com:/home/user

scp ca.pem postgres.example.com:/home/user

sudo mkdir /var/lib/pgsql/14/data/tls

cd /var/lib/pgsql/14/data/tls

cp /home/user/postgres.example.com* /var/lib/pgsql/14/data/tls/

cp /home/user/ca.pem /var/lib/pgsql/14/data/tls/

chown -R postgres:postgres /var/lib/pgsql/14/data

SHELL

sudo mkdir /etc/postgresql/14/main/tls

cd /etc/postgresql/14/main/tls

cp /home/user/postgres.example.com* /etc/postgresql/14/main/tls/

cp /home/user/ca.pem /etc/postgresql/14/main/tls/

chown -R postgres:postgres /etc/postgresql/14/main/

SHELL

3. Open the PostgreSQL confguration fle postgresql.conf in your code editor and edit the
following lines to enable TLS:

Save your changes and close the fle.

4. Open the pg_hba.conf fle in your Linux distribution and add the following lines to confgure
host-based authentication to accept certifcates only when accessing the sensu_events
database:

vim /var/lib/pgsql/14/data/postgresql.conf

- SSL -

ssl = on

ssl_ca_fle = '/var/lib/pgsql/14/data/tls/ca.pem'

ssl_cert_fle = '/var/lib/pgsql/14/data/tls/postgres.example.com.pem'

ssl_key_fle = '/var/lib/pgsql/14/data/tls/postgres.example.com-key.pem'

SHELL

vim /etc/postgresql/14/main/postgresql.conf

- SSL -

ssl = on

ssl_ca_fle = '/etc/postgresql/14/main/tls/ca.pem'

ssl_cert_fle = '/etc/postgresql/14/main/tls/postgres.example.com.pem'

ssl_key_fle = '/etc/postgresql/14/main/tls/postgres.example.com-key.pem'

SHELL

/var/lib/pgsql/14/data/pg_hba.conf (fle location)

Prevent "postgres" superuser login via a certifcate

hostssl all postgres ::/0 reject

hostssl all postgres 0.0.0.0/0 reject

SHELL

Take care to add the new lines in the positions shown in the following example:

5. Restart PostgreSQL:

Rules for Sensu DB connection

hostssl sensu_events sensu 0.0.0.0/0 cert

/etc/postgresql/14/main/pg_hba.conf (fle location)

Prevent "postgres" superuser login via a certifcate

hostssl all postgres ::/0 reject

hostssl all postgres 0.0.0.0/0 reject

Rules for Sensu DB connection

hostssl sensu_events sensu 0.0.0.0/0 cert

SHELL

sudo systemctl restart postgresql-14.service

SHELL

http://localhost:1313/images/go/secure_postgres/config_cert_auth.png

Now that you’ve confgured PostgreSQL to use TLS and your Sensu user is required to authenticate
with a certifcate, complete one fnal step to ensure that the Sensu backend uses the environment
variables set earlier in this guide when constructing the PostgreSQL DSN.

Validate Sensu backend confguration for PostgreSQL

After restarting PostgreSQL, the Sensu user should not be able to communicate with PostgreSQL
because it requires certifcate authentication for the sensu_events database.
Run:

The response should include false values for PostgresHealth.Active and PostgresHealth.Healthy:

sudo systemctl restart postgresql.service

SHELL

curl http://localhost:8080/health

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 13217573501179607000,

 "MemberIDHex": "b76e4111d26d35e2",

 "Name": "sensu.example.com",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 11959078708079102000,

 "member_id": 6370351775894128000,

 "raft_term": 4242

 },

 "PostgresHealth": [

 {

For Sensu to use certifcate authentication, you must restart the backend service to load the
environment variables set previously:

To validate that your Sensu backend can reach PostgreSQL and authenticate after restarting, run the
following command:

The response should be similar to the following example.
If the Active and Healthy attributes are
not both true , stop and troubleshoot your connection to PostgreSQL before you continue:

 "Name": "sensu_postgres",

 "Active": false,

 "Healthy": false

 }

]

}

sudo systemctl restart sensu-backend.service

curl http://localhost:8080/health

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 13217573501179607000,

 "MemberIDHex": "b76e4111d26d35e2",

 "Name": "sensu.example.com",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 11959078708079102000,

 "member_id": 6370351775894128000,

 "raft_term": 4242

 },

 "PostgresHealth": [

Optional step: Require PostgreSQL as event store

To force Sensu to always use PostgreSQL as the event store instead of falling back to etcd if
PostgreSQL becomes unavailable, set strict: true in your PostgreSQL confguration fle.

If you prefer to use etcd as a fallback, skip this step.
Using etcd as a fallback may result in disk
quota alarms and etcd unavailability, especially in environments with a large number of events.

To set strict: true in your PostgreSQL confguration fle, run:

Your backend will now use PostgreSQL exclusively for storing events.

To view your PostgresConfg defnition and confrm that it is updated, run:

 {

 "Name": "sensu_postgres",

 "Active": true,

 "Healthy": true

 }

]

}

echo 'type: PostgresConfg

api_version: store/v1

metadata:

 name: sensu_postgres

spec:

 dsn: "postgresql://postgres.example.com:5432/sensu_events"

 pool_size: 20

 strict: true' | sudo tee postgresconfg.yml

sensuctl create -f postgresconfg.yml

sensuctl dump store/v1.PostgresConfg --format yaml

Run a Sensu cluster

To deploy Sensu for use outside of a local development environment, frst decide whether you want to
run a Sensu cluster.

A Sensu cluster is a group of at least three sensu-backend nodes, each connected to a shared
database provided either by Sensu’s embedded etcd or an external etcd cluster.
Creating a Sensu
cluster ultimately confgures an etcd cluster.

Clustering improves Sensu’s availability, reliability, and durability.
It allows you to absorb the loss of a
backend node, prevent data loss, and distribute the network load of agents.
If you have a healthy
clustered backend, you only need to make Sensu API calls to any one of the cluster members.
The
cluster protocol will replicate your changes to all cluster members.

Scaling a single backend to a cluster or migrating a cluster from cleartext HTTP to encrypted HTTPS
without downtime can require a number of tedious steps.
For this reason, we recommend that you
decide whether your deployment will require clustering as part of your initial planning effort.

No matter whether you deploy a single backend or a clustered confguration, begin by securing Sensu
with transport layer security (TLS).
The frst step in setting up TLS is to generate the certifcates you
need.
Then, follow our Secure Sensu guide to make Sensu production-ready.

After you’ve secured Sensu, continue reading this document to set up and update a clustered
confguration.

Confgure a cluster

The sensu-backend arguments for its store mirror the etcd confguration fags, but the Sensu
confguration options are prefxed with etcd .
For more detailed descriptions of the different arguments,
read the etcd documentation or Sensu backend reference.

You can confgure a Sensu cluster in a couple different ways — we’ll show you a few below — but you
should adhere to some etcd cluster guidelines as well:

NOTE: We recommend using a load balancer to evenly distribute agent connections across a
cluster.

https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/runtime-configuration/
https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/runtime-configuration/
https://etcd.io/docs/latest/op-guide/configuration/
https://etcd.io/docs/latest/

The recommended etcd cluster size is 3, 5 or 7, which is decided by the fault tolerance
requirement. A 7-member cluster can provide enough fault tolerance in most cases.
While a larger cluster provides better fault tolerance, the write performance reduces
since data needs to be replicated to more machines. It is recommended to have an odd
number of members in a cluster. Having an odd cluster size doesn’t change the number
needed for majority, but you gain a higher tolerance for failure by adding the extra
member. etcd2 Admin Guide

We also recommend using stable platforms to support your etcd instances (review etcd’s supported
platforms).

Docker

If you prefer to stand up your Sensu cluster within Docker containers, check out the Sensu Go Docker
confguration.
This confguration defnes three sensu-backend containers and three sensu-agent
containers.

Traditional computer instance

Sensu backend confguration

NOTE: If a cluster member is started before it is confgured to join a cluster, the member will
persist its prior confguration to disk.
For this reason, you must remove any previously started
member’s etcd data by stopping sensu-backend and deleting the contents of
/var/lib/sensu/sensu-backend/etcd before proceeding with cluster confguration.

NOTE: The remainder of this guide describes on-disk confguration.
If you are using an ephemeral
computer instance, you can use sensu-backend start --help to list etcd command line fags.
The confguration fle entries in the rest of this guide translate to sensu-backend fags.

WARNING: You must update the default confguration for Sensu’s embedded etcd with an explicit,
non-default confguration to secure etcd communication in transit.
If you do not properly confgure
secure etcd communication, your Sensu confguration will be vulnerable to unauthorized
manipulation via etcd client connections.

https://etcd.io/docs/current/dev-internal/discovery_protocol/#specifying-the-expected-cluster-size
https://etcd.io/docs/latest/platforms/
https://etcd.io/docs/latest/platforms/
https://github.com/sensu/sensu-go/blob/main/docker-compose.yaml
https://github.com/sensu/sensu-go/blob/main/docker-compose.yaml

The examples in this section are confguration snippets from /etc/sensu/backend.yml using a
three-node cluster.
The nodes are named backend-1.example.com , backend-2.example.com and
backend-3.example.com with IP addresses 10.0.0.1 , 10.0.0.2 and 10.0.0.3 , respectively.

Store confguration for backend-1.example.com/10.0.0.1

Store confguration for backend-2.example.com/10.0.0.2

Store confguration for backend-3.example.com/10.0.0.3

NOTE: This backend confguration assumes you have set up and installed the sensu-backend on
all the nodes used in your cluster.
Follow the Install Sensu guide if you have not already done this.

etcd-advertise-client-urls: "https://10.0.0.1:2379"

etcd-listen-client-urls: "https://10.0.0.1:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

etcd-initial-cluster: "backend-1.example.com=https://10.0.0.1:2380,backend-

2.example.com=https://10.0.0.2:2380,backend-3.example.com=https://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.1:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "unique_token_for_this_cluster"

etcd-name: "backend-1.example.com"

etcd-advertise-client-urls: "https://10.0.0.2:2379"

etcd-listen-client-urls: "https://10.0.0.2:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

etcd-initial-cluster: "backend-1.example.com=https://10.0.0.1:2380,backend-

2.example.com=https://10.0.0.2:2380,backend-3.example.com=https://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.2:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "unique_token_for_this_cluster"

etcd-name: "backend-2.example.com"

etcd-advertise-client-urls: "https://10.0.0.3:2379"

etcd-listen-client-urls: "https://10.0.0.3:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

After you confgure each node as described in these examples, start each sensu-backend:

Add Sensu agents to clusters

Each Sensu agent should have the following entries in /etc/sensu/agent.yml to ensure the agent
is aware of all cluster members.
This allows the agent to reconnect to a working backend if the backend
it is currently connected to goes into an unhealthy state.

Here is an example backend-url confguration for all agents connecting to the cluster over WebSocket:

You should now have a highly available Sensu cluster!
Confrm cluster health and try other cluster
management commands with sensuctl.

etcd-initial-cluster: "backend-1.example.com=https://10.0.0.1:2380,backend-

2.example.com=https://10.0.0.2:2380,backend-3.example.com=https://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.3:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "unique_token_for_this_cluster"

etcd-name: "backend-3.example.com"

WARNING: To properly secure etcd communication, replace the default URLs for etcd-

advertise-client-urls , etcd-listen-client-urls , etcd-listen-peer-urls , and etcd-
initial-cluster in the store confgurations for your backends with non-default values.

Specify the same etcd-initial-cluster-token value for all three backends.
This allows etcd to
generate unique cluster IDs and member IDs even for clusters that have otherwise identical
confgurations and prevents cross-cluster-interaction.

sudo systemctl start sensu-backend

backend-url:

 - "ws://10.0.0.1:8081"

 - "ws://10.0.0.2:8081"

 - "ws://10.0.0.3:8081"

Manage and monitor clusters with sensuctl

Sensuctl includes several commands to help you manage and monitor your cluster.
Run sensuctl

cluster -h for additional help information.

Get cluster health status

Get cluster health status and etcd alarm information:

The cluster health response will list the health status for each cluster member, similar to this example:

Add a cluster member

To add a new member node to an existing cluster:

1. Confgure the new node’s store in its /etc/sensu/backend.yml confguration fle.
For the new
node backend-4.example.com with IP address 10.0.0.4 :

sensuctl cluster health

 ID Name Error Healthy

────────────────── ──────────────────────

─── ─────────

a32e8f613b529ad4 backend-1.example.com true

c3d9f4b8d0dd1ac9 backend-2.example.com dial tcp 10.0.0.2:2379: connect: connection refused false

c8f63ae435a5e6bf backend-3.example.com true

etcd-advertise-client-urls: "https://10.0.0.4:2379"

etcd-listen-client-urls: "https://10.0.0.4:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

etcd-initial-cluster: "backend-1.example.com=https://10.0.0.1:2380,backend-

2.example.com=https://10.0.0.2:2380,backend-

3.example.com=https://10.0.0.3:2380,backend-

4.example.com=https://10.0.0.4:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.4:2380"

2. Run the sensuctl command to add the new cluster member:

You will receive a sensuctl response to confrm that the new member was added:

3. Start the new backend:

4. Add the new cluster member’s WebSocket backend-url in /etc/sensu/agent.yml for all
agents that connect to the cluster over WebSocket:

List cluster members

etcd-initial-cluster-state: "existing"

etcd-initial-cluster-token: "unique_token_for_this_cluster"

etcd-name: "backend-4.example.com"

NOTE: To make sure the new member is added to the correct cluster, specify the same
etcd-initial-cluster-token value that you used for the other members in the cluster.

Also, when you are adding a cluster member, make sure the etcd-initial-cluster-

state value is existing , not new .

sensuctl cluster member-add backend-4.example.com https://10.0.0.4:2380

added member 2f7ae42c315f8c2d to cluster

sudo systemctl start sensu-backend

backend-url:

 - "ws://10.0.0.1:8081"

 - "ws://10.0.0.2:8081"

 - "ws://10.0.0.3:8081"

 - "ws://10.0.0.4:8081"

List the ID, name, peer URLs, and client URLs of all nodes in a cluster:

You will receive a sensuctl response that lists all cluster members:

Remove a cluster member

Remove a faulty or decommissioned member node from a cluster:

You will receive a sensuctl response to confrm that the cluster member was removed:

Replace a faulty cluster member

To replace a faulty cluster member to restore a cluster’s health:

1. Get cluster health status and etcd alarm information:

sensuctl cluster member-list

 ID Name Peer URLs Client URLs

────────────────── ─────────────────────── ─────────────────────────

─────────────────────────

a32e8f613b529ad4 backend-1.example.com https://10.0.0.1:2380 https://10.0.0.1:2379

c3d9f4b8d0dd1ac9 backend-2.example.com https://10.0.0.2:2380 https://10.0.0.2:2379

c8f63ae435a5e6bf backend-3.example.com https://10.0.0.3:2380 https://10.0.0.3:2379

2f7ae42c315f8c2d backend-4.example.com https://10.0.0.4:2380 https://10.0.0.4:2379

sensuctl cluster member-remove 2f7ae42c315f8c2d

Removed member 2f7ae42c315f8c2d from cluster

In the response, for a faulty cluster member, the Error column will include an error message and
the Healthy column will list false .
In this example, the response indicates that cluster member
backend-4 is faulty:

2. Remove the faulty cluster member — in this example, backend-4 — using its ID.
Removing the
faulty cluster member prevents the cluster size from growing.

The response should indicate that the cluster member was removed:

3. Follow the steps in Add a cluster member to confgure the replacement cluster member.

If replacing the faulty cluster member does not resolve the problem, read the etcd operations guide for
more information.

sensuctl cluster health

 ID Name Error Healthy

────────────────── ───────────────────────

─── ─────────

a32e8f613b529ad4 backend-1.example.com true

c3d9f4b8d0dd1ac9 backend-2.example.com true

c8f63ae435a5e6bf backend-3.example.com true

2f7ae42c315f8c2d backend-4.example.com dial tcp 10.0.0.4:2379: connect: connection refused false

sensuctl cluster member-remove 2f7ae42c315f8c2d

Removed member 2f7ae42c315f8c2d from cluster

NOTE: You can use the same name and IP address as the removed faulty member for the
replacement cluster member.
When updating the replacement member’s backend
confguration fle, make sure the etcd-initial-cluster-state value is existing , not
new .

https://etcd.io/docs/latest/op-guide/

Update a cluster member

Update the peer URLs of a member in a cluster:

You will receive a sensuctl response to confrm that the cluster member was updated:

Cluster security

Read Secure Sensu for information about cluster security.

Use an external etcd cluster

To use Sensu with an external etcd cluster, you must have etcd 3.3.2 or newer.
To stand up an external
etcd cluster, follow etcd’s clustering guide using the same store confguration.
Do not confgure external
etcd in Sensu via backend command line fags or the backend confguration fle
(/etc/sensu/backend.yml).

Confgure key space access

Follow these steps to confgure read and write access to the /sensu.io/ key space for your users so
you can initialize a backend that uses etcd authentication.

1. Add the sensu user:

sensuctl cluster member-update c8f63ae435a5e6bf https://10.0.0.4:2380

Updated member with ID c8f63ae435a5e6bf in cluster

WARNING: You must update the example confguration for external etcd with an explicit, non-
default confguration to secure etcd communication in transit.
If you do not properly confgure
secure etcd communication, your Sensu confguration will be vulnerable to unauthorized
manipulation via etcd client connections.

https://etcd.io/docs/latest/op-guide/clustering/

2. Enter the sensu user password when prompted.

3. Create the sensu_readwrite role:

4. Grant read/write permissions to the sensu_readwrite role under the /sensu.io/ key space:

5. Grant the sensu_readwrite role to the sensu user:

6. Confrm that the grant is confgured correctly:

You should see the following output:

etcdctl user add sensu

etcdctl role add sensu_readwrite

etcdctl role grant-permission sensu_readwrite readwrite --from-key

'/sensu.io/'

etcdctl user grant-role sensu sensu_readwrite

/opt/etcd/etcdctl user get USERNAME --detail

User: USERNAME

Role sensu_readwrite

KV Read:

 [/sensu.io/, <open ended>

KV Write:

 [/sensu.io/, <open ended>

Etcd does not enable authentication by default, so additional confguration may be needed before etcd
will enforce these controls.
See the etcd operators documentation for details.

Start etcd

In this example, you will enable client-to-server and peer communication authentication using self-
signed TLS certifcates.
To start etcd for backend-1.example.com based on the three-node
confguration example:

Tell Sensu to use this external etcd data source by adding the sensu-backend fag --no-embed-
etcd to the original confguration and the path to a client certifcate created using your CA:

etcd \

--listen-client-urls "https://10.0.0.1:2379" \

--advertise-client-urls "https://10.0.0.1:2379" \

--listen-peer-urls "https://10.0.0.1:2380" \

--initial-cluster "backend-1.example.com=https://10.0.0.1:2380,backend-

2.example.com=https://10.0.0.2:2380,backend-3.example.com=https://10.0.0.3:2380" \

--initial-advertise-peer-urls "https://10.0.0.1:2380" \

--initial-cluster-state "new" \

--name "backend-1.example.com" \

--trusted-ca-fle=./ca.pem \

--cert-fle=./backend-1.example.com.pem \

--key-fle=./backend-1.example.com-key.pem \

--client-cert-auth \

--peer-trusted-ca-fle=./ca.pem \

--peer-cert-fle=./backend-1.example.com.pem \

--peer-key-fle=./backend-1.example.com-key.pem \

--peer-client-cert-auth \

--auto-compaction-mode revision \

--auto-compaction-retention 2

NOTE: Without the auto-compaction-mode and auto-compaction-retention fags, your
database may quickly reach etcd’s maximum database size limit.

sensu-backend start \

--etcd-trusted-ca-fle=./ca.pem \

https://etcd.io/docs/latest/op-guide/

Authenticate with username and password for external etcd

Managed database services (database-as-a-service, or DBaaS) often support external etcd
authentication via username and password rather than client certifcates.

To use username and password authentication to connect to external etcd, add the
SENSU_BACKEND_ETCD_CLIENT_USERNAME and SENSU_BACKEND_ETCD_CLIENT_PASSWORD environment

variables to the environment fle.
Replace <your_username> and <your_password> with the
username and password you use for your external etcd provider:

Read Confguration via environment variables to learn how to create and save environment variables.

The SENSU_BACKEND_ETCD_CLIENT_USERNAME and SENSU_BACKEND_ETCD_CLIENT_PASSWORD
environment variables do not have corresponding confguration fags.
To use username/passsword
authentication for external etcd, you must confgure these environment variables in the environment
fle.

Migrate from embedded etcd to external etcd

To migrate from embedded etcd to external etcd, frst decide whether you need to migrate all of your
etcd data or just your Sensu confgurations.

If you need to migrate all etcd data, you must create an etcd snapshot.
Use the snapshot to restore you
entire cluster after setting up the new external cluster.

--etcd-cert-fle=./backend-1.example.com.pem \

--etcd-key-fle=./backend-1.example.com-key.pem \

--etcd-client-urls='https://10.0.0.1:2379 https://10.0.0.2:2379

https://10.0.0.3:2379' \

--no-embed-etcd

NOTE: The etcd and sensu-backend certifcates must share a CA, and the etcd-client-urls
value must be a space-delimited list or a YAML array.

SENSU_BACKEND_ETCD_CLIENT_USERNAME=<your_username>

SENSU_BACKEND_ETCD_CLIENT_PASSWORD=<your_password>

https://etcd.io/docs/latest/op-guide/recovery/
https://etcd.io/docs/v3.5/op-guide/recovery/#restoring-a-cluster

If you need to migrate only your Sensu confguration, you can use sensuctl dump to create a backup
and use sensuctl create to import your confguration to the new external cluster.

After you create the backups you need, follow Use an external etcd cluster to confgure Sensu to use
the external cluster as your datastore.

Troubleshoot clusters

Failure modes

Read the etcd failure modes documentation for information about cluster failure modes.

Disaster recovery

For external etcd, follow the etcd recovery guide for disaster recovery.

For embedded etcd, follow Back up and recover resources with sensuctl for disaster recovery.

Redeploy a cluster

To redeploy a cluster due to an issue like loss of quorum among cluster members, etcd corruption, or
hardware failure, read Remove and redeploy a cluster.

NOTE: The sensuctl dump command does not export user passwords, and sensuctl create does
not restore API keys from a sensuctl dump backup.
For this reason, you must use the etcd
snapshot and restore process to migrate your entire embedded cluster to external etcd.

https://etcd.io/docs/latest/op-guide/failures/
https://etcd.io/docs/latest/op-guide/recovery/
https://etcd.io/docs/latest/op-guide/recovery/
https://etcd.io/docs/latest/op-guide/recovery/

Multi-cluster visibility with federation

Sensu’s enterprise/federation/v1 API endpoints allow you to register external clusters, gain single-
pane-of-glass visibility into the health of your infrastructure and services across multiple distinct Sensu
instances within the web UI, and mirror your changes in one cluster to follower clusters.
This is useful
when you want to provide a single entry point for Sensu users who need to manage monitoring across
multiple distinct physical data centers, cloud regions, or providers.

After you confgure federation, you can also create, update, and delete clusters using sensuctl create,
edit, and delete commands.

Federation is not enabled by default.
You must create a cluster resource for the federation cluster and
register it.

Only cluster administrators can register a new cluster, but every user can query the list of clusters.

Complete federation of multiple Sensu instances relies on a combination of features:

COMMERCIAL FEATURE : Access federation in the packaged Sensu Go distribution.
For more
information, read Get started with commercial features.

http://localhost:1313/images/go/use_federation/federation_switcher_660.gif

Feature Purpose in federation

JSON Web Token
(JWT) authentication

Cross-cluster token authentication using asymmetric key encryption

etcd replicators Replicate RBAC policy across clusters and namespaces

Federation Gateway
and APIs

Confgure federation access for cross-cluster visibility in web UI

Follow the example in this guide to confgure these features.
The example assumes you wish to
federate three named Sensu clusters:

Cluster name Hostname

gateway sensu.gateway.example.com

alpha sensu.alpha.example.com

beta sensu.beta.example.com

In this example, the gateway cluster will be the entry point for operators to manage Sensu resources
in the alpha and beta clusters.
This guide assumes a single sensu-backend in each cluster, but
named clusters composed of multiple sensu-backends are supported.

This diagram depicts the federation relationship documented in this guide:

Complete the steps in this guide to browse events, entities, checks, and other resources in the

http://localhost:1313/images/go/use_federation/example_federation.png

gateway , alpha , and beta clusters from the gateway cluster web UI.

Confgure backends for TLS

Because federation depends on communication with multiple disparate clusters, working TLS is
required for successful federated operation.

To ensure that cluster members can validate each other, certifcates for each cluster member should
include the IP addresses or hostnames specifed in the values of sensu-backend etcd-advertise-

client-urls , etcd-advertise-peer-urls , and etcd-initial-advertise-peer-urls
parameters.
In addition to the certifcate’s Common Name (CN), Subject Alternative Names (SANs) are
also honored for validation.

To continue with this guide, make sure you have the required TLS credentials in place:

If you don’t have existing infrastructure for issuing certifcates, read Generate certifcates for our
recommended self-signed certifcate issuance process.

This prerequisite extends to confguring the following Sensu backend etcd parameters:

Backend property Description

etcd-cert-fle Path to certifcate used for TLS on etcd client/peer communications (for
example, /etc/sensu/tls/backend-1.example.com.pem .

etcd-key-fle Path to key corresponding with etcd-cert-fle certifcate (for example,
/etc/sensu/tls/backend-1-key.example.com.pem .

etcd-trusted-ca-

fle

Path to CA certifcate chain fle (for example, /etc/sensu/tls/ca.pem .
This CA certifcate chain must be usable to validate certifcates for all
backends in the federation.

NOTE: As of Go 1.15, certifcates must include their CN as an SAN feld.
To prevent connection
errors, follow Generate certifcates to make sure your certifcates’ SAN felds include their CNs.

A PEM-formatted X.509 certifcate and corresponding private key copied to each cluster
member.

A corresponding certifcate authority (CA) certifcate chain copied to each cluster member.

https://support.dnsimple.com/articles/what-is-common-name/
https://support.dnsimple.com/articles/what-is-ssl-san/
https://golang.google.cn/doc/go1.15#commonname

etcd-client-cert-

auth

Enforces certifcate validation to authenticate etcd replicator connections.
Set to true to secure etcd communication.

etcd-advertise-

client-urls

List of https URLs to advertise for etcd replicators, accessible by other
backends in the federation (for example,
https://sensu.beta.example.com:2379).

etcd-listen-

client-urls

List of https URLs to listen on for etcd replicators (for example,
https://0.0.0.0:2379 to listen on port 2379 across all ipv4

interfaces).

Confgure shared token signing keys

Whether federated or standalone, Sensu backends issue JSON Web Tokens (JWTs) to users upon
successful authentication.
These tokens include a payload that describes the username and group
affliations.
The payload is used to determine permissions based on the confgured RBAC policy.

In a federation of Sensu backends, each backend needs to have the same public/private key pair.
These asymmetric keys are used to crypotgraphically vouch for the user’s identity in the JWT payload.
Using shared JWT keys enables clusters to grant users access to Sensu resources according to their
local policies but without requiring user resources to be present uniformly across all clusters in the
federation.

By default, a Sensu backend automatically generates an asymmetric key pair for signing JWTs and
stores it in the etcd database.
When confguring federation, you must generate keys as fles on disk so
they can be copied to all backends in the federation.

1. Use the openssl command line tool to generate a P-256 elliptic curve private key:

WARNING: You must provide an explicit, non-default etcd confguration to secure etcd
communication in transit.
If you do not properly confgure secure etcd communication, your Sensu
confguration will be vulnerable to unauthorized manipulation via etcd client connections.

This includes providing non-default values for the etcd-advertise-client-urls and etcd-
listen-client-urls backend parameters and creating a certifcate and key for the etcd-cert-
fle and etcd-key-fle values.
The default values are not suitable for use under federation.

openssl ecparam -genkey -name prime256v1 -noout -out jwt_private.pem

2. Generate a public key from the private key:

3. Save the JWT keys in /etc/sensu/certs on each cluster backend.

4. Add the jwt-private-key-fle and jwt-public-key-fle attributes in
/etc/sensu/backend.yml and specify the paths to the JWT private and public keys:

5. Restart the Sensu backend so that your settings take effect:

Add a user and a cluster role binding

To test your confguration, provision a user and a cluster role binding in the gateway cluster.

1. Confrm that sensuctl is confgured to communicate with the gateway cluster:

The response will list the active confguration:

openssl ec -in jwt_private.pem -pubout -out jwt_public.pem

jwt-private-key-fle: /etc/sensu/certs/jwt_private.pem

jwt-public-key-fle: /etc/sensu/certs/jwt_public.pem

sudo systemctl restart sensu-backend

sensuctl confg view

=== Active Confguration

API URL: https://sensu.gateway.example.com:8080

Namespace: default

Format: tabular

2. Create a federation-viewer user:

3. When prompted for username and groups, press enter.

4. When prompted for password, enter a password for the federation-viewer user.
Make a note
of the password you entered — you’ll use it to log in to the web UI after you confgure RBAC
policy replication and registered clusters into your federation.

This creates the following user:

5. Grant the federation-viewer user read-only access with a cluster role binding for the built-in
view cluster role:

This command creates the following cluster role binding resource defnition:

Username: admin

sensuctl user create federation-viewer --interactive

username: federation-viewer

disabled: false

TEXT

{

 "username": "federation-viewer",

 "disabled": false

}

TEXT

sensuctl cluster-role-binding create federation-viewer-readonly --cluster-

role=view --user=federation-viewer

YML

Create etcd replicators

type: ClusterRoleBinding

api_version: core/v2

metadata:

 created_by: admin

 name: federation-viewer-readonly

spec:

 role_ref:

 name: view

 type: ClusterRole

 subjects:

 - name: federation-viewer

 type: User

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "created_by": "admin",

 "name": "federation-viewer-readonly"

 },

 "spec": {

 "role_ref": {

 "name": "view",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "federation-viewer",

 "type": "User"

 }

]

 }

}

JSON

Etcd replicators use the etcd make-mirror utility for one-way replication of Sensu RBAC policy
resources.
This allows you to centrally defne RBAC policy on the gateway cluster and replicate RBAC
resources to other clusters in the federation (alpha and beta), ensuring consistent permissions for
Sensu users across multiple clusters via the gateway web UI.

1. Confgure one etcd replicator per cluster for each RBAC policy resource, across all
namespaces, for each backend in the federation.

In this example, the following etcd replicator resources will replicate ClusterRoleBinding
resources from the gateway cluster to the two target clusters:

NOTE: Create a replicator for each resource type you want to replicate.
Replicating
namespace resources will not replicate the Sensu resources that belong to those

namespaces.

The etcd replicators reference includes examples you can follow for Role ,
RoleBinding , ClusterRole , and ClusterRoleBinding resources.

api_version: federation/v1

type: EtcdReplicator

metadata:

 name: AlphaClusterRoleBindings

spec:

 ca_cert: "/etc/sensu/certs/ca.pem"

 cert: "/etc/sensu/certs/gateway.pem"

 key: "/etc/sensu/certs/gateway-key.pem"

 url: https://sensu.alpha.example.com:2379

 api_version: core/v2

 resource: ClusterRoleBinding

 replication_interval_seconds: 30

YML

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "AlphaClusterRoleBindings"

JSON

https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#make-mirror-options-destination

 },

 "spec": {

 "ca_cert": "/etc/sensu/certs/ca.pem",

 "cert": "/etc/sensu/certs/gateway.pem",

 "key": "/etc/sensu/certs/gateway-key.pem",

 "url": "https://sensu.alpha.example.com:2379",

 "api_version": "core/v2",

 "resource": "ClusterRoleBinding",

 "replication_interval_seconds": 30

 }

}

api_version: federation/v1

type: EtcdReplicator

metadata:

 name: BetaClusterRoleBindings

spec:

 ca_cert: "/etc/sensu/certs/ca.pem"

 cert: "/etc/sensu/certs/gateway.pem"

 key: "/etc/sensu/certs/gateway-key.pem"

 url: https://sensu.beta.example.com:2379

 api_version: core/v2

 resource: ClusterRoleBinding

 replication_interval_seconds: 30

YML

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "BetaClusterRoleBindings"

 },

 "spec": {

 "ca_cert": "/etc/sensu/certs/ca.pem",

 "cert": "/etc/sensu/certs/gateway.pem",

 "key": "/etc/sensu/certs/gateway-key.pem",

 "url": "https://sensu.beta.example.com:2379",

JSON

2. Run sensuctl confg view and verify that sensuctl is confgured to talk to a gateway
cluster API.
Reconfgure sensuctl if needed.

3. Save the AlphaClusterRoleBindings and BetaClusterRoleBindings EtcdReplicator
defnitions to a fle (for example, etcdreplicators.yml or etcdreplicators.json).

4. Use sensuctl create -f to apply the AlphaClusterRoleBindings and
BetaClusterRoleBindings EtcdReplicator defnitions to the gateway cluster:

5. Verify that the EtcdReplicator resource is working as expected: reconfgure the sensuctl
backend URL to communicate with the alpha and beta clusters and run the following
command for each:

The federation-viewer-readonly binding you created in the previous section should be
listed in the output from each cluster:

 "api_version": "core/v2",

 "resource": "ClusterRoleBinding",

 "replication_interval_seconds": 30

 }

}

sensuctl create -f etcdreplicators.yml

SHELL

sensuctl create -f etcdreplicators.json

SHELL

sensuctl cluster-role-binding info federation-viewer-readonly

=== federation-viewer-readonly

Name: federation-viewer-readonly

Cluster Role: view

Subjects:

Register clusters

Clusters must be registered to become visible in the web UI.
Each registered cluster must have a name
and a list of one or more cluster member URLs corresponding to the backend REST API.

Register a single cluster

With sensuctl confgured for the gateway cluster, run sensuctl create on the yaml or JSON
below to register cluster alpha :

 Users: federation-viewer

NOTE: Individual cluster resources may list the API URLs for a single stand-alone backend or
multiple backends that are members of the same etcd cluster.
Creating a cluster resource that lists
multiple backends that do not belong to the same cluster will result in unexpected behavior.

api_version: federation/v1

type: Cluster

metadata:

 name: alpha

spec:

 api_urls:

 - https://sensu.alpha.example.com:8080

YML

{

 "api_version": "federation/v1",

 "type": "Cluster",

 "metadata": {

 "name": "alpha"

 },

 "spec": {

 "api_urls": [

 "https://sensu.alpha.example.com:8080"

JSON

Register additional clusters

With sensuctl confgured for gateway cluster, run sensuctl create on the yaml or JSON below
to register an additional cluster and defne the name as beta :

]

 }

}

api_version: federation/v1

type: Cluster

metadata:

 name: beta

spec:

 api_urls:

 - https://sensu.beta.example.com:8080

YML

{

 "api_version": "federation/v1",

 "type": "Cluster",

 "metadata": {

 "name": "beta"

 },

 "spec": {

 "api_urls": [

 "https://sensu.alpha.example.com:8080"

]

 }

}

JSON

NOTE: When logging into the gateway cluster web UI, any namespaces, entities, events, and
other resources specifc to that cluster will be labeled as local-cluster .

Get a unifed view of all your clusters in the web UI

After you create clusters using enterprise/federation/v1 API endpoints, you can log in to the gateway

Sensu web UI to view them as the federation-viewer user.
Use the namespace switcher to change
between namespaces across federated clusters:

Because the federation-viewer user is granted only permissions provided by the built-in view
role, this user should be able to view all resources across all clusters but should not be able to make
any changes.
If you haven’t changed the permissions of the default admin user, that user should be
able to view, create, delete, and update resources across all clusters.

Next steps

Learn more about confguring RBAC policies in our RBAC reference documentation.

http://localhost:1313/images/go/use_federation/federation_namespace_switcher_660.gif

Scale Sensu Go with Enterprise datastore

Sensu Go’s datastore feature enables scaling your monitoring to many thousands of events per
second.

For each unique entity/check pair, Sensu records the latest event object in its datastore.
By default,
Sensu uses the embedded etcd datastore for event storage.
The embedded etcd datastore helps you
get started, but as the number of entities and checks in your Sensu implementation grows, so does the
rate of events being written to the datastore.
In a clustered deployment of etcd, whether embedded or
external to Sensu, each event received by a member of the cluster must be replicated to other
members, increasing network and disk IO utilization.

Our team documented confguration and testing of Sensu running on bare metal infrastructure in the
sensu/sensu-perf project.
This confguration comfortably handled 12,000 Sensu agent connections (and
their keepalives) and processed more than 8,500 events per second.

This rate of events should be suffcient for many installations but assumes an ideal scenario where
Sensu backend nodes use direct-attached, dedicated non-volatile memory express (NVMe) storage
and are connected to a dedicated LAN.
Deployments on public cloud providers are not likely to achieve
similar results due to sharing both disk and network bandwidth with other tenants.
Adhering to the cloud
provider’s recommended practices may also become a factor because many operators are inclined to
deploy a cluster across multiple availability zones.
In such a deployment cluster, communication
happens over shared WAN links, which are subject to uncontrolled variability in throughput and
latency.

The Enterprise datastore can help operators achieve much higher rates of event processing and
minimize the replication communication between etcd peers.
The sensu-perf test environment
comfortably handles 40,000 Sensu agent connections (and their keepalives) and processes more than
36,000 events per second under ideal conditions.

COMMERCIAL FEATURE : Access the datastore feature in the packaged Sensu Go distribution.
For more information, read Get started with commercial features.

IMPORTANT : PostgreSQL confguration fle locations differ depending on platform.
The steps in
this guide use common paths for RHEL-family distributions, but the fles may be stored elsewhere
on your system.
Learn more about PostgreSQL confguration fle locations.

https://github.com/sensu/sensu-perf
https://www.postgresql.org/docs/current/runtime-config-file-locations.html

Prerequisites

For optimal performance, we recommend the following PostgreSQL confguration parameters and
settings as a starting point for your postgresql.conf fle:

Database server running Postgres 9.5 or later

Postgres database (or administrative access to create one)

Postgres user with permissions to the database (or administrative access to create such a
user)

Licensed Sensu Go backend

max_connections = 200

shared_buffers = 10GB

maintenance_work_mem = 1GB

vacuum_cost_delay = 10ms

vacuum_cost_limit = 10000

bgwriter_delay = 50ms

bgwriter_lru_maxpages = 1000

max_worker_processes = 8

max_parallel_maintenance_workers = 2

max_parallel_workers_per_gather = 2

max_parallel_workers = 8

synchronous_commit = off

wal_sync_method = fdatasync

wal_writer_delay = 5000ms

max_wal_size = 5GB

min_wal_size = 1GB

checkpoint_completion_target = 0.9

autovacuum_naptime = 10s

Adjust the parameters and settings as needed based on your hardware and the performance you
observe.
Read the PostgreSQL parameters documentation for information about setting parameters.

Confgure Postgres

Before Sensu can start writing events to Postgres, you need a database and an account with
permissions to write to that database.
To provide consistent event throughput, we recommend
exclusively dedicating your Postgres instance to storage of Sensu events.

If you have administrative access to Postgres, you can create the database and user.

1. Change to the postgres user and open the Postgres prompt (postgres=#):

2. Create the sensu_events database:

PostgreSQL will return a confrmation message: CREATE DATABASE .

3. Create the sensu role with a password:

PostgreSQL will return a confrmation message: CREATE ROLE .

4. Grant the sensu role all privileges for the sensu_events database:

autovacuum_vacuum_scale_factor = 0.05

autovacuum_analyze_scale_factor = 0.025

sudo -u postgres psql

CREATE DATABASE sensu_events;

CREATE USER sensu WITH ENCRYPTED PASSWORD 'mypass';

GRANT ALL PRIVILEGES ON DATABASE sensu_events TO sensu;

https://www.postgresql.org/docs/current/config-setting.html

PostgreSQL will return a confrmation message: GRANT .

5. Type \q to exit the PostgreSQL prompt.

With this confguration complete, PostgreSQL will have a sensu_events database for storing Sensu
events and a sensu user with permissions to that database.

By default, the Postgres user you’ve just added will not be able to authenticate via password, so you’ll
also need to make a change to the pg_hba.conf fle.
The required change will depend on how Sensu
will connect to Postgres.
In this case, you’ll confgure Postgres to allow the sensu user to connect to
the sensu_events database from any host using an md5-encrypted password:

1. Make a copy of the current pg_hba.conf fle:

2. Give the Sensu user permissions to connect to the sensu_events database from any IP
address:

3. Restart the postgresql service to activate the pg_hba.conf changes:

With this confguration complete, you can confgure Sensu to store events in your Postgres database.

To secure communication between Sensu and the PostgreSQL event store using certifcate
authentication, read Secure PostgreSQL.

Confgure Sensu

sudo cp /var/lib/pgsql/data/pg_hba.conf /var/tmp/pg_hba.conf.bak

echo 'host sensu_events sensu 0.0.0.0/0 md5' | sudo tee -a

/var/lib/pgsql/data/pg_hba.conf

sudo systemctl restart postgresql

https://www.postgresql.org/docs/9.5/auth-methods.html#AUTH-PASSWORD

If your Sensu backend is already licensed, the confguration for routing events to Postgres is relatively
straightforward.
Create a PostgresConfg resource that describes the database connection as a data
source name (DSN):

Save this confguration as my-postgres.yml or my-postgres.json and install it with sensuctl :

type: PostgresConfg

api_version: store/v1

metadata:

 name: postgres01

spec:

 dsn: "postgresql://sensu:mypass@10.0.2.15:5432/sensu_events?sslmode=disable"

 pool_size: 20

YML

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres"

 },

 "spec": {

 "dsn": "postgresql://sensu:mypass@10.0.2.15:5432/sensu_events",

 "pool_size": 20

 }

}

JSON

sensuctl create --fle my-postgres.yml

SHELL

sensuctl create --fle my-postgres.json

SHELL

The Sensu backend is now confgured to use Postgres for event storage!

In the web UI and in sensuctl, event history will appear incomplete.
When Postgres confguration is
provided and the backend successfully connects to the database, etcd event history is not migrated.
New events will be written to Postgres as they are processed, with the Postgres datastore ultimately
being brought up to date with the current state of your monitored infrastructure.

Aside from event history, which is not migrated from etcd, there’s no observable difference when using
Postgres as the event store, and neither interface supports displaying the PostgresConfg type.

To verify that the change was effective and your connection to Postgres was successful, look at the
sensu-backend log:

You can also use psql to verify that events are being written to the sensu_events database.

1. Change to the postgres user and open the Postgres prompt (postgres=#):

2. Connect to the sensu_events database:

PostgreSQL will return a confrmation message:

The prompt will change to sensu_events=# .

{"component":"store","level":"warning","msg":"trying to enable external event

store","time":"2019-10-02T23:31:38Z"}

{"component":"store","level":"warning","msg":"switched event store to

postgres","time":"2019-10-02T23:31:38Z"}

sudo -u postgres psql

\c sensu_events

You are now connected to database "sensu_events" as user "postgres".

3. List the tables in the sensu_events database:

PostgreSQL will list the tables:

4. Request a list of all entities reporting keepalives:

PostgreSQL will return a list of the entities:

Revert to the built-in datastore

If you want to revert to the default etcd event store, delete the PostgresConfg resource.
In this example,
my-postgres.yml or my-postgres.json contain the same confguration you used to confgure the

Enterprise event store earlier in this guide:

\dt

 List of relations

 Schema | Name | Type | Owner

--------+-------------------+-------+-------

 public | events | table | sensu

 public | migration_version | table | sensu

(2 rows)

select sensu_entity from events where sensu_check = 'keepalive';

 sensu_entity

 i-414141

 i-424242

 i-434343

(3 rows)

SHELL

To verify that the change was effective, look for messages similar to these in the sensu-backend log:

Similar to enabling PostgreSQL, switching back to the etcd datastore does not migrate current
observability event data from one store to another.
The web UI or sensuctl output may list outdated
events until the etcd datastore catches up with the current state of your monitored infrastructure.

Confgure Postgres streaming replication

Postgres supports an active standby with streaming replication.
Confgure streaming replication to
replicate all Sensu events written to the primary Postgres server to the standby server.

Follow the steps in this section to create and add the replication role, set streaming replication
confguration parameters, bootstrap the standby host, and confrm successful Postgres streaming
replication.

Create and add the replication role

If you have administrative access to Postgres, you can create the replication role.
Follow these steps to
create and add the replication role on the primary Postgres host:

1. Change to the postgres user and open the Postgres prompt (postgres=#):

sensuctl delete --fle my-postgres.yml

sensuctl delete --fle my-postgres.json

SHELL

{"component":"store","level":"warning","msg":"store confguration

deleted","store":"/sensu.io/api/enterprise/store/v1/provider/postgres01","time":"201

9-10-02T23:29:06Z"}

{"component":"store","level":"warning","msg":"switched event store to

etcd","time":"2019-10-02T23:29:06Z"}

https://wiki.postgresql.org/wiki/Streaming_Replication

2. Create the repl role:

PostgreSQL will return a confrmation message: CREATE ROLE .

3. Type \q to exit the PostgreSQL prompt.

4. Add the replication role to pg_hba.conf using an md5-encrypted password.
Make a copy of the
current pg_hba.conf :

5. In the following command, replace <standby_ip> with the IP address of your standby
Postgres host and run the command:

6. Give the repl user permissions to replicate from the standby host:

7. Restart the PostgreSQL service to activate the pg_hba.conf changes:

Set streaming replication confguration parameters

sudo -u postgres psql

CREATE ROLE repl PASSWORD '<your-password>' LOGIN REPLICATION;

sudo cp /var/lib/pgsql/data/pg_hba.conf /var/tmp/pg_hba.conf.bak

export STANDBY_IP=<standby-ip>

echo "host replication repl ${STANDBY_IP}/32 md5" | sudo tee -a

/var/lib/pgsql/data/pg_hba.conf

sudo systemctl restart postgresql

https://www.postgresql.org/docs/9.5/auth-methods.html#AUTH-PASSWORD

Follow these steps to set streaming replication confguration parameters on the primary Postgres host:

1. Make a copy of the postgresql.conf :

2. Append the necessary confguration options.

3. Set the maximum number of concurrent connections from the standby servers:

4. To prevent the primary server from removing the WAL segments required for the standby server
before shipping them, set the minimum number of segments retained in the pg_xlog
directory:

At minimum, the number of wal_keep_segments should be larger than the number of
segments generated between the beginning of online backup and the startup of streaming
replication.

5. Restart the PostgreSQL service to activate the postgresql.conf changes:

sudo cp -a /var/lib/pgsql/data/postgresql.conf

/var/lib/pgsql/data/postgresql.conf.bak

echo 'wal_level = replica' | sudo tee -a /var/lib/pgsql/data/postgresql.conf

echo 'max_wal_senders = 5' | sudo tee -a /var/lib/pgsql/data/postgresql.conf

echo 'wal_keep_segments = 32' | sudo tee -a

/var/lib/pgsql/data/postgresql.conf

NOTE: If you enable WAL archiving to an archive directory accessible from the standby,
this step may not be necessary.

sudo systemctl restart postgresql

Bootstrap the standby host

Follow these steps to bootstrap the standby host on the standby Postgres host:

1. If the standby host has ever run Postgres, stop Postgres and empty the data directory:

2. Make the standby data directory:

3. In the following command, replace <primary_ip> with the IP address of your primary
Postgres host and run the command:

4. Bootstrap the standby data directory:

5. Enter your password at the Postgres prompt:

sudo systemctl stop postgresql

sudo mv /var/lib/pgsql/data /var/lib/pgsql/data.bak

sudo install -d -o postgres -g postgres -m 0700 /var/lib/pgsql/data

export PRIMARY_IP=<primary_ip>

sudo -u postgres pg_basebackup -h $PRIMARY_IP -D /var/lib/pgsql/data -P -U

repl -R --wal-method=stream

Password:

After you enter your password, PostgreSQL will list database copy progress:

Confrm replication

Follow these steps to confrm replication:

1. On the primary Postgres host, remove primary-only confgurations:

2. Start the PostgreSQL service:

3. Check the primary host commit log location:

PostgreSQL will list the primary host commit log location:

4. On the standby Postgres host, check the commit log location:

30318/30318 kB (100%), 1/1 tablespace

sudo sed -r -i.bak '/^(wal_level|max_wal_senders|wal_keep_segments).*/d'

/var/lib/pgsql/data/postgresql.conf

sudo systemctl start postgresql

sudo -u postgres psql -c "select pg_current_wal_lsn()"

 pg_current_wal_lsn

 0/3000568

(1 row)

PostgreSQL will list the standby host commit log location:

With this confguration complete, your Sensu events will be replicated to the standby host.

sudo -u postgres psql -c "select pg_last_wal_receive_lsn()"

sudo -u postgres psql -c "select pg_last_wal_replay_lsn()"

 pg_last_wal_receive_lsn

 0/3000568

(1 row)

 pg_last_wal_replay_lsn

 0/3000568

(1 row)

Datastore reference

Sensu stores the most recent event for each entity and check pair using either an etcd (default) or
PostgreSQL database.

You can access observability event data with the Sensu web UI Events page, sensuctl event
commands, and core/v2/events API endpoints.
For longer retention of observability event data, integrate
Sensu with a time-series database like InfuxDB or a searchable index like ElasticSearch or Splunk.

etcd and PostgreSQL version compatibility

Sensu requires at least etcd 3.3.2 and is tested against etcd 3.5.
etcd version 3.4.0 is compatible with
Sensu but may result in slower performance.

Sensu supports PostgreSQL 9.5 and later, including Amazon Relational Database Service (Amazon
RDS) when confgured with the PostgreSQL engine.

Use default event storage

By default, Sensu uses its embedded etcd database to store confguration and event data.
This
embedded database allows you to get started with Sensu without deploying a complete, scalable
architecture.
Sensu’s default embedded etcd confguration listens for unencrypted communication on
ports 2379 (client requests) and 2380 (peer communication).

Sensu can be confgured to disable the embedded etcd database and use one or more external etcd
nodes for confguration and event storage instead.
To stand up an external etcd cluster, follow etcd’s
clustering guide using the same store confguration.
Do not confgure external etcd in Sensu via
backend command line fags or the backend confguration fle (/etc/sensu/backend.yml).

As your deployment grows beyond the proof-of-concept stage, review Deployment architecture for
Sensu for more information about deployment considerations and recommendations for a production-
ready Sensu deployment.

Scale event storage

https://aws.amazon.com/rds/
https://etcd.io/docs/latest/op-guide/clustering/

Sensu supports using an external PostgreSQL instance for event storage in place of etcd.
PostgreSQL
can handle signifcantly higher volumes of Sensu events, which allows you to scale Sensu beyond
etcd’s 8GB limit.

When confgured with a PostgreSQL event store, Sensu connects to PostgreSQL to store and retrieve
event data in place of etcd.
Etcd continues to store Sensu entity and confguration data.
You can access
event data stored in PostgreSQL using the same Sensu web UI, API, and sensuctl processes as etcd-
stored events.

Read the PostgreSQL documentation to install and confgure PostgreSQL.

PostgreSQL requirements

For optimal performance, we recommend the following PostgreSQL confguration parameters and
settings as a starting point for your postgresql.conf fle:

COMMERCIAL FEATURE : Access enterprise-scale event storage in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

max_connections = 200

shared_buffers = 10GB

maintenance_work_mem = 1GB

vacuum_cost_delay = 10ms

vacuum_cost_limit = 10000

bgwriter_delay = 50ms

bgwriter_lru_maxpages = 1000

max_worker_processes = 8

max_parallel_maintenance_workers = 2

max_parallel_workers_per_gather = 2

max_parallel_workers = 8

synchronous_commit = off

https://www.postgresql.org/

Adjust the parameters and settings as needed based on your hardware and the performance you
observe.
Read the PostgreSQL parameters documentation for information about setting parameters.

Confgure the PostgreSQL event store

At the time when you enable the PostgreSQL event store, event data cuts over from etcd to
PostgreSQL.
This results in a loss of recent event history.
No restarts or Sensu backend confguration
changes are required to enable the PostgreSQL event store.

When you successfully enable PostgreSQL as the Sensu Go event store, the Sensu backend log will
include a message like this:

After you install and confgure PostgreSQL, confgure Sensu by creating a PostgresConfg resource
like the following example.
Review the datastore specifcation for more information.

wal_sync_method = fdatasync

wal_writer_delay = 5000ms

max_wal_size = 5GB

min_wal_size = 1GB

checkpoint_completion_target = 0.9

autovacuum_naptime = 10s

autovacuum_vacuum_scale_factor = 0.05

autovacuum_analyze_scale_factor = 0.025

Mar 10 17:44:45 sensu-centos sensu-backend[1365]: {"component":"store-

providers","level":"warning","msg":"switched event store to postgres","time":"2020-

03-10T17:44:45Z"}

type: PostgresConfg

api_version: store/v1

metadata:

 name: my-postgres

spec:

 batch_buffer: 0

YML

https://www.postgresql.org/docs/current/config-setting.html
https://www.postgresql.org/

Save your PostgresConfg resource defnition to a fle (in this example, postgres.yml or
postgres.json).
Then, use sensuctl confgured as the admin user to activate the PostgreSQL event

store.

 batch_size: 1

 batch_workers: 0

 dsn: "postgresql://user:secret@host:port/dbname"

 max_conn_lifetime: 5m

 max_idle_conns: 2

 pool_size: 20

 strict: true

 enable_round_robin: true

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres"

 },

 "spec": {

 "batch_buffer": 0,

 "batch_size": 1,

 "batch_workers": 0,

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20,

 "strict": true,

 "enable_round_robin": true

 }

}

JSON

sensuctl create --fle postgres.yml

SHELL

SHELL

To update your Sensu PostgreSQL confguration, repeat the sensuctl create process.
You can
expect PostgreSQL status updates in the Sensu backend logs at the warn log level and PostgreSQL
error messages in the Sensu backend logs at the error log level.

Use environment variables to confgure PostgreSQL

The Sensu backend uses the libpq library to make connections to PostgreSQL.
libpq supports a number
of environment variables that can be injected into the PostgreSQL data source name (DSN).
Sensu
loads these environment variables at runtime using the system’s environment variable fle.

You can use the libpq environment variables to connect to PostgreSQL without exposing sensitive
information, like usernames and passwords, in your PostgreSQL confguration.
To do this, defne the
libpq environment variables as described in the backend reference.
Sensu automatically looks up these
environment variables, so you do not need to reference them in your PostgresConfg defnition.

For example, to use libpq environment variables to defne the PostgreSQL username, password, port,
and database name in the Sensu backend environment fle:

With these environment variables defned, the PostgreSQL confguration does not need to include the
username, password, port, or database name:

sensuctl create --fle postgres.json

PGUSER=<PostgreSQL_username>

PGPASSWORD=<PostgreSQL_password>

PGPORT=5432

PGDATABASE=sensu_events

type: PostgresConfg

api_version: store/v1

metadata:

 name: postgres_datastore

spec:

 dsn: "postgresql://postgres.example.com"

 pool_size: 20

YML

https://www.postgresql.org/docs/current/libpq.html
https://www.postgresql.org/docs/current/libpq-envars.html

Disable the PostgreSQL event store

To disable the PostgreSQL event store, use sensuctl delete with your PostgresConfg resource
defnition fle:

The Sensu backend log will include a message to record that you successfully disabled PostgreSQL
as the Sensu Go event store:

 strict: true

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "postgres_datastore"

 },

 "spec": {

 "dsn": "postgresql://postgres.example.com",

 "pool_size": 20,

 "strict": true

 }

}

JSON

sensuctl delete --fle postgres.yml

SHELL

sensuctl delete --fle postgres.json

SHELL

Mar 10 17:35:04 sensu-centos sensu-backend[1365]: {"component":"store-

providers","level":"warning","msg":"switched event store to etcd","time":"2020-03-

10T17:35:04Z"}

When you disable the PostgreSQL event store, event data cuts over from PostgreSQL to etcd, which
results in a loss of recent event history.
No restarts or Sensu backend confguration changes are
required to disable the PostgreSQL event store.

Datastore specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
PostgreSQL datastore confgs, the api_version should be
store/v1 .

required true

type String

example

metadata

description Top-level scope that contains the PostgreSQL datastore name and
created_by feld.

required true

type Map of key-value pairs

api_version: store/v1

YML

{

 "api_version": "store/v1"

}

JSON

example

spec

description Top-level map that includes the PostgreSQL datastore confg spec
attributes.

required true

type Map of key-value pairs

example

metadata:

 name: my-postgres

 created_by: admin

YML

{

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 }

}

JSON

spec:

 batch_buffer: 0

 batch_size: 1

 batch_workers: 0

 dsn: 'postgresql://user:secret@host:port/dbname'

 max_conn_lifetime: 5m

 max_idle_conns: 2

 pool_size: 20

 strict: true

 enable_round_robin: true

YML

JSON

type

description Top-level attribute that specifes the sensuctl create resource type.
PostgreSQL datastore confgs should always be type PostgresConfg .

required true

type String

example

Metadata attributes

{

 "spec": {

 "batch_buffer": 0,

 "batch_size": 1,

 "batch_workers": 0,

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20,

 "strict": true,

 "enable_round_robin": true

 }

}

type: PostgresConfg

YML

{

 "type": "PostgresConfg"

}

JSON

created_by

description Username of the Sensu user who created the datastore or last updated
the datastore. Sensu automatically populates the created_by feld
when the datastore is created or updated.

required false

type String

example

name

description PostgreSQL datastore name used internally by Sensu.

required true

type String

example

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

name: my-postgres

YML

{

 "name": "my-postgres"

}

JSON

Spec attributes

batch_buffer

description Maximum number of requests to buffer in memory.

required false

default 0

type Integer

example

batch_size

description Number of requests in each PostgreSQL write transaction, as specifed
in the PostgreSQL confguration.

WARNING: The batcher is sensitive to confguration values, and
some batch_buffer , batch_size , and batch_workers
combinations will not work optimally. We do not recommend
confguring this attribute while we are testing and improving it.

batch_buffer: 0

YML

{

 "batch_buffer": 0

}

JSON

WARNING: The batcher is sensitive to confguration values, and
some batch_buffer , batch_size , and batch_workers
combinations will not work optimally. We do not recommend

required false

default 1

type Integer

example

batch_workers

description Number of Goroutines sending data to PostgreSQL, as specifed in the
PostgreSQL confguration.

required false

default Current PostgreSQL pool size

type Integer

example

confguring this attribute while we are testing and improving it.

batch_size: 1

YML

{

 "batch_size": 1

}

JSON

WARNING: The batcher is sensitive to confguration values, and
some batch_buffer , batch_size , and batch_workers
combinations will not work optimally. We do not recommend
confguring this attribute while we are testing and improving it.

batch_workers: 0

YML

dsn

description Data source name. Specifed as a URL or PostgreSQL connection string.
The Sensu backend uses the Go pq library, which supports a subset of
the PostgreSQL libpq connection string parameters.

To avoid exposing sensitive information in the dsn attribute, confgure
PostgreSQL with environment variables.

required true

type String

example

enable_round_robin

description If true , enables round robin scheduling on PostgreSQL. Any existing
round robin scheduling will stop and migrate to PostgreSQL as entities
check in with keepalives. Sensu will gradually delete the existing etcd
scheduler state as keepalives on the etcd scheduler keys expire over

{

 "batch_workers": 0

}

JSON

dsn: 'postgresql://user:secret@host:port/dbname'

YML

{

 "dsn": "postgresql://user:secret@host:port/dbname"

}

JSON

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://pkg.go.dev/github.com/lib/pq@v1.2.0#hdr-Connection_String_Parameters
https://pkg.go.dev/github.com/lib/pq@v1.2.0#hdr-Connection_String_Parameters

time. Otherwise, false .

We recommend using PostgreSQL rather than etcd for round robin
scheduling because etcd leases are not reliable enough to produce
precise round robin behavior.

required false

default false

type Boolean

example

max_conn_lifetime

description Maximum time a connection can persist before being destroyed. Specify
values with a numeral and a letter indicator: s to indicate seconds, m
to indicate minutes, and h to indicate hours. For example, 1m , 2h ,
and 2h1m3s are valid.

required false

type String

example

enable_round_robin: true

YML

{

 "enable_round_robin": true

}

JSON

max_conn_lifetime: 5m

YML

{

 "max_conn_lifetime": "5m"

JSON

max_idle_conns

description Maximum number of number of idle connections to retain.

required false

default 2

type Integer

example

pool_size

description Maximum number of connections to hold in the PostgreSQL connection
pool. We recommend 20 for most instances.

required false

default 0 (unlimited)

type Integer

example

}

max_idle_conns: 2

YML

{

 "max_idle_conns": 2

}

JSON

pool_size: 20

YML

strict

description If true , when the PostgresConfg resource is created, confguration
validation will include connecting to the PostgreSQL database and
executing a query to confrm whether the connected user has permission
to create database tables. Otherwise, false .

If strict: true , sensu-backend will try to connect to PostgreSQL
indefnitely at 5-second intervals instead of reverting to etcd after 3
attempts.

We recommend setting strict: true in most cases. If the connection
fails or the user does not have permission to create database tables,
resource confguration will fail and the confguration will not be persisted.
This extended confguration is useful for debugging when you are not
sure whether the confguration is correct or the database is working
properly.

required false

default false

type Boolean

example

{

 "pool_size": 20

}

JSON

strict: true

YML

{

 "strict": true

}

JSON

Etcd replicators reference

Etcd replicators allow you to manage role-based access control (RBAC) resources in one place and
mirror the changes to follower clusters.
The API sets up etcd mirrors for one-way key replication.

The EtcdReplicator datatype will not use a namespace because it applies cluster-wide.
Therefore, only
cluster role RBAC bindings will apply to it.

Etcd replicator examples

Use the following four examples for Role , RoleBinding , ClusterRole , and
ClusterRoleBinding resources to create a full replication of RBAC policy.

Role resource example

COMMERCIAL FEATURE : Access the EtcdReplicator datatype in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

NOTE: EtcdReplicator is a datatype in the enterprise/federation/v1 API, which is only accessible
for users who have a cluster role that permits access to replication resources.

NOTE: If you do not specify a namespace when you create a replicator, all namespaces for a
given resource are replicated.

type: EtcdReplicator

api_version: federation/v1

metadata:

 name: role_replicator

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

YML

RoleBinding resource example

 key: /path/to/ssl/key.pem

 insecure: false

 url: http://127.0.0.1:2379

 api_version: core/v2

 resource: Role

 replication_interval_seconds: 30

{

 "type": "EtcdReplicator",

 "api_version": "federation/v1",

 "metadata": {

 "name": "role_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://127.0.0.1:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

JSON

type: EtcdReplicator

api_version: federation/v1

metadata:

 name: rolebinding_replicator

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 key: /path/to/ssl/key.pem

 insecure: false

YML

ClusterRole resource example

 url: http://127.0.0.1:2379

 api_version: core/v2

 resource: RoleBinding

 replication_interval_seconds: 30

{

 "type": "EtcdReplicator",

 "api_version": "federation/v1",

 "metadata": {

 "name": "rolebinding_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://127.0.0.1:2379",

 "api_version": "core/v2",

 "resource": "RoleBinding",

 "replication_interval_seconds": 30

 }

}

JSON

type: EtcdReplicator

api_version: federation/v1

metadata:

 name: clusterrole_replicator

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 key: /path/to/ssl/key.pem

 insecure: false

 url: http://127.0.0.1:2379

 api_version: core/v2

YML

ClusterRoleBinding resource example

 resource: ClusterRole

 replication_interval_seconds: 30

{

 "type": "EtcdReplicator",

 "api_version": "federation/v1",

 "metadata": {

 "name": "clusterrole_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://127.0.0.1:2379",

 "api_version": "core/v2",

 "resource": "ClusterRole",

 "replication_interval_seconds": 30

 }

}

JSON

type: EtcdReplicator

api_version: federation/v1

metadata:

 name: clusterrolebinding_replicator

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 key: /path/to/ssl/key.pem

 insecure: false

 url: http://127.0.0.1:2379

 api_version: core/v2

 resource: Role

 replication_interval_seconds: 30

YML

Critical success factors for etcd replication

Before you implement etcd replicators, review these details — they are critical to your success.

Bind your etcd listener to an external port that is not the default.

Use only addresses that clients can route to for etcd-client-advertise-urls .

Put the certifcate and key of the follower cluster in fles that the leader can access.

{

 "type": "EtcdReplicator",

 "api_version": "federation/v1",

 "metadata": {

 "name": "clusterrolebinding_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://127.0.0.1:2379",

 "api_version": "core/v2",

 "resource": "ClusterRoleBinding",

 "replication_interval_seconds": 30

 }

}

JSON

Replication will not work if you bind your etcd listener to the default port.

If you use addresses that clients cannot route to for etcd-client-advertise-urls ,
replication may be inconsistent: it may work at frst but then stop working later.

If the leader cannot access the follower cluster fles that contain the certifcate and key,
replication will not work.

For self-signed certifcates, supply the CA certifcate in the replicator defnition.

If you’re using insecure mode, use TLS mutual authentication.

Create a replicator for each resource type you want to replicate.

Create a replicator

You can use enterprise/federation/v1 API endpoints directly or sensuctl create to create
replicators.

When you create or update a replicator, an entry is added to the store and a new replicator process will
spin up.
The replicator process watches the keyspace of the resource to be replicated and replicates all
keys to the specifed cluster in a last-write-wins fashion.

When the cluster starts up, each sensu-backend scans the stored replicator defnitions and starts a
replicator process for each replicator defnition.
Source clusters with more than one sensu-backend will
cause redundant writes.
This is harmless, but you should consider it when designing a replicated
system.

Delete a replicator

If you have a self-signed certifcate and you do not supply the CA certifcate in the replicator
defnition, replication will not work.

Never use insecure mode without TLS mutual authentication outside of a testbed.

Replicating namespace resources will not replicate the resources that belong to those
namespaces.

WARNING: Make sure to confrm your confguration.
The server will accept incorrect EtcdReplicator
defnitions without sending a warning.
If your confguration is incorrect, replication will not work.

NOTE: Create a replicator for each resource type you want to replicate.
Replicating namespace

resources will not replicate the resources that belong to those namespaces.

When you delete a replicator, the replicator will issue delete events to the remote cluster for all of the
keys in its prefx.
It will not issue a delete of the entire key prefx (just in case the prefx is shared by
keys that are local to the remote cluster).

Rather than altering an existing replicator’s connection details, delete and recreate the replicator with
the new connection details.

Replicator confguration

Etcd replicators are etcd key space replicators.
Replicators contain confguration for forwarding a set of
keys from one etcd cluster to another.
Replicators are confgured by specifying the TLS details of the
remote cluster, its URL, and a resource type.

Etcd replicator specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API version of the etcd-
replicators API. Always federation/v1 .

required true

type String

example
api_version: federation/v1

YML

{

 "api_version": "federation/v1"

}

JSON

metadata

description Top-level scope that contains the replicator name and created_by
value. Namespace is not supported in the metadata because etcd
replicators are cluster-wide resources.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes the replicator spec attributes.

required true

type Map of key-value pairs

example

metadata:

 name: my_replicator

 created_by: admin

YML

{

 "metadata": {

 "name": "my_replicator",

 "created_by": "admin"

 }

}

JSON

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 key: /path/to/ssl/key.pem

 insecure: false

YML

type

description Top-level attribute that specifes the sensuctl create resource type.
Always EtcdReplicator.

required true

type String

example

 url: http://127.0.0.1:2379

 api_version: core/v2

 resource: Role

 replication_interval_seconds: 30

{

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-

authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://127.0.0.1:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

JSON

type: EtcdReplicator

YML

{

 "type": "EtcdReplicator"

JSON

Metadata attributes

created_by

description Username of the Sensu user who created the replicator or last updated
the replicator. Sensu automatically populates the created_by feld
when the replicator is created or updated.

required false

type String

example

name

description Replicator name used internally by Sensu.

required true

type String

example

}

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

name: my_replicator

YML

Spec attributes

api_version

description Sensu API version of the resource to replicate.

required false

type String

default core/v2

example

ca_cert

description Path to the PEM-format CA certifcate to use for TLS client
authentication.

required true if insecure: false (the default confguration). If insecure:
true , ca_cert is not required.

{

 "name": "my_replicator"

}

JSON

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

type String

example

cert

description Path to the PEM-format certifcate to use for TLS client authentication.
This certifcate is required for secure client communication.

required true if insecure: false (the default confguration). If insecure:
true , cert is not required.

type String

example

insecure

description true to disable transport security. Otherwise, false .

ca_cert: /path/to/trusted-certifcate-authorities.pem

YML

{

 "ca_cert": "/path/to/trusted-certifcate-authorities.pem"

}

JSON

cert: /path/to/ssl/cert.pem

YML

{

 "cert": "/path/to/ssl/cert.pem"

}

JSON

required false

type Boolean

default false

example

key

description Path to the PEM-format key fle associated with the cert to use for TLS
client authentication. This key and its corresponding certifcate are
required for secure client communication.

required true if insecure: false (the default confguration). If insecure:
true , key is not required.

type String

example

WARNING: Disable transport security with care.

insecure: false

YML

{

 "insecure": false

}

JSON

key: /path/to/ssl/key.pem

YML

{

 "key": "/path/to/ssl/key.pem"

}

JSON

namespace

description Namespace to constrain replication to. If you do not include namespace ,
all namespaces for a given resource are replicated.

required false

type String

example

replication_interval_seconds

description Interval at which the resource will be replicated. In seconds.

required false

type Integer

default 30

example

namespace: default

YML

{

 "namespace": "default"

}

JSON

replication_interval_seconds: 30

YML

{

JSON

resource

description Name of the resource to replicate.

required true

type String

example

url

description Destination cluster URL. If specifying more than one, use a comma to
separate. Replace with a non-default value for secure client
communication.

required true

type String

example

 "replication_interval_seconds": 30

}

resource: Role

YML

{

 "resource": "Role"

}

JSON

url: http://127.0.0.1:2379

YML

JSON

{

 "url": "http://127.0.0.1:2379"

}

Control Access

Sensu administrators control access by authentication and authorization.

Authentication verifes user identities to confrm that users are who they say they are.
Sensu requires
username and password authentication to access the web UI, API, and sensuctl command line tool.
You
can use Sensu’s built-in basic authentication or confgure external authentication providers.

Authorization establishes and manages user permissions: the extent of access users have for different
Sensu resources.
Confgure authorization with role-based access control (RBAC) to exercise fne-
grained control over how they interact with Sensu resources.

Authentication

Sensu web UI and sensuctl command line tool users can authenticate via built-in basic authentication
or Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or OpenID Connect 1.0
protocol (OIDC) when the administrator confgures external single sign-on (SSO) authentication
providers.

Sensu agents authenticate to the Sensu backend using either basic or mutual transport layer security
(TLS) authentication.

Use built-in basic authentication

Sensu’s built-in basic authentication allows you to create and manage user credentials (usernames
and passwords) with core/v2/users API endpoints, either directly or using sensuctl.
The basic
authentication provider does not depend on external services and is not confgurable.

Sensu hashes user passwords using the bcrypt algorithm and records the basic authentication
credentials in etcd.

NOTE: For API-specifc authentication, read the API overview and Use API keys to authenticate to
Sensu.

https://en.wikipedia.org/wiki/Bcrypt
https://etcd.io/

Use a single sign-on (SSO) authentication provider

In addition to built-in basic authentication, Sensu includes commercial support for single sign-on (SSO)
authentication using external authentication providers via Lightweight Directory Access Protocol
(LDAP), Active Directory (AD), or OpenID Connect 1.0 protocol (OIDC).

Read Confgure single sign-on (SSO) authentication for general information about confguring an SSO
authentication provider.
Read the LDAP, AD, or OIDC reference documentation for provider-specifc
information.

Authorization

After you set up authentication, confgure authorization via role-based access control (RBAC) to give
those users permissions within Sensu.
RBAC allows you to specify actions users are allowed to take
against resources, within namespaces or across all namespaces, based on roles bound to the user or
to one or more groups the user is a member of.
Read Create a read-only user for an example.

To enable permissions for external users and groups within Sensu, you can create a set of roles,
cluster roles, role bindings, and cluster role bindings that map to the usernames and group names in
your authentication provider.

After you confgure an authentication provider and establish the roles and bindings to grant
authenticated users the desired privileges, those users can log in via sensuctl and the web UI using a
single-sign-on username and password.
Users do not need to provide the username prefx for the
authentication provider when logging in to Sensu.

COMMERCIAL FEATURE : Access authentication providers for single sign-on (SSO) in the
packaged Sensu Go distribution.
For more information, read Get started with commercial features.

Namespaces partition resources within Sensu.
Sensu entities, checks, handlers, and other
namespaced resources belong to a single namespace.

Roles create sets of permissions (like GET and DELETE) tied to resource types.
Cluster roles
apply permissions across all namespaces and may include access to cluster-wide resources
like users and namespaces.

Role bindings assign a role to a set of users and groups within a namespace.
Cluster role
bindings assign a cluster role to a set of users and groups across all namespaces.

Confgure single sign-on (SSO)
authentication

Sensu requires username and password authentication to access the web UI, API, and sensuctl
command line tool.

In addition to the built-in basic authentication, Sensu offers commercial support for using Lightweight
Directory Access Protocol (LDAP), Active Directory (AD), or OpenID Connect 1.0 protocol (OIDC) for
single sign-on (SSO) authentication.

This guide describes general information for confguring an authentication provider for SSO.
Read the
LDAP, AD, or OIDC reference documentation for provider-specifc examples and specifcations.

Confgure authentication providers

To confgure an external authentication provider for SSO, frst write an authentication provider
confguration defnition.
Follow the examples and specifcations for your provider:

Save your confguration defnition to a fle, such as authconfg.yaml or authconfg.json .

After you have a saved confguration defnition, you can apply the confguration with sensuctl.
Log in to
sensuctl as the default admin user and use sensuctl to apply your authentication provider confguration
to Sensu:

COMMERCIAL FEATURE : Access authentication providers for single sign-on (SSO) in the
packaged Sensu Go distribution.
For more information, read Get started with commercial features.

Lightweight Directory Access Protocol (LDAP), including standards-compliant tools like
OpenLDAP (confguration examples and specifcation)

Microsoft Active Directory (AD), including Azure AD (confguration examples and
specifcation)

OpenID Connect 1.0 protocol (OIDC), including tools like Okta and PingFederate
(confguration examples and specifcation)

Use sensuctl to verify that your provider confguration was applied successfully:

The response will list your authentication provider types and names:

Manage authentication providers

View and delete authentication providers with enterprise/authentication/v2 API endpoints or these
sensuctl commands.

To view active authentication providers:

To view confguration details for an authentication provider named openldap :

sensuctl create --fle authconfg.yml

SHELL

sensuctl create --fle authconfg.json

SHELL

sensuctl auth list

 Type Name

────── ──────────

 ldap openldap

sensuctl auth list

sensuctl auth info openldap

To delete an authentication provider named openldap :

sensuctl auth delete openldap

Use API keys to authenticate to Sensu

The Sensu API key feature (core/v2.APIKey) is a persistent universally unique identifer (UUID) that
maps to a stored Sensu username.
The advantages of authenticating with API keys rather than access
tokens include:

API keys are cluster-wide resources, so only cluster admins can grant, view, and revoke them.

API key authentication

Similar to the Bearer [token] Authorization header, Key [api-key] will be accepted as an
Authorization header for authentication.

For example, a JWT Bearer [token] Authorization header might be:

If you’re using Key [api-key] to authenticate instead, the Authorization header might be:

More effcient integration: Check and handler plugins and other code can integrate with the
Sensu API without implementing the logic required to authenticate via the /auth API
endpoint to periodically refresh the access token

Improved security: API keys do not require providing a username and password in check or
handler defnitions

Better admin control: API keys can be created and revoked without changing the underlying
user’s password…but keep in mind that API keys will continue to work even if the user’s
password changes

NOTE: API keys are not supported for authentication providers such as LDAP and OIDC.

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

curl -H "Authorization: Key $SENSU_API_KEY"

Here’s an example request that uses API key authentication:

A successful request will return the HTTP response code HTTP/1.1 200 OK and the defnitions for
the checks in the default namespace.

Sensuctl management commands

To use sensuctl to generate a new API key for the admin user, run:

The response will include the new API key:

To bypass username/password authentication for sensuctl, add the --api-key global fag to specify
your API key with sensuctl commands.
For example:

To get information about an API key:

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

curl -H "Authorization: Key 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

NOTE: The API key resource is intentionally not compatible with sensuctl create .

sensuctl api-key grant admin

Created: /api/core/v2/apikeys/7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2

sensuctl --api-key 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2 event list

SHELL

The response will include information about the API key in the specifed format:

sensuctl api-key info 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2 --format yaml

sensuctl api-key info 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2 --format wrapped-json

SHELL

sensuctl api-key info 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2 --format json

SHELL

type: APIKey

api_version: core/v2

metadata:

 created_by: admin

 name: 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2

spec:

 created_at: 1570718917

 username: admin

YML

{

 "type": "APIKey",

 "api_version": "core/v2",

 "metadata": {

 "name": "7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2",

 "created_by": "admin"

 },

 "spec": {

 "created_at": 1570718917,

 "username": "admin"

 }

}

SHELL

To get a list of all API keys:

The response lists all API keys along with the name of the user who created each key and the date
and time each key was created:

To revoke an API key for the admin user:

The response will confrm that the API key is deleted:

{

 "metadata": {

 "name": "7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1570718917

}

JSON

sensuctl api-key list

 Name Username Created At

 ────────────────────────────────────── ────────── ───────────────────────────────

 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2 admin 2019-10-10 14:48:37 -0700 PDT

sensuctl api-key revoke 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2 --skip-confrm

Deleted

Create a read-only user with role-based
access control

Role-based access control (RBAC) allows you to exercise fne-grained control over how Sensu users
interact with Sensu resources.
Use RBAC rules to achieve multitenancy so different projects and
teams can share a Sensu instance.

Sensu RBAC helps different teams and projects share a Sensu instance.
RBAC allows you to manage
users and their access to resources based on namespaces, groups, roles, and bindings.

By default, Sensu includes a default namespace and an admin user with full permissions to
create, modify, and delete resources within Sensu, including RBAC resources like users and roles.
This
guide requires a running Sensu backend and a sensuctl instance confgured to connect to the backend
as an admin user.

Create a read-only user

In this section, you’ll create a user and assign them read-only access to resources within the
default namespace using a role and a role binding.

1. Create a user with the username alice and assign them to the group ops :

This command creates the following user:

sensuctl user create alice --password='password' --groups=ops

username: alice

groups:

- ops

disabled: false

TEXT

TEXT

2. Create a read-only role with get and list permissions for all resources (*) within the
default namespace:

This command creates the following role resource defnition:

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

sensuctl role create read-only --verb=get,list --resource=* --

namespace=default

type: Role

api_version: core/v2

metadata:

 name: read-only

spec:

 rules:

 - resource_names: null

 resources:

 - '*'

 verbs:

 - get

 - list

TEXT

{

 "type": "Role",

 "api_version": "core/v2",

TEXT

3. Create an ops-read-only role binding to assign the read-only role to the ops group:

This command creates the following role binding resource defnition:

 "metadata": {

 "name": "read-only"

 },

 "spec": {

 "rules": [

 {

 "resource_names": null,

 "resources": [

 "*"

],

 "verbs": [

 "get",

 "list"

]

 }

]

 }

}

sensuctl role-binding create ops-read-only --role=read-only --group=ops

type: RoleBinding

api_version: core/v2

metadata:

 name: ops-read-only

spec:

 role_ref:

 name: read-only

 type: Role

 subjects:

 - name: ops

 type: Group

TEXT

All users in the ops group now have read-only access to all resources within the default namespace.
You can also use role bindings to tie roles directly to users using the --user fag.

To manage your RBAC confguration, use the sensuctl user , sensuctl role , and sensuctl
role-binding commands.

Create a cluster-wide event-reader user

Suppose you want to create a user with read-only access to events across all namespaces.
Because
you want this role to have cluster-wide permissions, you’ll need to create a cluster role and a cluster
role binding.

1. Create a user with the username bob and assign them to the group ops :

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops-read-only"

 },

 "spec": {

 "role_ref": {

 "name": "read-only",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

TEXT

This command creates the following user:

2. Create a global-event-reader cluster role with get and list permissions for events
across all namespaces:

This command creates the following cluster role resource defnition:

sensuctl user create bob --password='password' --groups=ops

username: bob

groups:

- ops

disabled: false

TEXT

{

 "username": "bob",

 "groups": [

 "ops"

],

 "disabled": false

}

TEXT

sensuctl cluster-role create global-event-reader --verb=get,list --

resource=events

type: ClusterRole

api_version: core/v2

metadata:

 name: global-event-reader

spec:

 rules:

TEXT

3. Create an ops-event-reader cluster role binding to assign the global-event-reader role
to the ops group:

This command creates the following cluster role binding resource defnition:

 - resource_names: null

 resources:

 - events

 verbs:

 - get

 - list

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "global-event-reader"

 },

 "spec": {

 "rules": [

 {

 "resource_names": null,

 "resources": [

 "events"

],

 "verbs": [

 "get",

 "list"

]

 }

]

 }

}

TEXT

sensuctl cluster-role-binding create ops-event-reader --cluster-role=global-

event-reader --group=ops

All users in the ops group now have read-only access to events across all namespaces.

type: ClusterRoleBinding

api_version: core/v2

metadata:

 name: ops-event-reader

spec:

 role_ref:

 name: global-event-reader

 type: ClusterRole

 subjects:

 - name: ops

 type: Group

TEXT

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops-event-reader"

 },

 "spec": {

 "role_ref": {

 "name": "global-event-reader",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

TEXT

Next steps

Now that you know how to create a user, a role, and a role binding to assign a role to a user, check out
the RBAC reference for in-depth documentation on role-based access control, examples, and
information about cluster-wide permissions.

Read about monitoring as code with Sensu and learn how to use SensuFlow to synchronize your
monitoring and observability code with your Sensu deployments.

https://sensu.io/blog/monitoring-as-code-with-sensu-flow

Create limited service accounts

In some cases, you may want to allow an application or service to interact with Sensu resources.
Use
Sensu’s role-based access control (RBAC) to create and confgure accounts that represent
applications or services rather than individual human users.
These limited service accounts give you
fne-grained control of the access and permissions the application or service needs.

For example, you might develop a service that displays a high-level view of your webserver statuses
based on an aggregate check.
The service itself only needs an API key and permission to read the
results of checks executed on your webservers so it can route the check results to the status display.
No
human user needs to log into the service, and the service does not need edit or delete permissions.
A
limited service account can provide only the necessary access and permissions.

Limited service accounts are also useful for performing automated processes.
This guide explains how
to create a limited service account to use with the sensu/sensu-ec2-handler dynamic runtime asset to
automatically remove AWS EC2 instances that are not in a pending or running state.

By default, Sensu includes a default namespace and an admin user with full permissions to
create, modify, and delete resources within Sensu, including the RBAC resources required to confgure
a limited service account.
This guide requires a running Sensu backend and a sensuctl instance
confgured to connect to the backend as the admin user.

Create a limited service account

A limited service account requires:

A user.

A role with get, list, and delete permissions for resources within the default namespace.

A role binding that ties the role to the user.

An API key for the user.

NOTE: To use a service account to manage Sensu resources in more than one namespace,
create a cluster role instead of a role and a cluster role binding instead of a role binding.

https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler

1. Create a user with the username ec2-service and a dynamically created random password:

This command creates the following user defnition:

2. Create a ec2-delete role with get, list, and delete permissions for entity resources within the
default namespace:

sensuctl user create ec2-service --password=$(head -c1M /dev/urandom |

sha512sum | cut -d' ' -f1 | head -c 32)

type: User

api_version: core/v2

metadata:

 name: ec2-service

spec:

 disabled: false

 username: ec2-service

TEXT

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {

 "name": "ec2-service"

 },

 "spec": {

 "disabled": false,

 "username": "ec2-service"

 }

}

TEXT

sensuctl role create ec2-delete --verb get,list,delete --resource entities --

namespace default

This command creates the role that has the permissions your service account will need:

type: Role

api_version: core/v2

metadata:

 name: ec2-delete

spec:

 rules:

 - resource_names: null

 resources:

 - entities

 verbs:

 - get

 - list

 - delete

TEXT

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "ec2-delete"

 },

 "spec": {

 "rules": [

 {

 "resource_names": null,

 "resources": [

 "entities"

],

 "verbs": [

 "get",

 "list",

 "delete"

]

 }

]

TEXT

3. Create an ec2-service-delete role binding to assign the ec2-delete role to the ec2-
service user:

This command creates the role binding that ties the correct permissions (via the ec2-delete
role) with your service account (via the user ec2-service):

 }

}

sensuctl role-binding create ec2-service-delete --role ec2-delete --user ec2-

service

type: RoleBinding

api_version: core/v2

metadata:

 name: ec2-service-delete

spec:

 role_ref:

 name: ec2-delete

 type: Role

 subjects:

 - name: ec2-service

 type: User

TEXT

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ec2-service-delete"

 },

 "spec": {

 "role_ref": {

 "name": "ec2-delete",

TEXT

4. Create an API key for the ec2-service user:

The response will include an API key that is assigned to the ec2-service user, which you will
need to confgure the EC2 handler.

The ec2-service limited service account is now ready to use with the sensu/sensu-ec2-handler
dynamic runtime asset.

Add the sensu/sensu-ec2-handler dynamic runtime asset

To power the handler to remove AWS EC2 instances, use sensuctl to add the sensu/sensu-ec2-
handler dynamic runtime asset:

The response will indicate that the asset was added:

 "type": "Role"

 },

 "subjects": [

 {

 "name": "ec2-service",

 "type": "User"

 }

]

 }

}

sensuctl api-key grant ec2-service

sensuctl asset add sensu/sensu-ec2-handler:0.4.0

fetching bonsai asset: sensu/sensu-ec2-handler:0.4.0

added asset: sensu/sensu-ec2-handler:0.4.0

You have successfully added the Sensu asset resource, but the asset will not get

https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler
https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler
https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler

You can also download the dynamic runtime asset defnition from Bonsai and register the asset with
sensuctl create --fle flename.yml .

Confgure an EC2 handler for the service account

To confgure the EC2 handler, you will need AWS account credentials and details for the AWS
instance you want to manage, like the AWS instance ID.
You will also need the API key for the ec2-

service user.

In the following code, replace these bracketed placeholders with valid values:

You can also adjust the aws-allowed-instance-states value to include any of the Sensu EC2
integration’s available states.
This example lists only “pending” and “running.”

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["sensu/sensu-ec2-handler"].

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

NOTE: Use secrets management to confgure environment variables for your AWS access and
secret keys and the ec2-service user’s API key.
Do not expose this sensitive information by
listing it directly in the handler defnition.

The Sensu Go EC2 Handler’s Bonsai page includes an example for confguring secrets defnitions
with Sensu’s Env secrets provider.

<AWS_REGION> : the AWS region where your EC2 instance is located.

<AWS_INSTANCE_ID_LABEL> : the Sensu entity label that contains the AWS instance ID.
If your
AWS EC2 instance entities do not include labels that specify the instance ID, use the aws-

instance-id attribute instead and enter the AWS instance ID itself as the value.

<http://localhost:8080> : the Sensu API URL.

https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler
https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler#ec2-instance-states
https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler#environment-variables

Then, run this command with your valid values in place to create the handler defntion:

cat << EOF | sensuctl create

type: Handler

api_version: core/v2

metadata:

 name: sensu-ec2-handler

spec:

 type: pipe

 runtime_assets:

 - sensu/sensu-ec2-handler

 flters:

 - is_incident

 - not_silenced

 command: >-

 sensu-ec2-handler

 --aws-region <AWS_REGION>

 --aws-instance-id-label <AWS_INSTANCE_ID_LABEL>

 --aws-allowed-instance-states pending,running

 --sensu-api-url <http://localhost:8080>

 secrets:

 - name: AWS_ACCESS_KEY_ID

 secret: <YOUR_AWS_ACCESS_KEY_ID>

 - name: AWS_SECRET_KEY

 secret: <YOUR_AWS_SECRET_KEY>

 - name: SENSU_API_KEY

 secret: <YOUR_SENSU_API_KEY>

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-ec2-handler"

 },

 "spec": {

SHELL

The handler will use the provided AWS credentials to check the specifed EC2 instance.
If the instance’s
status is not “pending” or “running,” the handler will use the ec2-service user’s API key to remove
the corresponding entity.

Best practices for limited service accounts

 "type": "pipe",

 "runtime_assets": [

 "sensu/sensu-ec2-handler"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "command": "sensu-ec2-handler --aws-region <AWS_REGION> --aws-instance-id-label

AWS_INSTANCE_ID_LABEL --aws-allowed-instance-states pending,running --sensu-api-url

<http://localhost:8080">,

 "secrets": [

 {

 "name": "AWS_ACCESS_KEY_ID",

 "secret": "<YOUR_AWS_ACCESS_KEY_ID>"

 },

 {

 "name": "AWS_SECRET_KEY",

 "secret": "<YOUR_AWS_SECRET_KEY>"

 },

 {

 "name": "SENSU_API_KEY",

 "secret": "<YOUR_SENSU_API_KEY>"

 }

]

 }

}

EOF

NOTE: Instead of directly referencing your AWS_ACCESS_KEY_ID , AWS_SECRET_KEY , and
SENSU_API_KEY as shown in the sensu-ec2-handler example handler defnition above, use

secrets management to confgure these values as environment variables.

Follow these best practices for creating and managing limited service accounts:

Use unique and specifc names for limited service accounts.
Names should identify the accounts
as limited service accounts as well as the associated services.

Restrict limited service account access to only the namespaces and role permissions they need
to operate properly.
Adjust namespaces and permissions if needed by updating the role or
cluster role that is tied to the service account.

Promptly delete unused limited service accounts to make sure they do not become security
risks.

Active Directory (AD) reference

Sensu requires username and password authentication to access the web UI, API, and sensuctl
command line tool.

In addition to the built-in basic authentication, Sensu offers commercial support for using Microsoft
Active Directory (AD) for single sign-on (SSO) authentication.
The AD authentication provider is based
on the LDAP authentication provider.

To use AD authentication for Azure, follow Microsoft’s tutorial to set up secure LDAP in your Azure
account and create the host and certifcates you need.

For general information about confguring authentication providers, read Confgure single sign-on
(SSO) authentication.

AD confguration examples

Example AD confguration: Minimum required attributes

COMMERCIAL FEATURE : Access active directory (AD) authentication for single sign-on (SSO) in
the packaged Sensu Go distribution.
For more information, read Get started with commercial
features.

type: ad

api_version: authentication/v2

metadata:

 name: activedirectory

spec:

 servers:

 - group_search:

 base_dn: dc=acme,dc=org

 host: 127.0.0.1

 user_search:

YML

https://docs.microsoft.com/en-us/azure/active-directory-domain-services/tutorial-configure-ldaps
https://docs.microsoft.com/en-us/azure/active-directory-domain-services/tutorial-configure-ldaps

Example AD confguration: All attributes

 base_dn: dc=acme,dc=org

{

 "type": "ad",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "activedirectory"

 }

}

JSON

type: ad

api_version: authentication/v2

metadata:

 name: activedirectory

spec:

 allowed_groups: []

 groups_prefx: ad

 servers:

 - binding:

 password: YOUR_PASSWORD

YML

 user_dn: cn=binder,cn=users,dc=acme,dc=org

 client_cert_fle: /path/to/ssl/cert.pem

 client_key_fle: /path/to/ssl/key.pem

 default_upn_domain: example.org

 include_nested_groups: true

 group_search:

 attribute: member

 base_dn: dc=acme,dc=org

 name_attribute: cn

 object_class: group

 host: 127.0.0.1

 insecure: false

 port: 636

 security: tls

 trusted_ca_fle: /path/to/trusted-certifcate-authorities.pem

 user_search:

 attribute: sAMAccountName

 base_dn: dc=acme,dc=org

 name_attribute: displayName

 object_class: person

 username_prefx: ad

{

 "type": "ad",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "default_upn_domain": "example.org",

 "include_nested_groups": true,

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

JSON

Example AD confguration: Use memberOf attribute instead of group_search

AD automatically returns a memberOf attribute in users’ accounts.
The memberOf attribute contains
the user’s group membership, which effectively removes the requirement to look up the user’s groups.

To use the memberOf attribute in your AD implementation, remove the group_search object from
your AD confg:

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

 }

 }

],

 "allowed_groups": [],

 "groups_prefx": "ad",

 "username_prefx": "ad"

 },

 "metadata": {

 "name": "activedirectory"

 }

}

type: ad

api_version: authentication/v2

metadata:

 name: activedirectory

spec:

 servers:

YML

After you confgure AD to use the memberOf attribute, the debug log level will include the following
log entries:

AD specifcation

 host: 127.0.0.1

 user_search:

 base_dn: dc=acme,dc=org

{

 "type": "ad",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "activedirectory"

 }

}

JSON

{"component":"authentication/v2","level":"debug","msg":"using the \"memberOf\"

attribute to determine the group membership of user \"user1\"","time":"2020-06-

25T14:10:58-04:00"}

{"component":"authentication/v2","level":"debug","msg":"found 1 LDAP group(s):

[\"sensu\"]","time":"2020-06-25T14:10:58-04:00"}

AD top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
For AD defnitions, the type should always be ad .

required true

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
AD defnitions, the api_version should always be
authentication/v2 .

required true

type String

example

type: ad

YML

{

 "type": "ad"

}

JSON

api_version: authentication/v2

YML

{

 "api_version": "authentication/v2"

JSON

metadata

description Top-level map that contains the AD defnition name . Review the
metadata attributes for details.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes the AD spec attributes.

required true

type Map of key-value pairs

example

}

metadata:

 name: activedirectory

YML

{

 "metadata": {

 "name": "activedirectory"

 }

}

JSON

spec:

 servers:

 - host: 127.0.0.1

YML

 port: 636

 insecure: false

 security: tls

 trusted_ca_fle: "/path/to/trusted-certifcate-

authorities.pem"

 client_cert_fle: "/path/to/ssl/cert.pem"

 client_key_fle: "/path/to/ssl/key.pem"

 default_upn_domain: example.org

 include_nested_groups: true

 binding:

 user_dn: cn=binder,cn=users,dc=acme,dc=org

 password: YOUR_PASSWORD

 group_search:

 base_dn: dc=acme,dc=org

 attribute: member

 name_attribute: cn

 object_class: group

 user_search:

 base_dn: dc=acme,dc=org

 attribute: sAMAccountName

 name_attribute: displayName

 object_class: person

 allowed_groups: []

 groups_prefx: ad

 username_prefx: ad

{

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "default_upn_domain": "example.org",

 "include_nested_groups": true,

JSON

AD metadata attributes

name

description A unique string used to identify the AD confguration. Names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z).

required true

type String

example

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

 }

 }

],

 "allowed_groups": [],

 "groups_prefx": "ad",

 "username_prefx": "ad"

 }

}

name: activedirectory

YML

https://regex101.com/r/zo9mQU/2

AD spec attributes

servers

description The list of AD servers to use. During the authentication process, Sensu
attempts to authenticate against each AD server in sequence until
authentication is successful or there are no more servers to try.

required true

type Array

example

{

 "name": "activedirectory"

}

JSON

servers:

- host: 127.0.0.1

 port: 636

 insecure: false

 security: tls

 trusted_ca_fle: "/path/to/trusted-certifcate-

authorities.pem"

 client_cert_fle: "/path/to/ssl/cert.pem"

 client_key_fle: "/path/to/ssl/key.pem"

 default_upn_domain: example.org

 include_nested_groups: true

 binding:

 user_dn: cn=binder,cn=users,dc=acme,dc=org

 password: YOUR_PASSWORD

 group_search:

 base_dn: dc=acme,dc=org

 attribute: member

YML

 name_attribute: cn

 object_class: group

 user_search:

 base_dn: dc=acme,dc=org

 attribute: sAMAccountName

 name_attribute: displayName

 object_class: person

{

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "default_upn_domain": "example.org",

 "include_nested_groups": true,

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

 }

 }

]

}

JSON

allowed_groups

description An array of allowed AD group strings to include in the tokenized identity
claim. Use to specify which groups to encode in the authentication
provider’s JSON Web Token (JWT) when the authenticated AD user is a
member of many groups and the tokenized identity claim would be too
large for correct web client operation.

required false

type Array

example

groups_prefx

description The prefx added to all AD groups. Sensu appends the groups_prefx
with a colon. For example, for the groups_prefx ad and the group
dev , the resulting group name in Sensu is ad:dev . Use the

groups_prefx when integrating AD groups with Sensu RBAC role
bindings and cluster role bindings.

allowed_groups:

- sensu-viewers

- sensu-operators

YML

{

 "allowed_groups": [

 "sensu-viewers",

 "sensu-operators"

]

}

JSON

required false

type String

example

username_prefx

description The prefx added to all AD usernames. Sensu appends the
username_prefx with a colon. For example, for the username_prefx
ad and the user alice , the resulting username in Sensu is
ad:alice . Use the username_prefx when integrating AD users with

Sensu RBAC role bindings and cluster role bindings. Users do not need
to provide the username_prefx when logging in to Sensu.

required false

type String

example

groups_prefx: ad

YML

{

 "groups_prefx": "ad"

}

JSON

username_prefx: ad

YML

{

 "username_prefx": "ad"

}

JSON

AD server attributes

host

description AD server IP address or fully qualifed domain name (FQDN).

required true

type String

example

port

description AD server port.

required true

type Integer

default 389 for insecure connections; 636 for TLS connections

example

host: 127.0.0.1

YML

{

 "host": "127.0.0.1"

}

JSON

port: 636

YML

{

 "port": 636

}

JSON

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

insecure

description Skips SSL certifcate verifcation when set to true .

required false

type Boolean

default false

example

security

description Determines the encryption type to be used for the connection to the AD
server: insecure (unencrypted connection; not recommended for
production), tls (secure encrypted connection), or starttls
(unencrypted connection upgrades to a secure connection).

type String

default tls

WARNING: Do not use an insecure connection in production
environments.

insecure: false

YML

{

 "insecure": false

}

JSON

YML

example

trusted_ca_fle

description Path to an alternative CA bundle fle in PEM format to be used instead of
the system’s default bundle. This CA bundle is used to verify the server’s
certifcate.

required false

type String

example

client_cert_fle

description Path to the certifcate that should be sent to the server if requested.

required false

security: tls

{

 "security": "tls"

}

JSON

trusted_ca_fle: /path/to/trusted-certifcate-authorities.pem

YML

{

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem"

}

JSON

type String

example

client_key_fle

description Path to the key fle associated with the client_cert_fle .

required false

type String

example

binding

description The AD account that performs user and group lookups. If your server
supports anonymous binding, you can omit the user_dn or password
attributes to query the directory without credentials. To use anonymous
binding with AD, the ANONYMOUS LOGON object requires read

client_cert_fle: /path/to/ssl/cert.pem

YML

{

 "client_cert_fle": "/path/to/ssl/cert.pem"

}

JSON

client_key_fle: /path/to/ssl/key.pem

YML

{

 "client_key_fle": "/path/to/ssl/key.pem"

}

JSON

permissions for users and groups. Review the binding attributes for
details.

required false

type Map

example

group_search

description Search confguration for groups. Review the group search attributes for
more information. Remove the group_search object from your
confguration to use the memberOf attribute instead.

required false

type Map

example

binding:

 user_dn: cn=binder,cn=users,dc=acme,dc=org

 password: YOUR_PASSWORD

YML

{

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 }

}

JSON

group_search:

 base_dn: dc=acme,dc=org

 attribute: member

 name_attribute: cn

 object_class: group

YML

user_search

description Search confguration for users. Review the user search attributes for
more information.

required true

type Map

example

{

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

 }

}

JSON

user_search:

 base_dn: dc=acme,dc=org

 attribute: sAMAccountName

 name_attribute: displayName

 object_class: person

YML

{

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

 }

}

JSON

default_upn_domain

description Enables UPN authentication when set. The default UPN suffx that will
be appended to the username when a domain is not specifed during
login (for example, user becomes user@defaultdomain.xyz).

required false

type String

example

include_nested_groups

description If true , the group search includes any nested groups a user is a
member of. If false , the group search includes only the top-level
groups a user is a member of.

WARNING: When using UPN authentication, users must re-
authenticate to apply any changes to group membership on the AD
server since their last authentication. For example, if you remove a
user from a group with administrator permissions for the current
session (such as a terminated employee), Sensu will not apply the
change until the user logs out and tries to start a new session.
Likewise, under UPN, users cannot be forced to log out of Sensu.
To apply group membership updates without re-authentication,
specify a binding account or enable anonymous binding.

default_upn_domain: example.org

YML

{

 "default_upn_domain": "example.org"

}

JSON

required false

type Boolean

example

AD binding attributes

user_dn

description The AD account that performs user and group lookups. We recommend
using a read-only account. Use the distinguished name (DN) format,
such as cn=binder,cn=users,dc=domain,dc=tld . If your server
supports anonymous binding, you can omit this attribute to query the
directory without credentials.

required false

type String

example

include_nested_groups: true

YML

{

 "include_nested_groups": true

}

JSON

user_dn: cn=binder,cn=users,dc=acme,dc=org

YML

{

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org"

}

JSON

password

description Password for the user_dn account. If your server supports anonymous
binding, you can omit this attribute to query the directory without
credentials.

required false

type String

example

AD group search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

example

password: YOUR_PASSWORD

YML

{

 "password": "YOUR_PASSWORD"

}

JSON

base_dn: dc=acme,dc=org

YML

JSON

attribute

description Used for comparing result entries. Combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default member

example

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default cn

{

 "base_dn": "dc=acme,dc=org"

}

attribute: member

YML

{

 "attribute": "member"

}

JSON

YML

example

object_class

description Identifes the class of objects returned in the search result. Combined
with other flters as "(objectClass=<ObjectClass>)" .

required false

type String

default group

example

AD user search attributes

base_dn

name_attribute: cn

{

 "name_attribute": "cn"

}

JSON

object_class: group

YML

{

 "object_class": "group"

}

JSON

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

example

attribute

description Used for comparing result entries. Combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default sAMAccountName

example

base_dn: dc=acme,dc=org

YML

{

 "base_dn": "dc=acme,dc=org"

}

JSON

attribute: sAMAccountName

YML

{

 "attribute": "sAMAccountName"

}

JSON

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default displayName

example

object_class

description Identifes the class of objects returned in the search result. Combined
with other flters as "(objectClass=<ObjectClass>)" .

required false

type String

default person

example

name_attribute: displayName

YML

{

 "name_attribute": "displayName"

}

JSON

object_class: person

YML

{

 "object_class": "person"

JSON

AD troubleshooting

To troubleshoot any issue with AD authentication, start by increasing the log verbosity of sensu-
backend to the debug log level.
Most authentication and authorization errors are only displayed on the
debug log level to avoid fooding the log fles.

Authentication

This section lists common authentication error messages and describes possible solutions for each of
them.

failed to connect: AD Result Code 200 "Network Error"

The AD provider couldn’t establish a TCP connection to the AD server.
Verify the host and port
attributes.
If you are not using AD over TLS/SSL, make sure to set the value of the security attribute
to insecure for plaintext communication.

certifcate signed by unknown authority

If you are using a self-signed certifcate, make sure to set the insecure attribute to true .
This will
bypass verifcation of the certifcate’s signing authority.

failed to bind: ...

The frst step for authenticating a user with the AD provider is to bind to the AD server using the
service account specifed in the binding object.
Make sure the user_dn attribute specifes a valid
DN and that its password is correct.

}

NOTE: If you can’t locate any log entries referencing AD authentication, run sensuctl auth list to
make sure that you successfully installed the AD provider.

user <username> was not found

The user search failed.
No user account could be found with the given username.
Check the
user_search object and make sure that:

ad search for user <username> returned x results, expected only 1

The user search returned more than one user entry, so the provider could not determine which of
these entries to use.
Change the user_search object so the provided username can be used to
uniquely identify a user entry.
Here are two methods to try:

ad entry <DN> missing required attribute <name_attribute>

The user entry returned (identifed by <DN>) doesn’t include the attribute specifed by
name_attribute object, so the AD provider could not determine which attribute to use as the

username in the user entry.
Adjust the name_attribute so it specifes a human-readable name for the
user.

ad group entry <DN> missing <name_attribute> and cn attributes

The group search returned a group entry (identifed by <DN>) that doesn’t have the
name_attribute object or a cn attribute, so the AD provider could not determine which attribute to

use as the group name in the group entry.
Adjust the name_attribute so it specifes a human-
readable name for the group.

Authorization

Once authenticated, each user needs to be granted permissions via either a ClusterRoleBinding or
a RoleBinding .

The specifed base_dn contains the requested user entry DN

The specifed attribute contains the username as its value in the user entry

The object_class attribute corresponds to the user entry object class

Adjust the attribute so its value (which corresponds to the username) is unique among
the user entries

Adjust the base_dn so it only includes one of the user entries

The way AD users and AD groups can be referred as subjects of a cluster role or role binding depends
on the groups_prefx and username_prefx confguration attributes values of the AD provider.
For
example, for the groups_prefx ad and the group dev , the resulting group name in Sensu is
ad:dev .

Permissions are not granted via the AD group(s)

During authentication, the AD provider will print all groups found in AD (for example, found 1

group(s): [dev]) in the logs.
Keep in mind that this group name does not contain the groups_prefx

at this point.

The Sensu backend logs each attempt made to authorize an RBAC request.
This is useful for
determining why a specifc binding didn’t grant the request.
For example:

[...] the user is not a subject of the ClusterRoleBinding cluster-admin [...]

[...] could not authorize the request with the ClusterRoleBinding system:user [...]

[...] could not authorize the request with any ClusterRoleBindings [...]

Lightweight Directory Access Protocol
(LDAP) reference

Sensu requires username and password authentication to access the web UI, API, and sensuctl
command line tool.

In addition to the built-in basic authentication, Sensu offers commercial support for a standards-
compliant Lightweight Directory Access Protocol (LDAP) tool for single sign-on (SSO) authentication.
The Sensu LDAP authentication provider is tested with OpenLDAP.
If you’re using AD, head to the AD
section.

For general information about confguring authentication providers, read Confgure single sign-on
(SSO) authentication.

LDAP confguration examples

Example LDAP confguration: Minimum required attributes

COMMERCIAL FEATURE : Access Lightweight Directory Access Protocol (LDAP) authentication
for single sign-on (SSO) in the packaged Sensu Go distribution.
For more information, read Get
started with commercial features.

type: ldap

api_version: authentication/v2

metadata:

 name: openldap

spec:

 servers:

 - group_search:

 base_dn: dc=acme,dc=org

 host: 127.0.0.1

 user_search:

YML

https://www.openldap.org/

Example LDAP confguration: All attributes

 base_dn: dc=acme,dc=org

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

}

JSON

type: ldap

api_version: authentication/v2

metadata:

 name: openldap

spec:

 allowed_groups: []

 groups_prefx: ldap

 servers:

 - binding:

 password: YOUR_PASSWORD

YML

 user_dn: cn=binder,dc=acme,dc=org

 client_cert_fle: /path/to/ssl/cert.pem

 client_key_fle: /path/to/ssl/key.pem

 group_search:

 attribute: member

 base_dn: dc=acme,dc=org

 name_attribute: cn

 object_class: groupOfNames

 host: 127.0.0.1

 insecure: false

 port: 636

 security: tls

 trusted_ca_fle: /path/to/trusted-certifcate-authorities.pem

 user_search:

 attribute: uid

 base_dn: dc=acme,dc=org

 name_attribute: cn

 object_class: person

 username_prefx: ldap

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

JSON

Example LDAP confguration: Use memberOf attribute instead of group_search

If your LDAP server is confgured to return a memberOf attribute when you perform a query, you can
use memberOf in your Sensu LDAP implementation instead of group_search .
The memberOf

attribute contains the user’s group membership, which effectively removes the requirement to look up
the user’s groups.

To use the memberOf attribute in your LDAP implementation, remove the group_search object from
your LDAP confg:

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "allowed_groups": [],

 "groups_prefx": "ldap",

 "username_prefx": "ldap"

 },

 "metadata": {

 "name": "openldap"

 }

}

type: ldap

api_version: authentication/v2

metadata:

 name: openldap

spec:

 servers:

 host: 127.0.0.1

 user_search:

YML

After you confgure LDAP to use the memberOf attribute, the debug log level will include the
following log entries:

LDAP specifcation

Top-level attributes

 base_dn: dc=acme,dc=org

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

}

JSON

{"component":"authentication/v2","level":"debug","msg":"using the \"memberOf\"

attribute to determine the group membership of user \"user1\"","time":"2020-06-

25T14:10:58-04:00"}

{"component":"authentication/v2","level":"debug","msg":"found 1 LDAP group(s):

[\"sensu\"]","time":"2020-06-25T14:10:58-04:00"}

type

description Top-level attribute that specifes the sensuctl create resource type.
For LDAP defnitions, the type should always be ldap .

required true

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
LDAP defnitions, the api_version should always be
authentication/v2 .

required true

type String

example

type: ldap

YML

{

 "type": "ldap"

}

JSON

api_version: authentication/v2

YML

{

 "api_version": "authentication/v2"

}

JSON

metadata

description Top-level map that contains the LDAP defnition name . Review the
metadata attributes for details.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes the LDAP spec attributes.

required true

type Map of key-value pairs

example

metadata:

 name: openldap

YML

{

 "metadata": {

 "name": "openldap"

 }

}

JSON

spec:

 servers:

 - host: 127.0.0.1

 port: 636

 insecure: false

 security: tls

YML

 trusted_ca_fle: "/path/to/trusted-certifcate-

authorities.pem"

 client_cert_fle: "/path/to/ssl/cert.pem"

 client_key_fle: "/path/to/ssl/key.pem"

 binding:

 user_dn: cn=binder,dc=acme,dc=org

 password: YOUR_PASSWORD

 group_search:

 base_dn: dc=acme,dc=org

 attribute: member

 name_attribute: cn

 object_class: groupOfNames

 user_search:

 base_dn: dc=acme,dc=org

 attribute: uid

 name_attribute: cn

 object_class: person

 allowed_groups: []

 groups_prefx: ldap

 username_prefx: ldap

{

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

JSON

LDAP metadata attributes

name

description A unique string used to identify the LDAP confguration. Names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z).

required true

type String

example

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "allowed_groups": [],

 "groups_prefx": "ldap",

 "username_prefx": "ldap"

 }

}

name: openldap

YML

{

 "name": "openldap"

}

JSON

https://regex101.com/r/zo9mQU/2

LDAP spec attributes

servers

description The list of LDAP servers to use. During the authentication process,
Sensu attempts to authenticate against each LDAP server in sequence
until authentication is successful or there are no more servers to try.

required true

type Array

example
servers:

- host: 127.0.0.1

 port: 636

 insecure: false

 security: tls

 trusted_ca_fle: "/path/to/trusted-certifcate-

authorities.pem"

 client_cert_fle: "/path/to/ssl/cert.pem"

 client_key_fle: "/path/to/ssl/key.pem"

 binding:

 user_dn: cn=binder,dc=acme,dc=org

 password: YOUR_PASSWORD

 group_search:

 base_dn: dc=acme,dc=org

 attribute: member

 name_attribute: cn

 object_class: groupOfNames

 user_search:

 base_dn: dc=acme,dc=org

 attribute: uid

 name_attribute: cn

 object_class: person

YML

JSON

allowed_groups

description An array of allowed LDAP group strings to include in the tokenized
identity claim. Use to specify which groups to encode in the
authentication provider’s JSON Web Token (JWT) when the
authenticated LDAP user is a member of many groups and the tokenized

{

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

]

}

identity claim would be too large for correct web client operation.

required false

type Array of strings

example

groups_prefx

description The prefx added to all LDAP groups. Sensu appends the groups_prefx
with a colon. For example, for the groups_prefx ldap and the group
dev , the resulting group name in Sensu is ldap:dev . Use the

groups_prefx when integrating LDAP groups with Sensu RBAC role
bindings and cluster role bindings.

required false

type String

example

allowed_groups:

- sensu-viewers

- sensu-operators

YML

{

 "allowed_groups": [

 "sensu-viewers",

 "sensu-operators"

]

}

JSON

groups_prefx: ldap

YML

{

JSON

username_prefx

description The prefx added to all LDAP usernames. Sensu appends the
username_prefx with a colon. For example, for the username_prefx
ldap and the user alice , the resulting username in Sensu is
ldap:alice . Use the username_prefx when integrating LDAP users

with Sensu RBAC role bindings and cluster role bindings. Users do not
need to provide the username_prefx when logging in to Sensu.

required false

type String

example

LDAP server attributes

host

description LDAP server IP address or fully qualifed domain name (FQDN).

required true

type String

 "groups_prefx": "ldap"

}

username_prefx: ldap

YML

{

 "username_prefx": "ldap"

}

JSON

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

example

port

description LDAP server port.

required true

type Integer

default 389 for insecure connections; 636 for TLS connections

example

insecure

description Skips SSL certifcate verifcation when set to true .

host: 127.0.0.1

YML

{

 "host": "127.0.0.1"

}

JSON

port: 636

YML

{

 "port": 636

}

JSON

WARNING: Do not use an insecure connection in production

required false

type Boolean

default false

example

security

description Determines the encryption type to be used for the connection to the
LDAP server: insecure (unencrypted connection; not recommended
for production), tls (secure encrypted connection), or starttls
(unencrypted connection upgrades to a secure connection).

type String

default tls

example

environments.

insecure: false

YML

{

 "insecure": false

}

JSON

security: tls

YML

{

 "security": "tls"

}

JSON

trusted_ca_fle

description Path to an alternative CA bundle fle in PEM format to be used instead of
the system’s default bundle. This CA bundle is used to verify the server’s
certifcate.

required false

type String

example

client_cert_fle

description Path to the certifcate that should be sent to the server if requested.

required false

type String

example

trusted_ca_fle: /path/to/trusted-certifcate-authorities.pem

YML

{

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem"

}

JSON

client_cert_fle: /path/to/ssl/cert.pem

YML

{

JSON

client_key_fle

description Path to the key fle associated with the client_cert_fle .

required false

type String

example

binding

description The LDAP account that performs user and group lookups. If your server
supports anonymous binding, you can omit the user_dn or password
attributes to query the directory without credentials. Review the binding
attributes for details.

required false

type Map

example

 "client_cert_fle": "/path/to/ssl/cert.pem"

}

client_key_fle: /path/to/ssl/key.pem

YML

{

 "client_key_fle": "/path/to/ssl/key.pem"

}

JSON

binding:

 user_dn: cn=binder,dc=acme,dc=org

 password: YOUR_PASSWORD

YML

group_search

description Search confguration for groups. Review the group search attributes for
more information. Remove the group_search object from your
confguration to use the memberOf attribute instead.

required false

type Map

example

{

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 }

}

JSON

group_search:

 base_dn: dc=acme,dc=org

 attribute: member

 name_attribute: cn

 object_class: groupOfNames

YML

{

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 }

}

JSON

user_search

description Search confguration for users. Review the user search attributes for
more information.

required true

type Map

example

LDAP binding attributes

user_dn

description The LDAP account that performs user and group lookups. We
recommend using a read-only account. Use the distinguished name (DN)
format, such as cn=binder,cn=users,dc=domain,dc=tld . If your

user_search:

 base_dn: dc=acme,dc=org

 attribute: uid

 name_attribute: cn

 object_class: person

YML

{

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

}

JSON

server supports anonymous binding, you can omit this attribute to query
the directory without credentials.

required false

type String

example

password

description Password for the user_dn account. If your server supports anonymous
binding, you can omit this attribute to query the directory without
credentials.

required false

type String

example

user_dn: cn=binder,dc=acme,dc=org

YML

{

 "user_dn": "cn=binder,dc=acme,dc=org"

}

JSON

password: YOUR_PASSWORD

YML

{

 "password": "YOUR_PASSWORD"

}

JSON

LDAP group search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

example

attribute

description Used for comparing result entries. Combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default member

example

base_dn: dc=acme,dc=org

YML

{

 "base_dn": "dc=acme,dc=org"

}

JSON

attribute: member

YML

{

JSON

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default cn

example

object_class

description Identifes the class of objects returned in the search result. Combined
with other flters as "(objectClass=<ObjectClass>)" .

required false

type String

default groupOfNames

example

 "attribute": "member"

}

name_attribute: cn

YML

{

 "name_attribute": "cn"

}

JSON

object_class: groupOfNames

YML

LDAP user search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

example

attribute

description Used for comparing result entries. Combined with other flters as
"(<Attribute>=<value>)" .

required false

{

 "object_class": "groupOfNames"

}

JSON

base_dn: dc=acme,dc=org

YML

{

 "base_dn": "dc=acme,dc=org"

}

JSON

type String

default uid

example

name_attribute

description Represents the attribute to use as the entry name

required false

type String

default cn

example

object_class

attribute: uid

YML

{

 "attribute": "uid"

}

JSON

name_attribute: cn

YML

{

 "name_attribute": "cn"

}

JSON

description Identifes the class of objects returned in the search result. Combined
with other flters as "(objectClass=<ObjectClass>)" .

required false

type String

default person

example

LDAP troubleshooting

To troubleshoot any issue with LDAP authentication, start by increasing the log verbosity of sensu-
backend to the debug log level.
Most authentication and authorization errors are only displayed on the
debug log level to avoid fooding the log fles.

Authentication

This section lists common authentication error messages and describes possible solutions for each of
them.

failed to connect: LDAP Result Code 200 "Network Error"

object_class: person

YML

{

 "object_class": "person"

}

JSON

NOTE: If you can’t locate any log entries referencing LDAP authentication, run sensuctl auth list to
make sure that you successfully installed the LDAP provider.

The LDAP provider couldn’t establish a TCP connection to the LDAP server.
Verify the host and
port attributes.
If you are not using LDAP over TLS/SSL, make sure to set the value of the
security attribute to insecure for plaintext communication.

certifcate signed by unknown authority

If you are using a self-signed certifcate, make sure to set the insecure attribute to true .
This will
bypass verifcation of the certifcate’s signing authority.

failed to bind: ...

The frst step for authenticating a user with the LDAP provider is to bind to the LDAP server using the
service account specifed in the binding object.
Make sure the user_dn attribute specifes a valid
DN and that its password is correct.

user <username> was not found

The user search failed.
No user account could be found with the given username.
Check the
user_search object and make sure that:

ldap search for user <username> returned x results, expected only 1

The user search returned more than one user entry, so the provider could not determine which of
these entries to use.
Change the user_search object so the provided username can be used to
uniquely identify a user entry.
Here are two methods to try:

ldap entry <DN> missing required attribute <name_attribute>

The user entry returned (identifed by <DN>) doesn’t include the attribute specifed by

The specifed base_dn contains the requested user entry DN

The specifed attribute contains the username as its value in the user entry

The object_class attribute corresponds to the user entry object class

Adjust the attribute so its value (which corresponds to the username) is unique among
the user entries

Adjust the base_dn so it only includes one of the user entries

name_attribute object, so the LDAP provider could not determine which attribute to use as the
username in the user entry.
Adjust the name_attribute so it specifes a human-readable name for the
user.

ldap group entry <DN> missing <name_attribute> and cn attributes

The group search returned a group entry (identifed by <DN>) that doesn’t have the
name_attribute object or a cn attribute, so the LDAP provider could not determine which attribute

to use as the group name in the group entry.
Adjust the name_attribute so it specifes a human-
readable name for the group.

Authorization

Once authenticated, each user needs to be granted permissions via either a ClusterRoleBinding or
a RoleBinding .

The way LDAP users and LDAP groups can be referred as subjects of a cluster role or role binding
depends on the groups_prefx and username_prefx confguration attributes values of the LDAP
provider.
For example, for the groups_prefx ldap and the group dev , the resulting group name in
Sensu is ldap:dev .

Permissions are not granted via the LDAP group(s)

During authentication, the LDAP provider will print all groups found in LDAP (for example, found 1

group(s): [dev]) in the logs.
Keep in mind that this group name does not contain the groups_prefx

at this point.

The Sensu backend logs each attempt made to authorize an RBAC request.
This is useful for
determining why a specifc binding didn’t grant the request.
For example:

[...] the user is not a subject of the ClusterRoleBinding cluster-admin [...]

[...] could not authorize the request with the ClusterRoleBinding system:user [...]

[...] could not authorize the request with any ClusterRoleBindings [...]

OpenID Connect 1.0 protocol (OIDC)
reference

Sensu requires username and password authentication to access the web UI, API, and sensuctl
command line tool.

In addition to the built-in basic authentication, Sensu offers commercial support for single sign-on
(SSO) authentication using the OpenID Connect 1.0 protocol (OIDC) on top of the OAuth 2.0 protocol.
The Sensu OIDC provider is tested with Okta and PingFederate.

For general information about confguring authentication providers, read Confgure single sign-on
(SSO) authentication.

OIDC confguration example

COMMERCIAL FEATURE : Access OpenID Connect 1.0 protocol (OIDC) authentication for single
sign-on (SSO) in the packaged Sensu Go distribution.
For more information, read Get started with
commercial features.

WARNING: Defning multiple OIDC providers can lead to inconsistent authentication behavior.
Use
sensuctl auth list to verify that you have defned only one authentication provider of type
OIDC .
If more than one OIDC auth provider confguration is listed, use sensuctl auth delete

$NAME to remove the extra OIDC confgurations by name.

type: oidc

api_version: authentication/v2

metadata:

 name: oidc_name

spec:

 additional_scopes:

 - groups

 - email

YML

https://www.okta.com/
https://www.pingidentity.com/en/software/pingfederate.html

OIDC specifcation

 client_id: a8e43af034e7f2608780

 client_secret: b63968394be6ed2edb61c93847ee792f31bf6216

 disable_offine_access: false

 redirect_uri: http://127.0.0.1:8080/api/enterprise/authentication/v2/oidc/callback

 server: https://oidc.example.com:9031

 groups_claim: groups

 groups_prefx: 'oidc:'

 username_claim: email

 username_prefx: 'oidc:'

{

 "type": "oidc",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "oidc_name"

 },

 "spec": {

 "additional_scopes": [

 "groups",

 "email"

],

 "client_id": "a8e43af034e7f2608780",

 "client_secret": "b63968394be6ed2edb61c93847ee792f31bf6216",

 "disable_offine_access": false,

 "redirect_uri": "http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2/oidc/callback",

 "server": "https://oidc.example.com:9031",

 "groups_claim": "groups",

 "groups_prefx": "oidc:",

 "username_claim": "email",

 "username_prefx": "oidc:"

 }

}

JSON

OIDC top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
For OIDC confguration, the type should always be oidc .

required true

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
OIDC confguration, the api_version should always be
authentication/v2 .

required true

type String

example

type: oidc

YML

{

 "type": "oidc"

}

JSON

api_version: authentication/v2

YML

{

 "api_version": "authentication/v2"

JSON

metadata

description Top-level collection of metadata about the OIDC confguration. The
metadata map is always at the top level of the OIDC defnition. This

means that in wrapped-json and yaml formats, the metadata
scope occurs outside the spec scope.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes the OIDC spec attributes.

required true

type Map of key-value pairs

example

}

metadata:

 name: oidc_name

YML

{

 "metadata": {

 "name": "oidc_name"

 }

}

JSON

spec:

YML

 additional_scopes:

 - groups

 - email

 client_id: a8e43af034e7f2608780

 client_secret: b63968394be6ed2edb61c93847ee792f31bf6216

 disable_offine_access: false

 redirect_uri: http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2/o

idc/callback

 server: https://oidc.example.com:9031

 groups_claim: groups

 groups_prefx: 'oidc:'

 username_claim: email

 username_prefx: 'oidc:'

{

 "spec": {

 "additional_scopes": [

 "groups",

 "email"

],

 "client_id": "a8e43af034e7f2608780",

 "client_secret":

"b63968394be6ed2edb61c93847ee792f31bf6216",

 "disable_offine_access": false,

 "redirect_uri": "http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2/o

idc/callback",

 "server": "https://oidc.example.com:9031",

 "groups_claim": "groups",

 "groups_prefx": "oidc:",

 "username_claim": "email",

 "username_prefx": "oidc:"

 }

}

JSON

OIDC metadata attribute

name

description A unique string used to identify the OIDC confguration. The name
cannot contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z).

The name you choose will be used in the web UI message for OIDC
sign-in: SIGN-IN WITH <name> .

required true

type String

example

OIDC spec attributes

additional_scopes

description Scopes to include in the claims, in addition to the default openid scope.

required false

name: oidc_provider

YML

{

 "name": "oidc_provider"

}

JSON

NOTE: For most providers, you’ll want to include groups , email
and username in this list.

https://regex101.com/r/zo9mQU/2

type Array

example

client_id

description The OIDC provider application client ID.

required true

type String

example

additional_scopes:

- groups

- email

- username

YML

{

 "additional_scopes": [

 "groups",

 "email",

 "username"

]

}

JSON

NOTE: Register an application in the OIDC provider to generate a
client ID. Read register an Okta application for an example.

client_id: 1c9ae3e6f3cc79c9f1786fcb22692d1f

YML

{

 "client_id": "1c9ae3e6f3cc79c9f1786fcb22692d1f"

JSON

client_secret

description The OIDC provider application client secret.

required true

type String

example

disable_offine_access

description If true , the OIDC provider cannot include the offine_access
scope in the authentication request. Otherwise, false .

We recommend setting disable_offine_access to false . If set
to true , OIDC providers cannot return a refresh token that allows
users to refresh their access tokens, and users will be logged out
after 5 minutes.

required true

}

NOTE: Register an application in the OIDC provider to generate a
client ID. Read register an Okta application for an example.

client_secret: a0f2a3c1dcd5b1cac71bf0c03f2ff1bd

YML

{

 "client_secret": "a0f2a3c1dcd5b1cac71bf0c03f2ff1bd"

}

JSON

default false

type Boolean

example

redirect_uri

description Redirect URL to provide to the OIDC provider. Requires
/api/enterprise/authentication/v2/oidc/callback .

required false

type String

example

disable_offine_access: false

YML

{

 "disable_offine_access": false

}

JSON

NOTE: Only required for certain OIDC providers, such as Okta.

redirect_uri: http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2/o

idc/callback

YML

{

 "redirect_uri": "http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2/o

idc/callback"

}

JSON

server

description The location of the OIDC server you wish to authenticate against.

required true

type String

example

groups_claim

description The claim to use to form the associated RBAC groups.

required false

type String

example

NOTE: If you confgure with http, the connection will be insecure.

server: https://sensu.oidc.provider.example.com

YML

{

 "server": "https://sensu.oidc.provider.example.com"

}

JSON

NOTE: The value held by the claim must be an array of strings.

YML

groups_prefx

description The prefx added to all OIDC groups. Sensu appends the groups_prefx
with a colon. For example, for the groups_prefx okta and the group
dev , the resulting group name in Sensu is okta:dev . Use the

groups_prefx when integrating OIDC groups with Sensu RBAC role
bindings and cluster role bindings.

required false

type String

example

username_claim

description The claim to use to form the fnal RBAC user name.

required true

groups_claim: groups

{

 "groups_claim": "groups"

}

JSON

groups_prefx: 'okta:'

YML

{

 "groups_prefx": "okta:"

}

JSON

type String

example

username_prefx

description The prefx added to all OIDC usernames. Sensu appends the
username_prefx with a colon. For example, for the username_prefx
okta and the user alice , the resulting username in Sensu is
okta:alice . Use the username_prefx when integrating OIDC users

with Sensu RBAC role bindings and cluster role bindings. Users do not
need to provide the username_prefx when logging in to Sensu.

required false

type String

example

username_claim: email

YML

{

 "username_claim": "email"

}

JSON

username_prefx: 'okta:'

YML

{

 "username_prefx": "okta:"

}

JSON

Refresh tokens

No matter which OIDC provider you use, make sure to enable refresh tokens during provider
confguration.
If you do not enable refresh tokens in your provider confguration, Sensu will log out of the
web UI, the API, and sensuctl after 5 minutes.

Register an Okta application

To use Okta for authentication, register Sensu Go as an OIDC web application.
Before you start, install
Sensu Go with a valid commercial license and make sure you have access to the Okta Administrator
Dashboard.

Follow the steps in this section to create an Okta application and confgure an Okta OIDC provider in
Sensu.

Create an Okta application

1. In the Okta Admin Console, navigate to Applications: click Applications > Applications .
2. Click Create App Integration.
3. In the Create a new app integration modal window:

4. Click Next.
5. In the New Web App Integration dialog:

NOTE: These instructions are based on the Okta Developer Console.
The steps may be different if
you are using the Okta Classic UI.

Select the sign-in method OIDC - OpenID Connect .

Select the application type Web Application .

In the App integration name feld, enter the app name.
You can also upload a logo if
desired.

Under Grant type, click to select Refresh Token in the Client acting on behalf of a
user list.

In the Sign-in redirect URIs feld, enter
<api_url>/api/enterprise/authentication/v2/oidc/callback .
Replace
<api_url> with your API URL, including the API port 8080.

6. Click Save.
7. Select the Sign On tab, scroll to the OpenID Connect ID Token section, and click Edit.
8. In the Groups claim flter section:

9. Click Save.
10. Select the Assignments tab and assign people and groups to your app.

Confgure an Okta OIDC provider

To create your okta OIDC provider in Sensu:

1. For the additional_scopes confguration attribute, include groups and email .

2. For the client_id and client_secret values, use the Client ID and Client secret,
respectively, listed under General > Client Credentials for your Okta application.

3. For the redirect_uri attribute, use the Sign-in redirect URIs value you entered in step 5 of
Create an Okta application.

4. For the server value, use the Okta domain listed under General > General Settings in your
Okta application.

5. Set the disable_offine_access attribute to your desired value (we recommend false).

6. Add your Okta groups to the groups_claim string.
For example, if you have an Okta group
groups and you set the groups_prefx to okta: , you can set up RBAC objects to mention

group okta:groups as needed.

7. Set the username_claim value to email .

8. Specify groups_prefx and username_prefx values if desired.

Your Okta OIDC provider confguration should be similar to this example:

Under Assignments, click to select Skip group assignment for now .

In the frst feld, enter groups

In the dropdown menu, select Matches regex

In the second feld, enter .*

YML

type: oidc

api_version: authentication/v2

metadata:

 name: okta

spec:

 additional_scopes:

 - groups

 - email

 client_id: 4sd5jxiwxfvg82PoZ5d7

 client_secret: r78316494besnNCmtmEBnS47ee792f31bf6216

 redirect_uri: http://127.0.0.1:8080/api/enterprise/authentication/v2/oidc/callback

 server: https://dev-459543913.okta.com

 disable_offine_access: false

 groups_claim: groups

 username_claim: email

 groups_prefx: 'oidc:'

 username_prefx: 'oidc:'

{

 "type": "oidc",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "okta"

 },

 "spec": {

 "additional_scopes": [

 "groups",

 "email"

],

 "client_id": "4sd5jxiwxfvg82PoZ5d7",

 "client_secret": "r78316494besnNCmtmEBnS47ee792f31bf6216",

 "redirect_uri":

"http://127.0.0.1:8080/api/enterprise/authentication/v2/oidc/callback",

 "server": "https://dev-459543913.okta.com",

 "disable_offine_access": false,

 "groups_claim": "groups",

 "username_claim": "email",

 "groups_prefx": "oidc:",

JSON

Confgure authorization for OIDC users

Confgure authorization via role-based access control (RBAC) for your OIDC users and groups by
creating roles (or cluster roles) and role bindings (or cluster role bindings) that map to the user and
group names.

Use sensuctl to login with OIDC

1. Run sensuctl login oidc .

2. If you are using a desktop, a browser will open to allow you to authenticate and log in.
If a
browser does not open, launch a browser to complete the login via your OIDC provider at:

https://<api_url>:8080/api/enterprise/authentication/v2/oidc/authorize

OIDC troubleshooting

This section lists common OIDC errors and describes possible solutions for each of them.

To troubleshoot any issue with OIDC authentication, start by increasing the log verbosity of sensu-
backend to the debug log level.
Most authentication and authorization errors are only displayed on the
debug log level to avoid fooding the log fles.

 "username_prefx": "oidc:"

 }

}

NOTE: If you do not confgure authorization, users will be able to log in with OIDC but will have no
permissions by default.

NOTE: You can also use sensuctl confgure and choose the OIDC authentication
method to log in to sensuctl with OIDC.

For provider-specifc troubleshooting, read the Okta or PingFederate documentation.

bad request

After confguring OIDC access, if you receive a bad request error when you open the web UI, you
may be using an incorrect port in the redirect URI.

Make sure the redirect URI uses the API port, 8080 .
Confrm that the redirect URI specifed in your
OIDC provider as well as in the redirect_uri attribute in your Sensu OIDC defnition both use port
8080 .
For example, the URL
http://127.0.0.1:8080/api/enterprise/authentication/v2/oidc/callback uses the correct

port.

could not fnd the groups claim in the user's claims

If you see the following error when you open the web UI, the groups_claim value in your Sensu
OIDC defnition is incorrect:

Update your OIDC defnition to specify groups as the value for the groups_claim attribute.

No namespaces or resources in the web UI after OIDC sign-in

You must confgure RBAC authorization for your OIDC users and groups by creating roles (or cluster
roles) and role bindings (or cluster role bindings) that map to the user and group names.

If you do not confgure authorization, users will be able to log in with OIDC but will have no
permissions, so they will not see any namespaces or resources in the web UI.

Inconsistent authentication

NOTE: If you can’t locate any log entries referencing OIDC authentication, run sensuctl auth list to
make sure that you successfully installed the OIDC provider.

{"message":"could not fnd the groups claim \"okta:groups\" in the user's claims:

[\"sub\" \"email\" \"email_verifed\"]","code":0}

https://help.okta.com/oag/en-us/Content/Topics/Access-Gateway/trouble-shooting-guide.htm
https://docs.pingidentity.com/bundle/pingfederate-110/page/age1564003028292.html

If you experience inconsistent authentication with OIDC sign-in, such as being unable to sign in after
previously signing in successfully, you may have confgured more than one OIDC authentication
provider.

Run sensuctl auth list to make sure that you have only one authentication provider listed for type
OIDC .
If more than one OIDC authentication provider is listed, use sensuctl auth delete $NAME to

remove the extra OIDC confguration by name.

API keys reference

API keys are long-lived authentication tokens that make it more convenient for Sensu plugins and
other Sensu-adjacent applications to authenticate with the Sensu API.
Unlike authentication tokens, API
keys are persistent and do not need to be refreshed every 15 minutes.

The Sensu backend generates API keys, and you can provide them to applications that want to
interact with the Sensu API.

Use the core/v2/apikeys API endpoints to create, retrieve, and delete API keys.

API key example

This example shows an APIKey resource defnition:

type: APIKey

api_version: core/v2

metadata:

 name: 19803eb8-36a6-4203-a225-28ec4e9f4444

spec:

 created_at: 1570732266

 username: admin

YML

{

 "type": "APIKey",

 "api_version": "core/v2",

 "metadata" : {

 "name": "19803eb8-36a6-4203-a225-28ec4e9f4444"

 },

 "spec": {

 "created_at": 1570732266,

 "username": "admin"

JSON

Authorization header format

Use the following header format to authenticate with API keys, replacing <API_KEY> with your API
key:

This is different from the authentication token, which uses the Authorization: Bearer header
format.

When you specify an API key in a request, the system resolves it to an authentication token and
continues through the regular authentication process.

API key specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. The
api_version should always be core/v2 .

required true

type String

example

 }

}

Authorization: Key <API_KEY>

NOTE: The API key resource is not compatible with sensuctl create .

api_version: core/v2

YML

metadata

description Top-level collection of metadata about the API key, including name and
created_by . The metadata map is always at the top level of the API

key defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes the API key’s spec attributes.

{

 "api_version": "core/v2"

}

JSON

metadata:

 name: 19803eb8-36a6-4203-a225-28ec4e9f4444

 created_by: admin

YML

{

 "metadata": {

 "name": "19803eb8-36a6-4203-a225-28ec4e9f4444",

 "created_by": "admin"

 }

}

JSON

required true

type Map of key-value pairs

example

type

description Top-level attribute that specifes the resource type. API keys should
always be type APIKey .

required true

type String

example

spec:

 created_at: 1570732266

 username: admin

YML

{

 "spec": {

 "created_at": 1570732266,

 "username": "admin"

 }

}

JSON

type: APIKey

YML

{

 "type": "APIKey"

}

JSON

Metadata attributes

created_by

description Username of the Sensu user who created the API key or last updated the
API key. Sensu automatically populates the created_by feld when the
API key is created or updated.

required false

type String

example

name

description Unique string used to identify the API key. Sensu randomly generates a
universally unique identifer (UUID) for the name value — users cannot
provide a name for an API key.

required true

type String

example

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

name: 19803eb8-36a6-4203-a225-28ec4e9f4444

YML

JSON

Spec attributes

created_at

description Time at which the API key was created. Unix timestamp that is
automatically generated when the API key is created.

required true

type Integer

example

username

description User associated with the API key.

required true

type Array

example

{

 "name": "19803eb8-36a6-4203-a225-28ec4e9f4444"

}

created_at: 1234567890

YML

{

 "created_at": 1234567890

}

JSON

YML

username: admin

{

 "username": "admin"

}

JSON

Namespaces reference

Namespaces partition resources within Sensu.
Sensu entities, checks, handlers, and other namespaced
resources belong to a single namespace.

Namespaces help teams use different resources (like entities, checks, and handlers) within Sensu and
impose their own controls on those resources.
A Sensu instance can have multiple namespaces, each
with their own set of managed resources.
Resource names must be unique within a namespace but do
not need to be unique across namespaces.

Namespace confguration applies to sensuctl, the API, and the web UI.
To create and manage
namespaces, confgure sensuctl as the default admin user or create a cluster role with namespaces
permissions.

Namespace example

This example shows the resource defnition for a production namespace.
You can use this example
with sensuctl create to create a production namespace in your Sensu deployment:

type: Namespace

api_version: core/v2

metadata: {}

spec:

 name: production

YML

{

 "type": "Namespace",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "name": "production"

 }

JSON

Best practices for namespaces

Use namespaces for isolation, not organization

Use namespaces to enforce full isolation of different groups of resources, not to organize resources.
An
agent cannot belong to two namespaces or execute checks in two different namespaces.
To organize
resources, use labels rather than multiple namespaces.

Default namespaces

Every Sensu backend includes a default namespace.
All resources created without a specifed
namespace are created within the default namespace.

At startup, Sensu also creates the sensu-system namespace to contain backend entities.
The
sensu-system namespace and backend entities facilitate backend error reporting and make Sensu

deployments more observable by enabling backend-generated status and metrics events.

Only cluster admins have access to the sensu-system namespace.
If you have cluster admin
permissions, you can use sensuctl and the web UI to access backend entities like other entities.

Assign a resource to a namespace

You can assign a resource to a namespace in the resource defnition.
Only resources that belong to a
namespaced resource type (like checks, flters, and handlers) can be assigned to a namespace.

For example, to assign a check called check-cpu to the production namespace, include the
namespace attribute in the check defnition:

}

type: CheckConfg

api_version: core/v2

metadata:

YML

Read the reference docs for the corresponding resource type to create resource defnitions.

 name: check-cpu

 namespace: production

spec:

 check_hooks: null

 command: check-cpu.sh -w 75 -c 90

 handlers:

 - slack

 interval: 30

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-cpu",

 "namespace": "production"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": ["slack"],

 "interval": 30,

 "subscriptions": ["system"],

 "timeout": 0,

 "ttl": 0

 }

}

JSON

PRO TIP: If you omit the namespace attribute from resource defnitions, you can use the
senusctl create --namespace fag to specify the namespace for a group of resources at the

time of creation.
This allows you to replicate resources across namespaces without manual editing.

Namespace specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. The
api_version should always be core/v2 .

required true

type String

example

metadata

description Top-level collection of metadata about the namespace. For namespaces,
the metatdata should always be empty.

required true

type Map of key-value pairs

example

Read the sensuctl documentation for more information about creating resources across
namespaces and using the sensuctl namespace command.

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

YML

spec

description Top-level map that includes the namespace’s spec attributes.

required true

type Map of key-value pairs

example

type

description Top-level attribute that specifes the resource type. Namespaces should
always be type Namespace .

required true

metadata: {}

{

 "metadata": {}

}

JSON

spec:

 name: production

YML

{

 "spec": {

 "name": "production"

 }

}

JSON

type String

example

Spec attributes

name

description Name of the namespace. Namespace names can contain alphanumeric
characters and hyphens and must begin and end with an alphanumeric
character.

required true

type String

example

type: Namespace

YML

{

 "type": "Namespace"

}

JSON

name: production

YML

{

 "name": "production"

}

JSON

Role-based access control (RBAC)
reference

Sensu’s role-based access control (RBAC) helps different teams and projects share a Sensu instance.
Use RBAC to specify the actions users are allowed to take against specifc Sensu resources, within
namespaces or across all namespaces, based on roles bound to the user or to one or more groups the
user is a member of.

RBAC confguration applies to sensuctl, the API, and the web UI.

Resources

Permissions within Sensu can be scoped to resource types, like checks, handlers, and users.
List
resource types in the rules arrays of role and cluster role defnitions to confgure permissions.

Namespaced resource types

Namespaced resources belong to a single namespace.
You can set permissions for namespaced
resources with roles and cluster roles.

Resource type Description

assets Dynamic runtime asset resources within a namespace

checks Check resources within a namespace

Roles create sets of permissions (for example, get and delete) tied to resource types.
Cluster
roles apply permissions across namespaces and include access to cluster-wide resources like
users and namespaces.

Users represent a person or agent that interacts with Sensu.
Users can belong to one or more
groups.

Role bindings assign a role to a set of users and groups within a namespace.
Cluster role
bindings assign a cluster role to a set of users and groups cluster-wide.

entities Entity resources within a namespace

events Event resources within a namespace

extensions Placeholder type

flters Filter resources within a namespace

handlers Handler resources within a namespace

hooks Hook resources within a namespace

mutators Mutator resources within a namespace

pipelines Resources composed of event processing workfows

rolebindings Namespace-specifc role assigners

roles Namespace-specifc permission sets

rule-templates Resources applied to service components for business service
monitoring

searches Saved web UI search queries

secrets Secrets (for example, username or password)

service-

components

Resources that represent elements in a business service

silenced Silencing resources within a namespace

sumo-logic-

metrics-handlers

Persistent handlers for transmitting metrics to Sumo Logic

tcp-stream-

handlers

Persistent handlers for sending events to TCP sockets for remote
storage

Cluster-wide resource types

Cluster-wide resources cannot be assigned to a namespace.
You can set permissions for cluster-wide
resources only with cluster roles.

Resource type Description

apikeys Persistent universally unique identifer (UUID) for authentication

authproviders Authentication provider confguration

clusterrolebindin

gs

Cluster-wide role assigners

clusterroles Cluster-wide permission sets

clusters Sensu clusters running multiple Sensu backends

confg Global confguration for web UI display

etcd-replicators Mirror RBAC resource changes to follower clusters

license Sensu commercial license

namespaces Resource partitions within a Sensu instance

provider PostgreSQL event store provider

providers Secrets providers

users People or agents that interact with Sensu

Special resource types

You can set permissions for special resource types with roles and cluster roles.

Type Description

* All resources within Sensu. The * type takes precedence over other
rules within the same role. If you want to deny a certain type, you can’t
use the * type. Instead, you must explicitly allow every type required.
When applied to a role, the * type applies only to namespaced
resource types. When applied to a cluster role, the * type applies to
both namespaced resource types and cluster-wide resource types.

Users

A user represents a person or an agent that interacts with Sensu.

You can assign users to one or more roles or cluster roles.
You can also assign users to one or more
groups.
Users inherit all permissions from each role or cluster role they are assigned to, whether they
are assigned as users or as a member of a group.

Users can use their assigned Sensu username and password to confgure sensuctl and log in to the
web UI.

User example

The following example shows a user resource defnition:

type: User

api_version: core/v2

metadata: {}

spec:

 disabled: false

 groups:

 - ops

 - dev

 password: user_password

 password_hash: $5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAyNm

 username: alice

YML

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "username": "alice",

 "password": "user_password",

 "password_hash": "$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAyNm",

JSON

To create this user with sensuctl create , frst, save the defnition to a fle like users.yml or
users.json .
Then, run:

Default users

Sensu automatically creates an administrator user and an agent user during installation.

Administrator user

During the Sensu backend installation process, you create a username and password for an admin
user.

The admin user is automatically added to the cluster-admins group and the cluster-admin
cluster role, which are both listed in the cluster role binding cluster-admin .
The group, cluster role,
and cluster role binding assignments give the admin user permissions to manage all aspects of
Sensu, as well as create new users.

After you confgure sensuctl, you can change the admin user’s password with the change-
password command.

agent user

Sensu creates a default agent user with the password P@ssw0rd! during startup.
The
user/password combination corresponds to the defaults the Sensu agent uses.

 "disabled": false,

 "groups": ["ops", "dev"]

 }

}

sensuctl create --fle users.yml

SHELL

sensuctl create --fle users.json

SHELL

By default, the agent user belongs to the system:agent group.
The system:agent cluster role
binding grants the system:agent cluster role to the members of this group.
To grant agent users the
permissions they need to report events into any namespace, add agent users to the system:agent
group.

Confgure the agent user’s credentials with the user and password agent confguration options.

View users

Use sensuctl to list all users within Sensu.

To return a list of users in yaml or wrapped-json format for use with sensuctl create :

Test and change user passwords

To test the password for a user created with Sensu’s built-in basic authentication, run:

An empty response indicates the user’s password is valid.
A request-unauthorized response
indicates the user’s password is invalid.

sensuctl user list --format yaml

SHELL

sensuctl user list --format wrapped-json

SHELL

sensuctl user test-creds <USERNAME> --password '<PASSWORD>'

NOTE: The sensuctl user test-creds command tests passwords for users created with
Sensu’s built-in basic authentication.
It does not test user credentials defned via an authentication
provider like Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or OpenID
Connect 1.0 protocol (OIDC).

To change a user’s password:

You can also use sensuctl to reset a user’s password or generate a password hash.

Create users

You can use sensuctl to create users.
For example, the following command creates a user with the
username alice , creates a password, and assigns the user to the ops and dev groups:

You can create any number of users, each with their own passwords.
As a general rule, users have no
permissions by default.
Users are granted permissions by role bindings or cluster role bindings.

Disable users

To disable a user, run:

To reinstate a disabled user, run:

Assign user permissions

sensuctl user change-password <USERNAME> --current-password <CURRENT_PASSWORD> --

new-password <NEW_PASSWORD>

sensuctl user create alice --password='<PASSWORD>' --groups=ops,dev

NOTE: Passwords must have at least eight characters.

sensuctl user disable <USERNAME>

sensuctl user reinstate <USERNAME>

To assign permissions to a user:

1. Create the user.
2. Create a role (or a cluster role for cluster-wide access).
3. Create a role binding (or cluster role binding) to assign the role to the user.

Groups

A group is a set of users within Sensu.
You can assign groups to one or more roles, and users can
belong to one or more groups.

Groups inherit all permissions from each role they are assigned to.

Default groups

Sensu includes a default cluster-admins group that contains the default admin user and a
system:agents group used internally by Sensu agents.

Add groups to users

Use sensuctl to add a group to a user:

You can also set a user’s list of groups to a specifc list:

Remove groups from users

NOTE: Groups are not a resource type within Sensu.
Instead, groups are created and managed
only within user defnitions.

sensuctl user add-group <USERNAME> <GROUP>

sensuctl user set-groups <USERNAME> <GROUP1>[,<GROUP2>, ...<GROUP2>]

Use sensuctl to remove groups from users.

To remove a group from a user:

To remove all groups from a user:

Roles

A role is a set of permissions that control access to Sensu resources within a single namespace.
Use
role bindings to assign roles to users and groups.

To create and manage roles within a single namespace, create a role with roles permissions within
that namespace.
To create and manage roles cluster-wide, confgure sensuctl as the default admin
user or create a cluster role with roles permissions.

To avoid recreating commonly used roles in every namespace, create a cluster role and use a role
binding (not a cluster role binding) to restrict permissions within a specifc namespace.

Role example

The following example shows a role resource defnition:

sensuctl user remove-group <USERNAME> <GROUP>

sensuctl user remove-groups <USERNAME>

type: Role

api_version: core/v2

metadata:

 name: namespaced-resources-all-verbs

spec:

 rules:

YML

 - resources:

 - assets

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - pipelines

 - rolebindings

 - roles

 - silenced

 - sumo-logic-metrics-handlers

 - tcp-stream-handlers

 verbs:

 - get

 - list

 - create

 - update

 - delete

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "namespaced-resources-all-verbs"

 },

 "spec": {

 "rules": [

 {

 "resources": [

 "assets",

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

JSON

To create this role with sensuctl create , frst save the defnition to a fle like roles.yml or
roles.json .

Then, run:

Default roles

Every Sensu backend includes the system:pipeline role, which is a facility that allows the
EventFilter engine to load events from Sensu’s event store.
The system:pipeline role is an
implementation detail and should not be assigned to Sensu users.

 "pipelines",

 "rolebindings",

 "roles",

 "silenced",

 "sumo-logic-metrics-handlers",

 "tcp-stream-handlers"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

 }

}

sensuctl create --fle roles.yml

SHELL

sensuctl create --fle roles.json

SHELL

View roles

Use sensuctl to list all roles within Sensu:

To review the permissions and scope for a specifc role:

To get help managing roles with sensuctl:

Edit roles

To edit a role:

To get more information about available fags, run:

Create roles

You can use sensuctl to create roles.
Read Create a role and role binding for an example.

Delete roles

sensuctl role list

sensuctl role info admin

sensuctl role help

sensuctl edit role <ROLE> <fags>

sensuctl edit --help

To delete a role:

Cluster roles

A cluster role is a set of permissions that control access to Sensu resources.
Cluster roles can include
permissions for cluster-wide resources in addition to namespaced resources.

You can also use cluster roles (in conjunction with cluster role bindings) to grant access to
namespaced resources across all namespaces.
This allows you to run commmands like sensuctl
check list --all-namespaces .

To create and manage cluster roles, confgure sensuctl as the default admin user or create a cluster
role with permissions for clusterroles .
To create and manage roles cluster-wide, confgure sensuctl
as the default admin user or create a cluster role with roles permissions.

To avoid recreating commonly used roles in every namespace, create a cluster role and use a role
binding (not a cluster role binding) to restrict permissions within a specifc namespace.

Cluster role example

The following example shows a cluster role resource defnition:

sensuctl role delete <ROLE>

type: ClusterRole

api_version: core/v2

metadata:

 name: all-resources-all-verbs

spec:

 rules:

 - resources:

 - assets

 - checks

 - entities

YML

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - pipelines

 - rolebindings

 - roles

 - silenced

 - cluster

 - clusterrolebindings

 - clusterroles

 - namespaces

 - users

 - authproviders

 - license

 - sumo-logic-metrics-handlers

 - tcp-stream-handlers

 verbs:

 - get

 - list

 - create

 - update

 - delete

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "all-resources-all-verbs"

 },

 "spec": {

 "rules": [

 {

 "resources": [

 "assets",

 "checks",

 "entities",

 "events",

 "flters",

JSON

To create this cluster role with sensuctl create , frst save the defnition to a fle like
cluster_roles.yml or cluster_roles.json .
Then, run:

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "rolebindings",

 "roles",

 "silenced",

 "cluster",

 "clusterrolebindings",

 "clusterroles",

 "namespaces",

 "users",

 "authproviders",

 "license",

 "sumo-logic-metrics-handlers",

 "tcp-stream-handlers"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

 }

}

sensuctl create --fle cluster_roles.yml

SHELL

sensuctl create --fle cluster_roles.json

SHELL

Default cluster roles

Every Sensu backend includes the following cluster roles:

Cluster role name Description

cluster-admin Full access to all resource types across namespaces, including access to
cluster-wide resource types.

admin Full access to all resource types. Apply this cluster role within a
namespace with a role binding (not a cluster role binding).

edit Read and write access to most resource types except roles and role
bindings. Apply this cluster role within a namespace with a role binding
(not a cluster role binding).

view Read-only access to most resource types except roles and role bindings.
Apply this cluster role within a namespace with a role binding (not a
cluster role binding).

system:agent Used internally by Sensu agents. Confgure an agent’s user credentials
with the user and password agent confguration fags.

system:user Get and update permissions for local resources for the current user.

View cluster roles

Use sensuctl to list all cluster roles within Sensu:

To review the permissions and scope for a specifc cluster role:

To get help managing roles with sensuctl:

sensuctl cluster-role list

sensuctl cluster-role info <CLUSTER-ROLE>

Create cluster roles

You can use sensuctl to create cluster roles.
Read Create a cluster role and cluster role binding for an
example.

Delete cluster roles

To delete a cluster role:

Role bindings

A role binding assigns a role or a cluster role to users and groups within a single namespace.

To create and manage role bindings within a namespace, create a role with rolebindings
permissions within that namespace, and log in by confguring sensuctl.

Without an assigned role or cluster role, users can sign in to the web UI but can’t access any Sensu
resources.
With the correct roles and bindings confgured, users can log in to sensuctl and the web UI
using their single-sign-on username and password (no prefxes required).

Make sure to include the groups_prefx and username_prefx for the authentication provider when you
create Sensu role bindings.

Role binding example

The following example shows a role binding resource defnition:

sensuctl cluster-role help

sensuctl cluster-role delete <CLUSTER-ROLE>

YML

To create this role binding with sensuctl create , frst save the defnition to a fle like
rolebindings.yml or rolebindings.json .
Then, run:

type: RoleBinding

api_version: core/v2

metadata:

 name: event-reader-binding

spec:

 role_ref:

 name: event-reader

 type: Role

 subjects:

 - name: bob

 type: User

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "event-reader-binding"

 },

 "spec": {

 "role_ref": {

 "name": "event-reader",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "bob",

 "type": "User"

 }

]

 }

}

JSON

SHELL

Default role bindings

Every Sensu backend includes the system:pipeline role binding, a facility that allows the
EventFilter engine to load events from Sensu’s event store.
The system:pipeline role binding is an
implementation detail and should not be applied to Sensu users. |

View role bindings

Use sensuctl to list all role bindings within Sensu:

To review the details for a specifc role binding:

To get help managing role bindings with sensuctl:

Create role bindings

You can use sensuctl to create role bindings that assign a role to users and groups.
Read Create a role
and role binding for an example.

sensuctl create --fle rolebindings.yml

sensuctl create --fle rolebindings.json

SHELL

sensuctl role-binding list

sensuctl role-binding info <ROLE-BINDING>

sensuctl role-binding help

Delete role bindings

To delete a role binding:

Cluster role bindings

A cluster role binding assigns a cluster role to users and groups across namespaces and resource
types.

To create and manage cluster role bindings, confgure sensuctl as the default admin user or create a
cluster role with permissions for clusterrolebindings .

Without an assigned role or cluster role, users can sign in to the web UI but can’t access any Sensu
resources.
With the correct roles and bindings confgured, users can log in to sensuctl and the web UI
using their single-sign-on username and password (no prefxes required).

Make sure to include the groups_prefx and username_prefx for the authentication provider when
creating Sensu cluster role bindings.

Cluster role binding example

The following example shows a cluster role binding resource defnition:

sensuctl role-binding delete <ROLE-BINDING>

type: ClusterRoleBinding

api_version: core/v2

metadata:

 name: cluster-admin

spec:

 role_ref:

 name: cluster-admin

 type: ClusterRole

 subjects:

 - name: cluster-admins

YML

To create this cluster role binding with sensuctl create , frst save the defnition to a fle like
clusterrolebindings.yml or clusterrolebindings.json .
Then, run:

Default cluster role bindings

Every Sensu backend includes the following cluster role bindings:

 type: Group

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "cluster-admin"

 },

 "spec": {

 "role_ref": {

 "name": "cluster-admin",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "cluster-admins",

 "type": "Group"

 }

]

 }

}

JSON

sensuctl create --fle clusterrolebindings.yml

SHELL

sensuctl create --fle clusterrolebindings.json

SHELL

Cluster role binding name Description

cluster-admin ClusterRoleBinding

system:agent ClusterRoleBinding

system:user ClusterRoleBinding

View cluster role bindings

Use sensuctl to list all cluster role bindings within Sensu:

To review the details for a specifc role binding:

To get help managing cluster role bindings with sensuctl:

Create cluster role bindings

You can use sensuctl to create cluster role bindings that assign cluster roles to users and groups.
Read
Create a cluster role and cluster role binding for an example.

Delete cluster role bindings

To delete a role binding:

sensuctl cluster-role-binding list

sensuctl cluster-role-binding info <CLUSTER-ROLE-BINDING>

sensuctl cluster-role-binding help

Create a role and role binding

This example will create a role and a role binding that assigns the role to a group.
As a result, all users
who are assigned the group will have get, list, create, update, and delete permissions for all resources
in the production namespace.

The following command creates a prod-admin role restricted to the production namespace:

The command creates the following role resource defnition:

sensuctl cluster-role-binding delete <CLUSTER-ROLE-BINDING>

sensuctl role create prod-admin --verb='get,list,create,update,delete' --

resource='*' --namespace production

type: Role

api_version: core/v2

metadata:

 name: prod-admin

 namespace: production

spec:

 rules:

 - resources:

 - '*'

 verbs:

 - get

 - list

 - create

 - update

 - delete

YML

{

JSON

Run the following command to create a role binding (or cluster role binding) to assign the prod-
admin role created above to a group named oncall :

This command creates the following role binding resource defnition:

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "prod-admin",

 "namespace": "production"

 },

 "spec": {

 "rules": [

 {

 "resources": [

 "*"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

 }

}

sensuctl role-binding create prod-admin-oncall --role=prod-admin --group=oncall

type: RoleBinding

api_version: core/v2

metadata:

 name: prod-admin-oncall

spec:

YML

Role bindings can also assign cluster roles to users and groups within a single namespace.
For
example, to create a role binding that assigns the global-event-reader cluster role to the user
angela and the event-readers group, run:

This command creates a role binding resource defnition similar to the following:

 role_ref:

 name: prod-admin

 type: Role

 subjects:

 - name: oncall

 type: Group

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "prod-admin-oncall"

 },

 "spec": {

 "role_ref": {

 "name": "prod-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "oncall",

 "type": "Group"

 }

]

 }

}

JSON

sensuctl role-binding create event-readers-binding --cluster-role=global-event-

reader --user=angela --group=read-events-only

YML

type: RoleBinding

api_version: core/v2

metadata:

 name: event-readers-binding

 namespace: default

spec:

 role_ref:

 name: global-event-reader

 type: ClusterRole

 subjects:

 - name: read-events-only

 type: Group

 - name: angela

 type: User

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "event-readers-binding",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "global-event-reader",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "read-events-only",

 "type": "Group"

 },

 {

 "name": "angela",

 "type": "User"

 }

]

JSON

Create a role and role binding with a group prefx

In this example, if a groups_prefx of ad is confgured for Active Directory authentication, the role and
role binding will give a dev group access to create and manage Sensu workfows within the
default namespace:

 }

}

type: Role

api_version: core/v2

metadata:

 name: workfow-creator

spec:

 rules:

 - resources:

 - checks

 - hooks

 - flters

 - events

 - flters

 - mutators

 - pipelines

 - handlers

 - sumo-logic-metrics-handlers

 - tcp-stream-handlers

 verbs:

 - get

 - list

 - create

 - update

 - delete

YML

{

JSON

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "workfow-creator"

 },

 "spec": {

 "rules": [

 {

 "resources": [

 "checks",

 "hooks",

 "flters",

 "events",

 "flters",

 "mutators",

 "pipelines",

 "handlers",

 "sumo-logic-metrics-handlers",

 "tcp-stream-handlers"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

 }

}

type: RoleBinding

api_version: core/v2

metadata:

 name: dev-binding-with-groups-prefx

spec:

 role_ref:

 name: workfow-creator

YML

Create a cluster role and cluster role binding

This example will create a cluster role and a cluster role role binding that assigns the cluster role to a
user and a group.
As a result, the individual user and all users who are assigned the group will have
read-only access to events (and only events) across all namespaces in Sensu.

For example, the following command creates a global-event-reader cluster role that can read
events in all namespaces:

 type: Role

 subjects:

 - name: ad:dev

 type: Group

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "dev-binding-with-groups-prefx"

 },

 "spec": {

 "role_ref": {

 "name": "workfow-creator",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "ad:dev",

 "type": "Group"

 }

]

 }

}

JSON

sensuctl cluster-role create global-event-reader --verb='get,list' --

resource='events'

The command creates the following cluster role resource defnition:

type: ClusterRole

api_version: core/v2

metadata:

 name: global-event-reader

spec:

 rules:

 - resources:

 - events

 verbs:

 - get

 - list

YML

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "global-event-reader"

 },

 "spec": {

 "rules": [

 {

 "resources": [

 "events"

],

 "verbs": [

 "get",

 "list"

]

 }

]

 }

}

JSON

Next, run the following command to assign the global-event-reader cluster role to the user
angela and the group global-event-readers :

This command creates a cluster role binding resource defnition similar to the following:

sensuctl cluster-role-binding create global-event-reader-binding --cluster-

role=global-event-reader --user=angela --group=global-event-readers

type: ClusterRoleBinding

api_version: core/v2

metadata:

 name: global-event-reader-binding

spec:

 role_ref:

 name: global-event-reader

 type: ClusterRole

 subjects:

 - name: global-event-readers

 type: Group

 - name: angela

 type: User

YML

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "global-event-reader-binding"

 },

 "spec": {

 "role_ref": {

 "name": "global-event-reader",

 "type": "ClusterRole"

 },

JSON

Assign user permissions within a namespace

To assign permissions to a user:

1. Create the user.
2. Create a role.
3. Create a role binding to assign the role to the user.

For example, the following confguration creates a user alice , a role default-admin , and a role
binding alice-default-admin , giving alice full permissions for namespaced resource types
within the default namespace.
You can add these resources to Sensu using sensuctl create .

 "subjects": [

 {

 "name": "global-event-readers",

 "type": "Group"

 },

 {

 "name": "angela",

 "type": "User"

 }

]

 }

}

type: User

api_version: core/v2

metadata: {}

spec:

 disabled: false

 username: alice

 password: user_password

YML

{

JSON

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice",

 "password": "user_password"

 }

}

type: Role

api_version: core/v2

metadata:

 name: default-admin

spec:

 rules:

 - resources:

 - assets

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - pipelines

 - rolebindings

 - roles

 - searches

 - silenced

 - sumo-logic-metrics-handlers

 - tcp-stream-handlers

 verbs:

 - get

 - list

 - create

 - update

 - delete

YML

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin"

 },

 "spec": {

 "rules": [

 {

 "resources": [

 "assets",

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "rolebindings",

 "roles",

 "searches",

 "silenced",

 "sumo-logic-metrics-handlers",

 "tcp-stream-handlers"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

 }

}

JSON

YML

Assign group permissions within a namespace

To assign permissions to group of users:

type: RoleBinding

api_version: core/v2

metadata:

 name: alice-default-admin

spec:

 role_ref:

 name: default-admin

 type: Role

 subjects:

 - name: alice

 type: User

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "alice-default-admin"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "alice",

 "type": "User"

 }

]

 }

}

JSON

1. Create at least one user assigned to a group.
2. Create a role.
3. Create a role binding to assign the role to the group.

For example, the following confguration creates a user alice assigned to the group ops , a role
default-admin , and a role binding ops-default-admin , giving the ops group full permissions for

namespaced resource types within the default namespace.
You can add these resources to Sensu
using sensuctl create .

type: User

api_version: core/v2

metadata: {}

spec:

 disabled: false

 username: alice

 password: user_password

 groups:

 - ops

YML

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice",

 "password": "user_password",

 "groups": [

 "ops"

]

 }

}

JSON

YML

type: Role

api_version: core/v2

metadata:

 name: default-admin

spec:

 rules:

 - resources:

 - assets

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - pipelines

 - rolebindings

 - roles

 - searches

 - silenced

 - sumo-logic-metrics-handlers

 - tcp-stream-handlers

 verbs:

 - get

 - list

 - create

 - update

 - delete

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin"

 },

 "spec": {

 "rules": [

 {

 "resources": [

JSON

 "assets",

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "rolebindings",

 "roles",

 "searches",

 "silenced",

 "sumo-logic-metrics-handlers",

 "tcp-stream-handlers"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

 }

}

type: RoleBinding

api_version: core/v2

metadata:

 name: ops-default-admin

spec:

 role_ref:

 name: default-admin

 type: Role

 subjects:

 - name: ops

YML

Assign group permissions across all namespaces

To assign cluster-wide permissions to group of users:

1. Create at least one user assigned to a group.
2. Create a cluster role.
3. Create a cluster role binding to assign the role to the group.

For example, the following confguration creates a user alice assigned to the group ops , a cluster
role default-admin , and a cluster role binding ops-default-admin , giving the ops group full

 type: Group

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops-default-admin"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

JSON

PRO TIP: To avoid recreating commonly used roles in each namespace, create a cluster role and
use a role binding to restrict permissions within a specifc namespace.

permissions for namespaced resource types and cluster-wide resource types across all namespaces.
You can add these resources to Sensu using sensuctl create .

type: User

api_version: core/v2

metadata: {}

spec:

 disabled: false

 username: alice

 password: user_password

 groups:

 - ops

YML

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice",

 "password": "user_password",

 "groups": [

 "ops"

]

 }

}

JSON

type: ClusterRole

api_version: core/v2

metadata:

 name: default-admin

spec:

 rules:

YML

 - resources:

 - assets

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - pipelines

 - rolebindings

 - roles

 - silenced

 - cluster

 - clusterrolebindings

 - clusterroles

 - namespaces

 - users

 - authproviders

 - license

 - sumo-logic-metrics-handlers

 - tcp-stream-handlers

 verbs:

 - get

 - list

 - create

 - update

 - delete

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin"

 },

 "spec": {

 "rules": [

 {

 "resources": [

 "assets",

JSON

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "rolebindings",

 "roles",

 "silenced",

 "cluster",

 "clusterrolebindings",

 "clusterroles",

 "namespaces",

 "users",

 "authproviders",

 "license",

 "sumo-logic-metrics-handlers",

 "tpc-stream-handlers"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

 }

}

type: ClusterRoleBinding

api_version: core/v2

metadata:

 name: ops-default-admin

spec:

YML

Assign different permissions for different resource types

You can assign different permissions for different resource types in a role or cluster role defnition.
To do
this, you’ll still create at least one user assigned to a group, a role or cluster role, and a role binding or
cluster role binding.
However, in this case, the role or cluster role will include more than one rule.

For example, you may want users in a testing group to be able to get and list all resource types but
create, update, and delete only silenced entries across all namespaces.
Create a user alice assigned
to the group ops_testing , a cluster role manage_silences with two rules (one for all resources and
one just for silences), and a cluster role binding ops_testing_manage_silences :

 role_ref:

 name: default-admin

 type: ClusterRole

 subjects:

 - name: ops

 type: Group

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops-default-admin"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

JSON

type: User

api_version: core/v2

metadata: {}

spec:

 disabled: false

 username: alice

 password: user_password

 groups:

 - ops_testing

YML

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice",

 "password": "user_password",

 "groups": [

 "ops_testing"

]

 }

}

JSON

type: ClusterRole

api_version: core/v2

metadata:

 name: manage_silences

spec:

 rules:

 - verbs:

 - get

 - list

YML

 resources:

 - '*'

 - verbs:

 - create

 - update

 - delete

 resources:

 - silenced

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "manage_silences"

 },

 "spec": {

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "*"

]

 },

 {

 "verbs": [

 "create",

 "update",

 "delete"

],

 "resources": [

 "silenced"

]

 }

]

 }

}

JSON

Create as many rules as you need in the role or cluster role.
For example, you can confgure a role or
cluster role that includes one rule for each verb, with each rule listing only the resources that verb

type: ClusterRoleBinding

api_version: core/v2

metadata:

 name: ops_testing_manage_silences

spec:

 role_ref:

 name: manage_silences

 type: ClusterRole

 subjects:

 - name: ops_testing

 type: Group

YML

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops_testing_manage_silences"

 },

 "spec": {

 "role_ref": {

 "name": "manage_silences",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "ops_testing",

 "type": "Group"

 }

]

 }

}

JSON

should apply to.

Here’s another example that includes three rules.
Each rule specifes different access permissions for
the resource types listed in the rule.
In addition, the user group would have no access at all for the two
resources that are not listed: API keys and licences.

type: User

api_version: core/v2

metadata: {}

spec:

 disabled: false

 username: alice

 password: user_password

 groups:

 - ops

YML

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice",

 "password": "user_password",

 "groups": [

 "ops"

]

 }

}

JSON

type: ClusterRole

api_version: core/v2

metadata:

YML

 name: ops_access

spec:

 rules:

 - verbs:

 - get

 - list

 resources:

 - entities

 - events

 - rolebindings

 - roles

 - clusterrolebindings

 - clusterroles

 - confg

 - users

 - verbs:

 - get

 - list

 - create

 - update

 - delete

 resources:

 - assets

 - checks

 - flters

 - handlers

 - hooks

 - mutators

 - pipelines

 - rule-templates

 - searches

 - secrets

 - service-components

 - silenced

 - sumo-logic-metrics-handlers

 - tcp-stream-handlers

 - clusters

 - etcd-replicators

 - providers

 - verbs:

 - get

 - list

 - create

 - update

 resources:

 - authproviders

 - namespaces

 - provider

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops_access"

 },

 "spec": {

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "entities",

 "events",

 "rolebindings",

 "roles",

 "clusterrolebindings",

 "clusterroles",

 "confg",

 "users"

]

 },

 {

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

],

 "resources": [

JSON

 "assets",

 "checks",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "rule-templates",

 "searches",

 "secrets",

 "service-components",

 "silenced",

 "sumo-logic-metrics-handlers",

 "tcp-stream-handlers",

 "clusters",

 "etcd-replicators",

 "providers"

]

 },

 {

 "verbs": [

 "get",

 "list",

 "create",

 "update"

],

 "resources": [

 "authproviders",

 "namespaces",

 "provider"

]

 }

]

 }

}

type: ClusterRoleBinding

api_version: core/v2

YML

Reuse cluster roles across namespaces

Reusing cluster roles across namespaces can reduce the number of resources you need to manage.

For example, suppose you have three teams, each with its own namespace.
You write a script that uses
limited service accounts to create and delete silences.
You want to use the script for all three team
namespaces, so you create a role with the required permissions and a role binding in each

metadata:

 name: ops_access_assignment

spec:

 role_ref:

 name: ops_access

 type: ClusterRole

 subjects:

 - name: ops

 type: Group

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops_access_assignment"

 },

 "spec": {

 "role_ref": {

 "name": "ops_access",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

JSON

namespace: six new resources.
If you need to change the permissions for the script, you will need to
update each role in the team namespaces (three resources).

A better approach is to create a single cluster role that grants the required permissions, plus one role
binding in each namespace to tie the permissions to the namespace’s limited service account.
With this
confguration, you only need to update one resource to make permission changes: the silencing-
script cluster role.
Sensu will automatically apply updates in each team’s namespace using the role
bindings that defne each limited service account as a subject of the cluster role.

1. Create a limited service account user in each namespace:

This creates the following user defnition:

sensuctl user create silencing-service-team-1 --password='password'

type: User

api_version: core/v2

metadata:

 name: silencing-service-team-1

spec:

 disabled: false

 username: silencing-service-team-1

YML

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {

 "name": "silencing-service-team-1"

 },

 "spec": {

 "disabled": false,

 "username": "silencing-service-team-1"

 }

}

JSON

Repeat this step to create a limited service account user in each team’s namespace.

2. Create a cluster role with get, list, create, update, and delete permissions for silences:

This command creates the cluster role that has the permissions the silencing service accounts
will need:

sensuctl cluster-role create silencing-script --verb

get,list,create,update,delete --resource silenced

type: ClusterRole

api_version: core/v2

metadata:

 name: silencing-script

spec:

 rules:

 - resources:

 - silenced

 verbs:

 - get

 - list

 - create

 - update

 - delete

YML

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "silencing-script"

 },

 "spec": {

 "rules": [

 {

JSON

3. Create a role binding in each team namespace to assign the silencing-script cluster role
to the team’s silencing-service user.
For example, use this command to create the role
binding for Team 1:

This command creates the role binding that ties the correct permissions (via the silencing-
script cluster role) with your service account (via the user silencing-service-team-1):

 "resources": [

 "silenced"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

 }

}

sensuctl role-binding create silencing-script-binding-team-1 --cluster-role

silencing-script --user silencing-service-team-1 --namespace team1

type: RoleBinding

api_version: core/v2

metadata:

 name: silencing-script-binding-team-1

spec:

 role_ref:

 name: silencing-script

 type: ClusterRole

 subjects:

 - name: silencing-service-team-1

 type: User

YML

Repeat this step to create a role binding for the silencing-script cluster role and the limited
service account user in each team’s namespace.

User specifcation

Top-level attributes for user resources

api_version

description Top-level attribute that specifes the Sensu API group and version. For
users in this version of Sensu, this attribute should always be core/v2 .

required Required for user defnitions in wrapped-json or yaml format for use
with sensuctl create .

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "silencing-script-binding-team-1"

 },

 "spec": {

 "role_ref": {

 "name": "silencing-script",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "silencing-service-team-1",

 "type": "User"

 }

]

 }

}

JSON

type String

example

metadata

description Top-level collection of metadata about the user, including name . The
metadata map is always at the top level of the user defnition. This

means that in wrapped-json and yaml formats, the metadata
scope occurs outside the spec scope. Read metadata attributes for
user resources for details.

required Required for user defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

metadata:

 name: alice

YML

{

 "metadata": {

 "name": "alice"

 }

}

JSON

spec

description Top-level map that includes the user spec attributes.

required Required for user defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example
spec:

 disabled: false

 groups:

 - ops

 - dev

 password: user_password

 password_hash:

$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAyN

m

 username: alice

YML

{

 "spec": {

 "disabled": false,

 "groups": [

 "ops",

 "dev"

],

 "password": "user_password",

 "password_hash":

"$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAy

Nm",

 "username": "alice"

 }

}

JSON

type

description Top-level attribute that specifes the sensuctl create resource type.
Users should always be type User .

required Required for user defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

Metadata attributes for user resources

name

description Unique string used to identify the user. User resource names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z). Each user resource must have a unique name.

required true

type String

example

type: User

YML

{

 "type": "User"

}

JSON

name: alice

YML

JSON

https://regex101.com/r/zo9mQU/2

Spec attributes for user resources

disabled

description If true , the user’s account is disabled. Otherwise, false .

required false

type Boolean

default false

example

groups

description Groups to which the user belongs.

required false

type Array

example

{

 "name": "alice"

}

disabled: false

YML

{

 "disabled": false

}

JSON

YML

password

description User’s password. Passwords must have at least eight characters.

required true

type String

example

groups:

- dev

- ops

{

 "groups": [

 "dev",

 "ops"

]

}

JSON

NOTE: You only need to set either the password or the
password_hash (not both). We recommend using the
password_hash because it eliminates the need to store cleartext

passwords.

password: user_password

YML

{

 "password": "user_password"

}

JSON

password_hash

description Bcrypt password hash. You can use the password_hash in your user
defnitions instead of storing cleartext passwords.

required false

type String

example

username

description Name of the user. Cannot contain special characters.

required true

type String

NOTE: You only need to set either the password or the
password_hash (not both). We recommend using the
password_hash because it eliminates the need to store cleartext

passwords.

password_hash:

$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAyN

m

YML

{

 "password_hash":

"$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAy

Nm"

}

JSON

https://en.wikipedia.org/wiki/Bcrypt

example

Role and cluster role specifcation

Top-level attributes for role and cluster role resources

api_version

description Top-level attribute that specifes the Sensu API group and version. For
role and cluster role resources in this version of Sensu, this attribute
should always be core/v2 .

required Required for role and cluster role defnitions in wrapped-json or yaml
format for use with sensuctl create .

type String

example

username: alice

YML

{

 "username": "alice"

}

JSON

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

metadata

description Top-level collection of metadata about the role or cluster role. The
metadata map is always at the top level of the role or cluster role

defnition. This means that in wrapped-json and yaml formats, the
metadata scope occurs outside the spec scope. Read metadata

attributes for role and cluster role resources for details.

required Required for role defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

NOTE: Cluster role defnitions do not include a namespace attribute
in the resource metadata.

metadata:

 annotations:

 managed-by: prod-admin

 created_by: admin

 labels:

 environment: prod1

 region: us-west-1

 sensu.io/managed_by: sensuctl

 name: prod-user

 namespace: production

YML

{

 "metadata": {

 "annotations": {

 "managed-by": "prod-admin"

 },

 "created_by": "admin",

 "labels": {

 "environment": "prod1",

JSON

spec

description Top-level map that includes the role or cluster role spec attributes.

required Required for role or cluster role defnitions in wrapped-json or yaml
format for use with sensuctl create .

type Map of key-value pairs

example

 "region": "us-west-1",

 "sensu.io/managed_by": "sensuctl"

 },

 "name": "prod-user",

 "namespace": "production"

 }

}

spec:

 rules:

 - resource_names: null

 resources:

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - pipelines

 - searches

 - service-components

 - silenced

 - sumo-logic-metrics-handlers

 - tcp-stream-handlers

 verbs:

 - get

 - list

 - create

YML

type

 - update

 - delete

{

 "spec": {

 "rules": [

 {

 "resource_names": null,

 "resources": [

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "searches",

 "service-components",

 "silenced",

 "sumo-logic-metrics-handlers",

 "tcp-stream-handlers"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

 }

}

JSON

description Top-level attribute that specifes the sensuctl create resource type.
Roles should always be type Role . Cluster roles should always be type
ClusterRole .

required Required for role and cluster role defnitions in wrapped-json or yaml
format for use with sensuctl create .

type String

example (role)

example
(cluster role)

Metadata attributes for role and cluster role resources

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

type: Role

YML

{

 "type": "Role"

}

JSON

type: ClusterRole

YML

{

 "type": "ClusterRole"

}

JSON

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

created_by

description Username of the Sensu user who created or last updated the role or
cluster role. Sensu automatically populates the created_by feld when
the role or cluster role is created or updated.

required false

type String

example

annotations:

 managed-by: prod-admin

YML

{

 "annotations": {

 "managed-by": "prod-admin"

 }

}

JSON

created_by: admin

YML

{

JSON

labels

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

 "created_by": "admin"

}

labels:

 environment: prod1

 region: us-west-1

 sensu.io/managed_by: sensuctl

YML

{

 "labels": {

 "environment": "prod1",

 "region": "us-west-1",

 "sensu.io/managed_by": "sensuctl"

 }

}

JSON

name

description Unique string used to identify the role or cluster role. Role and cluster
role names cannot contain special characters or spaces (validated with
Go regex \A[\w\.\-]+\z). Each role must have a unique name within
its namespace. Each cluster role must have a unique name.

required true

type String

example

namespace

description Sensu RBAC namespace that the role belongs to.

required false

type String

default default

name: prod-user

YML

{

 "name": "prod-user"

}

JSON

NOTE: Cluster role defnitions do not include a namespace attribute
in the resource metadata.

YML

https://regex101.com/r/zo9mQU/2

example

Spec attributes for role and cluster role resources

rules

description Rule set that the role or cluster role applies. A rule is an explicit
statement that grants a particular access to a resource. Read rules
attributes for more information.

required true

type Array

example

namespace: production

{

 "namespace": "production"

}

JSON

rules:

- resource_names:

 - check-cpu

 resources:

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - pipelines

 - searches

 - service-components

 - silenced

YML

 - sumo-logic-metrics-handlers

 - tcp-stream-handlers

 verbs:

 - get

 - list

 - create

 - update

 - delete

{

 "rules": [

 {

 "resource_names": [

 "check-cpu"

],

 "resources": [

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "searches",

 "service-components",

 "silenced",

 "sumo-logic-metrics-handlers",

 "tcp-stream-handlers"

],

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

 }

]

}

JSON

Rules attributes

resources

description Types of resources that the rule has permission to access. Read
resource types to learn more about available types.

required true

type Array

allowed values
(roles)

Namespaced resource types and the special resource type * .

allowed values
(cluster roles)

Namespaced resource types, cluster-wide resource types, and the
special resource type * .

example
resources:

- checks

- entities

- events

- flters

- handlers

- hooks

- mutators

- pipelines

- searches

- service-components

- silenced

- sumo-logic-metrics-handlers

- tcp-stream-handlers

YML

{

 "resources": [

JSON

resource_names

description Names of specifc individual resources that the rule has permission to
access. Resource name permissions are only taken into account for
requests that use get , update , and delete verbs.

required false

type Array

example

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "searches",

 "service-components",

 "silenced",

 "sumo-logic-metrics-handlers",

 "tcp-stream-handlers"

]

}

resource_names:

- check-cpu

YML

{

 "resource_names": [

 "check-cpu"

]

}

JSON

verbs

description Type of access the rule will apply.

required true

type Array

allowed values get , list , create , update , delete

example

Role binding and cluster role binding specifcation

Top-level attributes for role binding and cluster role binding resources

verbs:

- get

- list

- create

- update

- delete

YML

{

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

]

}

JSON

api_version

description Top-level attribute that specifes the Sensu API group and version. For
role binding and cluster role binding resources in this version of Sensu,
this attribute should always be core/v2 .

required Required for role binding and cluster role binding defnitions in wrapped-
json or yaml format for use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the role binding or cluster role
binding. The metadata map is always at the top level of the role binding
or cluster role binding defnition. This means that in wrapped-json and
yaml formats, the metadata scope occurs outside the spec scope.

Read metadata attributes for role binding and cluster role binding
resources for details.

required Required for role binding and cluster role binding defnitions in wrapped-
json or yaml format for use with sensuctl create .

type Map of key-value pairs

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

NOTE: Cluster role binding defnitions do not include a namespace
attribute in the resource metadata.

example

spec

description Top-level map that includes the role binding and cluster role binding spec
attributes.

required Required for role binding or cluster role binding defnitions in wrapped-
json or yaml format for use with sensuctl create .

metadata:

 annotations:

 managed-by: prod-admin

 created_by: admin

 labels:

 environment: prod1

 region: us-west-1

 sensu.io/managed_by: sensuctl

 name: prod-user

 namespace: production

YML

{

 "metadata": {

 "annotations": {

 "managed-by": "prod-admin"

 },

 "created_by": "admin",

 "labels": {

 "environment": "prod1",

 "region": "us-west-1",

 "sensu.io/managed_by": "sensuctl"

 },

 "name": "prod-user",

 "namespace": "production"

 }

}

JSON

type Map of key-value pairs

example (role)

example (cluster role)

spec:

 role_ref:

 name: prod-admin

 type: Role

 subjects:

 - name: oncall

 type: Group

 - name: angela

 type: User

YML

{

 "spec": {

 "role_ref": {

 "name": "prod-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "oncall",

 "type": "Group"

 },

 {

 "name": "angela",

 "type": "User"

 }

]

 }

}

JSON

spec:

 role_ref:

 name: global-event-reader

 type: ClusterRole

YML

type

description Top-level attribute that specifes the sensuctl create resource type.
Role bindings should always be type RoleBinding . Cluster role
bindings should always be type ClusterRoleBinding .

required Required for role binding and cluster role binding defnitions in wrapped-
json or yaml format for use with sensuctl create .

type String

 subjects:

 - name: global-event-readers

 type: Group

 - name: angela

 type: User

{

 "spec": {

 "role_ref": {

 "name": "global-event-reader",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "global-event-readers",

 "type": "Group"

 },

 {

 "name": "angela",

 "type": "User"

 }

]

 }

}

JSON

YML

example (role
binding)

example (cluster role
binding)

Metadata attributes for role binding and cluster role binding resources

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

type: RoleBinding

{

 "type": "RoleBinding"

}

JSON

type: ClusterRoleBinding

YML

{

 "type": "ClusterRoleBinding"

}

JSON

YML

example

created_by

description Username of the Sensu user who created or last updated the role
binding or cluster role binding. Sensu automatically populates the
created_by feld when the role binding or cluster role binding is

created or updated.

required false

type String

example

labels

annotations:

 managed-by: prod-admin

{

 "annotations": {

 "managed-by": "prod-admin"

 }

}

JSON

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

name

description Unique string used to identify the role binding or cluster role binding.
Role binding and cluster role binding names cannot contain special

labels:

 environment: prod1

 region: us-west-1

 sensu.io/managed_by: sensuctl

YML

{

 "labels": {

 "environment": "prod1",

 "region": "us-west-1",

 "sensu.io/managed_by": "sensuctl"

 }

}

JSON

characters or spaces (validated with Go regex \A[\w\.\-]+\z). Each
role binding must have a unique name within its namespace. Each
cluster role binding must have a unique name.

required true

type String

example

namespace

description Sensu RBAC namespace that the role binding belongs to.

required false

type String

default default

example

name: prod-user

YML

{

 "name": "prod-user"

}

JSON

NOTE: Cluster role binding defnitions do not include a namespace
attribute in the resource metadata.

namespace: production

YML

{

JSON

https://regex101.com/r/zo9mQU/2

Spec attributes for role binding and cluster role binding resources

role_ref

description Name and type for the role or cluster role to bind to the users and groups
listed in the subjects array. Read role_ref attributes for more information.

required true

type Hash

example (role
binding)

example (cluster role
binding)

 "namespace": "production"

}

role_ref:

 name: prod-admin

 type: Role

YML

{

 "role_ref": {

 "name": "prod-admin",

 "type": "Role"

 }

}

JSON

role_ref:

 name: global-event-reader

 type: ClusterRole

YML

JSON

subjects

description Users and groups to bind with the role or cluster role listed in the role_ref
attribute. Read subjects attributes for more information.

required true

type Array

example

{

 "role_ref": {

 "name": "global-event-reader",

 "type": "ClusterRole"

 }

}

subjects:

- name: oncall

 type: Group

- name: angela

 type: User

YML

{

 "subjects": [

 {

 "name": "oncall",

 "type": "Group"

 },

 {

 "name": "angela",

 "type": "User"

 }

]

}

JSON

role_ref attributes

name

description Name of the role or cluster role to bind in the role binding or cluster role
binding.

required true

type String

example

type

description The sensuctl create resource type for the role or cluster role. Use Role
if you are binding a role. Use ClusterRole if you are binding a cluster
role.

required true

type String

example

name: event-reader

YML

{

 "name": "event-reader"

}

JSON

type: Role

YML

JSON

subjects attributes

name

description Name of the user resource or group resource to bind in the role binding
or cluster role binding.

required true

type String

example

example with prefx

{

 "type": "Role"

}

name: alice

YML

{

 "name": "alice"

}

JSON

name: ad:alice

YML

{

 "name": "ad:alice"

}

JSON

type

description The sensuctl create resource type for the user or group to bind. Use
User if you are binding a user. Use Group if you are binding a group.

required true

type String

example
type: Group

YML

{

 "type": "Group"

}

JSON

Maintain Sensu

The Maintain Sensu category includes information to keep your Sensu installation up-to-date and
running smoothly.

Upgrade or migrate

Follow the upgrade guide for step-by-step instructions to upgrade to the latest version of Sensu from
any earlier version.
The upgrade instructions include details about important changes between versions
that could affect your upgrade and any special requirements to make sure your upgrade is successful.

If you are still using Sensu Core or Sensu Enterprise, follow Migrate from Sensu Core and Sensu
Enterprise to Sensu Go to upgrade to Sensu Go.
The migrate guide includes links to Sensu’s migration
resources and Core and Enterprise confguration translation tools, as well as instructions for installing
Sensu Go alongside your existing Sensu Core or Enterprise instance.

Troubleshoot

Use the Sensu troubleshooting guide to diagnose and resolve common problems, and read about
tuning options for specifc performance issues.
Learn how to read, confgure, and fnd the logs produced
by Sensu services.
Sensu log messages can help you identify and solve backend startup errors and
permissions issues.

The troubleshooting guide also describes how to use Sensu handlers and flters to test and debug your
observability pipeline and diagnose problems related to dynamic runtime assets.

Manage license

Read the license reference to learn how to activate your commercial license.
The license reference also
explains how to view your license details and expiration date and fnd your current entity count and
limits.

Upgrade Sensu

To upgrade to the latest version of Sensu Go:

1. Install or upgrade to the latest packages or Docker image.

2. For systems that use systemd , run:

3. Restart the Sensu agent:

4. Restart the Sensu backend:

5. Run a single upgrade command on one your Sensu backends to migrate the cluster:

To skip confrmation and immediately run the upgrade command, add the --skip-confrm

fag:

NOTE: If you’re upgrading a Sensu cluster, upgrade all of your Sensu backends before you
run the sensu-backend upgrade command in step 5.

sudo systemctl daemon-reload

sudo systemctl restart sensu-agent

sudo systemctl restart sensu-backend

sensu-backend upgrade

6. Enter y or n to confrm if you did not add the --skip-confrm fag in step 5.
Otherwise, skip
this step.

7. Wait a few seconds for the upgrade command to run.
You may notice some inconsistencies in
your entity list until the cluster fnishes upgrading.
Despite this, your cluster will continue to
publish standard check requests and process events.

If you run the upgrade command more than once, it will not harm the cluster — you’ll just
receive a response that the upgrade command has already been run.

Some minor versions do not involve database-specifc changes, and the sensu-backend
upgrade tool will report that nothing was upgraded.
Check the release notes to confrm whether
a version has database-specifc changes that require a backend upgrade.

8. Confrm the installed version for the agent, backend, and sensuctl:

sensu-backend upgrade --skip-confrm

NOTE: If you are deploying a new Sensu cluster rather than upgrading from a previous
version, you do not need to run the sensu-backend upgrade command.

sensu-agent version

sensu-backend version

sensuctl version

PRO TIP: If your upgrade is unsuccessful, read the version-specifc information on this page and
complete the instructions for each version, starting with your current version and continuing up to
the version you want to install.

For example, to debug an upgrade from 5.5.0 to 6.4.0, start with Upgrade Sensu clusters from
5.7.0 or earlier to 5.8.0 or later.

Upgrade to Sensu Go 6.5.0 from any previous version

To use pipelines, you must upgrade your Sensu agents to Sensu Go 6.5.0.
Agents that are not
upgraded to 6.5.0 will run checks, send observability events to the backend, and use the handlers that
are defned in check handlers arrays, but they will not run pipelines.

Upgrade to Sensu Go 6.4.0 from any previous version

In Sensu Go 6.4.0, we upgraded the embedded etcd version from 3.3.22 to 3.5.0.
As a result, for
deployments that use embedded etcd, 6.4.0 is not backward-compatible with previous versions of the
Sensu backend.
In addition, Sensu 6.4.0 is not backward-compatible for PostgreSQL deployments.

For embedded etcd deployments, before you upgrade to Sensu Go 6.4.0, use the etcd snapshot and
restore process to create a full etcd database backup.
If you use PostgreSQL, make sure to back up
your PostgreSQL database also.

If you make a full etcd database backup (and a PostgreSQL database backup, if you use PostgreSQL)
before upgrading to 6.4.0, you will be able to restore your pre-6.4.0 deployment if you need to revert to
an earlier Sensu release.

After creating a full backup of your embedded etcd database and your PostgreSQL database, if you
use PostgreSQL, you can complete the upgrade process.

CommonName deprecation in Go 1.15

Sensu Go 6.4.0 upgrades the Go version from 1.13.15 to 1.16.5.
As of Go 1.15, certifcates must
include their CommonName (CN) as a Subject Alternative Name (SAN) feld.

To prevent connection errors after upgrading to Sensu Go 6.4.0, follow Generate certifcates to make
sure your certifcates’ SAN felds include their CNs.

Upgrade to Sensu Go 6.2.0 from any previous version

NOTE: Sensu Go 6.4.0 is backward-compatible for deployments that use external etcd, as well as
with previous versions of the Sensu agent.

https://etcd.io/docs/latest/op-guide/recovery/
https://etcd.io/docs/latest/op-guide/recovery/
https://www.postgresql.org/docs/current/backup.html
https://www.postgresql.org/docs/current/backup.html
https://golang.google.cn/doc/go1.15#commonname

Prior to Sensu Go 6.0, sensu-backend allowed you to delete a namespace even when other resources
still referenced that namespace.
As of Sensu Go 6.0, it is not possible to delete namespaces that are
referenced in other resources.
As a result, users whose confguration predates Sensu Go 6.0 may have
lingering resources, including check confgurations, that reference non-existent namespaces.

Upgrading to Sensu Go 6.2.0 requires sensu-backend to upgrade check confgurations.
If you have
check confgurations that reference non-existent namespaces, the 6.2.0 upgrade operation will fail
when it encounters one of these check confgurations.
You will receive an error message like this:

When this happens, the backend is effectively halted and subsequent restarts will result in the same
state.

Remove checks that reference non-existent namespaces

Use the following commands with the jq utility to identify and remove checks that reference deleted
namespaces before you upgrade to Sensu Go 6.2.0.

These commands use a Sensu backend running on localhost in the example URL and the
environment variable $SENSU_API_KEY to represent a valid API key.

1. Get a list of existing namespaces.
Run:

In this example, the existing namespaces are stage and dev .

{"component":"store-providers","error":"the namespace test does not

exist","level":"error","msg":"error enabling round robin scheduling,backend restart

required","time":"2020-12-27T08:41:59Z"}

NOTE: If you have already upgraded to Sensu Go 6.2.0, you can work around this issue by
temporarily reverting your Sensu instance to Sensu Go 6.1.4.
Then, recreate the missing
namespaces referenced in your check confgurations and upgrade again to 6.2.0.

curl -s -H "Authorization: Key $SENSU_API_KEY"

http://localhost:8080/api/core/v2/namespaces | jq '[.[].name]'

https://stedolan.github.io/jq/

2. Print the name and namespace for any checks that reference a namespace that is not specifed
in the jq expression on the same line (in this example, ["stage","dev"]):

Your jq expression should include all of the namespaces you retrieved in step 1 (stage and
dev).

3. Recreate the missing test namespace so you can delete the check-cpu check.

4. Delete the check-cpu check.

5. Delete the test namespace, which is now empty after you deleted check-cpu in step 4.

[

 "stage",

 "dev"

]

curl -s -H "Authorization: Key $SENSU_API_KEY"

http://localhost:8080/api/core/v2/checks | jq '["stage","dev"] as $valid | .[]

| select(.metadata.namespace as $in | $valid | index($in) | not) | {name:

.metadata.name, namespace: .metadata.namespace}'

{

 "name": "check-cpu",

 "namespace": "test"

}

sensuctl namespace create test

sensuctl check delete check-cpu --namespace test

sensuctl namespace delete test

After completing these commands, you can upgrade to 6.2.0.

Upgrade to Sensu Go 6.1.0 from 6.0.0

If you are using 6.0.0 and have a large number of events in PostgreSQL, you may experience a short
period of unavailability after you upgrade to 6.1.0.
This pause will occur while the optimized selector
information is populating during automatic database migration.
It may last for a period of a few seconds
to a few minutes.

This pause may extend to API request processing, so sensuctl and the web UI may also be
unavailable during the migration.

Upgrade to Sensu Go 6.0 from a 5.x deployment

Before you upgrade to Sensu 6.0, use sensuctl dump to create a backup of your existing
installation.

You will not be able to downgrade to a Sensu 5.x version after you upgrade your database to Sensu
6.0 after you restart the backend in the upgrade process.

Upgrade to Sensu Go 5.16.0 from any earlier version

As of Sensu Go 5.16.0, Sensu’s free entity limit is 100 entities.
All commercial features are available for
free in the packaged Sensu Go distribution for up to 100 entities.

When you upgrade to 5.16.0, if your existing unlicensed instance has more than 100 entities, Sensu
will continue to monitor those entities.
However, if you try to create any new entities via the HTTP API or
sensuctl, you will receive the following message:

This functionality requires a valid Sensu Go license with a suffcient entity limit.

To get a valid license fle, arrange a trial, or increase your entity limit, contact

Sales.

Connections from new agents will fail and result in a log message like this:

In the web UI, you will receive the following message when you reach the 100-entity limit:

If your Sensu instance includes more than 100 entities, contact Sales to learn how to upgrade your
installation and increase your limit.
Read our blog announcement for more information about our usage
policy.

Upgrade Sensu clusters from 5.7.0 or earlier to 5.8.0 or later

Due to updates to etcd serialization, you must shut down Sensu clusters with multiple backend nodes
while upgrading from Sensu Go 5.7.0 or earlier to 5.8.0 or later.
Read the backend reference for more
information about stopping and starting backends.

Upgrade Sensu backend binaries to 5.1.0

For Sensu backend binaries, the default state-dir in 5.1.0 is now /var/lib/sensu/sensu-
backend instead of /var/lib/sensu .
To upgrade your Sensu backend binary to 5.1.0, frst download
the latest version.
Then, make sure the /etc/sensu/backend.yml confguration fle specifes a
state-dir .
To continue using /var/lib/sensu as the state-dir to store backend data, add the

following confguration to /etc/sensu/backend.yml :

{"component":"agent","error":"handshake failed with status

402","level":"error","msg":"reconnection attempt failed","time":"2019-11-

20T05:49:24-07:00"}

NOTE: This section applies only to Sensu clusters with multiple backend nodes.

NOTE: This section applies only to Sensu backend binaries downloaded from s3-us-west-
2.amazonaws.com/sensu.io/sensu-go , not to Sensu RPM or DEB packages.

state-dir: "/var/lib/sensu"

http://localhost:1313/images/go/upgrade/web_ui_entity_warning.png
https://sensu.io/contact?subject=contact-sales/
https://sensu.io/blog/one-year-of-sensu-go

Then restart the backend:

sudo systemctl restart sensu-backend

Migrate from Sensu Core and Sensu
Enterprise to Sensu Go

This guide includes general information for migrating your Sensu instance from Sensu Core and Sensu
Enterprise to Sensu Go.
For instructions and tools to help you translate your Sensu confguration from
Sensu Core and Enterprise to Sensu Go, review the Sensu Translator project.

Sensu Go includes important changes to all parts of Sensu: architecture, installation, resource
defnitions, the observation data (event) model, check dependencies, flter evaluation, and more.
Sensu
Go also includes many powerful commercial features to make monitoring easier to build, scale, and
offer as a self-service tool to your internal customers.

Sensu Go is available for Debian- and RHEL-family distributions and Docker.
The Sensu Go agent is
also available for Windows.

Aside from this migration guide, these resources can help you migrate from Sensu Core or Sensu
Enterprise to Sensu Go:

NOTE: The information in this guide applies to Sensu Enterprise as well as Sensu Core, although
we refer to “Sensu Core” for brevity.

The step for translating integrations, contact routing, and LDAP authentication applies to Sensu
Enterprise (but not Sensu Core), and it is designated as Sensu Enterprise-only.

WARNING: To install Sensu Go alongside your current Sensu instance, you must upgrade to at
least Sensu Core 1.9.0-2.
If you need to upgrade, contact Sensu.

Sensu Community Slack: Join hundreds of other Sensu users in our Community Slack, where
you can ask questions and beneft from tips others picked up during their own Sensu Go
migrations.

Sensu Community Forum: Drop a question in our dedicated category for migrating to Go.

Sensu Go workshop: Download the workshop environment and try out some monitoring
workfows with Sensu Go.

Sensu Translator: Use this command-line tool to generate Sensu Go confgurations from your

https://github.com/sensu/sensu-translator/
https://sensu.io/contact
https://slack.sensu.io/
https://discourse.sensu.io/c/sensu-go/migrating-to-go
https://github.com/sensu/sensu-go-workshop#overview
https://github.com/sensu/sensu-translator

We also offer commercial support and professional services packages to help with your Sensu Go
migration.

Confguration management with Ansible, Chef, and Puppet

Confguration management integrations for Sensu Go are available for Ansible, Chef, and Puppet:

Packaging

Sensu Go is provided as three packages: sensu-go-backend, sensu-go-agent, and sensu-go-cli
(sensuctl).
This is a fundamental change in Sensu terminology from Sensu Core: in Sensu Go, the
server is now the backend.

Clients are represented within Sensu Go as abstract entities that can describe a wider range of system
components such as network gear, a web server, or a cloud resource.

Read Sensu concepts and terminology to learn more about new terms in Sensu Go.

Architecture

In Sensu Go, an embedded transport and etcd datastore replace the external RabbitMQ transport and
Redis datastore in Sensu Core.

Sensu Core confg fles.

Ansible collection for Sensu Go and documentation site

Chef cookbook for Sensu Go — contact us for more information

Puppet module for Sensu Go

https://sensu.io/support/
https://sensu.io/support/
https://sensu.io/support/
https://sensu.io/support/
https://etcd.io/docs/latest/
http://localhost:1313/images/go/deployment_architecture/single_backend_standalone_architecture.png
https://galaxy.ansible.com/sensu/sensu_go
https://sensu.github.io/sensu-go-ansible/
https://supermarket.chef.io/cookbooks/sensu-go
https://monitoringlove.sensu.io/chef
https://forge.puppet.com/modules/sensu/sensu

Single Sensu Go backend or standalone architecture

In Sensu Go, the Sensu backend and agent are confgured with YAML fles or the sensu-backend or
sensu-agent command line tools rather than JSON fles.
Sensu checks and pipeline elements are

confgured via the API or sensuctl tool in Sensu Go instead of JSON fles.

The Sensu backend is powered by an embedded transport and etcd datastore and gives you fexible,
automated workfows to route metrics and alerts.
Sensu backends require persistent storage for their
embedded database, disk space for local dynamic runtime asset caching, and several exposed ports:

Sensu agents are lightweight clients that run on the infrastructure components you want to monitor.
Agents automatically register with Sensu as entities and are responsible for creating check and metric
events to send to the backend event pipeline.

The Sensu agent uses:

The agent TCP and UDP sockets are deprecated in favor of the agent API.

Agents that use Sensu dynamic runtime assets require some disk space for a local cache.

Read the backend, agent, and sensuctl reference docs for more information.

Entities

Clients are represented within Sensu Go as abstract entities that can describe a wide range of system

2379 (gRPC) Sensu storage client: Required for Sensu backends using an external etcd
instance

2380 (gRPC) Sensu storage peer: Required for etcd cluster members to communicate directly
with their peers

3000 (HTTP/HTTPS) Sensu web UI: Required for all Sensu backends using a Sensu web UI

8080 (HTTP/HTTPS) Sensu API: Required for all users accessing the Sensu API

8081 (WS/WSS) Agent API: Required for all Sensu agents connecting to a Sensu backend

3030 (TCP/UDP) Sensu agent socket: Required for Sensu agents using the agent socket

3031 (HTTP) Sensu agent API: Required for all users accessing the agent API

8125 (UDP) StatsD listener: Required for all Sensu agents using the StatsD listener

https://etcd.io/

components such as network gear, a web server, or a cloud resource.

Sensu Go includes agent entities that run a Sensu agent and the familiar proxy entities.
Sensu Go also
includes service entities, which represent business services in the business service monitoring (BSM)
feature.

Read the entities reference and the guide to monitoring external resources for more information about
Sensu Go entities.

Checks

In Sensu Go, checks work with Sensu agents to produce observability events automatically.
The Sensu
backend coordinates check execution by comparing the subscriptions specifed in check and entity
defnitions to determine which entities should receive execution requests for a given check.

Subdue

Sensu Go checks include a subdues attribute that allows you to set specifc periods of time when
Sensu will not execute the check.
Read Subdues in the checks reference for more information and
examples.

You can also use cron scheduling in Sensu Go checks to specify when checks should be executed.

Standalone checks

Sensu Go does not include standalone checks.
Read Self-service monitoring checks in Sensu Go to
learn more about using role-based access control (RBAC), dynamic runtime assets, and entity
subscriptions to achieve similar functionality to Sensu Core’s standalone checks in Sensu Go.

Check hooks

Check hooks are a distinct resource type in Sensu Go, which allows you to create, manage, and reuse
hooks independently of check defnitions.
You can also execute multiple hooks for any given response
code.

Default handler

https://sensu.io/blog/self-service-monitoring-checks-in-sensu-go/

Sensu Go does not try to run a default handler when executing checks whose defnitions do not specify
a handler name.
In Sensu Go, you explicitly add the name of a handler in a pipeline and reference the
pipeline in your check defnition.

Events

In Sensu Go, all check results are considered events and are processed by pipelines, which include
event flters, mutators, and handlers.

Use Sensu Go’s built-in is_incident flter to recreate the Sensu Core behavior in which only check
results with a non-zero status are considered events.

Handlers

Sensu Go includes pipe and TCP/UDP handlers, but not transport handlers.
To create similar
functionality to transport handlers in Sensu Go, create a pipe handler that connects to a message bus
and injects event data into a queue.

Sensu Go also includes streaming handlers, such as the Sumo Logic metrics handler, to provide
persistent connections for transmitting Sensu observation data to remote data storage services to help
prevent data bottlenecks.

Filters

In Sensu Go, JavaScript expressions replace the Ruby eval logic in Sensu Core, opening up powerful
ways to flter events based on occurrences and other event attributes.
As a result, Sensu Go does not
include the built-in occurrence-based event flter in Sensu Core.
To replicate the Sensu Core
occurrence-based flter’s functionality, use Sensu Go’s repeated events flter defnition.

Sensu Go includes three built-in event flters: is_incident, not_silenced, and has_metrics.
Sensu Go
does not include a built-in check dependencies flter, but you can use the sensu/sensu-dependencies-
flter dynamic runtime asset to replicate the built-in check dependencies flter functionality from Sensu
Core.

Sensu Go event flters do not include the when event flter attribute.
Use Sensu query expressions to
build custom functions that provide granular control of time-based flter expressions.

https://bonsai.sensu.io/assets/sensu/sensu-dependencies-filter
https://bonsai.sensu.io/assets/sensu/sensu-dependencies-filter

Fatigue check flter

The sensu/sensu-go-fatigue-check-flter dynamic runtime asset is a JavaScript implementation of the
occurrences flter from Sensu Core.
This flter looks for check and entity annotations in each event it

receives and uses the values of those annotations to confgure the flter’s behavior on a per-event
basis.

The Sensu Translator version 1.1.0 retrieves occurrence and refresh values from a Sensu Core check
defnition and outputs them as annotations in a Sensu Go check defnition, compatible with the fatigue
check flter.

However, the Sensu Translator doesn’t automatically add the sensu/sensu-go-fatigue-check-flter
dynamic runtime asset or the flter confguration you need to run it.
To use the sensu/sensu-go-fatigue-
check-flter dynamic runtime asset, you must register it, create a correctly confgured event flter
defnition, and add the event flter to the list of flters on applicable handlers.

Dynamic runtime assets

The sensu-install tool in Sensu Core is replaced by dynamic runtime assets in Sensu Go.
Dynamic
runtime assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

You can still install Sensu Community plugins in Ruby via sensu-install by installing sensu-
plugins-ruby.
Read Install plugins for more information.

Role-based access control (RBAC)

Role-based access control (RBAC) is a built-in feature of the open-source version of Sensu Go.
RBAC
allows you to manage and access users and resources based on namespaces, groups, roles, and
bindings.
To set up RBAC in Sensu Go, read the RBAC reference and Create a read-only user.

Silencing

Silencing is disabled by default in Sensu Go.
You must explicitly enable silencing by creating silencing
resource defnitions with sensuctl, the Sensu web UI, or core/v2/silenced API endpoints.
Read the
Sensu Go silencing reference for more information.

https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter/
https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter/#configuration
https://github.com/sensu/sensu-translator/
https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter/
https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter/#asset-registration
https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter/#filter-definition
https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter/#filter-definition
https://github.com/sensu-plugins/
https://packagecloud.io/sensu/community/
https://packagecloud.io/sensu/community/

Token substitution

The syntax for token substitution changed to double curly braces in Sensu Go (from triple colons in
Sensu Core).

Aggregates

Sensu Go supports check aggregates with the sensu/sensu-aggregate-check dynamic runtime asset.

API

In addition to the changes to resource defnitions, Sensu Go includes new versioned APIs.
Read the AP
overview for more information.

Step-by-step migration instructions

Step 1: Install Sensu Go

1. Install the Sensu Go backend

The Sensu backend is available for Debian- and RHEL-family distributions and Docker.
Read the
installation guide to install, confgure, and start the Sensu backend according to your deployment
strategy.

2. Log in to the Sensu web UI

The Sensu Go web UI provides a unifed view of your observability events with user-friendly tools to
reduce alert fatigue and manage your Sensu instance.
After starting the Sensu backend, open the web
UI by visiting http://localhost:3000.
You may need to replace localhost with the hostname or IP
address where the Sensu backend is running.

To log in, enter your Sensu user credentials or use Sensu’s default admin credentials (username:
admin and password: P@ssw0rd!).

https://bonsai.sensu.io/assets/sensu/sensu-aggregate-check/

3. Install sensuctl on your workstation

Sensuctl is a command line tool for managing resources within Sensu.
It works by calling Sensu’s HTTP
API to create, read, update, and delete resources, events, and entities.
Sensuctl is available for Linux,
Windows, and macOS.
Read the installation guide to install and confgure sensuctl.

4. Set up Sensu users

Use Sensu’s built-in RBAC to manage and access users and resources based on namespaces,
groups, roles, and bindings.
To set up RBAC in Sensu Go, read the RBAC reference and Create a read-
only user.

In Sensu Go, namespaces partition resources within a Sensu instance.
Sensu Go entities, checks,
handlers, and other namespaced resources belong to a single namespace.
The Sensu translator places
all translated resources into the default namespace — we’ll use the translater in a moment.

In addition to built-in RBAC, Sensu Go’s commercial features include support for authentication using
Microsoft Active Directory (AD) and standards-compliant Lightweight Directory Access Protocol tools
like OpenLDAP.

5. Install agents

The Sensu agent is available for Debian- and RHEL-family distributions, Windows, and Docker.
Read
the installation guide to install, confgure, and start Sensu agents.

If you’re doing a side-by-side migration, add api-port (default: 3031) and socket-port (default:
3030) to your agent confguration (/etc/sensu/agent.yml or
C:\ProgramData\sensu\confg\agent.yml.example).
This prevents the Sensu Go agent API and

socket from conficting with the Sensu Core client API and socket.

You can also disable these features in the agent confguration using the disable-socket and
disable-api confguration options.

Sensu should now be installed and functional.
The next step is to translate your Sensu Core
confguration to Sensu Go.

api-port: 3031

socket-port: 3030

Step 2: Translate your confguration

Use the Sensu Translator command line tool to transfer your Sensu Core checks, handlers, and
mutators to Sensu Go.

1. Run the translator

Install dependencies:

Install the Sensu translator:

Run the Sensu translator to translate all confguration in /etc/sensu/conf.d to Sensu Go and output to
/sensu_confg_translated:

As an option, you can also translate your confguration in sections according to resource type.

If translation is successful, you should receive a few callouts followed by DONE! , similar to this
example:

Combine your confg into a sensuctl-readable format.

yum install -q -y rubygems ruby-devel

gem install sensu-translator

sensu-translator -d /etc/sensu/conf.d -o /sensu_confg_translated

Sensu 1.x flter translation is not yet supported

Unable to translate Sensu 1.x flter: only_production {:attributes=>{:check=>

{:environment=>"production"}}}

DONE!

https://github.com/sensu/sensu-translator/

Most attributes are ready to use as-is, but you’ll need to adjust your Sensu Go confguration manually
to migrate some of Sensu’s features.

2. Translate checks

Review your Sensu Core check confguration for the following attributes, and make the corresponding
updates to your Sensu Go confguration.

Core attribute Manual updates required in Sensu Go confg

::: foo ::: Update the syntax for token substitution from triple colons to double curly
braces. For example: {{ foo }}

stdin: true No updates required. Sensu Go checks accept data on stdin by default.

handlers:

default

Sensu Go does not have a default handler. Create a handler named
default to continue using this pattern.

subdues Check subdues are not available in Sensu Go.

standalone: true Standalone checks are not supported in Sensu Go, although you can
achieve similar functionality using role-based access control, dynamic
runtime assets, and entity subscriptions. The translator assigns all Core
standalone checks to a standalone subscription in Sensu Go.
Confgure one or more Sensu Go agents with the standalone
subscription to execute Sensu Core standalone checks.

metrics: true Review the translate metric checks section.

NOTE: for use with sensuctl create , do not use a comma between resource objects in Sensu
Go resource defnitions in JSON format.

fnd sensu_confg_translated/ -name '*.json' -exec cat {} \; >

sensu_confg_translated_singlefle.json

NOTE: To streamline a comparison of your Sensu Core confguration with your Sensu Go
confguration, output your current Sensu Core confguration using the API: curl -s

http://127.0.0.1:4567/settings | jq . > sensu_confg_original.json .

https://sensu.io/blog/self-service-monitoring-checks-in-sensu-go/
https://sensu.io/blog/self-service-monitoring-checks-in-sensu-go/

proxy_requests Review the translate proxy requests section.

subscribers:

roundrobin...

Remove roundrobin from the subscription name, and add the
round_robin check attribute set to true .

aggregate Check aggregates are supported through the sensu/sensu-aggregate-
check.

hooks Review the translate hooks section.

dependencies Use the sensu/sensu-dependencies-flter dynamic runtime asset.

Translate metric checks

The Sensu Core type: metric attribute is not part of the Sensu Go check spec, so you’ll need to
adjust it manually.
Sensu Core checks could be confgured as type: metric , which told Sensu to
always handle the check regardless of the check status output.
This allowed Sensu Core to process
output metrics via a handler even when the check status was not in an alerting state.

Sensu Go treats output metrics as frst-class objects, so you can process check status as well as
output metrics via different event pipelines.
Read the guide to metric output to update your metric
checks with the output_metric_handlers and output_metric_format attributes and use
output_metric_tags to enrich extracted metrics output.

Translate proxy requests and proxy entities

Read Monitor external resources to re-confgure proxy_requests attributes and update your proxy
check confguration.
read the entities reference to re-create your proxy client confgurations as Sensu
Go proxy entities.

Translate hooks

Check hooks are now a resource type in Sensu Go, so you can create, manage, and reuse hooks
independently of check defnitions.
You can also execute multiple hooks for any given response code.
Read the guide and hooks reference docs to re-create your Sensu Core hooks as Sensu Go hook
resources.

PRO TIP: When using token substitution in Sensu Go and accessing labels or annotations that
include . , like sensu.io.json_attributes , use the index function.
For example, {{index

.annotations "web_url"}} substitutes the value of the web_url annotation; {{index

.annotations "production.ID"}} substitutes the value of the production.ID annotation.

https://bonsai.sensu.io/assets/sensu/sensu-aggregate-check/
https://bonsai.sensu.io/assets/sensu/sensu-aggregate-check/
https://bonsai.sensu.io/assets/sensu/sensu-dependencies-filter

Custom attributes

Instead of custom check attributes, Sensu Go allows you to add custom labels and annotations to
entities, checks, dynamic runtime assets, hooks, flters, mutators, handlers, and silences.
Review the
metadata attributes section in the reference documentation for more information about using labels
and annotations (for example, metadata attributes for entities).

The Sensu Translator stores all check extended attributes in the check metadata annotation named
sensu.io.json_attributes .
Read the checks reference for more information about using labels and

annotations in check defnitions.

3. Translate event flters

Ruby eval logic used in Sensu Core flters is replaced with JavaScript expressions in Sensu Go,
opening up powerful possibilities to combine flters with flter dynamic runtime assets.
As a result, you’ll
need to rewrite your Sensu Core flters in Sensu Go format.

First, review your Core handlers to identify which flters are being used.
Then, follow the event flters
reference and guide to using flters to re-write your flters using Sensu Go expressions and event data.
Check out the blog post on flters for a deep dive into Sensu Go flter capabilities.

Sensu Core hourly flter:

Sensu Go hourly flter:

{

 "flters": {

 "recurrences": {

 "attributes": {

 "occurrences": "eval: value == 1 || value % 60 == 0"

 }

 }

 }

}

type: EventFilter

YML

https://bonsai.sensu.io/assets?q=eventfilter
https://sensu.io/blog/filters-valves-for-the-sensu-monitoring-event-pipeline

4. Translate handlers

In Sensu Go, all check results are considered events and are processed by event handlers.
Use the
built-in is_incident flter to recreate the Sensu Core behavior, in which only check results with a non-
zero status are considered events.

Review your Sensu Core check confguration for the following attributes and make the corresponding
updates to your Sensu Go confguration.

api_version: core/v2

metadata:

 name: hourly

spec:

 action: allow

 expressions:

 - event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0

 runtime_assets: null

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "hourly"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0"

],

 "runtime_assets": null

 }

}

JSON

NOTE: Silencing is disabled by default in Sensu Go and must be explicitly enabled.
Read the
silencing reference to create silences in Sensu Go.

Core attribute Manual updates required in Sensu Go confg

flters:

occurrences

Replicate the built-in occurrences flter in Sensu Core with the
sensu/sensu-go-fatigue-check-flter.

type: transport Achieve similar functionailty to transport handlers in Sensu Core with a
Sensu Go pipe handler that connects to a message bus and injects event
data into a queue.

flters:

check_dependencie

s

Use the sensu/sensu-dependencies-flter dynamic runtime asset.

severities Sensu Go does not support severities.

handle_silenced Silencing is disabled by default in Sensu Go and must be explicitly
enabled using sensuctl, the web UI, or core/v2/silenced API endpoints.

handle_fapping All check results are considered events in Sensu Go and are processed
by pipelines.

5. Upload your confg to your Sensu Go instance

After you review your translated confguration, make any necessary updates, and add resource
defnitions for any flters and entities you want to migrate, you can upload your Sensu Go confg using
sensuctl.

Access your Sensu Go confg using the Sensu API.

Set up a local API testing environment by saving your Sensu credentials and token as environment
variables.
This command requires curl and jq.

sensuctl create --fle /path/to/confg.json

PRO TIP: sensuctl create (and sensuctl delete) are powerful tools to help you manage
your Sensu confgs across namespaces.
Read the sensuctl reference for more information.

https://bonsai.sensu.io/assets/sensu/sensu-go-fatigue-check-filter
https://bonsai.sensu.io/assets/sensu/sensu-dependencies-filter

Return a list of all confgured checks:

Return a list of all confgured handlers:

You can also access your Sensu Go confguration in JSON or YAML using sensuctl.
For example,
sensuctl check list --format wrapped-json .
Run sensuctl help To view available commands

For more information about sensuctl’s output formats (json , wrapped-json , and yaml), read the
sensuctl reference.

Step 3: Translate plugins and register dynamic runtime assets

Sensu plugins

Within the Sensu Plugins org, review individual plugin READMEs for compatibility status with Sensu
Go.
For handler and mutators plugins, review the Sensu plugins README to map event data to the
Sensu Go event format.
This allows you to use Sensu plugins for handlers and mutators with Sensu Go
without re-writing them.

To re-install Sensu plugins onto your Sensu Go agent nodes (check plugins) and backend nodes
(mutator and handler plugins), read the guide to installing the sensu-install tool for use with Sensu
Go.

Sensu Go dynamic runtime assets

The sensu-install tool in Sensu Core is replaced by dynamic runtime assets in Sensu Go.
Dynamic

export SENSU_USER=admin && SENSU_PASS=P@ssw0rd!

export SENSU_TOKEN=`curl -XGET -u "$SENSU_USER:$SENSU_PASS" -s

http://localhost:8080/auth | jq -r ".access_token"`

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers

https://github.com/sensu-plugins/
https://github.com/sensu-plugins/sensu-plugin#sensu-go-enablement

runtime assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

Although dynamic runtime assets are not required to run Sensu Go, we recommend using assets to
install plugins where possible.
You can still install Sensu Community plugins in Ruby via sensu-
install by installing sensu-plugins-ruby.
Read Install plugins for more information.

Sensu supports dynamic runtime assets for checks, flters, mutators, and handlers.
Discover, download,
and share dynamic runtime assets with Bonsai, the Sensu asset hub.

To create your own dynamic runtime assets, read the asset reference and guide to sharing an asset on
Bonsai.
To contribute to converting a Sensu plugin to a dynamic runtime asset, read Contributing Assets
for Existing Ruby Sensu Plugins at the Sensu Community Forum on Discourse.

Step 4: Translate Sensu Enterprise-only features

Integrations

Most Sensu Enterprise integrations as available as Sensu Go assets.
Read the guide to installing
plugins with assets to register assets with Sensu and update your Sensu Go handler defnitions.

Contact routing

Contact routing is available in Sensu Go woth the sensu/sensu-go-has-contact-flter dynamic runtime
asset.
Read Route alerts with event flters to set up contact routing in Sensu Go.

Chef

Email

Graphite

InfuxDB

IRC

Jira

PagerDuty

ServiceNow

Slack

VictorOps

https://github.com/sensu-plugins/
https://packagecloud.io/sensu/community/
https://bonsai.sensu.io/
https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165
https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165
https://bonsai.sensu.io/assets/sensu/sensu-go-has-contact-filter
https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-chef
https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-go-graphite-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu-utils/sensu-irc-handler
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/asachs01/sensu-plugins-victorops

LDAP

In addition to built-in RBAC, Sensu includes license-activated support for authentication using
Microsoft Active Directory and standards-compliant Lightweight Directory Access Protocol tools like
OpenLDAP.

Step 5: Sunset your Sensu Core instance

When you’re ready to sunset your Sensu Core instance, stop the Sensu Core services according to the
instructions for your platform — these instructions are listed under Operating Sensu on each
platform’s page.

After you stop the Sensu Core services, follow package removal instructions for your platform to
uninstall the Sensu Core package.

https://docs.sensu.io/sensu-core/latest/platforms/

Tune Sensu

This page describes tuning options that may help restore proper operation if you experience
performance issues with your Sensu installation.

Latency tolerances for etcd

If you use embedded etcd for storage, you might notice high network or storage latency.

To make etcd more latency-tolerant, increase the values for the etcd election timeout and etcd
heartbeat interval backend confguration options.
For example, you might increase etcd-

election-timeout from 3000 to 5000 and etcd-heartbeat-interval from 300 to 500.

Read the etcd tuning documentation for etcd-specifc tuning best practices.

Advanced backend confguration options for etcd

The backend reference describes other advanced confguration options in addition to etcd election
timeout and heartbeat interval.

Adjust these values with caution.
Improper adjustment can increase memory and CPU usage or result in
a non-functioning Sensu instance.

Input/output operations per second (IOPS)

The speed with which write operations can be completed is important to Sensu cluster performance
and health.
Make sure to provision Sensu backend infrastructure to provide sustained input/output

NOTE: Before you tune your Sensu installation, read Troubleshoot Sensu, Hardware
requirements, and Deployment architecture for Sensu.
These pages describe common problems
and solutions, planning and optimization considerations, and other recommendations that may
resolve your issue without tuning adjustments.

https://etcd.io/docs/latest/tuning/

operations per second (IOPS) appropriate for the rate of observability events the system will be
required to process.

Read Backend recommended confguration and Hardware sizing for details.

PostgreSQL settings

The datastore reference lists the PostgreSQL confguration parameters and settings we recommend as
a starting point for your postgresql.conf fle.
Adjust the parameters and settings as needed based
on your hardware and performance observations.

Read the PostgreSQL parameters documentation for information about setting parameters.

Agent reconnection rate

It may take several minutes for all agents to reconnect after a sensu-backend restart, especially if you
have a large number of agents.
The agent reconnection rate depends on deployment variables like the
number of CPUs, disk space, network speeds, whether you’re using a load balancer, and even
physical distance between agents and backends.

Although many variables affect the agent reconnection rate, a reasonable estimate is approximately
100 agents per backend per second.
If you observe slower agent reconnection rates in your Sensu
deployment, consider using the agent-rate-limit backend confguration option.

The agent-rate-limit backend confguration option allows you to set the maximum number of
agent transport WebSocket connections per second, per backend.
Set the agent-rate-limit to 100 to
improve agent reconnection rate and reduce the time required for all of your agents to reconnect after
a backend restart.

Splay and proxy check scheduling

Adjust the splay and splay_coverage check attributes to tune proxy check executions across an
interval.
Read Fine-tune proxy check scheduling with splay for an example.

COMMERCIAL FEATURE : Access the agent-rate-limit backend confguration option in the
packaged Sensu Go distribution. For more information, read Get started with commercial features.

https://www.postgresql.org/docs/current/config-setting.html

Tokens and resource re-use

Tokens are placeholders in a check, hook, or dynamic runtime asset defnition that the agent replaces
with entity information before execution.
You can use tokens to fne-tune check, hook, and asset
attributes on a per-entity level while reusing resource defnitions.

Read the tokens reference for token syntax and examples.

Occurrences and alert fatigue

Use the occurrences and occurrences_watermark event attributes in event flters to tune incident
notifcations and reduce alert fatigue.

Troubleshoot Sensu

Service logging

Logs produced by Sensu services (sensu-backend and sensu-agent) are often the best place to start
when troubleshooting a variety of issues.

Log fle locations

Linux

Sensu services print structured log messages to standard output.
To capture these log messages to
disk or another logging facility, Sensu services use capabilities provided by the underlying operating
system’s service management.
For example, logs are sent to the journald when systemd is the service
manager, whereas log messages are redirected to /var/log/sensu when running under sysv init
schemes.
If you are running systemd as your service manager and would rather have logs written to
/var/log/sensu/ , read forwarding logs from journald to syslog.

For journald targets, use these commands to follow the logs.
Replace the <service> variable with the
name of the desired service (for example, backend or agent).

journalctl --follow --unit sensu-<service>

SHELL

journalctl --follow --unit sensu-<service>

SHELL

journalctl --follow --unit sensu-<service>

SHELL

https://dzone.com/articles/what-is-structured-logging

For log fle targets, use these commands to follow the logs.
Replace the <service> variable with the
name of the desired service (for example, backend or agent).

Narrow your search to a specifc timeframe

Use the journald keyword since to refne the basic journalctl commands and narrow your
search by timeframe.

Retrieve all the logs for sensu-backend since yesterday:

Retrieve all the logs for sensu-agent since a specifc time:

Retrieve all the logs for sensu-backend for a specifc date range:

tail --follow /var/log/sensu/sensu-<service>

SHELL

tail --follow /var/log/sensu/sensu-<service>

SHELL

tail --follow /var/log/sensu/sensu-<service>

SHELL

NOTE: Platform versions are listed for reference only and do not supersede the documented
supported platforms.

journalctl -u sensu-backend --since yesterday | tee sensu-backend-$(date +%Y-%m-

%d).log

journalctl -u sensu-agent --since 09:00 --until "1 hour ago" | tee sensu-

agent-$(date +%Y-%m-%d).log

Logging edge cases

If a Sensu service experiences a panic crash, the service may seem to start and stop without
producing any output in journalctl.
This is due to a bug in systemd.

In these cases, try using the _COMM variable instead of the -u fag to access additional log entries:

Windows

The Sensu agent stores service logs to the location specifed by the log-fle confguration option
(default %ALLUSERSPROFILE%\sensu\log\sensu-agent.log , C:\ProgramData\sensu\log\sensu-
agent.log on standard Windows installations).
For more information about managing the Sensu agent
for Windows, read the agent reference.
You can also view agent events using the Windows Event
Viewer, under Windows Logs, as events with source SensuAgent.

If you’re running a binary-only distribution of the Sensu agent for Windows, you can follow the service
log printed to standard output using this command:

Log levels

Each log message is associated with a log level that indicates the relative severity of the event being
logged:

Log level Description

panic Severe errors that cause the service to shut down in an unexpected state

journalctl -u sensu-backend --since "2015-01-10" --until "2015-01-11 03:00" | tee

sensu-backend-$(date +%Y-%m-%d).log

journalctl _COMM=sensu-backend.service --since yesterday

Get-Content - Path "C:\scripts\test.txt" -Wait

https://github.com/systemd/systemd/issues/2913

fatal Fatal errors that cause the service to shut down (status 0)

error Non-fatal service error messages

warn Warning messages that indicate potential issues

info Information messages that represent service actions

debug Detailed service operation messages to help troubleshoot issues

trace Confrmation messages about whether a rule authorized a request

You can confgure these log levels by specifying the desired log level as the value of log-level in
the service confguration fle (agent.yml or backend.yml) or as an argument to the --log-level
command line fag:

You must restart the service after you change log levels via confguration fles or command line
arguments.
For help with restarting a service, read the agent reference or backend reference.

Increment log level verbosity

To increment the log level verbosity at runtime for the backend, run:

To increment the log level verbosity at runtime for the agent, run:

When you increment the log at the trace level (the most verbose log level), the log will wrap around to
the error level.

sensu-agent start --log-level debug

kill -s SIGUSR1 $(pidof sensu-backend)

kill -s SIGUSR1 $(pidof sensu-agent)

Sensu backend startup errors

The following errors are expected when starting up a Sensu backend with the default confguration:

The serving insecure client requests warning is an expected warning from the embedded etcd
database.
TLS confguration is recommended but not required.
For more information, read the etcd
security documentation.

CommonName deprecation in Go 1.15

As of Go 1.15, certifcates must include their CommonName (CN) as a Subject Alternative Name
(SAN) feld.

The following logged error indicates that a certifcate used to secure Sensu does not include the CN as
a SAN feld:

If you see this connection error, follow Generate certifcates to make sure your certifcates’ SAN felds
include their CNs.

Permission issues

The Sensu user and group must own fles and folders within /var/cache/sensu/ and

{"component":"etcd","level":"warning","msg":"simple token is not cryptographically

signed","pkg":"auth","time":"2019-11-04T10:26:31-05:00"}

{"component":"etcd","level":"warning","msg":"set the initial cluster version to

3.5","pkg":"etcdserver/membership","time":"2019-11-04T10:26:31-05:00"}

{"component":"etcd","level":"warning","msg":"serving insecure client requests on

127.0.0.1:2379, this is strongly discouraged!","pkg":"embed","time":"2019-11-

04T10:26:33-05:00"}

{"component":"agent","error":"x509: certifcate relies on legacy Common Name feld,

use SANs or temporarily enable Common Name matching with

GODEBUG=x509ignoreCN=0","level":"error","msg":"reconnection attempt

failed","time":"2021-06-29T11:07:51+02:00"}

https://etcd.io/docs/latest/op-guide/security/
https://etcd.io/docs/latest/op-guide/security/
https://golang.google.cn/doc/go1.15#commonname

/var/lib/sensu/ .
You will receive a logged error like those listed here if there is a permission issue
with either the sensu-backend or the sensu-agent:

Use a recursive chown to resolve permission issues with the sensu-backend:

or the sensu-agent:

Handlers and event flters

Whether implementing new workfows or modifying existing workfows, you may need to troubleshoot
various stages of the event pipeline.

Create an agent API test event

In many cases, generating events using the agent API will save you time and effort over modifying
existing check confgurations.

Here’s an example that uses cURL with the API of a local sensu-agent process to generate test-event
check results:

{"component":"agent","error":"open /var/cache/sensu/sensu-agent/assets.db:

permission denied","level":"fatal","msg":"error executing sensu-agent","time":"2019-

02-21T22:01:04Z"}

{"component":"backend","level":"fatal","msg":"error starting etcd: mkdir

/var/lib/sensu: permission denied","time":"2019-03-05T20:24:01Z"}

sudo chown -R sensu:sensu /var/cache/sensu/sensu-backend

sudo chown -R sensu:sensu /var/cache/sensu/sensu-agent

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

Use a debug handler

It may also be helpful to review the complete event object being passed to your workfows.
We
recommend using a debug handler like this one to write an event to disk as JSON data:

 "check": {

 "metadata": {

 "name": "test-event"

 },

 "status": 2,

 "output": "this is a test event targeting the email_ops handler",

 "handlers": ["email_ops"]

 }

}' \

http://127.0.0.1:3031/events

type: Handler

api_version: core/v2

metadata:

 name: debug

spec:

 type: pipe

 command: cat > /var/log/sensu/debug-event.json

 timeout: 2

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "debug"

 },

 "spec": {

 "type": "pipe",

 "command": "cat > /var/log/sensu/debug-event.json",

 "timeout": 2

JSON

With this handler defnition installed in your Sensu backend, you can add the debug to the list of
handlers in your test event:

The observability event data should be written to /var/log/sensu/debug-event.json for inspection.
The contents of this fle will be overwritten by every event sent to the debug handler.

Manually execute a handler

If you are not receiving events via a handler even though a check is generating events as expected,
follow these steps to manually execute the handler and confrm whether the handler is working
properly.

1. List all events:

 }

}

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "test-event"

 },

 "status": 2,

 "output": "this is a test event targeting the email_ops handler",

 "handlers": ["email_ops", "debug"]

 }

}' \

http://127.0.0.1:3031/events

NOTE: When multiple Sensu backends are confgured in a cluster, event processing is distributed
across all members.
You may need to check the flesystem of each Sensu backend to locate the
debug output for your test event.

Choose an event from the list to use for troubleshooting and note the event’s check and entity
names.

2. Navigate to the /var/cache/sensu/sensu-backend/ directory:

3. Run ls to list the contents of the /var/cache/sensu/sensu-backend/ directory.
In the list,
identify the handler’s dynamic runtime asset SHA.

4. Navigate to the bin directory for the handler asset SHA.
Before you run the command below,
replace <handler_asset_sha> with the SHA you identifed in the previous step.

5. Run the command to manually execute the handler.
Before you run the command below, replace
the following text:

sensuctl event list

cd /var/cache/sensu/sensu-backend/

NOTE: If the list includes more than one SHA, run sensuctl asset list .
In the response,
the Hash column contains the frst seven characters for each asset build’s SHA.
Note the
hash for your build of the handler asset and compare it with the SHAs listed in the
/var/cache/sensu/sensu-backend/ directory to fnd the correct handler asset SHA.

cd <handler_asset_sha>/bin

<entity_name> : Replace with the entity name for the event you are using to
troubleshoot.

<check_name> : Replace with the check name for the event you are using to
troubleshoot.

<handler_command> : Replace with the command value for the handler you are
troubleshooting.

sensuctl event info <entity_name> <check_name> --format json |

./<handler_command>

If your handler is working properly, you will receive an alert for the event via the handler.
The response
for your manual execution command will also include a message to confrm notifcation was sent.
In this
case, your Sensu pipeline is not causing the problem with missing events.

If you do not receive an alert for the event, the handler is not working properly.
In this case, the manual
execution response will include the message Error executing <handler_asset_name>: followed
by a description of the specifc error to help you correct the problem.

Dynamic runtime assets

Use the information in this section to troubleshoot error messages related to dynamic runtime assets.

Incorrect asset flter

Dynamic runtime asset flters allow you to scope an asset to a particular operating system or
architecture.
For an example, read the asset reference.
An improperly applied asset flter can prevent the
asset from being downloaded by the desired entity and result in error messages both on the agent and
the backend illustrating that the command was not found:

Agent log entry

Backend event

{

 "asset": "check-disk-space",

 "component": "asset-manager",

 "entity": "sensu-centos",

 "flters": [

 "true == false"

],

 "level": "debug",

 "msg": "entity not fltered, not installing asset",

 "time": "2020-09-12T18:28:05Z"

}

YML

timestamp: 1568148292

check:

 command: check-disk-space

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 publish: true

 runtime_assets:

 - sensu-disk-checks

 subscriptions:

 - caching_servers

 proxy_entity_name: ''

 check_hooks:

 stdin: false

 subdue:

 ttl: 0

 timeout: 0

 round_robin: false

 duration: 0.001795508

 executed: 1568148292

 history:

 - status: 127

 executed: 1568148092

 issued: 1568148292

 output: 'sh: check-disk-space: command not found'

 state: failing

 status: 127

 total_state_change: 0

 last_ok: 0

 occurrences: 645

 occurrences_watermark: 645

 output_metric_format: ''

 output_metric_handlers:

 output_metric_tags:

 env_vars:

 metadata:

 name: failing-disk-check

 namespace: default

metadata:

 namespace: default

{

 "timestamp": 1568148292,

 "check": {

 "command": "check-disk-space",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "sensu-disk-checks"

],

 "subscriptions": [

 "caching_servers"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 0.001795508,

 "executed": 1568148292,

 "history": [

 {

 "status": 127,

 "executed": 1568148092

 }

],

 "issued": 1568148292,

 "output": "sh: check-disk-space: command not found\n",

 "state": "failing",

 "status": 127,

 "total_state_change": 0,

 "last_ok": 0,

 "occurrences": 645,

 "occurrences_watermark": 645,

 "output_metric_format": "",

JSON

If you receive a message like this, review your asset defnition — it means that the entity wasn’t able to
download the required asset due to asset flter restrictions.
To review the flters for an asset, use the
sensuctl asset info command with a --format fag:

Confating operating systems with families

A common asset flter issue is confating operating systems with the family they’re a part of.
For
example, although Ubuntu is part of the Debian family of Linux distributions, Ubuntu is not the same as
Debian.
A practical example might be:

 "output_metric_handlers": null,

 "output_metric_tags": null,

 "env_vars": null,

 "metadata": {

 "name": "failing-disk-check",

 "namespace": "default"

 }

 },

 "metadata": {

 "namespace": "default"

 }

}

sensuctl asset info sensu-disk-checks --format yaml

SHELL

sensuctl asset info sensu-disk-checks --format wrapped-json

SHELL

flters:

- entity.system.platform == 'debian'

- entity.system.arch == 'amd64'

YML

JSON

This would not allow an Ubuntu system to run the asset.

Instead, the asset flter should look like this:

or

{

 "flters": [

 "entity.system.platform == 'debian'",

 "entity.system.arch == 'amd64'"

]

}

flters:

- entity.system.platform_family == 'debian'

- entity.system.arch == 'amd64'

YML

{

 "flters": [

 "entity.system.platform_family == 'debian'",

 "entity.system.arch == 'amd64'"

]

}

JSON

flters:

- entity.system.platform == 'ubuntu'

- entity.system.arch == 'amd64'

YML

{

 "flters": [

JSON

This would allow the asset to be downloaded onto the target entity.

Running the agent on an unsupported Linux platform

If you run the Sensu agent on an unsupported Linux platform, the agent might fail to correctly identify
your version of Linux and could download the wrong version of an asset.

This issue affects Linux distributions that do not include the lsb_release package in their default
installations.
In this case, gopsutil may try to open /etc/lsb_release or try to run
/usr/bin/lsb_release to fnd system information, including Linux version.
Since the lsb_release

package is not installed, the agent will not be able to discover the Linux version as expected.

To resolve this problem, install the lsb_release package for your Linux distribution.

Checksum mismatch

When a downloaded dynamic runtime asset checksum does not match the checksum specifed in the
asset defnition, the agent logs a message similar to this example:

 "entity.system.platform == 'ubuntu'",

 "entity.system.arch == 'amd64'"

]

}

{

 "asset": "check-disk-space",

 "component": "asset-manager",

 "entity": "sensu-centos",

 "flters": [

 "true == false"

],

 "level": "debug",

 "msg": "error getting assets for check: could not validate downloaded asset

$ASSET_NAME (X.X MB): sha512 of downloaded asset

(6b73p32XX

XXX) does not match specifed sha512 in

asset defnition

(e6b7c8eXX

https://pkgs.org/download/lsb
https://pkgs.org/download/lsb

To correct this issue, frst confrm that the URL in the asset defnition is valid.
Manually download the
asset with a cURL or wget command and make sure that the downloaded fle is a valid tar.gz fle
with the contents you expect.

If the downloaded tar.gz fle contents are correct, use the sha512sum command to calculate the
asset checksum and manually confrm that the checksum in the downloaded asset defnition is correct.

If the checksum in the downloaded asset defnition is correct, confrm that there is enough space
available in /tmp to download the asset.
On Linux systems, the Sensu agent downloads assets into
/tmp .
The log error message specifes the size of the asset artifact in parentheses after the asset

name.
If space in /tmp is insuffcient, asset downloads will be truncated and the checksum will not be
validated.

Certifcate error when fetching assets

When Sensu cannot fetch the assets referenced in a resource defnition, the agent logs a message
similar to this example:

To correct this issue, confrm that you can download the asset from one of the agent hosts using the
link quoted in the error message.
If the download does not work, the problem may be due to a proxy
between the agent and the internet or the proxy settings.

If there are no proxies or no proxy settings of concern, you may need to update the certifcate store on
your agents.
The https://assets.bonsai.sensu.io SSL certifcate uses the AWS Private Certifcate
Authority (CA), which your agents’ operating systems should be confgured to trust.

If you are using PowerShell, you may see this error if PowerShell is confgured to use TLS 1.0 —
https://assets.bonsai.sensu.io requires TLS 1.2.

To check which TLS version PowerShell is using, run:

XXX)",

 "time": "2019-09-12T18:28:05Z"

}

error getting assets for check: error fetching asset: Get

"https://assets.bonsai.sensu.io/2940de675113d07710c0f896efa8b43b7c301c5c/sensu-

plugins-process-checks_4.0.0_centos_linux_amd64.tar.gz": x509: certifcate signed by

unknown authority

https://www.computerhope.com/unix/sha512sum.htm
https://www.computerhope.com/unix/sha512sum.htm
https://assets.bonsai.sensu.io/
https://assets.bonsai.sensu.io/

If the response does not include Tls12 , run the following command to require it:

Etcd clusters

Some issues require you to investigate the state of the etcd cluster or data stored within etcd.
In these
cases, we suggest using the etcdctl tool to query and manage the etcd database.

Sensu’s supported packages do not include the etcdctl executable, so you must get it from a
compatible etcd release.

Confgure etcdctl environment variables

To use etcdctl to investigate etcd cluster and data storage issues, frst run these commands to
confgure etcdctl environment variables:

If your etcd uses client certifcate authentication, run these commands too:

[Net.ServicePointManager]::SecurityProtocol

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12

export ETCDCTL_API=3

export ETCDCTL_CACERT=/etc/sensu/ca.pem

export

ETCDCTL_ENDPOINTS="https://backend01:2379,https://backend02:2379,https://backend03:2

379"

export ETCDCTL_CERT=/etc/sensu/cert.pem

export ETCDCTL_KEY=/etc/sensu/key.pem

https://etcd.io/docs/latest/dev-guide/interacting_v3/

View cluster status and alarms

Use the commands listed here to retrieve etcd cluster status and list and clear alarms.

To retrieve etcd cluster status:

To retrieve a list of etcd alarms:

To clear etcd alarms:

Restore a cluster with an oversized database

The default Sensu backend confguration sets the maximum etcd database size to 4 GB.
If you suspect
your etcd database exceeds 4 GB, run this command to confrm cluster size:

The response will list the current cluster status and database size:

To restore an etcd cluster with a database size that exceeds 4 GB:

etcdctl endpoint status

etcdctl alarm list

etcdctl alarm disarm

etcdctl endpoint status

https://backend01:2379, 88db026f7feb72b4, 3.5.0, 4.1GB, false, 144, 18619245

https://backend02:2379, e98ad7a888d16bd6, 3.5.0, 4.1GB, true, 144, 18619245

https://backend03:2379, bc4e39432cbb36d, 3.5.0, 4.1GB, false, 144, 18619245

1. Get the current revision number:

2. Compact to revision and substitute the current revision for $rev :

3. Defragment to free up space:

4. Confrm that the cluster is restored:

The response should list the current cluster status and database size:

Remove and redeploy a cluster

etcdctl endpoint status --write-out="json" | egrep -o '"revision":[0-9]*' |

egrep -o '[0-9].*'

etcdctl compact $rev

etcdctl defrag

etcdctl endpoint status

https://backend01:2379, 88db026f7feb72b4, 3.5.0, 1.0 MB, false, 144, 18619245

https://backend02:2379, e98ad7a888d16bd6, 3.5.0, 1.0 MB, true, 144, 18619245

https://backend03:2379, bc4e39432cbb36d, 3.5.0, 1.0 MB, false, 144, 18619245

PRO TIP: If you are using external etcd, use etcd snapshots to keep a backup so that you can
restore your Sensu resources if you have to redeploy your cluster.
For extra reassurance, take
regular etcd snapshots and make regular backups with sensuctl dump in addition to etcd’s running
snapshots.

If you are using embedded etcd, use sensuctl dump to make regular backups.

https://etcd.io/docs/latest/op-guide/recovery/

You may need to completely remove a cluster and redeploy it in cases such as:

To remove and redeploy a cluster:

1. Open a terminal window for each cluster member.

2. Stop each cluster member backend:

3. Confrm that each backend stopped:

For each backend, the response should begin with the following lines:

4. Delete the etcd directories for each cluster member:

If you wait until cluster nodes are failing, it may not be possible to make a backup.
For example, in a
three-node cluster, if one node fails, you will still be able to make a backup.
If two nodes fail, the
whole cluster will be down and you will not be able to create a snapshot or run sensuctl dump.

Failure to reach consensus after losing more than (N-1)/2 cluster members

Etcd confguration issues

Etcd corruption, perhaps from disk flling

Unrecoverable hardware failure

systemctl stop sensu-backend

systemctl status sensu-backend

● sensu-backend.service - The Sensu Backend service.

Loaded: loaded (/usr/lib/systemd/system/sensu-backend.service; disabled; vendor preset: disabled)

Active: inactive (dead)

rm -rf /var/lib/sensu/sensu-backend/etcd/

5. Follow the Sensu backend confguration instructions to reconfgure a new cluster.

6. Initialize a backend to specify admin credentials:

When you receive prompts for your username and password, replace <YOUR_USERNAME> and
<YOUR_PASSWORD> with the administrator username and password you want to use for the

cluster members:

7. Restore your cluster from a snapshot or backup:

Datastore performance

In a default deployment, Sensu uses etcd datastore for both confguration and state.
As the number of
checks and entities in your Sensu installation increases, so does the volume of read and write requests
to etcd database.

One trade-off in etcd’s design is its sensitivity to disk and CPU latency.
When certain latency tolerances
are regularly exceeded, failures will cascade.
Sensu will attempt to recover from these conditions when
it can, but this may not be successful.

To maximize Sensu Go performance, we recommend that you:

sensu-backend init --interactive

Admin Username: <YOUR_USERNAME>

Admin Password: <YOUR_PASSWORD>

Follow the etcd restore process (for external etcd).

Use sensuctl create (for external or embedded etcd).

Follow our recommended backend hardware confguration.

Implement documented etcd system tuning practices.

Benchmark your etcd storage volume to establish baseline IOPS for your system.

https://etcd.io/docs/latest/op-guide/recovery/#restoring-a-cluster
https://etcd.io/docs/latest/tuning/#disk
https://www.ibm.com/cloud/blog/using-fio-to-tell-whether-your-storage-is-fast-enough-for-etcd

As your Sensu deployments grow, preventing issues associated with poor datastore performance
relies on ongoing collection and review of Sensu time-series performance metrics.

Symptoms of poor performance

At the Sensu backend’s default “warn” log level, you may receive messages like these from your
backend:

The above message indicates that a database query (“read-only range request”) exceeded a 100-
millisecond threshold hard-coded into etcd.
Messages like these are helpful because they can alert you
to a trend, but these occasional warnings don’t necessarily indicate a problem with Sensu.
For example,
you may receive this message if you provision attached storage but do not mount it to the etcd data
directory.

However, a trend of increasingly long-running database transactions will eventually lead to decreased
reliability.
You may experience symptoms of these conditions as inconsistent check execution behavior
or confguration updates that are not applied as expected.

As the etcd tuning documentation states:

An etcd cluster is very sensitive to disk latencies. Since etcd must persist proposals to its
log, disk activity from other processes may cause long fsync latencies. […] etcd may
miss heartbeats, causing request timeouts and temporary leader loss.

When Sensu’s etcd component doesn’t recieve suffcient CPU cycles or its fle system can’t sustain a
suffcient number of IOPS, transactions will begin to timeout, leading to cascading failures.

A message like this indicates that syncing the etcd database to disk exceeded another threshold:

Scale event storage using PostgreSQL with round robin scheduling enabled to reduce the
overall volume of etcd transactions.

{"component":"etcd","level":"warning","msg":"read-only range request

\"key:\\\"/sensu.io/handlers/default/keepalive\\\" limit:1 \" with result

\"range_response_count:0 size:6\" took too long (169.767546ms) to

execute","pkg":"etcdserver","time":"..."}

{"component":"etcd","level":"warning","msg":"sync duration of 1.031759056s, expected

https://etcd.io/docs/latest/tuning/#disk

These subsequent “retrying of unary invoker failed” messages indicate failing requests to etcd:

On busy systems you may also receive output like “message repeated 5 times” indicating that failing
requests were retried multiple times.

In many cases, the backend service detects and attempts to recover from errors like these, so you may
receive a message like this:

This may result in a crash loop that is diffcult to recover from.
You may observe that the Sensu backend
process continues running but is not listening for connections on the agent WebSocket, API, or web UI
ports.
The backend will stop listening on those ports when the etcd database is unavailable.

Check execution errors

The Sensu backend sends check requests to all matching subscriptions.
If an entity and a check have
multiple matching subscriptions, the entity will receive a separate check request for each matching
subscription.
The entity could receive both check requests almost simultaneously.

As a result, you may see one or more of the following error messages:

less than 1s","pkg":"wal","time":"..."}

{"level":"warn","ts":"...","caller":"clientv3/retry_interceptor.go:62","msg":"retryi

ng of unary invoker failed","target":"endpoint://client-6f6bfc7e-cf31-4498-a564-

78d6b7b3a44e/localhost:2379","attempt":0,"error":"rpc error: code = Canceled desc =

context canceled"}

{"component":"backend","error":"error from keepalived: internal error: etcdserver:

request timed out","level":"error","msg":"backend stopped working and is

restarting","time":"..."}

{"component":"agent","error":"check execution still in progress:

<CHECK_NAME>","level":"error","msg":"error handling message","time":"..."}

{"component":"agent","error":"check request is older than a previously received

Entities may execute the duplicate check requests quickly enough to prevent these errors.
In these
cases, check history and features that rely on it, like fap detection, may behave in unexpected
ways.

If you see any of the check execution errors listed above, review the check subscriptions against your
entities for multiple matching subscriptions.
To prevent the problem, make sure that your checks and
entities share only a single subscription.

Web UI errors

If the web UI experiences an error, you may see the following message in the web UI:

The error message indicates something unexpected happened, such as the server failing to return the
correct response.
Clicking RELOAD can resolve most common problems.

More rarely, the error can result from issues like a corrupt cache or a bad persistent state.
In these
cases, clicking CLEAR STATE & RELOAD usually resolves the issue.

Investigate a web UI error

To get more information about a web UI error, open your web browser’s developer console to view the
error messages your browser logged.

check request","level":"error","msg":"error handling message","time":"..."}

{"component":"agent","warning":"check request has already been received - agent and

check may have multiple matching subscriptions","level":"warn","msg":"error handling

message","time":"..."}

http://localhost:1313/images/go/troubleshoot/web_ui_error.png

Use these keyboard shortcuts to open the developer console on different operating systems:

Operating system Keyboard shortcut

Linux Press Control + Shift + J

macOS Press Command + Option + J

Windows Press Control + Shift + J

You can also open the developer console from the browser’s menu:

Browser Menu path

Chrome Click the ⋮ menu icon, then More Tools > Developer Tools

Edge Tools > Developer > JavaScript Console

Firefox Click the ☰ menu icon, then More Tools > Developer Console

Safari Develop > Show JavaScript Console

If you do not see the Develop option, open Safari > Preferences
> Advanced and select the checkbox for Show Develop menu in menu
bar

Depending on your browser, the developer console may open in a separate browser window or within
the current browser window as shown in this example:

The developer console lists all errors for the current page.
Click an error for more information about it.

The developer console is part of web developer tools that are included in all modern browsers.
These
tools may have different names in different browsers (for example, DevTools in Chrome and Developer
Tools in Firefox), but they offer similar features.
Read the documentation for your browser to learn more
about the web developer tools your browser provides.

http://localhost:1313/images/go/troubleshoot/web_ui_developer_console.png

License reference

Activate your commercial license

If you haven’t already, install the backend, agent, and sensuctl and confgure sensuctl.

Log in to your Sensu account at account.sensu.io and click Download license to download your
license fle.

Save your license to a fle such as sensu_license.yml or sensu_license.json .
With the license
fle downloaded and saved to a fle, you can activate your license with sensuctl or the /license API.

https://account.sensu.io/
http://localhost:1313/images/go/commercial/license_download.png

To activate your license with sensuctl:

Use sensuctl to view your license details at any time:

For an active license, the response should be similar to this example:

This response means you do not have an active license:

NOTE: For clustered confgurations, you only need to activate your license for one of the backends
within the cluster.

sensuctl create --fle sensu_license.yml

SHELL

sensuctl create --fle sensu_license.json

SHELL

sensuctl license info

=== You are currently using 10/100 total entities, 5/50 agent entities, and 5/50

proxy entities

Account Name: Training Team - Sensu

Account ID: 123

Plan: managed

Version: 1

Features: all

Issuer: Sensu, Inc.

Issued: 2020-02-15 15:01:44 -0500 -0500

Valid: true

Valid Until: 2021-02-15 00:00:00 -0800 -0800

Entity limit

Your commercial license may include the entity limit and entity class limits tied to your Sensu licensing
package.
Contact Sensu to upgrade your commercial license.

Your Sensu license may include two types of entity limits:

For example, if your license has an entity limit of 10,000 and an agent entity class limit of 3,000, you
cannot run more than 10,000 entities (agent and proxy) total.
At the same time, you cannot run more
than 3,000 agents.
If you use only 1,500 agent entities, you can have 8,500 proxy entities before you
reach the overall entity limit of 10,000.

If you have permission to create or update licenses, you will see messages in sensuctl and the web UI
when you approach your licensed entity limit.
The formula for calculating the threshold for this warning
message is 0.03 * entity limit / 1000 + 0.9 .
For example, if your entity limit is 1600, the
warning threshold is 0.948.

You will also see a warning when you exceed your entity or entity class limit.

View entity count and entity limit

Your current entity count and entity limit are included in the sensuctl license info response.

In tabular format, the entity count and limit are included in the response title.
To view license info in
tabular format, run:

The response in tabular format should be similar to this example:

Error: not found

Entity limit: the maximum number of entities of all classes your license includes.
Both agent and
proxy entities count toward the overall entity limit.

Entity class limits: the maximum number of a specifc class of entities (for example, agent or
proxy) that your license includes.

sensuctl license info --format tabular

https://account.sensu.io/support

If you have an unlimited entity count, the sensuctl license info response title will still include a
current count for each type of entity you are using.
For example:

To view license details in YAML or JSON, run:

In YAML and JSON formats, the entity count and limit are included as labels:

=== You are currently using 10/100 total entities, 5/50 agent entities, and 5/50

proxy entities

Account Name: Training Team - Sensu

Account ID: 123

Plan: managed

Version: 1

Features: all

Issuer: Sensu, Inc.

Issued: 2020-02-15 15:01:44 -0500 -0500

Valid: true

Valid Until: 2021-02-15 00:00:00 -0800 -0800

=== You are currently using 10/unlimited total entities, 5/unlimited agent entities,

and 5/unlimited proxy entities

sensuctl license info --format yaml

SHELL

sensuctl license info --format wrapped-json

SHELL

type: LicenseFile

api_version: licensing/v2

metadata:

TEXT

You can also fnd your current entity count and limit in the response headers for any /api/core or
/api/enterprise API request.
For example:

The response headers will include your current entity count and limit:

 labels:

 sensu.io/entity-count: "10"

 sensu.io/entity-limit: "100"

spec:

 license:

 version: 1

 issue: Sensu, Inc.

 accountName: Training Team - Sensu

[...]

{

 "type": "LicenseFile",

 "api_version": "licensing/v2",

 "metadata": {

 "labels": {

 "sensu.io/entity-count": "10",

 "sensu.io/entity-limit": "100"

 }

 },

 "spec": {

 "license": {

 "version": 1,

 "issue": "Sensu, Inc.",

 "accountName": "Training Team - Sensu"

 },

 "...": "..."

 }

}

TEXT

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/entities -v -H

"Authorization: Key $SENSU_API_KEY"

License expiration

To view your commercial license expiration date, log in to your Sensu account.

When your license is within 30 days of expiration, Sensu issues regular warnings in the Sensu
backend logs.
Users with permission to create or update licenses can also view license expiration
information in the web UI by pressing CTRL . to open the system information modal.

If your license expires, you will still have access to commercial features, but your entity limit will drop
back down to the free limit of 100.

Quick links

HTTP/1.1 200 OK

Content-Type: application/json

Sensu-Entity-Count: 10

Sensu-Entity-Limit: 100

Log in to your Sensu account

Use the license management API

Contact Sensu support

Contact Sensu sales

https://account.sensu.io/
https://account.sensu.io/
https://account.sensu.io/support
https://sensu.io/contact?subject=contact-sales

Monitor Sensu

Use the guides and references in the Monitor Sensu category to successfully monitor your Sensu
installation.

Log Sensu services and monitor with Sensu

Learn how to log Sensu services with systemd, including adding log forwarding from journald to syslog,
using rsyslog to write logging data to disk, and setting up log rotation.

Read Monitor Sensu with Sensu to monitor the Sensu backend with another Sensu backend or cluster:
use a secondary Sensu instance to notify you when your primary Sensu instance is down (and vice
versa).

Retrieve cluster health data

The health reference explains how to use Sensu’s /health API to ensure your backend is up and
running and check the health of your etcd cluster members and PostgreSQL datastore resources.
Learn
how to read the JSON response for /health API requests by reviewing examples of responses for
clusters with healthy and unhealthy members and the response specifcation.

Learn about Tessen

The Tessen reference explains the Sensu call-home service, which is enabled by default on Sensu
backends and required for licensed Sensu instances.
We rely on anonymized Tessen data to
understand how Sensu is being used and make informed decisions about product improvements.

Log Sensu services with systemd

By default, systems where systemd is the service manager do not write logs to /var/log/sensu/ for
the sensu-agent and the sensu-backend services.
This guide explains how to add log forwarding
from journald to syslog, have rsyslog write logging data to disk, and set up log rotation of the newly
created log fles.

Confgure journald

To confgure journald to forward logging data to syslog, modify /etc/systemd/journald.conf to
include the following line:

Confgure rsyslog

Next, set up rsyslog to write the logging data received from journald to
/var/log/sensu/servicename.log .
In this example, the sensu-backend and sensu-agent

logging data is sent to individual fles named after the service.
The sensu-backend is not required if
you’re only setting up log forwarding for the sensu-agent service.

1. For the sensu-backend service, in /etc/rsyslog.d/40-sensu-backend.conf, add:

ForwardToSyslog=yes

NOTE: Use a conf fle name that will ensure the fle is loaded before the default fle in
/etc/rsyslog.d/ , which uses 50.
This example uses 40-sensu-backend.conf and 40-sensu-
agent.conf for this reason.

if $programname == 'sensu-backend' then {

 /var/log/sensu/sensu-backend.log

 & stop

}

2. For the sensu-agent service, in /etc/rsyslog.d/40-sensu-agent.conf, add:

3. On Ubuntu systems, run chown -R syslog:adm /var/log/sensu so syslog can write to that
directory.

4. Restart journald:

5. Restart rsyslog to apply the new confguration:

Set up log rotation

Set up log rotation for newly created log fles to ensure logging does not fll up your disk.

These examples rotate the log fles /var/log/sensu/sensu-agent.log and
/var/log/sensu/sensu-backend.log weekly, unless the size of 100M is reached frst.
The last seven

rotated logs are kept and compressed, with the exception of the most recent log.
After rotation,
rsyslog is restarted to ensure logging is written to a new fle and not the most recent rotated fle.

1. In /etc/logrotate.d/sensu-agent.conf, add:

if $programname == 'sensu-agent' then {

 /var/log/sensu/sensu-agent.log

 & stop

}

systemctl restart systemd-journald

systemctl restart rsyslog

NOTE: Sensu log messages include the Sensu log level as part of the log data.
Users with rsyslog
expertise may be able to extract the log level from Sensu log messages and use rsyslog
processing capabilities to separate the log messages into different fles based on log level.

2. In /etc/logrotate.d/sensu-backend.conf, add:

Use the following command to fnd out what logrotate would do if it were executed now based on the
above schedule and size threshold.
The -d fag will output details, but it will not take action on the logs
or execute the postrotate script:

Next steps

Sensu also offers logging of observability event data to a separate JSON log fle as a commercial
feature.
Read the Sensu backend reference for more information about event logging.

/var/log/sensu/sensu-agent.log {

 daily

 rotate 7

 size 100M

 compress

 delaycompress

 postrotate

 /bin/systemctl restart rsyslog

 endscript

}

/var/log/sensu/sensu-backend.log {

 daily

 rotate 7

 size 100M

 compress

 delaycompress

 postrotate

 /bin/systemctl restart rsyslog

 endscript

}

logrotate -d /etc/logrotate.d/sensu.conf

Monitor Sensu with Sensu

This guide describes best practices and strategies for monitoring the Sensu backend with another
Sensu backend or cluster.

To completely monitor Sensu (a Sensu backend with internal etcd and an agent), you will need at least
one independent Sensu instance in addition to the primary instance you want to monitor.
The second
Sensu instance will ensure that you are notifed when the primary is down and vice versa.

This guide requires Sensu plugins using dynamic runtime assets.
For more information about using
Sensu plugins, read Use dynamic runtime assets to install plugins.

The checks in this guide monitor the following ports and endpoints:

Port Endpoint Description

2379 /health Etcd health endpoint. Provides health status for etcd
nodes.

8080 /health Sensu Go health endpoint. Provides health status for
Sensu backends, as well as for PostgreSQL (when
enabled).

Register dynamic runtime asset

To power the checks to monitor your Sensu backend, external etcd, and PostgreSQL instances, add
the sensu/http-checks dynamic runtime asset.
This asset includes the http-json plugin, which your
checks will rely on.

To register the sensu/http-checks dynamic runtime asset, run:

NOTE: Although this guide describes approaches for monitoring a single backend, these
strategies are also useful for monitoring individual members of a backend cluster.

This guide does not describe Sensu agent keepalive monitoring.

https://bonsai.sensu.io/assets/sensu/http-checks

The response will confrm that the asset was added:

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
http-checks.

To confrm that the asset is ready to use, run:

The response should list the renamed http-checks dynamic runtime asset:

Because plugins are published for multiple platforms, including Linux and Windows, the output will
include multiple entries for each of the dynamic runtime assets.

sensuctl asset add sensu/http-checks:0.5.0 -r http-checks

fetching bonsai asset: sensu/http-checks:0.5.0

added asset: sensu/http-checks:0.5.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["http-checks"].

sensuctl asset list

 Name URL Hash

────────────── ───

──────────

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_armv7.tar.gz b28f8c3

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_arm64.tar.gz 7308f9c

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_386.tar.gz 6457583

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_windows_amd64.tar.gz b936ca0

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_darwin_amd64.tar.gz 38e6cb8

 http-checks //assets.bonsai.sensu.io/.../http-checks_0.5.0_linux_amd64.tar.gz bc5fc3b

Monitor your Sensu backend instances

Monitor the host running the sensu-backend locally by a sensu-agent process for operating
system checks and metrics.

For Sensu components that must be running for Sensu to create events, you should also monitor the
sensu-backend remotely from an independent Sensu instance.
This will allow you to monitor whether

your Sensu event pipeline is working.

To do this, add checks that use the http-json plugin from the sensu/http-checks dynamic runtime
asset to query Sensu’s /health API for your primary (Backend Alpha) and secondary (Backend Beta)
backends.

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

NOTE: These examples use the sensu/http-checks dynamic runtime asset.
Follow the instructions
above to register the sensu/http-checks dynamic runtime asset if you did not previously register it.

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: check_beta_backend_health

spec:

 command: http-json --url http://sensu-backend-beta:8080/health --query

".ClusterHealth.[0].Healthy" --expression "== true"

 subscriptions:

 - backend_alpha

 interval: 10

 publish: true

 timeout: 10

 runtime_assets:

 - http-checks

YML

https://bonsai.sensu.io/assets/sensu/http-checks
https://bonsai.sensu.io/assets/sensu/http-checks

EOF

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: check_alpha_backend_health

spec:

 command: http-json --url http://sensu-backend-alpha:8080/health --query

".ClusterHealth.[0].Healthy" --expression "== true"

 subscriptions:

 - backend_beta

 interval: 10

 publish: true

 timeout: 10

 runtime_assets:

 - http-checks

EOF

YML

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_beta_backend_health"

 },

 "spec": {

 "command": "http-json --url http://sensu-backend-beta:8080/health --query

\".ClusterHealth.[0].Healthy\" --expression \"== true\"",

 "subscriptions": [

 "backend_alpha"

],

 "interval": 10,

 "publish": true,

 "timeout": 10,

 "runtime_assets": [

JSON

A successful health check result will be similar to this example:

To receive alerts based on your backend health checks, confgure a pipeline with event flters and a
handler and update your check defnitions to reference the pipeline in the pipelines attribute.

 "http-checks"

]

 }

}

EOF

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_alpha_backend_health"

 },

 "spec": {

 "command": "http-json --url http://sensu-backend-alpha:8080/health --query

\".ClusterHealth.[0].Healthy\" --expression \"== true\"",

 "subscriptions": [

 "backend_beta"

],

 "interval": 10,

 "publish": true,

 "timeout": 10,

 "runtime_assets": [

 "http-checks"

]

 }

}

EOF

JSON

http-json OK: The value true found at .ClusterHealth.[0].Healthy matched with

expression "== true" and returned true

Monitor external etcd

If your Sensu Go deployment uses an external etcd cluster, you’ll need to check the health of the
respective etcd instances for your primary (Backend Alpha) and secondary (Backend Beta) backends.

NOTE: These examples use the sensu/http-checks dynamic runtime asset.
Follow the instructions
above to register the sensu/http-checks dynamic runtime asset if you did not previously register it.

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: check_beta_etcd_health

spec:

 command: http-json --url http://sensu-etcd-beta:2379/health --query

".ClusterHealth.[0].Healthy" --expression "== true"

 subscriptions:

 - backend_alpha

 interval: 10

 publish: true

 timeout: 10

 runtime_assets:

 - http-checks

EOF

YML

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: check_alpha_etcd_health

spec:

 command: http-json --url http://sensu-etcd-alpha:2379/health --query

".ClusterHealth.[0].Healthy" --expression "== true"

YML

https://bonsai.sensu.io/assets/sensu/http-checks

 subscriptions:

 - backend_beta

 interval: 10

 publish: true

 timeout: 10

 runtime_assets:

 - http-checks

EOF

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_beta_etcd_health"

 },

 "spec": {

 "command": "http-json --url http://sensu-etcd-beta:2379/health --query

\".ClusterHealth.[0].Healthy\" --expression \"== true\"",

 "subscriptions": [

 "backend_alpha"

],

 "interval": 10,

 "publish": true,

 "timeout": 10,

 "runtime_assets": [

 "http-checks"

]

 }

}

EOF

JSON

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

JSON

A successful health check result will be similar to this example:

To receive alerts based on your external etcd health checks, confgure a pipeline with event flters and
a handler and update your check defnitions to reference the pipeline in the pipelines attribute.

Monitor PostgreSQL

Larger Sensu deployments may use PostgreSQL as an alternative datastore to process larger
numbers of events.
If you’re using PostgreSQL for event storage, we recommend monitoring your
PostgreSQL event store’s health.

The connection to PostgreSQL is exposed on Sensu’s /health endpoint, which provides information

 "name": "check_alpha_etcd_health"

 },

 "spec": {

 "command": "http-json --url http://sensu-etcd-alpha:2379/health --query

\".ClusterHealth.[0].Healthy\" --expression \"== true\"",

 "subscriptions": [

 "backend_beta"

],

 "interval": 10,

 "publish": true,

 "timeout": 10,

 "runtime_assets": [

 "http-checks"

]

 }

}

EOF

http-json OK: The value true found at .ClusterHealth.[0].Healthy matched with

expression "== true" and returned true

COMMERCIAL FEATURE : Access enterprise-scale PostgreSQL event storage in the packaged
Sensu Go distribution.
For more information, read Get started with commercial features.

about the event store’s health.
PostgreSQL data from the /health endpoint will look like this example:

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 3470366781180380700,

 "MemberIDHex": "302938336092857e",

 "Name": "sensu00",

 "Err": "",

 "Healthy": true

 },

 {

 "MemberID": 15883454222313069000,

 "MemberIDHex": "dc6d5d7607261af7",

 "Name": "sensu01",

 "Err": "",

 "Healthy": true

 },

 {

 "MemberID": 11377294497886210000,

 "MemberIDHex": "9de44510fb838bbd",

 "Name": "sensu02",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 13239446193995635000,

 "member_id": 3470366781180380700,

 "raft_term": 1549

 },

 "PostgresHealth": [

 {

 "Name": "sensu_postgres",

 "Active": true,

 "Healthy": true

 }

]

}

To monitor PostgreSQL’s health from Sensu, create checks that use the http-json plugin from the
sensu/http-checks dynamic runtime asset.

After you register the sensu/http-checks dynamic runtime asset, create two checks (“healthy” and
“active”) to monitor PostgreSQL’s health from Sensu.
Make sure to update the --url value with your
backend address before running the commands to create the checks.

Run the following command to add the “healthy” check:

NOTE: These examples use the sensu/http-checks dynamic runtime asset.
Follow the instructions
above to register the sensu/http-checks dynamic runtime asset if you did not previously register it.

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: postgres_healthy_http_check

spec:

 command: http-json --url https://sensu.example.com:8080/health --query

".PostgresHealth.[0].Healthy" --expression "== true"

 round_robin: true

 publish: true

 interval: 60

 subscriptions:

 - system

 runtime_assets:

 - http-checks

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "postgres_healthy_http_check"

SHELL

https://bonsai.sensu.io/assets/sensu/http-checks
https://bonsai.sensu.io/assets/sensu/http-checks

Run the following command to add the “active” check:

 },

 "spec": {

 "command": "http-json --url https://sensu.example.com:8080/health --query

\".PostgresHealth.[0].Healthy\" --expression \"== true\"",

 "round_robin": true,

 "publish": true,

 "interval": 60,

 "subscriptions": [

 "system"

],

 "runtime_assets": [

 "http-checks"

]

 }

}

EOF

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: postgres_active_http_check

spec:

 command: http-json --url https://sensu.example.com:8080/health --query

".PostgresHealth.[0].Active" --expression "== true"

 round_robin: true

 publish: true

 interval: 60

 subscriptions:

 - system

 runtime_assets:

 - http-checks

EOF

SHELL

SHELL

Successful PostgreSQL health check results will be similar to this example:

In the Sensu web UI, you should see check results similar to these examples:

cat << EOF | sensuctl create

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "postgres_active_http_check"

 },

 "spec": {

 "command": "http-json --url https://sensu.example.com:8080/health --query

\".PostgresHealth.[0].Active\" --expression \"== true\"",

 "round_robin": true,

 "publish": true,

 "interval": 60,

 "subscriptions": [

 "system"

],

 "runtime_assets": [

 "http-checks"

]

 }

}

EOF

http-json OK: The value true found at .PostgresHealth.[0].Healthy matched with

expression "== true" and returned true

http-json OK: The value true found at .PostgresHealth.[0].Active matched with

expression "== true" and returned true

To receive alerts based on your PostgreSQL health check, confgure a pipeline with event flters and a
handler and update your check defnition to reference the pipeline in the pipelines attribute.

http://localhost:1313/images/go/monitor_sensu_with_sensu/postgres_health_http_check.png
http://localhost:1313/images/go/monitor_sensu_with_sensu/postgres_active_http_check.png

Health reference

Use Sensu’s /health API to make sure your backend is up and running and check the health of your
etcd cluster members and PostgreSQL datastore resources.

A request to the /health API endpoint retrieves a JSON map with health data for your Sensu instance.
Here’s an example request to the health endpoint:

Healthy cluster example

In this example, all cluster members are healthy.

curl -X GET \

http://127.0.0.1:8080/health

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 9861478486968594000,

 "MemberIDHex": "88db026f7feb72b4",

 "Name": "backend01",

 "Err": "",

 "Healthy": true

 },

 {

 "MemberID": 16828500076473182000,

 "MemberIDHex": "e98ad7a888d16bd6",

 "Name": "backend02",

 "Err": "",

 "Healthy": true

 },

 {

 "MemberID": 848052855499371400,

Unhealthy cluster member example

In this example, one cluster member is unhealthy: it cannot communicate with the other cluster
members.

 "MemberIDHex": "bc4e39432cbb36d",

 "Name": "backend03",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 17701109828877156000,

 "member_id": 16828500076473182000,

 "raft_term": 42

 }

},

 "PostgresHealth": [

 {

 "Name": "my-frst-postgres",

 "Active": true,

 "Healthy": true

 },

 {

 "Name": "my-other-postgres",

 "Active": false,

 "Healthy": false

 }

]

}

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 9861478486968594000,

 "MemberIDHex": "88db026f7feb72b4",

 "Name": "backend01",

 "Err": "context deadline exceeded",

 "Healthy": false

 },

 {

 "MemberID": 16828500076473182000,

 "MemberIDHex": "e98ad7a888d16bd6",

 "Name": "backend02",

 "Err": "",

 "Healthy": true

 },

 {

 "MemberID": 848052855499371400,

 "MemberIDHex": "bc4e39432cbb36d",

 "Name": "backend03",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 17701109828877156000,

 "member_id": 16828500076473182000,

 "raft_term": 42

 }

},

 "PostgresHealth": [

 {

 "Name": "my-frst-postgres",

 "Active": true,

 "Healthy": true

 },

 {

 "Name": "my-other-postgres",

 "Active": false,

 "Healthy": false

 }

]

}

NOTE: The HTTP response codes for the health endpoint indicate whether your request reached
Sensu rather than the health of your Sensu instance.
In this example, even though the cluster is
unhealthy, the request itself reached Sensu, so the response code is 200 OK .
To determine the
health of your Sensu instance, you must process the JSON response body.
The health specifcation

Health specifcation

Top-level attributes

Alarms

description Top-level attribute that lists all active etcd alarms.

required true

type String

example

ClusterHealth

description Top-level attribute that includes health status information for every etcd
cluster member.

required true

type Map of key-value pairs

example

describes each attribute in the response body.

"Alarms": null

"ClusterHealth": [

 {

 "MemberID": 2882886652148554927,

 "MemberIDHex": "8923110df66458af",

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

]

Header

description Top-level map that includes the response header for the entire cluster
response.

required true

type Map of key-value pairs

example

PostgresHealth

description Top-level map that includes health information for PostgreSQL
resources. If your Sensu instance is not confgured to use a PostgreSQL
datastore, the health payload will not include PostgresHealth .

type Map of key-value pairs

example

"Header": {

 "cluster_id": 4255616344056076734,

 "member_id": 2882886652148554927,

 "raft_term": 26

 }

"PostgresHealth": [

 {

 "Name": "postgres-test",

 "Active": false,

 "Healthy": false

 },

 {

 "Name": "postgres",

 "Active": true,

 "Healthy": true

 }

]

ClusterHealth attributes

Err

description Any errors Sensu encountered while checking the etcd cluster member’s
health.

required true

type String

example

Healthy

description true if the etcd cluster member is connected. Otherwise, false .

required true

type Boolean

default false

example

MemberID

description The etcd cluster member’s ID.

required true

type Integer

example

"Err": ""

"Healthy": true

MemberIDHex

description The hexadecimal representation of the etcd cluster member’s ID.

required true

type String

example

Name

description The etcd cluster member’s name.

required true

type String

example

Header attributes

cluster_id

description The etcd cluster ID.

required true

type Integer

example

"MemberID": 2882886652148554927

"MemberIDHex": "8923110df66458af"

"Name": "default"

"cluster_id": 4255616344056076734

member_id

description The etcd cluster member’s ID.

required true

type Integer

example

raft_term

description The etcd cluster member’s raft term.

required true

type Integer

example

PostgresHealth attributes

Active

description true if the datastore is confgured to use the PostgreSQL
confguration. Otherwise, false .

required true

type Boolean

default false

"member_id": 2882886652148554927

"raft_term": 26

https://etcd.io/docs/latest/learning/api/#response-header

example

Healthy

description true if the PostgreSQL datastore is connected and can query the
events table. Otherwise, false .

required true

type Boolean

default false

example

Name

description The PostgreSQL confguration resource. Sensu retrieves the Name from
datastore metadata.

required true

type String

example

"Active": true

"Healthy": true

"Name": "postgres"

Ready reference

Use Sensu’s /ready API endpoint to confrm whether a Sensu instance is ready to serve API requests
and accept agent connections.

A request to the /ready backend API endpoint retrieves a text response with information about whether
your Sensu instance is ready to serve API requests.
Here’s an example request to the /ready API
endpoint:

A request to the /ready agent transport API endpoint via the backend WebSocket retrieves information
about whether your Sensu instance is ready to accept agent connections.
Here’s an example request to
the /ready agent transport API endpoint using the default WebSocket port 8081:

Ready response example

The following response means that the Sensu instance is ready to serve API requests or accept agent
connections:

Not ready response examples

To help prevent instability during sensu-backend startup, use the api-serve-wait-time and

curl -X GET \

http://127.0.0.1:8080/ready

curl -X GET \

http://127.0.0.1:8081/ready

ready

agent-serve-wait-time backend confguration options.

Use api-serve-wait-time to confgure a delay after startup before the backend API will serve traffc.
Until the specifed duration expires, the text response body will state that the API is unavailable:

Use agent-serve-wait-time to confgure a delay after startup before the agent listener will begin
accepting agent connections.
Until the specifed duration expires, the text response body will state that
agentd is unavailable:

Not-ready responses include a Retry-After header that lists the specifed api-serve-wait-time
or agent-serve-wait-time duration.

API unavailable during startup.

See api-serve-wait-time settings.

agentd temporarily unavailable during startup

Tessen reference

Tessen is the Sensu call-home service.
It is enabled by default on Sensu backends.
Tessen sends
anonymized data about Sensu instances to Sensu Inc., including the version, cluster size, number of
events processed, and number of resources created (like checks and handlers).
We rely on Tessen
data to understand how Sensu is being used and make informed decisions about product
improvements.
Read Announcing Tessen, the Sensu call-home service to learn more about Tessen.

All data submissions are logged for complete transparency at the info log level and transmitted over
HTTPS.
Read Troubleshoot Sensu to set the Sensu backend log level and view logs.

Confgure Tessen

You can use core/v2/tessen and sensuctl to view your Tessen confguration.
If you are using an
unlicensed Sensu instances, you can also use core/v2/tessen and sensuctl to opt in or opt out of
Tessen.

To manage Tessen confguration for your unlicensed instance with sensuctl, confgure sensuctl as the
default admin user.

To view Tessen status:

To opt out of Tessen:

NOTE: Tessen is enabled by default on Sensu backends and required for licensed Sensu
instances.
If you have a licensed instance and want to opt out of Tessen, contact your account
manager.

sensuctl tessen info

sensuctl tessen opt-out

https://sensu.io/blog/announcing-tessen-the-sensu-call-home-service

You can use the --skip-confrm fag to skip the confrmation step:

To opt in to Tessen:

Tessen specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
Tessen confguration in this version of Sensu, the api_version should
always be core/v2 .

required Required for Tessen confguration in wrapped-json or yaml format
for use with sensuctl create .

type String

example

NOTE: For licensed Sensu instances, the Tessen confguration setting will automatically override
to opt-in at runtime.

sensuctl tessen opt-out --skip-confrm

sensuctl tessen opt-in

api_version: core/v2

YML

{

 "api_version": "core/v2"

}

JSON

spec

description Top-level map that includes Tessen confguration spec attributes.

required Required for Tessen confguration in wrapped-json or yaml format
for use with sensuctl create .

type Map of key-value pairs

example

type

description Top-level attribute that specifes the sensuctl create resource type.
Tessen confguration should always be type TessenConfg .

required Required for Tessen confguration in wrapped-json or yaml format
for use with sensuctl create .

type String

example

spec:

 opt_out: false

YML

{

 "spec": {

 "opt_out": false

 }

}

JSON

type: TessenConfg

YML

Spec attributes

opt_out

description true to opt out of Tessen. Otherwise, false . Tessen is enabled by
default on Sensu backends and required for licensed Sensu instances.

required true

type Boolean

default false

example

Tessen confguration example

This example is in wrapped-json format for use with sensuctl create .
To manage Tessen for
unlicensed Sensu instances with the Tessen API , use non-wrapped json format as shown in the API
docs.

{

 "type": "TessenConfg"

}

JSON

opt_out: false

YML

{

 "opt_out": false

}

JSON

Tessen metrics log examples

For unlicensed instances that opt in to Tessen and all licensed instances, Sensu sends various metrics
back to the Tessen service.
In the example metrics log below, Sensu is sending the number of check
hooks back to the Tessen service.

Sensu also sends other metrics, such as the number of handlers:

type: TessenConfg

api_version: core/v2

spec:

 opt_out: false

YML

{

 "type": "TessenConfg",

 "api_version": "core/v2",

 "spec": {

 "opt_out": false

 }

}

JSON

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "hook_count",

 "metric_value": 2,

 "msg": "collected a metric for tessen",

 "time": "2019-09-16T09:02:11Z"

}

Or the number of flters:

Or the number of authentication providers, secrets providers, and secrets:

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "handler_count",

 "metric_value": 10,

 "msg": "collected a metric for tessen",

 "time": "2019-09-16T09:02:06Z"

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "flter_count",

 "metric_value": 4,

 "msg": "collected a metric for tessen",

 "time": "2019-09-16T09:02:01Z"

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "auth_provider_count",

 "metric_value": 2,

 "msg": "collected a metric for tessen",

 "time": "2020-03-30T15:16:42-04:00"

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "secret_provider_count",

 "metric_value": 1,

 "msg": "collected a metric for tessen",

If you opt into Tessen, you can view all of the metrics in the logs:

To view the events on-disk, read Log Sensu services with systemd.

 "time": "2020-03-30T15:17:12-04:00"

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "secret_count",

 "metric_value": 1,

 "msg": "collected a metric for tessen",

 "time": "2020-03-30T15:16:17-04:00"

}

journalctl _COMM=sensu-backend.service

Manage Secrets

Sensu’s secrets management eliminates the need to expose secrets like usernames, passwords, and
access keys in your Sensu confguration.
Secrets management is available for Sensu handler, mutator,
and check resources.

Use secrets management in Sensu explains how to use Sensu’s secrets provider (Env) or HashiCorp
Vault as your external secrets provider and authenticate without exposing your secrets.
Follow this
guide to set up your PagerDuty Integration Key as a secret and create a PagerDuty handler defnition
that requires the secret.
Your Sensu backend will be able to execute the handler with any check.

Secrets

Secrets are confgured with Sensu’s Secret resources.
A secret resource defnition refers to the
secrets provider and an ID (the named secret to fetch from the secrets provider).

The secrets reference includes the specifcation, sensuctl confguration subcommands, and examples
for secrets resources.

Secrets providers

The Sensu Go commercial distribution includes a secrets provider, Env , that exposes secrets from
environment variables on your Sensu backend nodes.
You can also use the secrets provider
VaultProvider to authenticate via the HashiCorp Vault integration.

The secrets providers reference includes the resource specifcation, instructions for retrieving your
secrets providers confguration via the Sensu API, and examples.

Use secrets management in Sensu

Sensu’s secrets management allows you to avoid exposing secrets like usernames, passwords, and
access keys in your Sensu confguration.
In this guide, you’ll learn how to use Sensu’s Env secrets
provider or HashiCorp Vault as your external secrets provider and authenticate without exposing your
secrets.
You’ll set up your PagerDuty Integration Key as a secret, create a PagerDuty handler defnition
that requires the secret, and confgure a pipeline that includes the PagerDuty handler.
Your Sensu
backend can then execute the pipeline with any check.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.

Secrets are confgured via secrets resources.
A secret resource defnition refers to the secrets provider
(Env or VaultProvider) and an ID (the named secret to fetch from the secrets provider).

This guide only covers the handler use case, but you can use secrets management in handler,
mutator, and check execution.
When a check confguration references a secret, the Sensu backend will
only transmit the check’s execution requests to agents that are connected via mutually authenticated
transport layer security (mTLS)-encrypted WebSockets.

The secret included in your Sensu handler will be exposed to Sensu services at runtime as an
environment variable.
Sensu only exposes secrets to Sensu services like environment variables and
automatically redacts secrets from all logs, the API, and the web UI.

Retrieve your PagerDuty Integration Key

The example in this guide uses the PagerDuty Integration Key as a secret and a PagerDuty handler
defnition that requires the secret.

Here’s how to fnd your Integration Key in PagerDuty so you can set it up as your secret:

1. Log in to your PagerDuty account.
2. In the Services drop-down menu, select Service Directory.

COMMERCIAL FEATURE : Access the Env and VaultProvider secrets provider datatypes in the
packaged Sensu Go distribution.
For more information, read Get started with commercial features.

https://www.vaultproject.io/docs/what-is-vault/
https://www.pagerduty.com/

3. Enter the name of your Sensu service in the search feld.
4. Click to select your Sensu service from the list of search results.
5. Click the Integrations tab.
6. Click the drop-down arrow for the Events API.
The Integration Key is listed in the second feld.

Make a note of your Integration Key — you’ll need it to create your backend environment variable or
HashiCorp Vault secret.

Use Env for secrets management

The Sensu Go commercial distribution includes a secrets provider, Env , that exposes secrets from
environment variables on your Sensu backend nodes.
The Env secrets provider is automatically
created with an empty spec when you start your Sensu backend.

Create your backend environment variable

To use the Env secrets provider, add your secret as a backend environment variable.

First, make sure you have created the fles you need to store backend environment variables.

http://localhost:1313/images/go/secrets_management/location_pagerduty_integration_key.png

Then, run the following code, replacing INTEGRATION_KEY with your PagerDuty Integration Key:

Restart the sensu-backend:

This confgures the SENSU_PAGERDUTY_KEY environment variable to your PagerDuty Integration Key in
the context of the sensu-backend process.

Create your Env secret

Now you’ll use sensuctl create to create your secret.
This code creates a secret named
pagerduty_key that refers to the environment variable ID SENSU_PAGERDUTY_KEY .
Run:

echo 'SENSU_PAGERDUTY_KEY=INTEGRATION_KEY' | sudo tee -a /etc/default/sensu-backend

SHELL

echo 'SENSU_PAGERDUTY_KEY=INTEGRATION_KEY' | sudo tee -a /etc/sysconfg/sensu-backend

SHELL

sudo systemctl restart sensu-backend

cat << EOF | sensuctl create

type: Secret

api_version: secrets/v1

metadata:

 name: pagerduty_key

spec:

 id: SENSU_PAGERDUTY_KEY

 provider: env

EOF

SHELL

SHELL

You can securely pass your PagerDuty Integration Key in Sensu checks, handlers, and mutators by
referring to the pagerduty_key secret.
Skip to the add a handler section, where you’ll use your
pagerduty_key secret in your handler defnition.

Use HashiCorp Vault for secrets management

This section explains how to use HashiCorp Vault as your external secrets provider to authenticate via
the HashiCorp Vault integration’s token auth method or TLS certifcate auth method.

Confgure your Vault authentication method (token or TLS)

If you use HashiCorp Vault as your external secrets provider, you can authenticate via the HashiCorp

cat << EOF | sensuctl create

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "pagerduty_key"

 },

 "spec": {

 "id": "SENSU_PAGERDUTY_KEY",

 "provider": "env"

 }

}

EOF

NOTE: You must set up HashiCorp Vault to use VaultProvider secrets management in
production.
The examples in this guide use the Vault dev server, which is useful for learning and
experimenting.
The Vault dev server gives you access to a preconfgured, running Vault server with
in-memory storage that you can use right away.
Follow the HashiCorp Learn curriculum when you
are ready to set up a production server in Vault.

In addition, this guide uses the Vault KV secrets engine.
Using the Vault KV secrets engine with the
Vault dev server requires v2 connections.
For this reason, in the VaultProvider spec in these
examples, the client version value is v2.

https://www.vaultproject.io/docs/what-is-vault/
https://www.vaultproject.io/docs/auth/token/
https://www.vaultproject.io/docs/auth/cert/
https://www.vaultproject.io/docs/what-is-vault/
https://www.vaultproject.io/docs/install/
https://www.vaultproject.io/docs/concepts/dev-server/
https://learn.hashicorp.com/vault
https://www.vaultproject.io/api/secret/kv/kv-v2.html

Vault integration’s token or transport layer security (TLS) certifcate authentication method.

Vault token authentication

Follow the steps in this section to use HashiCorp Vault as your external secrets provider to
authenticate with the HashiCorp Vault integration’s token auth method.

Retrieve your Vault root token

To retrieve your Vault root token:

1. Download and install the Vault edition for your operating system.
2. Open a terminal window and run vault server -dev .

The command output includes a Root Token line.
Find this line in your command output and copy the
Root Token value.
You will use it next to create your Vault secrets provider.

Leave the Vault dev server running.
Because you aren’t using TLS, you will need to set
VAULT_ADDR=http://127.0.0.1:8200 in your shell environment.

Create your Vault secrets provider

NOTE: The examples in this guide use the Root Token for the the Vault dev server, which gives
you access to a preconfgured, running Vault server with in-memory storage that you can use right
away.
Follow the HashiCorp Learn curriculum when you are ready to set up a production server in
Vault.

https://www.vaultproject.io/docs/auth/token/
https://www.vaultproject.io/docs/auth/cert/
https://www.vaultproject.io/docs/auth/token/
https://www.vaultproject.io/downloads/
http://localhost:1313/images/go/secrets_management/location_vault_dev_root_token.png
https://learn.hashicorp.com/vault/getting-started/dev-server
https://learn.hashicorp.com/vault

Use sensuctl create to create your secrets provider, vault .
In the code below, replace
<root_token> with the Root Token value for your Vault dev server.
Then, run:

NOTE: In Vault’s dev server, TLS is not enabled, so you won’t be able to use certifcate-based
authentication.

cat << EOF | sensuctl create

type: VaultProvider

api_version: secrets/v1

metadata:

 name: vault

spec:

 client:

 address: http://localhost:8200

 token: <root_token>

 version: v2

 tls: null

 max_retries: 2

 timeout: 20s

 rate_limiter:

 limit: 10

 burst: 100

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "vault"

 },

 "spec": {

 "client": {

 "address": "http://localhost:8200",

 "token": "<root_token>",

 "version": "v2",

SHELL

To continue, skip ahead to create your Vault secret.

Vault TLS certifcate authentication

This section explains how use HashiCorp Vault as your external secrets provider to authenticate with
the HashiCorp Vault integration’s TLS certifcate auth method.

First, in your Vault, enable and confgure certifcate authentication.
For example, your Vault might be
confgured for certifcate authentication like this:

Second, confgure your VaultProvider in Sensu:

 "tls": null,

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10,

 "burst": 100

 }

 }

 }

}

EOF

NOTE: You will need to set up HashiCorp Vault in production to use TLS certifcate-based
authentication.
In Vault’s dev server, TLS is not enabled.
Follow the HashiCorp Learn curriculum
when you are ready to set up a production server in Vault.

vault write auth/cert/certs/sensu-backend \

 display_name=sensu-backend \

 policies=sensu-backend-policy \

 certifcate=@sensu-backend-vault.pem \

 ttl=3600

YML

https://www.vaultproject.io/docs/auth/cert/
https://www.vaultproject.io/docs/auth/cert/#configuration
https://www.vaultproject.io/docs/install/
https://learn.hashicorp.com/vault

type: VaultProvider

api_version: secrets/v1

metadata:

 name: vault

spec:

 client:

 address: https://vault.example.com:8200

 version: v2

 tls:

 ca_cert: /path/to/your/ca.pem

 client_cert: /etc/sensu/ssl/sensu-backend-vault.pem

 client_key: /etc/sensu/ssl/sensu-backend-vault-key.pem

 cname: sensu-backend.example.com

 max_retries: 2

 timeout: 20s

 rate_limiter:

 limit: 10

 burst: 100

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "vault"

 },

 "spec": {

 "client": {

 "address": "https://vault.example.com:8200",

 "version": "v2",

 "tls": {

 "ca_cert": "/path/to/your/ca.pem",

 "client_cert": "/etc/sensu/ssl/sensu-backend-vault.pem",

 "client_key": "/etc/sensu/ssl/sensu-backend-vault-key.pem",

 "cname": "sensu-backend.example.com"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10,

 "burst": 100

SHELL

The certifcate you specify for tls.client_cert should be the same certifcate you confgured in
your Vault for certifcate authentication.

Next, create your Vault secret.

Create your Vault secret

First, retrieve your PagerDuty Integration Key (the secret you will set up in Vault).

Next, open a new terminal and run vault kv put secret/pagerduty key=<integration_key> .
Replace <integration_key> with your PagerDuty Integration Key.
This writes your secret into Vault.

In this example, the name of the secret is pagerduty .
The pagerduty secret contains a key, and you
specifed that the key value is your PagerDuty Integration Key.

Run vault kv get secret/pagerduty to view the secret you just set up.

Use sensuctl create to create your vault secret:

 }

 }

 }

}

NOTE: The Vault dev server is preconfgured with the secret keyspace already set up, so we
recommend using the secret/ path for the id value while you are learning and getting started
with Vault secrets management.

This example uses the id format for the Vault KV Secrets Engine v1: secret/pagerduty#key .
If
you are using the Vault KV Secrets Engine v2, the format is secrets/sensu#pagerduty#key .

cat << EOF | sensuctl create

type: Secret

api_version: secrets/v1

metadata:

SHELL

https://www.vaultproject.io/api-docs/secret/kv/kv-v1
https://www.vaultproject.io/api-docs/secret/kv/kv-v2

Now you can securely pass your PagerDuty Integration Key in the handlers, and mutators by referring
to the pagerduty_key secret.
In the add a handler section, you’ll use your pagerduty_key secret in
your handler defnition.

Add a handler

Register the sensu/sensu-pagerduty-handler dynamic runtime asset

To begin, register the sensu/sensu-pagerduty-handler dynamic runtime asset with sensuctl asset
add :

 name: pagerduty_key

spec:

 id: secret/pagerduty#key

 provider: vault

EOF

cat << EOF | sensuctl create

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "pagerduty_key"

 },

 "spec": {

 "id": "secret/pagerduty#key",

 "provider": "vault"

 }

}

EOF

SHELL

sensuctl asset add sensu/sensu-pagerduty-handler:2.2.0 -r pagerduty-handler

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

This example uses the -r (rename) fag to specify a shorter name for the dynamic runtime asset:
pagerduty-handler .

Run sensuctl asset list --format yaml to confrm that the dynamic runtime asset is ready to
use.

With this handler, Sensu can trigger and resolve PagerDuty incidents.
However, you still need to add
your secret to the handler spec so that it requires your backend to request secrets from your secrets
provider.

Add your secret to the handler spec

To create a handler defnition that uses your pagerduty_key secret, run:

NOTE: You can adjust the dynamic runtime asset defnition according to your Sensu confguration
if needed.

cat << EOF | sensuctl create

api_version: core/v2

type: Handler

metadata:

 name: pagerduty

spec:

 type: pipe

 command: pagerduty-handler --token $PD_TOKEN

 secrets:

 - name: PD_TOKEN

 secret: pagerduty_key

 runtime_assets:

 - pagerduty-handler

 timeout: 10

EOF

SHELL

cat << EOF | sensuctl create

{

SHELL

Confgure a pipeline

Now that your handler is set up and Sensu can create incidents in PagerDuty, you can confgure a
pipeline to start receiving alerts based on the events your checks create.
A single pipeline workfow can
include one or more flters, one mutator, and one handler.

In this case, the pipeline will include the built-in is_incident event flter and the pagerduty handler
you created in the previous step.
You can add this pipeline to any check to receive a PagerDuty alert for
every warning (1) or critical (2) event the check generates, as well as for resolution events.

To create the pipeline, run:

 "api_version": "core/v2",

 "type": "Handler",

 "metadata": {

 "name": "pagerduty"

 },

 "spec": {

 "type": "pipe",

 "command": "pagerduty-handler --token $PD_TOKEN",

 "secrets": [

 {

 "name": "PD_TOKEN",

 "secret": "pagerduty_key"

 }

],

 "runtime_assets": [

 "pagerduty-handler"

],

 "timeout": 10

 }

}

EOF

cat << EOF | sensuctl create

type: Pipeline

api_version: core/v2

SHELL

metadata:

 name: incident_alerts

spec:

 workfows:

 - name: pagerduty_incidents

 flters:

 - name: is_incident

 type: EventFilter

 api_version: core/v2

 handler:

 name: pagerduty

 type: Handler

 api_version: core/v2

EOF

cat << EOF | sensuctl create

{

 "type": "Pipeline",

 "api_version": "core/v2",

 "metadata": {

 "name": "incident_alerts"

 },

 "spec": {

 "workfows": [

 {

 "name": "pagerduty_incidents",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "handler": {

 "name": "pagerduty",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

SHELL

To automate this workfow, include the incident_alerts pipeline in any Sensu check defnition in
the check’s pipelines attribute.
When you list a pipeline in a check defnition, all the observability events
that the check produces will be processed according to the pipeline’s workfows.

Next steps

Add your pipeline to any check to start receiving PagerDuty alerts based on observability event data.
Read Send PagerDuty alerts with Sensu for an example that shows how to edit a check defnition to
add a pipeline.

Read the secrets or secrets providers reference for in-depth secrets management documentation.

 }

}

EOF

Secrets reference

Sensu’s secrets management eliminates the need to expose secrets in your Sensu confguration.
When
a Sensu resource defnition requires a secret (for example, a username or password), Sensu allows
you to obtain secrets from one or more external secrets providers, so you can both refer to external
secrets and consume secrets via backend environment variables.

Only Sensu backends have access to request secrets from a secrets provider.
Sensu backends cache
fetched secrets in memory, with no persistence to a Sensu datastore or fle on disk.
Secrets provided
via a “lease” with a “lease duration” are deleted from Sensu’s in-memory cache after the confgured
number of seconds, prompting the Sensu backend to request the secret again.

Secrets are only transmitted over a transport layer security (TLS) WebSocket connection.
Unencrypted
connections must not transmit privileged information.
For checks, hooks, and dynamic runtime assets,
you must enable mutual TLS (mTLS).
Sensu will not transmit secrets to agents that do not use mTLS.

Sensu only exposes secrets to Sensu services like environment variables and automatically redacts
secrets from all logs, the API, and the web UI.

Secret examples

A secret resource defnition refers to a secrets id and a secrets provider .
Read the secrets
provider reference for the provider specifcation.

COMMERCIAL FEATURE : Access the Secret datatype in the packaged Sensu Go distribution.
For
more information, read Get started with commercial features.

NOTE: Secrets management is implemented for checks, handlers, and mutators.

type: Secret

api_version: secrets/v1

metadata:

YML

Confgure secrets that target a HashiCorp Vault as shown in the following example:

 name: sensu-ansible-token

spec:

 id: ANSIBLE_TOKEN

 provider: env

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token"

 },

 "spec": {

 "id": "ANSIBLE_TOKEN",

 "provider": "env"

 }

}

JSON

type: Secret

api_version: secrets/v1

metadata:

 name: sensu-ansible

spec:

 id: 'secret/database#password'

 provider: vault

YML

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible"

 },

JSON

The id value for secrets that target a HashiCorp Vault must start with the name of the secret’s path
in Vault.
The Vault dev server is preconfgured with the secret keyspace already set up.
This is
convenient for learning and getting started with Vault secrets management, so this example and our
guide to secrets management use the secret/ path for the id value.
In this example, the name of
the secret is database .
The database secret contains a key called password, and its value is the
password to our database.

Secret confguration

You can use the enterprise/secrets/v1 API endpoints and sensuctl to create, view, and manage your
secrets confguration.
To manage secrets confguration with sensuctl, confgure sensuctl as the default
admin user.

The standard sensuctl subcommands are available for secrets (list, info, and delete).

To list all secrets:

To review a secret’s status:

To delete a secret:

 "spec": {

 "id": "secret/database#password",

 "provider": "vault"

 }

}

sensuctl secret list

sensuctl secret info SECRET_NAME

sensuctl secret delete SECRET_NAME

https://learn.hashicorp.com/vault/getting-started/dev-server

SECRET_NAME is the value specifed in the secret’s name metadata attribute.

Secret specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
secrets confguration in this version of Sensu, the api_version should
always be secrets/v1 .

required Required for secrets confguration in wrapped-json or yaml format.

type String

example

metadata

description Top-level scope that contains the secret’s name and namespace as
well as the created_by feld.

required true

type Map of key-value pairs

example

api_version: secrets/v1

YML

{

 "api_version": "secrets/v1"

}

JSON

metadata:

YML

spec

description Top-level map that includes secrets confguration spec attributes.

required Required for secrets confguration in wrapped-json or yaml format.

type Map of key-value pairs

example

 name: sensu-ansible-token

 namespace: default

 created_by: admin

{

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

 }

}

JSON

spec:

 id: ANSIBLE_TOKEN

 provider: env

YML

{

 "spec": {

 "id": "ANSIBLE_TOKEN",

 "provider": "env"

 }

}

JSON

type

description Top-level attribute that specifes the resource type. For secrets
confguration, the type should always be Secret .

required Required for secrets confguration in wrapped-json or yaml format.

type String

example

Metadata attributes

created_by

description Username of the Sensu user who created the secret or last updated the
secret. Sensu automatically populates the created_by feld when the
secret is created or updated.

required false

type String

example

type: Secret

YML

{

 "type": "Secret"

}

JSON

created_by: admin

YML

JSON

name

description Name for the secret that is used internally by Sensu.

required true

type String

example

namespace

description Sensu RBAC namespace that the secret belongs to.

required true

type String

example

{

 "created_by": "admin"

}

name: sensu-ansible-token

YML

{

 "name": "sensu-ansible-token"

}

JSON

namespace: default

YML

{

JSON

Spec attributes

id

description Identifying key for the provider to use to retrieve the secret. For the Env
secrets provider, the id is the environment variable. For the
VaultProvider secrets provider, the id specifes the secrets engine

path, the path to the secret within that secrets engine, and the feld to
retrieve within the secret.

required true

type String

example for Vault KV
Secrets Engine v1

example for Vault KV
Secrets Engine v2

 "namespace": "default"

}

id: secret/ansible#token

YML

{

 "id": "secret/ansible#token"

}

JSON

id: secrets/sensu#ansible#token

YML

{

 "id": "secrets/sensu#ansible#token"

}

JSON

provider

description Name of the provider with the secret.

required true

type String

example
provider: vault

YML

{

 "provider": "vault"

}

JSON

Secrets providers reference

Sensu’s secrets management eliminates the need to expose secrets like usernames, passwords, and
access keys in your Sensu confguration.
With Sensu’s secrets management, you can obtain secrets
from one or more external secrets providers, refer to external secrets, and consume secrets via
backend environment variables.

Only Sensu backends have access to request secrets from a secrets provider.
Secrets are only
transmitted over a transport layer security (TLS) WebSocket connection.
Unencrypted connections must
not transmit privileged information.
For checks, hooks, and dynamic runtime assets, you must enable
mutual TLS (mTLS).
Sensu will not transmit secrets to agents that do not use mTLS.

The Sensu Go commercial distribution includes a secrets provider, Env , that exposes secrets from
environment variables on your Sensu backend nodes.
You can also use the secrets provider
VaultProvider to authenticate via the HashiCorp Vault integration’s token auth method or TLS

certifcate auth method.

You can confgure any number of VaultProvider secrets providers.
However, you can only have a
single Env secrets provider: the one that is included with the Sensu Go commercial distribution.

Secrets providers are cluster-wide resources and compatible with generic functions.

VaultProvider secrets provider example

The VaultProvider secrets provider is a vendor-specifc implementation for HashiCorp Vault secrets
management.

COMMERCIAL FEATURE : Access the Env and VaultProvider secrets provider datatypes in the
packaged Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: Secrets management is implemented for checks, handlers, and mutators.

YML

https://www.vaultproject.io/docs/auth/token/
https://www.vaultproject.io/api/other/auth/cert/index.html
https://www.vaultproject.io/api/other/auth/cert/index.html
https://www.vaultproject.io/docs/what-is-vault/

type: VaultProvider

api_version: secrets/v1

metadata:

 name: vault

spec:

 client:

 address: https://vaultserver.example.com:8200

 token: VAULT_TOKEN

 version: v1

 tls:

 ca_cert: "/etc/ssl/certs/vault_ca_cert.pem"

 max_retries: 2

 timeout: 20s

 rate_limiter:

 limit: 10

 burst: 100

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "vault"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

}

JSON

Env secrets provider example

Sensu’s Env secrets provider exposes secrets from backend environment variables.
The Env secrets
provider is automatically created with an empty spec when you start your Sensu backend.

Using the Env secrets provider may require you to synchronize environment variables in Sensu
backend clusters.
Read Use secrets management to learn how to confgure the Env secrets provider.

Secrets provider confguration

You can use the enterprise/secrets/v1 API endpoints to create, view, and manage your secrets
provider confguration.

For example, to retrieve the list of secrets providers:

type: Env

api_version: secrets/v1

metadata:

 name: env

spec: {}

YML

{

 "type": "Env",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "env"

 },

 "spec": {}

}

JSON

Secrets provider specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
secrets confguration in this version of Sensu, the api_version should
always be secrets/v1 .

required Required for secrets confguration in wrapped-json or yaml format.

type String

example

metadata

description Top-level scope that contains the secrets provider name and

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers \

-H "Authorization: Key $SENSU_API_KEY"

NOTE: The attribute descriptions in this section use the VaultProvider datatype.
Review the Env
secrets provider example for an example defnition for the Env datatype.

api_version: secrets/v1

YML

{

 "api_version": "secrets/v1"

}

JSON

created_by feld. Namespace is not supported in the metadata
because secrets providers are cluster-wide resources.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes secrets provider confguration spec
attributes.

required Required for secrets confguration in wrapped-json or yaml format.

type Map of key-value pairs

example

metadata:

 name: vault

 created_by: admin

YML

{

 "metadata": {

 "name": "vault",

 "created_by": "admin"

 }

}

JSON

spec:

 client:

 address: https://vaultserver.example.com:8200

 max_retries: 2

 rate_limiter:

 limit: 10

 burst: 100

 timeout: 20s

YML

type

description Top-level attribute that specifes the resource type. May be either Env

(if you are using Sensu’s secrets provider) or VaultProvider (if you
are using HashiCorp Vault as the secrets provider).

required Required for secrets confguration in wrapped-json or yaml format.

type String

example

 tls:

 ca_cert: "/etc/ssl/certs/vault_ca_cert.pem"

 token: VAULT_TOKEN

 version: v1

{

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "max_retries": 2,

 "rate_limiter": {

 "limit": 10,

 "burst": 100

 },

 "timeout": "20s",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "token": "VAULT_TOKEN",

 "version": "v1"

 }

 }

}

JSON

type: VaultProvider

YML

Metadata attributes

created_by

description Username of the Sensu user who created the secrets provider or last
updated the secrets provider. Sensu automatically populates the
created_by feld when the secrets provider is created or updated.

required false

type String

example

name

description Provider name used internally by Sensu.

required true

{

 "type": "VaultProvider"

}

JSON

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

type String

example

Spec attributes

client

description Map that includes secrets provider confguration client attributes.

required true

type Map of key-value pairs

example

name: vault

YML

{

 "name": "vault"

}

JSON

client:

 address: https://vaultserver.example.com:8200

 max_retries: 2

 rate_limiter:

 limit: 10

 burst: 100

 timeout: 20s

 tls:

 ca_cert: "/etc/ssl/certs/vault_ca_cert.pem"

 token: VAULT_TOKEN

 version: v1

YML

{

JSON

Client attributes

address

description Vault server address.

required true

type String

example

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "max_retries": 2,

 "rate_limiter": {

 "limit": 10,

 "burst": 100

 },

 "timeout": "20s",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "token": "VAULT_TOKEN",

 "version": "v1"

 }

}

address: https://vaultserver.example.com:8200

YML

{

 "address": "https://vaultserver.example.com:8200"

}

JSON

max_retries

description Number of times to retry connecting to the Vault provider.

required true

type Integer

default 2

example

rate_limiter

description Maximum rate and burst limits for the enterprise/secrets/v1 API endpoint.
Read rate_limiter attributes for more information.

required false

type Map of key-value pairs

example

max_retries: 2

YML

{

 "max_retries": 2

}

JSON

rate_limiter:

 limit: 10

 burst: 100

YML

{

 "rate_limiter": {

JSON

timeout

description Provider connection timeout (hard stop).

required false

type String

default 60s

example

tls

description TLS object. Vault only works with TLS confgured. You may need to set
up a Certifcate Authority (CA) certifcate if it is not already stored in your
operating system’s trust store. To do this, set the TLS object and provide
the ca_cert path. You may also need to set up client_cert ,
client_key , or cname .

required false

type Map of key-value pairs

 "limit": 10,

 "burst": 100

 }

}

timeout: 20s

YML

{

 "timeout": "20s"

}

JSON

https://www.vaultproject.io/api/other/auth/cert/index.html#parameters-7

example

token

description Vault token to use for authentication.

required true

type String

example

tls:

 ca_cert: "/etc/ssl/certs/vault_ca_cert.pem"

 client_cert: "/etc/ssl/certs/vault_cert.pem"

 client_key: "/etc/ssl/certs/vault_key.pem"

 cname: vault_client.example.com

YML

{

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem",

 "client_cert": "/etc/ssl/certs/vault_cert.pem",

 "client_key": "/etc/ssl/certs/vault_key.pem",

 "cname": "vault_client.example.com"

 }

}

JSON

token: VAULT_TOKEN

YML

{

 "token": "VAULT_TOKEN"

}

JSON

version

description HashiCorp Vault key/value store version.

required true

type String

allowed values v1 and v2

example

Rate limiter attributes

burst

description Maximum amount of burst allowed in a rate interval for the
enterprise/secrets/v1 API endpoint.

required false

type Integer

example

version: v1

YML

{

 "version": "v1"

}

JSON

burst: 100

YML

{

JSON

https://www.vaultproject.io/docs/secrets/kv

limit

description Maximum number of secrets requests per second that can be transmitted
to the backend with the enterprise/secrets/v1 API endpoint.

required false

type Float

example

 "burst": 100

}

limit: 10.0

YML

{

 "limit": 10.0

}

JSON

Guides Index

This index links to every guide in the Sensu documentation.
Guides describe how to confgure Sensu to
complete specifc observability tasks and workfows to monitor server resources, route alerts and
reduce alert fatigue, export metrics, plan maintenance windows, and more, with examples and step-by-
step walkthroughs.

Aggregate metrics with the Sensu StatsD listener

Augment event data with check hooks

Automatically register and deregister entities

Build a private catalog of Sensu integrations

Collect Prometheus metrics with Sensu

Collect service metrics with Sensu checks

Create a read-only user with role-based access control

Create handler templates

Create limited service accounts

Generate certifcates for your Sensu installation

Log Sensu services with systemd

Monitor business services

Monitor external resources with proxy entities

Monitor Sensu with Sensu

Monitor server resources with checks

Multi-cluster visibility with federation

Plan maintenance windows with silencing

Populate metrics in InfuxDB with handlers

Reduce alert fatigue with event flters

Route alerts with event flters

Run a Sensu cluster

Scale Sensu Go with Enterprise datastore

Secure PostgreSQL

Secure Sensu

Send data to Sumo Logic with Sensu

Send email alerts with a pipeline

Send PagerDuty alerts with Sensu

Send Slack alerts with a pipeline

Use API keys to authenticate to Sensu

Use dynamic runtime assets to install plugins

Use secrets management in Sensu

Sensuctl CLI

Sensuctl is the command line tool for managing resources within Sensu.
It works by calling Sensu’s
underlying API to create, read, update, and delete events, entities, and resources.

Sensuctl is available for Linux, macOS, and Windows.
For Windows operating systems, sensuctl uses
cmd.exe for the execution environment.
For all other operating systems, sensuctl uses the Bourne

shell (sh).

Read Install Sensu to install and confgure sensuctl.

First-time setup and authentication

To log in to sensuctl and connect to the Sensu backend by following interactive prompts, run:

The sensuctl confgure command starts the prompts for interactive setup.
The frst prompt is for the
authentication method you wish to use: username/password or OIDC.

Sensuctl uses your username and password or OIDC credentials to obtain access and refresh tokens
via the Sensu /auth API.
The access and refresh tokens are HMAC-SHA256 JSON Web Tokens (JWTs)
that Sensu issues to record the details of users’ authenticated Sensu sessions.
The backend digitally
signs these tokens, and the tokens can’t be changed without invalidating the signature.

Upon successful authentication, sensuctl stores the access and refresh tokens in a cluster
confguration fle under the current user’s home directory.
For example, on Unix systems, sensuctl
stores the tokens in $HOME/.confg/sensu/sensuctl/cluster .

The sensuctl confgure interactive prompts require you to select an authentication method and
enter the Sensu backend URL, namespace, and preferred output format.

Username/password authentication

sensuctl confgure

https://tools.ietf.org/html/rfc7519

If you select username/password authentication, you will be prompted to enter your username and
password Sensu access credentials.

Username/password authentication applies to the following authentication providers:

This example shows the sensuctl confgure interactive dialog for the username/password
authentication method:

OIDC authentication

This example shows the sensuctl confgure interactive dialog if you select the OIDC authentication
method:

If you are using a desktop, a browser should open to allow you to authenticate and log in via your

Built-in basic authentication

Lightweight Directory Access Protocol (LDAP) authentication (commercial feature)

Active Directory (AD) authentication (commercial feature)

Authentication method: username/password

Sensu Backend API URL: http://127.0.0.1:8080

Namespace: default

Preferred output format: tabular

Username: <YOUR_USERNAME>

Password: <YOUR_PASSWORD>

Authentication method: OIDC

Sensu Backend API URL: http://127.0.0.1:8080

Namespace: default

Preferred output format: tabular

Launching browser to complete the login via your OIDC provider at following URL:

 http://127.0.0.1:8080/api/enterprise/authentication/v2/oidc/authorize?

callback=http%3A%2F%2Flocalhost%3A8000%2Fcallback

You may also manually open this URL. Waiting for callback...

OIDC provider.
If a browser does not open, launch a browser and go to the OIDC URL listed at the end
of the sensuctl confgure interactive dialog to complete authentication and log in via your OIDC
provider.

Use fags to confgure sensuctl in non-interactive mode

Run sensuctl confgure non-interactively by adding the -n (--non-interactive) fag.
For
example, the following command confgures sensuctl with the same values used in the
username/password interactive example:

Run sensuctl confgure -h to view command-specifc and global fags that you can use to set up
sensuctl when you bypass interactive mode:

NOTE: You can also use sensuctl login oidc to log in to sensuctl with OIDC.

sensuctl confgure -n --url http://127.0.0.1:8080 --format tabular --username

<YOUR_USERNAME> --password '<YOUR_PASSWORD>'

Initialize sensuctl confguration

Usage: sensuctl confgure [fags]

Flags:

 --format string preferred output format (default "tabular")

 -h, --help help for confgure

 -n, --non-interactive do not administer interactive questionnaire

 --oidc use an OIDC provider for authentication

 --password string password

 --port int port for local HTTP web server used for OAuth 2 callback

during OIDC authentication (default 8000)

 --url string the sensu backend url (default "http://localhost:8080")

 --username string username

Global Flags:

 --api-key string API key to use for authentication

 --api-url string host URL of Sensu installation

Username, password, and namespace

The Sensu backend installation process creates an administrator username and password and a
default namespace.

Your ability to get, list, create, update, and delete resources with sensuctl depends on the permissions
assigned to your Sensu user.
For more information about confguring Sensu access control, read the
role-based access control (RBAC) reference.

Change the admin user’s password

After you confgure sensuctl and authenticate, you can change the admin user’s password.
Run:

You must specify the user’s current password to use the sensuctl user change-password

command.

 --cache-dir string path to directory containing cache & temporary

fles (default "/Users/hillaryfraley/Library/Caches/sensu/sensuctl")

 --confg-dir string path to directory containing confguration fles

(default "/Users/hillaryfraley/.confg/sensu/sensuctl")

 --insecure-skip-tls-verify skip TLS certifcate verifcation (not

recommended!)

 --namespace string namespace in which we perform actions (default

"default")

 --timeout duration timeout when communicating with sensu backend

(default 15s)

 --trusted-ca-fle string TLS CA certifcate bundle in PEM format

NOTE: For a new installation, you can set administrator credentials with environment variables
during initialization.
If you are using Docker and you do not include the environment variables to set
administrator credentials, the backend will initialize with the default username (admin) and
password (P@ssw0rd!).

sensuctl user change-password --interactive

Reset a user password

To reset a user password without specifying the current password, run:

You must have admin permissions to use the sensuctl user reset-password command.

Test a user password

To test the password for a user created with Sensu’s built-in basic authentication:

An empty response indicates valid credentials.
A request-unauthorized response indicates invalid
credentials.

For example, if you test LDAP credentials with the sensuctl user test-creds command, the
backend will log an error, even if the LDAP credentials are correct:

Generate a password hash

You can use a password hash instead of a user’s password in the sensuctl commands to create and
edit users.
The sensuctl user hash-password command creates a bcrypt hash of the specifed

sensuctl user reset-password <USERNAME> --interactive

sensuctl user test-creds <USERNAME> --password 'password'

NOTE: The sensuctl user test-creds command tests passwords for users created with
Sensu’s built-in basic authentication.
It does not test user credentials defned via an authentication
provider like Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or OpenID
Connect 1.0 protocol (OIDC).

{"component":"apid.routers","error":"basic provider is

disabled","level":"info","msg":"invalid username and/or password","time":"2020-02-

07T20:42:14Z","user":"dev"}

https://en.wikipedia.org/wiki/Bcrypt

password.

To generate a password hash for a specifed cleartext password, run:

Sensu backend URL

The Sensu backend URL is the HTTP or HTTPS URL where sensuctl can connect to the Sensu
backend server.
The default URL is http://127.0.0.1:8080 .

To connect to a Sensu cluster, connect sensuctl to any single backend in the cluster.
For information
about confguring the Sensu backend URL, read the backend reference.

Preferred output format

After you confgure sensuctl, you can change the default output format for sensuctl responses.
Sensuctl
supports the following output formats:

Format Description

tabular Output is organized in user-friendly columns. Tabular is the default
output format.

yaml Output is in YAML format. Resource defnitions include the resource
type and api_version as well as an outer-level spec “wrapping”

for the resource attributes.

wrapped-json Output is in JSON format. Resource defnitions include the resource
type and api_version as well as an outer-level spec “wrapping”

for the resource attributes.

json Output is in JSON format. Resource defnitions do not include the
resource type and api_version or an outer-level spec “wrapping”.

Use sensuctl confg set-format to change the preferred output format.

sensuctl user hash-password <PASSWORD>

https://yaml.org/
https://www.json.org/
https://www.json.org/

Output format signifcance

To use sensuctl create to create a resource, you must provide the resource defnition in yaml or
wrapped-json format.
These formats include the resource type , which sensuctl needs to determine

what kind of resource to create.

The Sensu API uses json output format for responses for APIs in the core group.
For APIs that are
not in the core group, responses are in the wrapped-json output format.

Sensu sends events to the backend in json format, without the spec attribute wrapper or type
and api_version attributes.

Sensuctl confguration fles

During confguration, sensuctl creates confguration fles that contain information for connecting to your
Sensu Go deployment.
You can fnd these fles at $HOME/.confg/sensu/sensuctl/profle and
$HOME/.confg/sensu/sensuctl/cluster .

Use the cat command to view the contents of the confguration fles.
For example, to view your
sensuctl profle confguration, run:

The response should be similar to this example:

To view your sensuctl cluster confguration, run:

cat .confg/sensu/sensuctl/profle

{

 "format": "tabular",

 "namespace": "default",

 "username": "admin"

}

cat .confg/sensu/sensuctl/cluster

https://www.json.org/
https://www.json.org/

The response should be similar to this example:

The sensuctl confguration fles are useful if you want to know which cluster you’re connecting to or
which namespace or username you’re currently confgured to use.

Get help for sensuctl commands

Sensuctl supports a --help fag for each command and subcommand.
The help response includes a
usage template and lists of any available fags and further commands and subcommands.

To list global and command-specifc fags for sensuctl in general, run:

To list available fags and subcommands for a sensuctl command like sensuctl check or sensuctl
create , run:

To list available fags for a complete sensuctl command like sensuctl check delete , run:

{

 "api-url": "http://localhost:8080",

 "trusted-ca-fle": "",

 "insecure-skip-tls-verify": false,

 "access_token": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "expires_at": 1550082282,

 "refresh_token": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

}

sensuctl --help

sensuctl check --help

sensuctl create --help

Manage sensuctl

Use the sencutl confg command to view and modify the current sensuctl confguration.

To view fags and command options, run:

The response lists the global fags and commands available to use with sensuctl confg :

sensuctl check delete --help

sensuctl confg --help

Modify sensuctl confguration

Usage: sensuctl confg COMMAND

Flags:

 -h, --help help for confg

Global Flags:

 --api-key string API key to use for authentication

 --api-url string host URL of Sensu installation

 --cache-dir string path to directory containing cache & temporary

fles (default "/home/vagrant/.cache/sensu/sensuctl")

 --confg-dir string path to directory containing confguration fles

(default "/home/vagrant/.confg/sensu/sensuctl")

 --insecure-skip-tls-verify skip TLS certifcate verifcation (not

recommended!)

 --namespace string namespace in which we perform actions (default

"default")

 --timeout duration timeout when communicating with sensu backend

(default 15s)

 --trusted-ca-fle string TLS CA certifcate bundle in PEM format

Commands:

 set-format Set format for active profle

There are also commands for logging out of sensuctl and viewing the current sensuctl version.

View sensuctl confg

To view the active confguration for sensuctl:

The sensuctl confg view response includes the Sensu backend URL, default namespace for the
current user, default output format for the current user, and currently confgured username:

Set preferred output format

Use the set-format command to change the preferred output format for the current user.

For example, to change the default tabular format to YAML for all sensuctl commands, run:

You can also use the --format fag to set the output format for the response to a single sensuctl
command.
For example, to keep the default format set at tabular, but retrieve a specifc entity defnition
in YAML format, run:

 set-namespace Set namespace for active profle

 set-timeout Set timeout for active profle in duration format (ex: 15s)

 view Display active confguration

sensuctl confg view

=== Active Confguration

API URL: http://127.0.0.1:8080

Namespace: default

Format: tabular

Username: admin

sensuctl confg set-format yaml

Set namespace

Use the set-namespace command to change the default namespace for the current user.
For more
information about confguring Sensu access control, read the RBAC reference.

For example, to change the default namespace to development :

Log out of sensuctl

To log out of sensuctl:

To log back in to sensuctl:

View the sensuctl version number

To display the current version of sensuctl:

Use global fags for sensuctl settings

sensuctl entity info <ENTITY_NAME> --format yaml

sensuctl confg set-namespace development

sensuctl logout

sensuctl confgure

sensuctl version

Global fags modify settings specifc to sensuctl, such as the Sensu backend URL and namespace.

You can use global fags with most sensuctl commands.
To set global fags permanently, edit
.confg/sensu/sensuctl/{cluster, profle} .

Use shell autocompletion with sensuctl

Use shell autocompletion to create and run valid sensuctl commands.
After you install and confgure
autocompletion, you can use the tab key to view and select from available options for each part of a
sensuctl command directly from the command line.

Type sensuctl and press tab to view the list of available variables:

--api-key string API key to use for authentication

--api-url string host URL of Sensu installation

--cache-dir string path to directory containing cache & temporary fles

(default "/home/vagrant/.cache/sensu/sensuctl")

--confg-dir string path to directory containing confguration fles (default

"/home/vagrant/.confg/sensu/sensuctl")

--insecure-skip-tls-verify skip TLS certifcate verifcation (not recommended!)

--namespace string namespace in which we perform actions (default

"default")

--timeout duration timeout when communicating with sensu backend (default

15s)

--trusted-ca-fle string TLS CA certifcate bundle in PEM format

api-key cluster-role confgure edit

handler logout role user

asset cluster-role-binding create entity

help mutator role-binding version

auth command delete env

hook namespace secret

check completion describe-type event

license pipeline silenced

cluster confg dump flter

login prune tessen

Type your selected variable and press tab again to view the list of available variables to complete the
command:

Type your selected variable to complete the command and press enter to run it.

Install and confgure autocompletion for sensuctl

Follow the instructions in this section to install and confgure Bash or zsh autocompletion for sensuctl.

Install and confgure for Bash

To install and confgure Bash autocompletion for sensuctl:

1. Install bash-completion.

To install bash-completion on macOS, run:

Open ~/.bash_profle , add the following lines, and save:

2. Open ~/.bash_profle , add the following line, and save:

create delete info list

NOTE: If you use a current version of Linux in a non-minimal installation, bash-completion
may already be installed.

brew install bash-completion

if [-f $(brew --prefx)/etc/bash_completion]; then

. $(brew --prefx)/etc/bash_completion

f

https://github.com/scop/bash-completion

3. Run the following command to source your ~/.bash_profle fle so that its resources are
available:

Shell autocompletion should now be available for sensuctl.

Install and confgure for zsh

To install and confgure zsh autocompletion for sensuctl:

1. Open ~/.zshrc , add the following line, and save:

2. Run the following command to source your ~/.zshrc fle so that its resources are available:

source <(sensuctl completion bash)

source ~/.bash_profle

source <(sensuctl completion zsh)

source ~/.zshrc

Create and manage resources with
sensuctl

Use the sensuctl command line tool to create and manage resources within Sensu.
Sensuctl works by
calling Sensu’s underlying API to create, read, update, and delete resources, events, and entities.

Create resources

The sensuctl create command allows you to create or update resources by reading from STDIN or
a fle.

The create command accepts Sensu resource defnitions in yaml or wrapped-json formats,
which wrap the contents of the resource in spec and identify the resource type and api_version .
Review the list of supported resource types for sensuctl create .
Read the reference docs for
information about creating resource defnitions.

Resources that you create with sensuctl create will include the following label in the metadata:

You can create more than one resource at a time with sensuctl create .
If you use YAML, separate
the resource defnitions by a line with three hyphens: --- .
If you use wrapped JSON, separate the
resources without a comma.

sensu.io/managed_by: sensuctl

YML

{

 "sensu.io/managed_by": "sensuctl"

}

JSON

NOTE: You can also use the sensuctl <RESORUCE_TYPE> create command to create resources

Create resources from STDIN

The following example demonstrates how to use the EOF function with sensuctl create to create
two resources by reading from STDIN: a marketing-site check and a slack handler.

with sensuctl.
Read Use the create subcommand for more information and an example.

cat << EOF | sensuctl create

type: CheckConfg

api_version: core/v2

metadata:

 name: marketing-site

spec:

 command: http-check -u https://sensu.io

 subscriptions:

 - demo

 interval: 15

 handlers:

 - slack

type: Handler

api_version: core/v2

metadata:

 name: slack

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 type: pipe

EOF

SHELL

cat << EOF | sensuctl create

{

SHELL

Create resources from a fle

The following example demonstrates how to use the --fle fag with sensuctl create to create a
marketing-site check and a slack handler.

First, copy these resource defnitions and save them in a fle named my-resources.yml or my-
resources.json :

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata" : {

 "name": "marketing-site"

 },

 "spec": {

 "command": "http-check -u https://sensu.io",

 "subscriptions": ["demo"],

 "interval": 15,

 "handlers": ["slack"]

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "type": "pipe"

 }

}

EOF

YML

type: CheckConfg

api_version: core/v2

metadata:

 name: marketing-site

spec:

 command: http-check -u https://sensu.io

 subscriptions:

 - demo

 interval: 15

 handlers:

 - slack

type: Handler

api_version: core/v2

metadata:

 name: slack

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 type: pipe

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata" : {

 "name": "marketing-site"

 },

 "spec": {

 "command": "http-check -u https://sensu.io",

 "subscriptions": ["demo"],

 "interval": 15,

 "handlers": ["slack"]

 }

}

{

 "type": "Handler",

SHELL

Run the following command to create the resources from my-resources.yml or my-
resources.json :

Or:

 "api_version": "core/v2",

 "metadata": {

 "name": "slack"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "type": "pipe"

 }

}

sensuctl create --fle my-resources.yml

SHELL

sensuctl create --fle my-resources.json

SHELL

cat my-resources.yml | sensuctl create

SHELL

cat my-resources.json | sensuctl create

SHELL

sensuctl create fags

Run sensuctl create -h to view a usage example with command-specifc and global fags:

sensuctl create resource types

Use sensuctl create with any of the following resource types:

sensuctl create types

ad AdhocRequest Asset CheckConfg

ClusterRole ClusterRoleBindi

ng

Entity Env

Create or replace resources from fle or URL (path, fle://, http[s]://), or STDIN

otherwise.

Usage: sensuctl create [-r] [[-f URL] ...] [fags]

Flags:

 -f, --fle strings Files, directories, or URLs to create resources from

 -h, --help help for create

 -r, --recursive Follow subdirectories

Global Flags:

 --api-key string API key to use for authentication

 --api-url string host URL of Sensu installation

 --cache-dir string path to directory containing cache & temporary

fles (default "/home/vagrant/.cache/sensu/sensuctl")

 --confg-dir string path to directory containing confguration fles

(default "/home/vagrant/.confg/sensu/sensuctl")

 --insecure-skip-tls-verify skip TLS certifcate verifcation (not

recommended!)

 --namespace string namespace in which we perform actions (default

"default")

 --timeout duration timeout when communicating with sensu backend

(default 15s)

 --trusted-ca-fle string TLS CA certifcate bundle in PEM format

EtcdReplicators Event EventFilter GlobalConfg

Handler HookConfg ldap Mutator

Namespace oidc PostgresConf

g

Role

RoleBinding Secret Silenced SumoLogicMetricsHandl

er

TCPStreamHandler TessenConfg User VaultProvider

Create resources across namespaces

If you omit the namespace attribute from resource defnitions, you can use the senusctl create --
namespace fag to specify the namespace for a group of resources at the time of creation.
This allows
you to replicate resources across namespaces without manual editing.

To learn more about namespaces, read the namespaces reference.
The RBAC reference includes a list
of namespaced resource types.

The sensuctl create command applies namespaces to resources in the following order, from
highest precedence to lowest:

1. Namespace specifed within resource defnitions: You can specify a resource’s namespace
within individual resource defnitions using the namespace attribute.
Namespaces specifed in
resource defnitions take precedence over all other methods.

2. --namespace fag: If resource defnitions do not specify a namespace, Sensu applies the
namespace provided by the sensuctl create --namespace fag.

3. Current sensuctl namespace confguration: If you do not specify an embedded namespace
attribute or use the --namespace fag, Sensu applies the namespace confgured in the current
sensuctl session.
Read Manage sensuctl to view your current session confg and set the session
namespace.

For example, this handler does not include a namespace attribute:

type: Handler

api_version: core/v2

YML

If you save this resource defnition in a fle named pagerduty.yml or pagerduty.json , you can
create the pagerduty handler in any namespace with specifc sensuctl commands.

To create the handler in the default namespace:

metadata:

 name: pagerduty

spec:

 command: sensu-pagerduty-handler

 env_vars:

 - PAGERDUTY_TOKEN=SECRET

 type: pipe

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "pagerduty"

 },

 "spec": {

 "command": "sensu-pagerduty-handler",

 "env_vars": [

 "PAGERDUTY_TOKEN=SECRET"

],

 "type": "pipe"

 }

}

JSON

sensuctl create --fle pagerduty.yml --namespace default

SHELL

sensuctl create --fle pagerduty.json --namespace default

SHELL

To create the pagerduty handler in the production namespace:

To create the pagerduty handler in the current session namespace:

Delete resources

The sensuctl delete command allows you to delete resources by reading from STDIN or a fle.

You can use sensuctl delete with the same resource types as sensuctl create .

The delete command accepts Sensu resource defnitions in wrapped-json and yaml formats.
To
be deleted successfully, the name and namespace of a resource provided to the delete command
must match the name and namespace of an existing resource.

Delete resources with STDIN

To delete the marketing-site check from the current namespace with STDIN, run:

sensuctl create --fle pagerduty.yml --namespace production

SHELL

sensuctl create --fle pagerduty.json --namespace production

SHELL

sensuctl create --fle pagerduty.yml

SHELL

sensuctl create --fle pagerduty.json

SHELL

cat << EOF | sensuctl delete

SHELL

Delete resources using a fle

To delete all resources listed in a specifc fle from Sensu (in this example, a fle named my-

resources.yml or my-resources.json):

type: CheckConfg

api_version: core/v2

metadata:

 name: marketing-site

spec:

 command: http-check -u https://sensu.io

 subscriptions:

 - demo

 interval: 15

 handlers:

 - slack

EOF

cat << EOF | sensuctl delete

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata" : {

 "name": "marketing-site"

 },

 "spec": {

 "command": "http-check -u https://sensu.io",

 "subscriptions": ["demo"],

 "interval": 15,

 "handlers": ["slack"]

 }

}

EOF

SHELL

sensuctl delete --fle my-resources.yml

SHELL

Or:

sensuctl delete fags

Run sensuctl delete -h to view a usage example with command-specifc and global fags:

sensuctl delete --fle my-resources.json

SHELL

cat my-resources.yml | sensuctl delete

SHELL

cat my-resources.json | sensuctl delete

SHELL

Delete resources from fle or STDIN

Usage: sensuctl delete [-f FILE] [fags]

Flags:

 -f, --fle string File to delete resources from

 -h, --help help for delete

Global Flags:

 --api-key string API key to use for authentication

 --api-url string host URL of Sensu installation

 --cache-dir string path to directory containing cache & temporary

fles (default "/home/vagrant/.cache/sensu/sensuctl")

 --confg-dir string path to directory containing confguration fles

(default "/home/vagrant/.confg/sensu/sensuctl")

 --insecure-skip-tls-verify skip TLS certifcate verifcation (not

recommended!)

 --namespace string namespace in which we perform actions (default

Delete resources across namespaces

To use the senusctl delete --namespace fag to specify the namespace for a group of resources
at the time of deletion, omit the namespace attribute from resource defnitions.
This allows you to
remove resources across namespaces without manual editing.

For example, suppose you added the pagerduty handler from Create resources across namespaces
in every namespace.
To delete the pagerduty handler from only the production namespace using
STDIN, run:

"default")

 --timeout duration timeout when communicating with sensu backend

(default 15s)

 --trusted-ca-fle string TLS CA certifcate bundle in PEM format

cat << EOF | sensuctl delete --namespace production

type: Handler

api_version: core/v2

metadata:

 name: pagerduty

spec:

 command: sensu-pagerduty-handler

 env_vars:

 - PAGERDUTY_TOKEN=SECRET

 type: pipe

EOF

SHELL

cat << EOF | sensuctl delete --namespace production

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "pagerduty"

 },

 "spec": {

SHELL

You can also use the sensuctl delete command with a fle that includes the pagerduty handler
defnition (in these examples, the fle name is pagerduty.yml or pagerduty.json).

Delete the pagerduty handler from the default namespace with this command:

To delete the pagerduty handler from the production namespace:

To delete the pagerduty handler in the current session namespace:

 "command": "sensu-pagerduty-handler",

 "env_vars": [

 "PAGERDUTY_TOKEN=SECRET"

],

 "type": "pipe"

 }

}

EOF

sensuctl delete --fle pagerduty.yml --namespace default

SHELL

sensuctl delete --fle pagerduty.json --namespace default

SHELL

sensuctl delete --fle pagerduty.yml --namespace production

SHELL

sensuctl delete --fle pagerduty.json --namespace production

SHELL

sensuctl delete --fle pagerduty.yml

SHELL

Update resources

Sensuctl allows you to update resource defnitions with a text editor.
To use sensuctl edit , specify
the resource type and resource name.

For example, to edit a handler named slack with sensuctl edit :

sensuctl edit fags

Run sensuctl edit -h to view a usage example with command-specifc and global fags:

sensuctl delete --fle pagerduty.json

SHELL

NOTE: You cannot use sensuctl to update agent-managed entities.
Requests to update agent-
managed entities via sensuctl will fail and return an error.

sensuctl edit handler slack

NOTE: You cannot use sensuctl to update agent-managed entities.
Requests to update agent-
managed entities via sensuctl will fail and return an error.

Edit resources interactively

Usage: sensuctl edit [RESOURCE TYPE] [KEY]... [fags]

Flags:

 -b, --blank edit a blank resource, and create it on save

 --format string format of data returned ("json"|"wrapped-

json"|"tabular"|"yaml") (default "tabular")

 -h, --help help for edit

sensuctl edit resource types

Use the sensuctl edit command with any of the following resource types:

sensuctl edit types

asset auth check cluster

cluster-role cluster-role-binding entity event

flter handler hook mutator

namespace pipeline role role-binding

silenced user

Manage resources

Sensuctl provides the commands listed below for managing individual Sensu resources.
Combine the
resource command with a subcommand to complete operations like listing all checks or deleting a
specifc silence.

Global Flags:

 --api-key string API key to use for authentication

 --api-url string host URL of Sensu installation

 --cache-dir string path to directory containing cache & temporary

fles (default "/home/vagrant/.cache/sensu/sensuctl")

 --confg-dir string path to directory containing confguration fles

(default "/home/vagrant/.confg/sensu/sensuctl")

 --insecure-skip-tls-verify skip TLS certifcate verifcation (not

recommended!)

 --namespace string namespace in which we perform actions (default

"default")

 --timeout duration timeout when communicating with sensu backend

(default 15s)

 --trusted-ca-fle string TLS CA certifcate bundle in PEM format

Subcommands

Sensuctl provides a set of operation subcommands for each resource type.

To view the supported subcommands for a resource type, run the resource command followed by the
help fag, -h .
For example, to view the subcommands for sensuctl check , run:

sensuctl asset

sensuctl auth (commercial feature)

sensuctl check

sensuctl cluster

sensuctl cluster-role

sensuctl cluster-role-binding

sensuctl entity

sensuctl event

sensuctl flter

sensuctl handler

sensuctl hook

sensuctl license (commercial feature)

sensuctl mutator

sensuctl namespace

sensuctl pipeline

sensuctl role

sensuctl role-binding

sensuctl secret

sensuctl silenced

sensuctl tessen

sensuctl user

sensuctl check -h

The response includes a usage example, the supported command-specifc and global fags, and a list
of supported subcommands.

Many resource types include a standard set of list, info, and delete operation subcommands:

Use the commands with their fags and subcommands to get more information about your resources.
For example, to list all monitoring checks:

To list checks from all namespaces:

To write all checks to my-resources.yml in yaml format or to my-resources.json in wrapped-
json format:

delete delete resource given resource name

info show detailed resource information given resource name

list list resources

NOTE: The delete, info, and list subcommands are not supported for all resource types.
Run
sensuctl <RESOURCE_TYPE> -h to confrm which subcommands are supported for a specifc

resource type.
You can also confgure shell completion for sensuctl to view available variables for
sensuctl commands.

sensuctl check list

sensuctl check list --all-namespaces

sensuctl check list --format yaml > my-resources.yml

SHELL

sensuctl check list --format wrapped-json > my-resources.json

SHELL

To view the defnition for a check named check-cpu :

To delete the defnition for a check named check-cpu :

In addition to the delete, info, and list operations, many commands support fags and subcommands
that allow you to take special action based on the resource type.
The sections below describe some of
the resource-specifc operations.

Run sensuctl <RESOURCE_TYPE> -h to retrieve a complete list of the supported fags and
subcommands for a specifc resource command.
You can also confgure shell completion for sensuctl to
view available variables for sensuctl commands.

Use the create subcommand

Many resource types include a create subcommand that you can use to create resources using
fags.
Run sensuctl <RESOURCE_TYPE> create -h to get a list of the supported fags for the resource
type.

For example, run this command to create a check, using fags to specify the check’s command,
interval, subscriptions, and runtime assets:

sensuctl check info check-cpu --format yaml

SHELL

sensuctl check info check-cpu --format wrapped-json

SHELL

sensuctl check delete check-cpu

sensuctl check create check_cpu \

--command 'check-cpu-usage -w 75 -c 90' \

--interval 60 \

--subscriptions system \

--runtime-assets sensu/check-cpu-usage

The command creates a check with the following defnition:

type: CheckConfg

api_version: core/v2

metadata:

 created_by: admin

 name: check_cpu

 namespace: default

spec:

 check_hooks: null

 command: check-cpu-usage -w 75 -c 90

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 60

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 pipelines: []

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets:

 - sensu/check-cpu-usage

 secrets: null

 stdin: false

 subdue: null

 subscriptions:

 - system

 timeout: 0

 ttl: 0

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

JSON

Handle large datasets

When using sensuctl to retrieve large datasets with the list command, add the --chunk-size fag

 "created_by": "admin",

 "name": "check_cpu",

 "namespace": "default"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu-usage -w 75 -c 90",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "pipelines": [],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [

 "sensu/check-cpu-usage"

],

 "secrets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "system"

],

 "timeout": 0,

 "ttl": 0

 }

}

NOTE: Resources created with the sensuctl <RESOURCE_TYPE> create subcommand do not
include the label sensu.io/managed_by: sensuctl .

to prevent query timeouts and improve performance.
The --chunk-size fag allows you to specify
how many events Sensu should retrieve with each query.
Sensu will make a series of queries to retrieve
all resources instead of a single query.

For example, the following command returns the same output as sensuctl event list but makes
multiple API queries, each for the number of resources specifed with --chunk-size , instead of one
query for the complete dataset:

Execute a check on demand

The sensuctl check execute command executes the specifed check on demand:

For example, the following command executes the check-cpu check with an attached message:

You can also use the --subscriptions fag to override the subscriptions in the check defnition:

Manage a Sensu cluster

The sensuctl cluster command lets you manage a Sensu cluster with the following
subcommands:

sensuctl event list --chunk-size 500

sensuctl check execute <CHECK_NAME>

sensuctl check execute check-cpu --reason "giving a sensuctl demo"

sensuctl check execute check-cpu --subscriptions demo,webserver

health get sensu health status

id show sensu cluster id

member-add add cluster member to an existing cluster, with comma-separated peer

To view cluster members:

To review the health of your Sensu cluster:

Manually resolve events

Use sensuctl event resolve to manually resolve events:

For example, the following command manually resolves an event created by the entity webserver1
and the check check-http :

Use the sensuctl namespace command

The sensuctl namespace commands have a few special characteristics that you should be aware of.

sensuctl namespace create

Namespace names can contain alphanumeric characters and hyphens and must begin and end with
an alphanumeric character.

addresses

member-list list cluster members

member-remove remove cluster member by ID

member-update update cluster member by ID with comma-separated peer addresses

sensuctl cluster member-list

sensuctl cluster health

sensuctl event resolve <ENTITY_NAME> <CHECK_NAME>

sensuctl event resolve webserver1 check-http

senscutl namespace list

In the packaged Sensu Go distribution, sensuctl namespace list lists only the namespaces for
which the current user has access.

sensuctl namespace delete

Namespaces must be empty before you can delete them.
If the response to sensuctl namespace

delete is Error: resource is invalid: namespace is not empty , the namespace may still
contain events or other resources.

To remove all resources and events so that you can delete a namespace, run this command (replace
<NAMESPACE_NAME> with the namespace you want to empty):

Prune resources

The sensuctl prune subcommand allows you to delete resources that do not appear in a given set
of Sensu objects (called a “confguration”) from a from a fle, URL, or stdin.
For example, you can use
sensuctl create to to apply a new confguration, then use sensuctl prune to prune unneeded

resources, resources that were created by a specifc user or that include a specifc label selector, and
more.

The pruning operation always follows the role-based access control (RBAC) permissions of the current

sensuctl dump entities,events,assets,checks,flters,handlers,secrets/v1.Secret --

namespace <NAMESPACE_NAME> | sensuctl delete

COMMERCIAL FEATURE : Access sensuctl pruning in the packaged Sensu Go distribution.
For
more information, read Get started with commercial features.

NOTE: sensuctl prune is an alpha feature and may include breaking changes.

sensuctl prune can only delete resources that have the label sensu.io/managed_by:
sensuctl , which Sensu automatically adds to resources created with the sensuctl create
command.
This means you can only use sensuctl prune to delete resources that were created
with sensuctl create .

user.
For example, to prune resources in the dev namespace, the current user who sends the prune
command must have delete access to the dev namespace.

Supported resource types

To retrieve the supported sensuctl prune resource types, run:

The response will list all supported sensuctl prune resource types:

sensuctl describe-type all

 Fully Qualifed Name Short Name API Version Type Namespaced

────────────────────────────────────── ───────────────────── ───────────────────

───────────────────────── ─────────────

 authentication/v2.Provider authentication/v2 Provider false

 licensing/v2.LicenseFile licensing/v2 LicenseFile false

 store/v1.PostgresConfg store/v1 PostgresConfg false

 federation/v1.EtcdReplicator federation/v1 EtcdReplicator false

 federation/v1.Cluster federation/v1 Cluster false

 secrets/v1.Secret secrets/v1 Secret true

 secrets/v1.Provider secrets/v1 Provider false

 searches/v1.Search searches/v1 Search true

 web/v1.GlobalConfg web/v1 GlobalConfg false

 bsm/v1.RuleTemplate bsm/v1 RuleTemplate true

 bsm/v1.ServiceComponent bsm/v1 ServiceComponent true

 pipeline/v1.SumoLogicMetricsHandler pipeline/v1 SumoLogicMetricsHandler true

 pipeline/v1.TCPStreamHandler pipeline/v1 TCPStreamHandler true

 core/v2.Namespace namespaces core/v2 Namespace false

 core/v2.ClusterRole clusterroles core/v2 ClusterRole false

 core/v2.ClusterRoleBinding clusterrolebindings core/v2 ClusterRoleBinding false

 core/v2.User users core/v2 User false

 core/v2.APIKey apikeys core/v2 APIKey false

 core/v2.TessenConfg tessen core/v2 TessenConfg false

 core/v2.Asset assets core/v2 Asset true

 core/v2.CheckConfg checks core/v2 CheckConfg true

 core/v2.Entity entities core/v2 Entity true

 core/v2.Event events core/v2 Event true

 core/v2.EventFilter flters core/v2 EventFilter true

sensuctl prune fags

Run sensuctl prune -h to view command-specifc and global fags.
The following table describes the
command-specifc fags.

Flag Function and important notes

-a or --all-users Prunes resources created by all users. Mutually exclusive with the --
users fag. Defaults to false.

-c or --cluster-
wide

Prunes any cluster-wide (non-namespaced) resources that are not
defned in the confguration. Defaults to false.

-d or --dry-run Prints the resources that will be pruned but does not actually delete
them. Defaults to false.

-f or --fle Files, URLs, or directories to prune resources from. Strings.

-h or --help Help for the prune command.

--label-selector Prunes only resources that match the specifed labels (comma-separated
strings). Labels are a commercial feature.

-o or --omit Resources that should be excluded from being pruned.

-r or --recursive Prune command will follow subdirectories.

-u or --users Prunes only resources that were created by the specifed users (comma-
separated strings). Defaults to the currently confgured sensuctl user.

 core/v2.Handler handlers core/v2 Handler true

 core/v2.HookConfg hooks core/v2 HookConfg true

 core/v2.Mutator mutators core/v2 Mutator true

 core/v2.Pipeline pipelines core/v2 Pipeline true

 core/v2.Role roles core/v2 Role true

 core/v2.RoleBinding rolebindings core/v2 RoleBinding true

 core/v2.Silenced silenced core/v2 Silenced true

NOTE: Short names are only supported for core/v2 resources.

sensuctl prune usage

In this example sensuctl prune command:

Use a comma separator to prune more than one resource in a single command.
For example, to prune
checks and dynamic runtime assets from the fle checks.yaml or checks.json for the dev
namespace and the admin and ops users:

sensuctl prune supports pruning resources by their fully qualifed names or short names:

Fully qualifed names:

sensuctl prune <RESOURCE_TYPE>,<RESOURCE_TYPE>... -f <FILE_OR_URL> [-r] ...] --

namespace <NAMESPACE> <FLAGS>

Replace <RESOURCE_TYPE> with the fully qualifed name or short name of the resource you
want to prune.
You must specify at least one resource type or the all qualifer (to prune all
resource types).

Replace <FILE_OR_URL> with the name of the fle or the URL that contains the set of Sensu
objects you want to keep (the confguration).

Replace <NAMESPACE> with the namespace where you want to apply pruning.
If you omit the
namespace qualifer, the command defaults to the current confgured namespace.

Replace <FLAGS> with the other fags you want to use, if any.

sensuctl prune core/v2.CheckConfg,core/v2.Asset --fle checks.yaml --namespace dev --

users admin,ops

SHELL

sensuctl prune core/v2.CheckConfg,core/v2.Asset --fle checks.json --namespace dev --

users admin,ops

SHELL

sensuctl prune core/v2.CheckConfg,core/v2.Entity

Short names:

Use the all qualifer to prune all supported resources:

Use the --omit fag to identify resources you want to exclude from being pruned:

Time formats

Sensuctl supports multiple formats for resource attributes that require a time.
To specify an exact point
in time (for example, when setting a silence), use full dates with times.

Although supported formats depend on the resource type, sensuctl generally supports the following
formats for dates with time:

Use the --help (-h) fag for specifc sensuctl commands and resources to learn which time format
to use.

Supported canonical time zone IDs are defned in the tz database.

sensuctl prune checks,entities

sensuctl prune all

sensuctl prune all --omit

core/v2.Role,core/v2.RoleBinding,core/v2.ClusterRole,core/v2.ClusterRoleBinding

RFC 3339 with numeric zone offset: 2018-05-10T07:04:00-08:00 or
2018-05-
10T15:04:00Z

RFC 3339 with space delimiters and numeric zone offset: 2018-05-10 07:04:00 -08:00

Sensu alpha legacy format with canonical zone ID: May 10 2018 7:04AM America/Vancouver

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt

WARNING: Windows does not support canonical zone IDs (for example, America/Vancouver).

Back up and recover resources with
sensuctl

The sensuctl dump command allows you to export your resources to standard out (stdout) or to a fle.
You can export all resources or a subset of them based on a list of resource types.
The dump command
supports exporting in wrapped-json and yaml .

For example, to export all resources for the current namespace to a fle named my-resources.yml or
my-resources.json in yaml or wrapped-json format:

You can restore exported resources with sensuctl create.

Back up before a Sensu version upgrade

sensuctl dump all --format yaml --fle my-resources.yml

SHELL

sensuctl dump all --format wrapped-json --fle my-resources.json

SHELL

NOTE: The sensuctl dump command does not export user passwords — you must add the
password_hash or password attribute to any exported users resources before restoring them

with sensuctl create.

In addition, sensuctl create does not restore API keys from a sensuctl dump backup, although you
can use your backup as a reference for granting new API keys.

Because users and API keys require these additional steps to restore with sensuctl create, you
might prefer to use the etcd snapshot and restore process as your primary backup and restore
method.
Take regular etcd snapshots and make regular sensuctl dump backups for extra
reassurance.

https://etcd.io/docs/latest/op-guide/recovery/

You should create a backup before you upgrade to a new version of Sensu.
Here’s the step-by-step
process:

1. Create a backup folder.

2. Create a backup of the entire cluster, except entities, events, and role-based access control
(RBAC) resources, for all namespaces.

3. Export your RBAC resources, except API keys and users, for all namespaces.

mkdir backup

sensuctl dump all \

--all-namespaces \

--omit

core/v2.Entity,core/v2.Event,core/v2.APIKey,core/v2.User,core/v2.Role,core/v2.

RoleBinding,core/v2.ClusterRole,core/v2.ClusterRoleBinding \

--format yaml \

--fle backup/confg.yml

SHELL

sensuctl dump all \

--all-namespaces \

--omit

core/v2.Entity,core/v2.Event,core/v2.APIKey,core/v2.User,core/v2.Role,core/v2.

RoleBinding,core/v2.ClusterRole,core/v2.ClusterRoleBinding \

--format wrapped-json \

--fle backup/confg.json

SHELL

sensuctl dump

core/v2.Role,core/v2.RoleBinding,core/v2.ClusterRole,core/v2.ClusterRoleBindin

g \

--all-namespaces \

SHELL

4. Export your API keys and users resources for all namespaces.

5. Export your entity resources for all namespaces (if desired).

--format yaml \

--fle backup/rbac.yml

sensuctl dump

core/v2.Role,core/v2.RoleBinding,core/v2.ClusterRole,core/v2.ClusterRoleBindin

g \

--all-namespaces \

--format wrapped-json \

--fle backup/rbac.json

SHELL

sensuctl dump core/v2.APIKey,core/v2.User \

--all-namespaces \

--format yaml \

--fle backup/cannotrestore.yml

SHELL

sensuctl dump core/v2.APIKey,core/v2.User \

--all-namespaces \

--format wrapped-json \

--fle backup/cannotrestore.json

SHELL

NOTE: Passwords are not included when you export users.
You must add the
password_hash or password attribute to any exported users resources before you

can use them with sensuctl create .

Because users require this additional confguration and API keys cannot be restored from a
sensuctl dump backup, consider exporting your API keys and users to a different folder
than backup .

Back up to populate new namespaces

You can create a backup copy of your existing resources with their namespaces stripped from the
record.
This backup allows you to replicate resources across namespaces without manual editing.

To create a backup of your resources that you can replicate in new namespaces:

1. Create a backup folder.

2. Back up your pipeline resources for all namespaces, stripping namespaces so that your
resources are portable for reuse in any namespace.

sensuctl dump core/v2.Entity \

--all-namespaces \

--format yaml \

--fle backup/inventory.yml

SHELL

sensuctl dump core/v2.Entity \

--all-namespaces \

--format wrapped-json \

--fle backup/inventory.json

SHELL

NOTE: If you do not export your entities, proxy check requests will not be scheduled for the
excluded proxy entities.

mkdir backup

sensuctl dump

core/v2.Asset,core/v2.CheckConfg,core/v2.HookConfg,core/v2.EventFilter,core/v2

SHELL

Restore resources from backup

When you are ready to restore your exported resources, use sensuctl create .

To restore everything you exported all at once, run:

To restore a subset of your exported resources (in this example, your RBAC resources), run:

.Mutator,core/v2.Handler,core/v2.Silenced,secrets/v1.Secret,secrets/v1.Provide

r \

--all-namespaces \

--format yaml | grep -v "^\s*namespace:" > backup/pipelines.yml

sensuctl dump

core/v2.Asset,core/v2.CheckConfg,core/v2.HookConfg,core/v2.EventFilter,core/v2

.Mutator,core/v2.Handler,core/v2.Silenced,secrets/v1.Secret,secrets/v1.Provide

r \

--all-namespaces \

--format wrapped-json | grep -v "^\s*namespace:" > backup/pipelines.json

SHELL

sensuctl create -r -f backup/

sensuctl create -f backup/rbac.yml

SHELL

sensuctl create -f backup/rbac.json

SHELL

NOTE: When you export users, required password attributes are not included.
You must add a
password_hash or password to users resources before restoring them with the sensuctl
create command.

Supported resource types

Use sensuctl describe-type all to retrieve the list of supported sensuctl dump resource types.

The response will list the names and other details for the supported resource types:

You can’t restore API keys or users from a sensuctl dump backup.
API keys must be reissued, but
you can use your backup as a reference for granting new API keys to replace the exported keys.

NOTE: Short names are only supported for core/v2 resources.

sensuctl describe-type all

 Fully Qualifed Name Short Name API Version Type Namespaced

────────────────────────────────────── ───────────────────── ───────────────────

───────────────────────── ─────────────

 authentication/v2.Provider authentication/v2 Provider false

 licensing/v2.LicenseFile licensing/v2 LicenseFile false

 store/v1.PostgresConfg store/v1 PostgresConfg false

 federation/v1.EtcdReplicator federation/v1 EtcdReplicator false

 federation/v1.Cluster federation/v1 Cluster false

 secrets/v1.Secret secrets/v1 Secret true

 secrets/v1.Provider secrets/v1 Provider false

 searches/v1.Search searches/v1 Search true

 web/v1.GlobalConfg web/v1 GlobalConfg false

 bsm/v1.RuleTemplate bsm/v1 RuleTemplate true

 bsm/v1.ServiceComponent bsm/v1 ServiceComponent true

 pipeline/v1.SumoLogicMetricsHandler pipeline/v1 SumoLogicMetricsHandler true

 pipeline/v1.TCPStreamHandler pipeline/v1 TCPStreamHandler true

 core/v2.Namespace namespaces core/v2 Namespace false

 core/v2.ClusterRole clusterroles core/v2 ClusterRole false

 core/v2.ClusterRoleBinding clusterrolebindings core/v2 ClusterRoleBinding false

 core/v2.User users core/v2 User false

 core/v2.APIKey apikeys core/v2 APIKey false

 core/v2.TessenConfg tessen core/v2 TessenConfg false

You can also list specifc resource types by fully qualifed name or short name:

To list more than one type, use a comma-separated list:

Format the sensuctl describe-type response

Add the --format fag to specify how the resources should be formatted in the sensuctl
describe-type response.
The default is unformatted, but you can specify either wrapped-json or
yaml :

 core/v2.Asset assets core/v2 Asset true

 core/v2.CheckConfg checks core/v2 CheckConfg true

 core/v2.Entity entities core/v2 Entity true

 core/v2.Event events core/v2 Event true

 core/v2.EventFilter flters core/v2 EventFilter true

 core/v2.Handler handlers core/v2 Handler true

 core/v2.HookConfg hooks core/v2 HookConfg true

 core/v2.Mutator mutators core/v2 Mutator true

 core/v2.Pipeline pipelines core/v2 Pipeline true

 core/v2.Role roles core/v2 Role true

 core/v2.RoleBinding rolebindings core/v2 RoleBinding true

 core/v2.Silenced silenced core/v2 Silenced true

sensuctl describe-type core/v2.CheckConfg

sensuctl describe-type checks

sensuctl describe-type core/v2.CheckConfg,core/v2.EventFilter,core/v2.Handler

sensuctl describe-type checks,flters,handlers

sensuctl describe-type core/v2.CheckConfg --format yaml

SHELL

Example sensuctl dump commands

To export only checks for only the current namespace to stdout in YAML or wrapped JSON format:

To export only handlers and flters for only the current namespace to a fle named my-handlers-and-

flters in YAML or wrapped JSON format:

To export resources for all namespaces, add the --all-namespaces fag to any sensuctl dump
command.
For example:

sensuctl describe-type core/v2.CheckConfg --format wrapped-json

SHELL

sensuctl dump core/v2.CheckConfg --format yaml

SHELL

sensuctl dump core/v2.CheckConfg --format wrapped-json

SHELL

sensuctl dump core/v2.Handler,core/v2.EventFilter --format yaml --fle my-handlers-

and-flters.yml

SHELL

sensuctl dump core/v2.Handler,core/v2.EventFilter --format wrapped-json --fle my-

handlers-and-flters.json

SHELL

sensuctl dump all --all-namespaces --format yaml --fle my-resources.yml

SHELL

You can use fully qualifed names or short names to specify resources in sensuctl dump commands.
Here’s an example that uses fully qualifed names:

sensuctl dump all --all-namespaces --format wrapped-json --fle my-resources.json

SHELL

sensuctl dump core/v2.CheckConfg --all-namespaces --format yaml

SHELL

sensuctl dump core/v2.CheckConfg --all-namespaces --format wrapped-json

SHELL

sensuctl dump core/v2.Handler,core/v2.EventFilter --all-namespaces --format yaml --

fle my-handlers-and-flters.yml

SHELL

sensuctl dump core/v2.Handler,core/v2.EventFilter --all-namespaces --format wrapped-

json --fle my-handlers-and-flters.json

SHELL

sensuctl dump core/v2.Handler,core/v2.EventFilter --format yaml --fle my-handlers-

and-flters.yml

SHELL

sensuctl dump core/v2.Handler,core/v2.EventFilter --format wrapped-json --fle my-

handlers-and-flters.json

SHELL

Here’s an example that uses short names:

Best practices for sensuctl dump

To reduce the running time for the sensuctl dump command, omit events and export only one
namespace at a time.

Omit events from your sensuctl dump command to reduce the size of the exported payload and the
system resources required to export.
The most important part of a backup is capturing the Sensu
confguration, and even with regular backups, events are likely to be outdated by the time you restore
them.
If you need access to all events, send them to a database store instead of including events in
routine Sensu backups.

It takes longer to export resources from all namespaces at once than the resources from one
namespace, especially as the number of resources in each namespace grows.
To export resources
more quickly, export a single namespace at a time.

sensuctl dump handlers,flters --format yaml --fle my-handlers-and-flters.yml

SHELL

sensuctl dump handlers,flters --format wrapped-json --fle my-handlers-and-

flters.json

SHELL

Filter responses with sensuctl

Sensuctl supports response fltering for all commands using the list verb.
For information about
response fltering methods and available label and feld selectors, read API response fltering.

Sensuctl-specifc syntax

You can use the same methods, selectors, and examples for sensuctl response fltering as for API
response fltering, except you’ll format your requests with the --label-selector and --feld-
selector fags instead of cURL.

The standard sensuctl response fltering syntax is:

To create a sensuctl response fltering command:

For example:

Sensuctl response fltering commands will also work with a single equals sign between the selector
fag and the flter statement:

COMMERCIAL FEATURE : Access sensuctl response fltering in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

sensuctl <resource_type> list --<selector> '<flter_statement>'

Replace <resource_type> with the resource your flter is based on.

Replace <selector> with either label-selector or feld-selector , depending on which
selector you want to use.

Replace <flter_statement> with the flter to apply.

sensuctl event list --feld-selector 'linux notin event.entity.subscriptions'

The examples demonstrate how to construct sensuctl flter statements for different selectors and
operators.

Filter operators

Sensuctl response fltering supports two equality-based operators, two set-based operators, one
substring matching operator, and one logical operator.

operator description example

== Equality check.publish == true

!= Inequality check.namespace != "default"

in Included in linux in check.subscriptions

notin Not included in slack notin check.handlers

matches Substring
matching

check.name matches "linux-"

&& Logical AND check.publish == true && slack in

check.handlers

For details about operators, read about the API response fltering operators.

Examples

Filter responses with label selectors

Use the --label-selector fag to flter responses using custom labels.

For example, to return entities with the proxy_type label set to switch :

sensuctl event list --feld-selector='linux notin event.entity.subscriptions'

Filter responses with feld selectors

Use the --feld-selector fag to flter responses using specifc resource attributes.

For example, to return entities with the switches subscription:

To retrieve all events that equal a status of 2 (CRITICAL):

To retrieve all entities whose name includes the substring webserver :

Use the logical AND operator

To use the logical AND operator (&&) to return checks that include a linux subscription in the dev
namespace:

Combine label and feld selectors

sensuctl entity list --label-selector 'proxy_type == switch'

sensuctl entity list --feld-selector 'switches in entity.subscriptions'

sensuctl event list --feld-selector 'event.check.status == "2"'

sensuctl entity list --feld-selector 'entity.name matches "webserver"'

sensuctl check list --feld-selector 'linux in check.subscriptions && dev in

check.namespace'

You can combine the --label-selector and --feld-selector fags in a single command.

For example, this command returns checks with the region label set to us-west-1 that also use
the slack handler:

sensuctl check list --label-selector 'region == "us-west-1"' --feld-selector 'slack

in check.handlers'

Set environment variables with sensuctl

Sensu allows you to set sensuctl environment variables for a single sensuctl command or with sensuctl
confgure.
You can also export and set environment variables on your system with sensuctl env.

These environment variables are alternatives to confguration fags like the sensuctl global fags and
sensuctl confgure fags.

Setting sensuctl options as environment variables instead of using fags offers the following
advantages:

Set environment variables for a single command

Set certain environment variables for a single sensuctl command to temporarily override your current
settings.

For example, to quickly check the entities in the production namespace while you are currently in
the default namespace, run:

Single-command environment variables are not persistent.
To continue the example, if you run
sensuctl entity list again, the response will include entities for the default namespace (not
production).

Use environment variables to avoid exposing sensitive information like your API key and other
security credentials.
Sensitive information is visible when you use command-line confguration
fags.

Inject exported environment variables for sensuctl commands in an automation script, such as
a container creation script.

Confgure different shells for individual Sensu instances with the desired sets of environment
variables rather than running sensuctl confgure every time you want to switch between
instances.

SENSU_NAMESPACE=production sensuctl entity list

These are the environment variables you can set for a single sensuctl command:

Set environment variables with sensuctl confgure

To set certain environment variables with sensuctl confgure , defne the environment variables in
the same command.
For example:

Environment variables set with sensuctl confgure are persistent.

These are the environment variables you can set for sensuctl confgure:

SENSU_API_KEY API key to use for authentication

SENSU_API_URL host URL of Sensu installation

SENSU_CACHE_DIR path to directory containing cache & temporary

fles

SENSU_CONFIG_DIR path to directory containing confguration fles

SENSU_INSECURE_SKIP_TLS_VERIFY skip TLS certifcate verifcation (Boolean value)

SENSU_NAMESPACE namespace in which to perform actions (default

"default")

SENSU_TIMEOUT timeout when communicating with sensu backend

(default 15s)

SENSU_TRUSTED_CA_FILE TLS CA certifcate bundle in PEM format

SENSU_OIDC=true SENSU_NON_INTERACTIVE=true SENSU_FORMAT=yaml SENSU_PORT=7999

SENSU_TIMEOUT=49s SENSU_URL=http://192.168.7.217:8080 sensuctl confgure

SENSU_FORMAT preferred output format (default "tabular")

SENSU_NON_INTERACTIVE do not administer interactive questionnaire

SENSU_OIDC use an OIDC provider for authentication (Boolean

value)

SENSU_PASSWORD password

SENSU_PORT (used with SENSU_OIDC) port for local HTTP web server used for OAuth 2

callback during OIDC authentication (default 8000)

SENSU_URL the sensu backend url (default

"http://localhost:8080")

SENSU_USERNAME username

Export environment variables with sensuctl env

Export your shell environment with sensuctl env to use the exported environment variables with cURL
and other scripts.

This example shows how to use sensuctl env to export environment variables and confgure your shell:

export SENSU_API_URL="http://127.0.0.1:8080"

export SENSU_NAMESPACE="default"

export SENSU_FORMAT="tabular"

export SENSU_ACCESS_TOKEN="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x"

export SENSU_ACCESS_TOKEN_EXPIRES_AT="1567716187"

export SENSU_REFRESH_TOKEN="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x"

export SENSU_TRUSTED_CA_FILE=""

export SENSU_INSECURE_SKIP_TLS_VERIFY="true"

eval $(sensuctl env)

BASH

SET SENSU_API_URL=http://127.0.0.1:8080

SET SENSU_NAMESPACE=default

SET SENSU_FORMAT=tabular

SET SENSU_ACCESS_TOKEN=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x

SET SENSU_ACCESS_TOKEN_EXPIRES_AT=1567716676

SET SENSU_REFRESH_TOKEN=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x

SET SENSU_TRUSTED_CA_FILE=

SET SENSU_INSECURE_SKIP_TLS_VERIFY=true

@FOR /f "tokens=*" %i IN ('sensuctl env --shell cmd') DO @%i

CMD

$Env:SENSU_API_URL = "http://127.0.0.1:8080"

$Env:SENSU_NAMESPACE = "default"

$Env:SENSU_FORMAT = "tabular"

$Env:SENSU_ACCESS_TOKEN = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x"

POWERSHELL

The sensuctl env command allows you to export the following environment variables:

$Env:SENSU_ACCESS_TOKEN_EXPIRES_AT = "1567716738"

$Env:SENSU_REFRESH_TOKEN = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x"

$Env:SENSU_TRUSTED_CA_FILE = ""

$Env:SENSU_INSECURE_SKIP_TLS_VERIFY = "true"

& sensuctl env --shell powershell | Invoke-Expression

NOTE: If you receive an invalid credentials error while using sensuctl env, run eval

$(sensuctl env) to refresh your token.

SENSU_API_KEY API key to use for authentication

SENSU_API_URL URL of the Sensu backend API in sensuctl

SENSU_NAMESPACE Name of the current namespace in sensuctl

SENSU_FORMAT Set output format in sensuctl (for example, JSON,

YAML, etc.)

SENSU_ACCESS_TOKEN Current API access token in sensuctl

SENSU_ACCESS_TOKEN_EXPIRES_AT Timestamp specifying when the current API access

token expires

SENSU_REFRESH_TOKEN Refresh token used to obtain a new access token

SENSU_TIMEOUT timeout when communicating with sensu backend

(default 15s)

SENSU_TRUSTED_CA_FILE Path to a trusted CA fle if set in sensuctl

SENSU_INSECURE_SKIP_TLS_VERIFY Boolean value that can be set to skip TLS

verifcation

Use sensuctl with Bonsai

Sensuctl supports installing dynamic runtime asset defnitions directly from Bonsai, the Sensu asset
hub, and checking your Sensu backend for outdated dynamic runtime assets.
You can also use
sensuctl command to install, execute, list, and delete commands from Bonsai or a URL.

Install dynamic runtime asset defnitions

To install a dynamic runtime asset defnition directly from Bonsai, use sensuctl asset add

<ASSET_NAME>:<ASSET_VERSION> .
Replace <ASSET_NAME> with the complete name of the dynamic
runtime asset from Bonsai.
An asset’s complete name includes both the part before the forward slash
(sometimes called the Bonsai namespace) and the part after the forward slash.

Replace <ASSET_VERSION> with the asset version you want to install.
To automatically install the latest
version of the plugin, you do not need to specify the version: sensuctl asset add <ASSET_NAME> .

For example, to install version 3.7.0 of the sensu/sensu-infuxdb-handler dynamic runtime asset:

NOTE: Specify the asset version you want to install to maintain the stability of your observability
infrastructure.
If you do not specify a version to install, Sensu automatically installs the latest
version, which may include breaking changes.

https://bonsai.sensu.io/
https://bonsai.sensu.io/
http://localhost:1313/images/go/sensuctl_bonsai/name_namespace_location_bonsai_asset.png
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

The response should be similar to this example:

You can also use the --rename fag to rename the dynamic runtime asset on install:

Check your Sensu backend for outdated dynamic runtime
assets

To check your Sensu backend for dynamic runtime assets that have newer versions available on
Bonsai, use sensuctl asset outdated .
This will print a list of dynamic runtime assets installed in the
backend whose version is older than the newest version available on Bonsai:

If outdated assets are installed on the backend, the response will be similar to this example:

sensuctl asset add sensu/sensu-infuxdb-handler:3.7.0

fetching bonsai asset: sensu/sensu-infuxdb-handler:3.7.0

added asset: sensu/sensu-infuxdb-handler:3.7.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["sensu/sensu-infuxdb-handler"].

sensuctl asset add sensu/sensu-infuxdb-handler:3.7.0 --rename infuxdb-handler

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.
Read the asset reference for more information about
dynamic runtime asset builds.

sensuctl asset outdated

Extend sensuctl with commands

Use sensuctl command to install, execute, list, and delete commands from Bonsai or a URL.

Install commands

To install a sensuctl command from Bonsai or a URL:

To install a command plugin, use the Bonsai asset name or specify a URL and SHA512 checksum.

To install a command using the Bonsai asset name, replace <ASSET_NAME> with the complete
name of the asset from Bonsai.
:<ASSET_VERSION> is only required if you require a specifc version or
are pinning to a specifc version.
If you do not specify a version, sensuctl will fetch the latest version
from Bonsai.

Replace <ALIAS> with a unique name for the command.
For example, for the Sensu EC2 Discovery
Plugin, you might use the alias sensu-ec2-discovery .
<ALIAS> is required.

Replace <FLAGS> with the fags you want to use.
Run sensuctl command install -h to view fags.
Flags are optional and apply only to the install command — they are not saved as part of the
command you are installing.

To install a command from the Sensu EC2 Discovery Plugin with no fags:

 Asset Name Bonsai Asset Current Version Latest

Version

---------------------------- ---------------------------- --------------- -------

sensu/sensu-infuxdb-handler sensu/sensu-infuxdb-handler 3.6.1

3.7.0

sensuctl command install <ALIAS> (<ASSET_NAME>:<ASSET_VERSION> | --url <ARCHIVE_URL>

--checksum <ARCHIVE_CHECKSUM>) <FLAGS>

sensuctl command install sensu-ec2-discovery portertech/sensu-ec2-discovery:0.3.0

https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler
https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler
https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler

To install a command from a URL, replace <ARCHIVE_URL> with a command URL that points to a
tarball (for example, https://path/to/asset.tar.gz).
Replace <ARCHIVE_CHECKSUM> with the checksum
you want to use.
Replace <ALIAS> with a unique name for the command.

Replace <FLAGS> with the fags you want to use.
Run sensuctl command install -h to view fags.
Flags are optional and apply only to the install command — they are not saved as part of the
command you are installing.

For example, to install a command-test dynamic runtime asset via URL with no fags:

Execute commands

To execute a sensuctl command plugin via its dynamic runtime asset’s bin/entrypoint executable:

Replace <ALIAS> with a unique name for the command.
For example, for the Sensu EC2 Discovery
Plugin, you might use the alias sensu-ec2-discovery .
<ALIAS> is required.

Replace <GLOBAL_FLAGS> with the globlal fags you want to use.
Run sensuctl command exec -h to
view global fags.
To pass <GLOBAL_FLAGS> fags to the bin/entrypoint executable, make sure to
specify them after a double dash surrounded by spaces.

Replace <FLAGS> with the fags you want to use.
Run sensuctl command exec -h to view fags.
Flags are optional and apply only to the exec command — they are not saved as part of the
command you are executing.

sensuctl command install command-test --url https://github.com/amdprophet/command-

test/releases/download/v0.0.4/command-test_0.0.4_darwin_amd64.tar.gz --checksum

8b15a170e091dab42256fe64ca7c4a050ed49a9dbfd6c8129c95506a8a9a91f2762ac1a6d24f4fc54543

0613fd45abc91d3e5d3605fcfffb270dcf01996caa7f

NOTE: Dynamic runtime asset defnitions with multiple asset builds are only supported via Bonsai.

sensuctl command exec <ALIAS> <GLOBAL_FLAGS> <FLAGS>

https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler
https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler

For example:

Sensuctl will parse the –cache-dir fag, but bin/entrypoint will parse all fags after the -- .

In this example, the full command run by sensuctl exec would be:

List commands

To list installed sensuctl commands:

Replace <FLAGS> with the fags you want to use.
Run sensuctl command list -h to view fags.
Flags are optional and apply only to the list command.

Delete commands

To delete sensuctl commands:

Replace <ALIAS> with a unique name for the command.
For example, for the sensu/sensu-ec2-
handler, you might use the alias sensu-ec2-handler .
<ALIAS> is required.

NOTE: When you use sensuctl command exec , the environment variables are passed to the
command.

sensuctl command exec <COMMAND> <GLOBAL_FLAG_1> <GLOBAL_FLAG_2> --cache-dir /tmp --

--<FLAG_1> --<FLAG_2>=<value>

bin/entrypoint <GLOBAL_FLAG_1> <GLOBAL_FLAG_2> --<FLAG_1> --<FLAG_2>=<value>

sensuctl command list <FLAGS>

sensuctl command delete <ALIAS> <FLAGS>

https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler
https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler

Replace <FLAGS> with the fags you want to use.
Run sensuctl command delete -h to view fags.
Flags are optional and apply only to the delete command.

Web UI

The Sensu backend includes the Sensu web UI: a unifed view of your events, entities, and checks
with user-friendly tools that provide single-pane-of-glass visibility and reduce alert fatigue.

The web UI homepage provides a high-level overview of the overall health of the systems under
Sensu’s management, with a summary of active incidents, the number of incidents by severity, the
types of entities under management, and the numbers of entities and incidents per namespace.

Access the web UI

After you start the Sensu backend, you can access the web UI in your browser by visiting
http://localhost:3000.

COMMERCIAL FEATURE : Access the Sensu web UI in the packaged Sensu Go distribution.
For
more information, read Get started with commercial features.

http://localhost:1313/images/go/web_ui_index/web_ui_660.png

Sign in to the web UI

Sign in to the web UI with the username and password you used to confgure sensuctl.

The web UI uses your username and password to obtain access and refresh tokens via the Sensu
/auth API.
The access and refresh tokens are JSON Web Tokens (JWTs) that Sensu issues to record
the details of users’ authenticated Sensu sessions.
The backend digitally signs these tokens, and the
tokens can’t be changed without invalidating the signature.
The access and refresh tokens are saved in
your browser’s local storage.

The web UI complies with Sensu role-based access control (RBAC), so individual users can view
information according to their access confgurations.
Read the RBAC reference for default user
credentials and instructions for creating new users.

View system information

Press CTRL . in the web UI to open the system information modal and view information about your
Sensu backend and etcd or PostgreSQL datastore.
For users with permission to create or update
licenses, the system information modal includes license expiration information.

License expiration banner

A banner appears at the top of the web UI screen when your organization’s license is expiring:

The banner is only visible to users who have read access to your organization’s license.

By default, the banner starts appearing when the license expiration is 30 days away.
To adjust the
number of days before license expiration to begin displaying the banner, use the
license_expiry_reminder web UI confguration attribute.

NOTE: You may need to replace localhost with the hostname or IP address where the Sensu
backend is running.

http://localhost:1313/images/go/web_ui_index/license_expiration_banner.png

Use the implicit OR operator

On the Sensu web UI homepage, you can use the search function to limit the display by cluster and
namespace.
If you specify the same attribute twice with different values, Sensu automatically applies a
logical OR operator to your search.

For example, suppose you enter two search expressions in the search bar on the web UI homepage:
namespace: devel_1 and namespace: devel_2 .
In this case, the web UI homepage will display all

data for both namespaces: devel_1 and devel_2 .

Change web UI themes

Use the preferences menu to change the theme or switch to the dark theme.

Troubleshoot web UI errors

Read Troubleshoot Sensu to resolve and investigate web UI errors.

View and manage resources in the web UI

You can view and manage Sensu resources in the web UI, including events, entities, silences, checks,
handlers, event flters, and mutators.

Use the namespace switcher

Beyond the homepage, the web UI displays events, entities, and resources for a single namespace at
a time.
By default, the web UI displays the default namespace.

To switch namespaces, select the menu icon in the upper-left corner or press the Ctrl+K keyboard
shortcut and choose a namespace from the dropdown.

When you switch to a namespace, the left navigation menu loads so you can select specifc pages for
events, entities, services, silences, catalog, and confguration, which includes checks, handlers, event

COMMERCIAL FEATURE : Access the web UI in the packaged Sensu Go distribution.
For more
information, read Get started with commercial features.

NOTE: The namespace switcher will list only the namespaces to which the current user has
access.

http://localhost:1313/images/go/view_manage_resources/web_ui_namespace_switcher_660.png

flters, and mutators:

Click the ☰ icon at the top of the left-navigation menu to expand the menu and display page labels:

Manage events

The Events page opens by default when you navigate to a namespace, with an automatic flter to show
only events with a non-passing status (i.e. event.check.state != passing).
The top row of the
events list includes several other options for fltering and sorting events:

http://localhost:1313/images/go/view_manage_resources/web_ui_left_nav_670.png
http://localhost:1313/images/go/view_manage_resources/expand_web_ui_left_nav_670.png

Click the check boxes to select one or more events and resolve, silence, or delete them directly from
the Events page:

Click an event name to view details like status, output, number of occurrences, labels and annotations,
related check confguration (if the event was produced by a service check), and entity summary, as
well as a timeline that displays the event’s last 20 statuses at a glance:

http://localhost:1313/images/go/view_manage_resources/events_page_filter_sort_670.png
http://localhost:1313/images/go/view_manage_resources/group_events_670.png

Manage entities

The Entities page provides real-time inventory information for the namespace’s endpoints under Sensu
management.
The top row of the entities list includes options for fltering and sorting entities on the
page:

http://localhost:1313/images/go/view_manage_resources/single_event_view_670.gif
http://localhost:1313/images/go/view_manage_resources/entities_page_filter_sort_680.png

Click the check boxes to select one or more entities and delete them directly from the Entities page:

Click an entity name to view details about the entity’s creator, agent version (for agent entities),
subscriptions, labels and annotations, associated events, and properties:

Manage services

http://localhost:1313/images/go/view_manage_resources/group_entities_680.png
http://localhost:1313/images/go/view_manage_resources/single_entity_view_680.gif

The Services page includes a module to help you build and confgure service entities with service
components and rule templates for business service monitoring (BSM).
Read Build business service
monitoring for details about the web UI BSM module.

Manage silences

Create silences by check or subscription name and clear silences in the web UI Silences page.
The
Silences page lists all active silences for the namespace.
The top row of the silences list includes
options for fltering and sorting silences on the page:

Click + NEW to open a dialog window and create silences for individual events, by check or
subscription name, or by entity:

http://localhost:1313/images/go/view_manage_resources/silences_filter_sort_670.png

You can also silence individual checks and entities from their detail pages in the web UI.

After you create a silence, it will be listed in the web UI Silences page until you clear the silence or the
silence expires.

Manage confguration resources

Under the Confguration menu option, you can access assets, checks, event flters, handlers, mutators,
pipelines, role-based access control (RBAC) resources, and secrets.
Each resource page lists the
namespace’s resources.
The top row of each page includes options for fltering and sorting the listed
resources.

http://localhost:1313/images/go/view_manage_resources/silences_dialog_670.gif

Click a resource name to view the resource’s detail page, where you can review more information
about the resource and edit or delete it.

On the Checks page, click the check boxes to select one or more checks to execute, silence,
unpublish, or delete them.

Execute checks on demand

You can execute individual checks on demand and on any agent from each check’s detail page to test
your observability pipeline.

Click EXECUTE to open the Execute Check dialog window:

http://localhost:1313/images/go/view_manage_resources/configuration_pages_680.gif

In the Execute Check dialog window, you can execute the check according to its existing subscriptions
or add and remove subscriptions to execute it on specifc agents.

NOTE: Changing the subscriptions for ad hoc execution in the Execute Check dialog window will
not make any changes to the existing subscriptions in the check defnition.

http://localhost:1313/images/go/view_manage_resources/execute_check_button_670.png

View resource data in the web UI

You can view and copy the YAML or JSON defnition for any event, entity, or confguration resource
directly in the web UI.

View resource data for an event or entity

To view and copy the YAML and JSON defnitions for any event or entity in the web UI:

1. Open the individual resource page for the event or entity.
2. Click ⋮ at the top-right of the page.
3. Select </> Data to open the Resource Data dialog window.
4. In the Resource Data window, click the yaml or json button to select the format.

NOTE: If you manually execute a round robin check in the web UI, Sensu will execute the check
on all subscribed agents.
After the manual execution, the check will run as scheduled in round robin
fashion.

To manually execute a round robin check on a single agent, specify the agent’s entity name
subscription in the Execute Check dialog.
For example, if the entity is named webserver1 , use the
subscription entity:webserver1 .

http://localhost:1313/images/go/view_manage_resources/execute_check_dialog_670.png

5. Click the copy button at the top-right of the Resource Data window to copy the resource
defnition.

This example shows how to view and copy the resource data for an event:

View resource data for a confguration resource

To view and copy the YAML and JSON defnitions for any confguration resource in the web UI:

1. Open the individual resource page.
2. Click RAW.
3. In the resource data feld, click the yaml or json button to select the format.
4. Click the copy button at the top-right of the resource data feld to copy the resource defnition.

This example shows how to view and copy the resource data for an event flter:

http://localhost:1313/images/go/view_manage_resources/view_event_data_web_ui_670.gif

http://localhost:1313/images/go/view_manage_resources/view_filter_data_web_ui_670.gif

Search in the web UI

The Sensu web UI includes basic search and fltering functions you can use to build customized views
of your Sensu resources.
Sensu also supports advanced web UI searches based on a wider range of
resource attributes and custom labels as a commercial feature.

When you apply a search to a web UI page, it creates a unique link for the page of search results.
You
can bookmark these links and share your favorite search combinations.
You can also save your favorite
searches.

Events and entities search limits

If you use etcd for event storage, web UI search queries on the events and entities pages will stop
after returning a certain number of matches.
Without these limits, the search operation can diminish
cluster health.

If a web UI search reaches the limit for the events or entities page, the results count at the bottom-right
corner of the page will indicate that the total number of matches exceeds the number of results listed.

Events search limit

On the events page, if you use etcd for event storage, search queries will return a maximum of 50,000
events.
For example, if you use etcd for event storage and you search in a namespace that has more
than 50,000 matching events, the search results will not include matching events beyond the frst
50,000.

Entities search limit

If you use etcd for event storage, search queries on the entities page will stop after retrieving
approximately 500 matches.
As a result, if your search matches more than 500 entities, the total results

COMMERCIAL FEATURE : Access the web UI, basic and advanced web UI searching, and saved
searches in the packaged Sensu Go distribution.
For more information, read Get started with
commercial features.

count at the bottom-right corner of the entities page will not accurately refect the number of matching
entities.

Search operators

Web UI search supports two equality-based operators, two set-based operators, one substring
matching operator, and one logical operator.

operator description example

== Equality check.publish == "true"

!= Inequality check.namespace != "default"

in Included in "linux" in check.subscriptions

notin Not included in "slack" notin check.handlers

matches Substring
matching

check.name matches "linux-"

&& Logical AND check.publish == "true" && "slack" in

check.handlers

For details about operators, read about the API response fltering operators.

Use quick search

The web UI quick search allows you to query and flter Sensu resources without using search syntax.
Type your search term into the search feld on any page of the web UI and press Enter .
Sensu will
auto-complete a simple search statement for the resources on that page using substring matching.

For example, on the Events page in the web UI, if you type mysql into the search feld, Sensu will
auto-complete the search statement to event.check.name matches "mysql" .

Create basic searches

Sensu includes these basic search functions:

If you are using the basic web UI search functions, you can create a search by clicking in the search
bar at the top of the web UI page:

1. In the web UI, open the page of resources you want to search.
2. Click in the search bar at the top of the web UI page.
3. Select the attribute you want to search for from the dropdown list of options.
4. Click in the search bar again and select the search to apply.
5. Press Return/Enter.

Create advanced searches

Sensu supports advanced web UI searches using a wider range of attributes, including custom labels.
You can use the same methods, felds, and examples for web UI searches as for API response
fltering, with some syntax differences.

To search resources based on felds and labels, you’ll write a brief search statement.
Depending on the
operator you’re using, the web UI search syntax is either:

or

Events page: search by entity, check, status, and silenced/unsilenced.

Entities page: search by entity class and subscription.

Silences page: search by check and subscription.

Checks page: search by subscription and published/unpublished.

Handlers page: search by handler type.

Filters page: search by action.

NOTE: You do not need to specify a resource type in web UI search because you must navigate to
the resource page before you construct the search.

<SEARCH_TERM> <OPERATOR> <FIELD>

Fields are specifc resource attributes in dot notation.
For example, this search will retrieve all events for
entities with the linux subscription:

This search will retrieve all events that whose status is not equal to passing :

To display only events for checks with the subscription webserver , enter this search statement on
the Events page:

To display only checks that use the slack handler, enter this search statement on the Checks page:

Search for numbers or special characters

If you are searching for a value that begins with a number, place the value in single or double quotes:

Likewise, to search string values that include special characters like hyphens and underscores, place
the value in single or double quotes:

<FIELD> <OPERATOR> <SEARCH_TERM>

"linux" in event.entity.subscriptions

event.check.state != "passing"

"webserver" in event.check.subscriptions

"slack" in check.handlers

entity.name == '1b04994n'

entity.name == "1b04994n"

To display only events at 2 (CRITICAL) status:

Search for labels

Labels are treated like any other feld in web UI searches.

For example, to search based on a check label version , use:

To display only checks with the type label set to server , enter this search statement on the
Checks page:

To search for entities that are labeled for any region in the US (for example, us-east-1 , us-west-
1 , and so on):

entity.labels.region == 'us-west-1'

entity.labels.region == "us-west-1"

event.check.status == "2"

check.labels.version matches "7"

check.labels.type == "server"

entity.labels.region matches "us"

NOTE: Web UI searches for label names that include hyphens are not supported.
Searches that
include a hyphenated label name, such as entity.labels.imported-by , will return an
unsupported token error.

Search for event labels

For label-based event searches, the web UI merges check and entity labels into a single search term:
event.labels.[KEY] .

For example, to display events with the type label set to server , enter this search statement on
the Events page:

This search will retrieve events with the type label set to server , no matter whether the label is
defned in the event’s corresponding check or entity confguration.

Use the logical AND operator

To use the logical AND operator (&&) to return checks that include a linux subscription and the
slack handler:

To return events that include a windows check subscription and any email handler:

Save a search

To save a web UI search:

1. Create a web UI search.
2. Click at the right side of the search bar.
3. Click Save this search.
4. Type the name you want to use for the saved search.
5. Press Return/Enter.

event.labels.type == "server"

"linux" in check.subscriptions && "slack" in check.handlers

"windows" in event.check.subscriptions && event.check.handlers matches "email"

Sensu saves your web UI searches to etcd in a namespaced resource named searches .
To recall a
saved web UI search, a Sensu user must be assigned to a role that includes permissions for both the
searches resource and the namespace where you save the search.

The role-based access control (RBAC) reference includes example workfows that demonstrate how to
confgure a user’s roles and role bindings to include full permissions for namespaced resources,
including saved searches.

Recall a saved search

To recall a saved search, click at the right side of the search bar and select the name of the search
you want to recall.

You can combine an existing saved search with a new search to create a new saved search.
To do this,
recall a saved search, add the new search statement in the search bar, and save the combination as a
new saved search.

Delete a saved search

To delete a saved search:

1. Click at the right side of the search bar.
2. Find the saved search you want to delete and click the next to it.

Use the sort function

Use the SORT dropdown menu to sort search results.
You can sort all resources by name, but events
and silences have additional sorting options:

Events page: sort by last OK, severity, timestamp, and entity.

Silences page: sort by start date.

Confgure the web UI

Web UI confguration allows you to defne certain display options for the Sensu web UI, such as which
web UI theme to use, the number of items to list on each page, and which URLs and linked images to
expand.
You can defne a single custom web UI confguration to federate to all, some, or only one of
your clusters.

Create a web UI confguration

Use the enterprise/web/v1 API POST endpoint or sensuctl create to create a GlobalConfg resource.
The web UI confguration reference describes each attribute you can confgure in the GlobalConfg
resource.

If an individual user’s settings confict with the web UI confguration settings, Sensu will use the
individual user’s settings.
For example, if a user’s system is set to dark mode and their web UI settings
are confgured to use their system settings, the web UI will use dark mode for that user, even if you set
the theme to classic in your web UI confguration.

Federate a web UI confguration to specifc clusters

The web UI confguration in use is provided by the cluster you are connected to.
For example, if you
open the web UI for https://cluster-a.sensu.my.org:3000, the web UI display will be confgured
according to the GlobalConfg resource for cluster-a.

In a federated environment, you can create an etcd replicator for your GlobalConfg resource so you
can use it for different clusters:

COMMERCIAL FEATURE : Access web UI confguration in the packaged Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: Each cluster should have only one web confguration.

YML

https://cluster-a.sensu.my.org:3000/

Debugging in federated environments

In a federated environment, a problem like incorrect confguration, an error, or a network issue could

type: EtcdReplicator

api_version: federation/v1

metadata:

 name: web_global_confg

spec:

 api_version: web/v1

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 insecure: false

 key: /path/to/ssl/key.pem

 replication_interval_seconds: 120

 resource: GlobalConfg

 url: "http://127.0.0.1:2379"

{

 "type": "EtcdReplicator",

 "api_version": "federation/v1",

 "metadata": {

 "name": "web_global_confg"

 },

 "spec": {

 "api_version": "web/v1",

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "insecure": false,

 "key": "/path/to/ssl/key.pem",

 "replication_interval_seconds": 120,

 "resource": "GlobalConfg",

 "url": "http://127.0.0.1:2379"

 }

}

JSON

prevent a cluster from appearing in the web UI namespace switcher.

If you set the always_show_local_cluster attribute to true in your web UI confguration, the
namespace switcher will display a heading for each federated cluster, along with the local-cluster
heading to indicate the cluster you are currently connected to.
With always_show_local_cluster set
to true , the cluster administrator can directly connect to the local cluster even if there is a problem
that would otherwise prevent the cluster from being listed in the namespace switcher.

NOTE: Use the always_show_local_cluster attribute only in federated environments.
In a
single-cluster environment, the namespace switcher will only list a local-cluster heading and the
namespaces for that cluster.

Build business service monitoring

The Sensu web UI includes a module to help you build and confgure business service monitoring
(BSM) service entities with service components and rule templates.

Build a business service

To build a business service in the web UI module:

1. Click in the left navigation menu to open the Services page.

2. Click ADD NEW SERVICE to open the Create New Service dialog window.
3. Enter a name for the service entity.
4. Enter labels and annotations, if desired.
5. Click Submit.

The updated Services page will include a tile for the new service:

COMMERCIAL FEATURE : Access the web UI and business service monitoring (BSM) in the
packaged Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

NOTE: BSM requires PostgreSQL to achieve high event throughput.
For this reason, the web UI will
display a PostgreSQL prompt instead of the BSM module until you confgure a PostgreSQL
datastore.

The business service itself is an entity with the class service , so it will also be listed on the Entities
page.

To add service components to a business service:

1. Click ⋮ for the business service.
2. Select + New from the drop-down menu to open the Confgure New Service Component dialog

window.
3. Enter a name for the service component.
4. Enter labels and annotations, if desired.
5. Enter query selectors to describe the events that each monitoring rule should process for the

service component.
6. Select the rule template you wish to use and a unique name to use for the rule-specifc events.
7. Enter values for the arguments to pass to the rule template.
Available arguments will vary for

different rule templates.
8. Specify the type of check scheduling the service component should use (interval or cron) as

well as the desired interval in seconds or cron scheduling statement.
9. Specify the handlers the service component should use.

10. Click Submit.

The updated business service tile will include the service component:

http://localhost:1313/images/go/bsm_module/create_service_670.gif

View and manage business services

After you create a business service by any means (web UI, API, or sensuctl), it will be listed in the web
UI Services page until you delete it.

Click the business service name to view its events and other related details and edit, silence, or delete
the service:

http://localhost:1313/images/go/bsm_module/create_service_component_670.gif

To edit, add components to, or delete a business service, click ⋮ at the top-right corner of the service’s
tile.

View and manage service components

After you add a service component to a business service, it will be listed on the business service tile in
the web UI Services page until you delete it.
To edit or delete a service component, click ⋮ at the right of
the component’s name:

http://localhost:1313/images/go/bsm_module/business_service_detail_page_670.png

Click the service component name to view its events and other related details.
You can also edit,
silence, and delete the component from the detail page.

http://localhost:1313/images/go/bsm_module/edit_service_component_670.png

Searches reference

With the saved searches feature in the web UI, you can apply search parameters to your entities,
events, and resources and save them to etcd in a namespaced resource named searches .

The saved searches feature is designed to be used directly in the web UI.
However, you can create,
retrieve, update, and delete saved searches with enterprise/searches/v1 API endpoints.

Search for events with any status except passing

The following saved search will retrieve all events that have any status except passing :

COMMERCIAL FEATURE : Access the web UI in the packaged Sensu Go distribution.
For more
information, read Get started with commercial features.

type: Search

api_version: searches/v1

metadata:

 name: events-not-passing

spec:

 parameters:

 - status:incident

 - status:warning

 - status:critical

 - status:unknown

 resource: core.v2/Event

YML

{

 "type": "Search",

 "api_version": "searches/v1",

JSON

Search for published checks with a specifc subscription and
region

The following saved search will retrieve all published checks for the us-west-1 region with the
linux subscription:

 "metadata": {

 "name": "events-not-passing"

 },

 "spec": {

 "parameters": [

 "status:incident",

 "status:warning",

 "status:critical",

 "status:unknown"

],

 "resource": "core.v2/Event"

 }

}

type: Search

api_version: searches/v1

metadata:

 name: published-checks-linux-uswest

spec:

 parameters:

 - published:true

 - subscription:linux

 - 'labelSelector: region == "us-west-1"'

 resource: core.v2/CheckConfg

YML

{

 "type": "Search",

 "api_version": "searches/v1",

JSON

Search specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
searches in this version of Sensu, the api_version should always be
searches/v1 .

required Required for search entry defnitions in wrapped-json or yaml format
for use with sensuctl create .

type String

example

 "metadata": {

 "name": "published-checks-linux-uswest"

 },

 "spec": {

 "parameters": [

 "published:true",

 "subscription:linux",

 "labelSelector: region == \"us-west-1\""

],

 "resource": "core.v2/CheckConfg"

 }

}

api_version: searches/v1

YML

{

 "api_version": "searches/v1"

}

JSON

metadata

description Top-level collection of metadata about the search that includes name

and namespace . The metadata map is always at the top level of the
search defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. Read
metadata attributes for details.

required Required for search entry defnitions in wrapped-json or yaml format
for use with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the search spec attributes. The spec
contents will depend on the search parameters you apply and save.

required Required for silences in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

metadata:

 name: us-west-server-incidents

 namespace: default

YML

{

 "metadata": {

 "name": "us-west-server-incidents",

 "namespace": "default"

 }

}

JSON

YML

example

type

description Top-level attribute that specifes the sensuctl create resource type.
Searches should always be type Search .

required Required for search entry defnitions in wrapped-json or yaml format
for use with sensuctl create .

type String

example

spec:

 parameters:

 - entity:server-testing

 - check:server-health

 - status:incident

 - labelSelector:region == "us-west-1"

 resource: core.v2/Event

{

 "spec": {

 "parameters": [

 "entity:server-testing",

 "check:server-health",

 "status:incident",

 "labelSelector:region == \"us-west-1\""

],

 "resource": "core.v2/Event"

 }

}

JSON

type: Search

YML

JSON

Metadata attributes

name

description Search identifer generated from the combination of a subscription name
and check name.

required true

type String

example

namespace

description Sensu RBAC namespace that the search belongs to.

required false

type String

default default

{

 "type": "Search"

}

name: us-west-server-incidents

YML

{

 "name": "us-west-server-incidents"

}

JSON

YML

example

Spec attributes

parameters

description Parameters the search will apply.

required true

type Array

example

namespace: default

{

 "namespace": "default"

}

JSON

parameters:

- entity:server-testing

- check:server-health

- status:incident

- labelSelector:region == "us-west-1"

YML

{

 "parameters": [

 "entity:server-testing",

 "check:server-health",

 "status:incident",

 "labelSelector:region == \"us-west-1\""

]

}

JSON

resource

description Fully qualifed name of the resource included in the search.

required true

type String

example

Parameters

action

description For event flter searches, the type of flter to include in the search:
allow or deny .

required false

type String

example

resource: core.v2/Event

YML

{

 "resource": "core.v2/Event"

}

JSON

parameters:

- action:allow

YML

JSON

check

description Name of the check to include in the search.

required false

type String

example

class

description For entity searches, the entity class to include in the search: agent or
proxy .

required false

type String

{

 "parameters": [

 "action:allow"

]

}

parameters:

- check:server-health

YML

{

 "parameters": [

 "check:server-health"

]

}

JSON

YML

example

entity

description Name of the entity to include in the search.

required false

type String

example

event

parameters:

- class:agent

{

 "parameters": [

 "class:agent"

]

}

JSON

parameters:

- entity:server-testing

YML

{

 "parameters": [

 "entity:server-testing"

]

}

JSON

description Name of the event to include in the search.

required false

type String

example

published

description If true , the search will include only published resources. Otherwise,
false .

required false

type Boolean

example

parameters:

- event:server-testing

YML

{

 "parameters": [

 "event:server-testing"

]

}

JSON

parameters:

- published:true

YML

{

 "parameters": [

 "published:true"

]

}

JSON

silenced

description If true , the search will include only silenced events. Otherwise,
false .

required false

type Boolean

example

status

description Status of the events, entities, or resources to include in the search.

required false

type String

example

parameters:

- silenced:true

YML

{

 "parameters": [

 "silenced:true"

]

}

JSON

parameters:

- status:incident

YML

JSON

subscription

description Name of the subscription to include in the search.

required false

type String

example

type

description For handler searches, the type of hander to include in the search: pipe ,
set , tcp , or udp .

required false

type String

{

 "parameters": [

 "status:incident"

]

}

parameters:

- subscription:web

YML

{

 "parameters": [

 "subscription:web"

]

}

JSON

example
parameters:

- type:pipe

YML

{

 "parameters": [

 "type:pipe"

]

}

JSON

Web UI confguration reference

Web UI confguration allows you to defne certain display options for the Sensu web UI, such as which
web UI theme to use, the number of items to list on each page, and which URLs and linked images to
expand.
You can defne a single custom web UI confguration to federate to all, some, or only one of
your clusters.

Web UI confguration example

In this web UI confguration example:

COMMERCIAL FEATURE : Access web UI confguration in the packaged Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: Each cluster should have only one web confguration.

Users will receive a customized sign-in message that is formatted with Markdown

Details for the local cluster will not be displayed

Each page will list 50 items (except the checks page, which will list 100 items)

The web UI will use the classic theme

The entities page will list only entities with the proxy subscription, in ascending order based
on last_seen value

The checks page will list checks alphabetically by name

The web UI will begin to display the license expiration banner 45 days before the organization
license expires

Expanded links and images will be allowed for the listed URLs

YAML will be the default format for resource defnitions in the web UI

type: GlobalConfg

YML

https://www.markdownguide.org/

api_version: web/v1

metadata:

 name: custom-web-ui

spec:

 signin_message: with your *LDAP or system credentials*

 always_show_local_cluster: false

 catalog:

 disabled: false

 url: "https://catalog.sensu.io"

 release_version: "1.0"

 default_preferences:

 poll_interval: 120000

 page_size: 50

 serialization_format: YAML

 theme: classic

 page_preferences:

 - page: entities

 page_size: 50

 order: LASTSEEN

 selector: proxy in entity.subscriptions

 - page: checks

 page_size: 100

 order: NAME

 license_expiry_reminder: 1080h0m0s

 link_policy:

 allow_list: true

 urls:

 - https://example.com

 - steamapp://34234234

 - "//google.com"

 - "//*.google.com"

 - "//bob.local"

 - https://grafana-host/render/metrics?width=500&height=250#sensu.io.graphic

{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui"

 },

JSON

 "spec": {

 "signin_message": "with your *LDAP or system credentials*",

 "always_show_local_cluster": false,

 "catalog": {

 "disabled": false,

 "url": "https://catalog.sensu.io",

 "release_version": "1.0"

 },

 "default_preferences": {

 "poll_interval": 120000,

 "page_size": 50,

 "serialization_format": "YAML",

 "theme": "classic"

 },

 "page_preferences": [

 {

 "page": "entities",

 "page_size": 50,

 "order": "LASTSEEN",

 "selector": "proxy in entity.subscriptions"

 },

 {

 "page": "checks",

 "page_size": 100,

 "order": "NAME"

 }

],

 "license_expiry_reminder": "1080h0m0s",

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?width=500&height=250#sensu.io.graphic"

]

 }

 }

}

Page preferences order values

Available values for the order attribute in page_preferences vary depending on the page.

Page Order value and description

events ENTITY : List events by the entities that created them, in ascending
order by entity name

ENTITY_DESC : List events by the entities that created them, in
descending order by entity name

LASTOK : List events by their last OK status, starting with the most
recent

NEWEST : List events by their timestamps, starting with the most recent

OLDEST : List events by their timestamps, starting with the oldest

SEVERITY : List events by their status, starting with the most severe

entities ID : List entities by their IDs, in ascending order

ID_DESC : List entities by their IDs, in descending order

LASTSEEN : List entities by their last_seen timestamp, starting with
the most recent

silences ID : List silences by their IDs, in ascending order

ID_DESC : List silences by their IDs, in descending order

BEGIN : List silences by the time they begin, starting with the silence
that begins soonest

BEGIN_DESC : List silences by the time they begin, ending with the
silence that begins frst

checks NAME : List checks by name, in alphabetical order

NAME_DESC : List checks by name, in reverse alphabetical order

event-flters NAME : List event flters by name, in alphabetical order

NAME_DESC : List event flters by name, in reverse alphabetical order

handlers NAME : List handlers by name, in alphabetical order

NAME_DESC : List handlers by name, in reverse alphabetical order

mutators NAME : List mutators by name, in alphabetical order

NAME_DESC : List mutators by name, in reverse alphabetical order

Web UI confguration specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
web UI confguration in this version of Sensu, the api_version should
always be web/v1 .

required Required for web UI confguration in wrapped-json or yaml format.

type String

example
api_version: web/v1

YML

{

 "api_version": "web/v1"

}

JSON

metadata

description Top-level scope that contains the web UI confguration’s name and
created_by information.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes web UI confguration spec attributes.

required Required for web UI confguration in wrapped-json or yaml format.

type Map of key-value pairs

example

metadata:

 name: custom-web-ui

 created_by: admin

YML

{

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 }

}

JSON

spec:

 signin_message: with your *LDAP or system credentials*

 always_show_local_cluster: false

 catalog:

 disabled: false

 url: "https://catalog.sensu.io"

YML

 release_version: "1.0"

 default_preferences:

 poll_interval: 120000

 page_size: 50

 serialization_format: YAML

 theme: classic

 page_preferences:

 - page: entities

 page_size: 50

 order: LASTSEEN

 selector: proxy in entity.subscriptions

 - page: checks

 page_size: 100

 order: NAME

 license_expiry_reminder: 1080h0m0s

 link_policy:

 allow_list: true

 urls:

 - https://example.com

 - steamapp://34234234

 - "//google.com"

 - "//*.google.com"

 - "//bob.local"

 - https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic

{

 "spec": {

 "signin_message": "with your *LDAP or system

credentials*",

 "always_show_local_cluster": false,

 "catalog": {

 "disabled": false,

 "url": "https://catalog.sensu.io",

 "release_version": "1.0"

 },

 "default_preferences": {

 "poll_interval": 120000,

 "page_size": 50,

 "serialization_format": "YAML",

JSON

type

description Top-level attribute that specifes the resource type. For web UI
confguration, the type should always be GlobalConfg .

required Required for web UI confguration in wrapped-json or yaml format.

 "theme": "classic"

 },

 "page_preferences": [

 {

 "page": "entities",

 "page_size": 50,

 "order": "LASTSEEN",

 "selector": "proxy in entity.subscriptions"

 },

 {

 "page": "checks",

 "page_size": 100,

 "order": "NAME"

 }

],

 "license_expiry_reminder": "1080h0m0s",

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic"

]

 }

 }

}

type String

example

Metadata attributes

created_by

description Username of the Sensu user who created or last updated the web UI
confguration. Sensu automatically populates the created_by feld
when the web UI confguration is created or updated. The admin user,
cluster admins, and any user with access to the GlobalConfg resource
can create and update web UI confgurations.

required false

type String

example

type: GlobalConfg

YML

{

 "type": "GlobalConfg"

}

JSON

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

name

description Name for the web UI confguration that is used internally by Sensu.

required true

type String

example

Spec attributes

always_show_local_cluster

description Use only in federated environments. Set to true to display
the cluster the user is currently connected to in the namespace
switcher. To omit local cluster details, set to false .

required false

type Boolean

default false

example

name: custom-web-ui

YML

{

 "name": "custom-web-ui"

}

JSON

always_show_local_cluster: false

YML

{

JSON

catalog

description Sensu Catalog confguration preferences. Read Catalog attributes for
more information.

required false

type Map of key-value pairs

example

default_preferences

description Global default preferences page size and theme preferences for all
users.

required false

 "always_show_local_cluster": false

}

catalog:

 disabled: false

 url: "https://catalog.sensu.io"

 release_version: "1.0"

YML

{

 "catalog": {

 "disabled": false,

 "url": "https://catalog.sensu.io",

 "release_version": "1.0"

 }

}

JSON

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

type Map of key-value pairs

example

license_expiry_reminder

description Number of days before license expiration to begin displaying the
license expiration banner in the web UI. The value must be a valid
duration, such as 1080h , 14400m , or 24h59m59s .

required false

type String

example

default_preferences:

 poll_interval: 120000

 page_size: 50

 theme: classic

YML

{

 "default_preferences": {

 "poll_interval": 120000,

 "page_size": 50,

 "theme": "classic"

 }

}

JSON

NOTE: By default, the web UI displays the banner starting 30
days before license expiration.

license_expiry_reminder: 1080h0m0s

YML

JSON

link_policy

description For labels or annotations that contain a URL, the policy for which
domains are valid and invalid targets for conversion to a link or an image.

required false

type Map of key-value pairs

example

{

 "license_expiry_reminder": "1080h0m0s"

}

link_policy:

 allow_list: true

 urls:

 - https://example.com

 - steamapp://34234234

 - "//google.com"

 - "//*.google.com"

 - "//bob.local"

 - https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic

YML

{

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic"

JSON

page_preferences

description Page-specifc preferences for page size, order, and selector for all users.
Any page preferences will override default preferences for the specifed
page.

required false

type Array

example

]

 }

}

page_preferences:

 - page: entities

 page_size: 50

 order: LASTSEEN

 selector: proxy in entity.subscriptions

 - page: checks

 page_size: 100

 order: NAME

YML

{

 "page_preferences": [

 {

 "page": "entities",

 "page_size": 50,

 "order": "LASTSEEN",

 "selector": "proxy in entity.subscriptions"

 },

 {

 "page": "checks",

 "page_size": 100,

 "order": "NAME"

JSON

signin_message

description Custom message to display on the web UI sign-in modal. Accepts
Markdown formatting.

required false

type String

default with your credentials

example

Catalog attributes

disabled

description Set to true to disable the Sensu Catalog in the web UI. Otherwise,
false .

required false

 }

]

}

signin_message: with your *LDAP or system credentials*

YML

{

 "signin_message": "with your *LDAP or system

credentials*"

}

JSON

https://www.markdownguide.org/

type Boolean

example

release_version

description Release version to use for generating a private catalog with the Sensu
Catalog API.

required false

type String

example

url

description Base URL where Sensu Catalog API output is served for a private
catalog. Sensu presents the content published to this URL endpoint in
place of the offcial Sensu Catalog in the web UI.

disabled: false

YML

{

 "disabled": false

}

JSON

release_version: version

YML

{

 "release_version": "version"

}

JSON

required false

type String

example

Default preferences attributes

page_size

description The number of items to list on each page.

required false

type Integer

default 25

example

url: "https://catalog.sensu.io"

YML

{

 "url": "https://catalog.sensu.io"

}

JSON

page_size: 25

YML

{

 "page_size": 25

}

JSON

poll_interval

description The frequency at which web UI pages will poll for new data from the
Sensu backend. In milliseconds.

Useful for increasing the polling interval duration if web UI sessions are
causing heavy load. If you set the poll interval, all web UI views will use
the poll interval value instead of their individual polling defaults.

type Integer

default 10000 when page is visible. 300000 when page is not visible.

example

serialization_format

description Default format for resource defnitions in the web UI.

required false

type String

default YAML

allowed values JSON , YAML

NOTE: If an individual user’s settings confict with the web UI
confguration settings, Sensu will use the individual user’s settings.

poll_interval: 120000

YML

{

 "poll_interval": 120000

}

JSON

YML

example

theme

description The theme used in the web UI.

required false

type String

default sensu

allowed values sensu , classic , uchiwa , tritanopia , deuteranopia

example

serialization_format: YAML

{

 "serialization_format": "YAML"

}

JSON

NOTE: If an individual user’s settings confict with the web UI
confguration settings, Sensu will use the individual user’s settings.
For example, if a user’s system is set to dark mode and their web UI
settings are confgured to use their system settings, the web UI will
use dark mode for that user, even if you set the theme to classic

in your web UI confguration.

theme: classic

YML

{

 "theme": "classic"

}

JSON

Page preferences attributes

order

description The order in which to list items on the specifed page. Read Page
preferences order values to learn more.

required false

type String

example

page

description The page to which the page preference settings apply.

required true

type String

allowed values events , entities , silences , checks , event-flters ,
handlers , mutators

example

order: LASTSEEN

YML

{

 "order": "LASTSEEN"

}

JSON

page: events

YML

page_size

description The number of items to list for the specifed page.

required false

type Integer

example

selector

description The search expression to apply to the specifed page.

required false

{

 "page": "events"

}

JSON

page_size: 100

YML

{

 "page_size": 100

}

JSON

NOTE: The selector page preference is not available for the events
page.

type String

example

Link policy attributes

allow_list

description If the list of URLs acts as an allow list, true . If the list of URLs acts as
a deny list, false . As an allow list, only matching URLs will be
expanded. As a deny list, matching URLs will not be expanded, but any
other URLs will be expanded.

required false

type Boolean

default false

example

selector: proxy in entity.subscriptions

YML

{

 "selector": "proxy in entity.subscriptions"

}

JSON

allow_list: true

YML

{

 "allow_list": true

}

JSON

urls

description The list of URLs to use as an allow or deny list.

required false

type Array

example

NOTE: For images from services that may not have an easily
distinguishable fle extension, append the anchor
#sensu.io.graphic to the image URLs.

urls:

- https://example.com

- steamapp://34234234

- "//google.com"

- "//*.google.com"

- "//bob.local"

- https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic

YML

{

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic"

]

}

JSON

Sensu Catalog

The Sensu Catalog is a collection of Sensu integrations that provide reference implementations for
monitoring and observability and help you integrate Sensu with the platforms and tools you’re already
using.
Catalog integrations are self-service and designed to help you scale up with fewer barriers.

Use the offcial Sensu Catalog in the web UI

In the offcial Sensu Catalog in the web UI, users install integrations by following prompts and providing
custom information.
Sensu then applies any customizations to the integration’s resource defnitions and
deploys the integration confguration to agents in real time.

No external confguration management is required, and users can deploy effective monitoring and
observability resources even if they aren’t familiar with the Sensu APIs, sensuctl, or the monitoring-as-
code workfow.

Read Confgure integrations in the Sensu Catalog to learn about the offcial Sensu Catalog in the web
UI.

Create your own catalog of integrations

Instead of using the offcial Sensu Catalog, you can create a private catalog of custom integrations and
make it available to you users within the Sensu web UI.

Read the Catalog integrations reference to learn how to structure your catalog repository, create
integration defnitions, and use the catalog-api command line interface tool to convert integration fles
into static API content.

COMMERCIAL FEATURE : Access the Sensu Catalog in the packaged Sensu Go distribution.
For
more information, read Get started with commercial features.

NOTE: The Sensu Catalog is in public preview and is subject to change.

http://localhost:1313/sensu-go/commercial/

Follow Build a private catalog of Sensu integrations to create your own catalog.

Read the Catalog API documentation to learn more about the requests the catalog-api tool makes to
generate the fles to display in the Sensu Catalog.

Confgure integrations in the Sensu
Catalog

The Sensu Catalog is an online marketplace for monitoring and observability integrations, from
standard system checks and metrics collection to pipelines for sending Sensu data to third-party
logging, remediation, and incident management services.

The Sensu Catalog is part of the Sensu web UI, so you can fnd, confgure, and install integrations
directly from your browser.

An integration combines a Sensu plugin with a dynamic runtime asset and the Sensu resource
defnitions that use the plugin.

COMMERCIAL FEATURE : Access the web UI and the Sensu Catalog in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

NOTE: The Sensu Catalog is in public preview and is subject to change.

http://localhost:1313/images/go/sensu_catalog/catalog_homepage.png

Integrations provide the plugin and asset along with the recommended or minimum viable confguration
and Sensu resources, integrating Sensu with different systems and services for collecting and
processing observability data with a few clicks.

Sensu Catalog integrations allow you to confgure powerful real-time monitoring and observability for
the systems you rely on.
All integrations are self-service and designed to help you scale up with fewer
barriers.
Sensu curates, tests, and maintains the Catalog integrations, and installation follows a
standardized process.

Find integrations

Find integrations in the Sensu Catalog by browsing alphabetized, categorized, and metadata-based
lists.
You can also search the Sensu Catalog based on integration metadata.

Browse the alphabetized list

When the Catalog page loads in the Sensu web UI, all integrations are alphabetically listed by default.
To return to the alphabetized list at any time, click the All category in the Catalog page sidebar
navigation menu:

The plugin provides the executable script or other program to power a Sensu check, handler,
or mutator.

The dynamic runtime asset is a shareable, reusable package that installs and deploys the
plugin.

Browse the categorized list

The Catalog page sidebar navigation menu lists integrations in categories based on class and function.
Click a category to retrieve the associated integrations.

Three categories describe the integration class:

http://localhost:1313/images/go/sensu_catalog/catalog_all_category.png
http://localhost:1313/images/go/sensu_catalog/catalog_menu.png

The rest of the categories are based on the integration’s function, like cloud monitoring or automated
remediation.

Browse a metadata-based list

Each integration has associated metadata listed on the integration detail page:

You can search the Sensu Catalog for integrations with particular provider or tags metadata from
the Catalog main page:

Enterprise: Integrations contributed by one of Sensu’s third-party partners.

Supported: Integrations that Sensu developed. Supported integrations may be commercial
features that require a valid Sensu license.

Community: Integrations contributed by members of the Sensu community. Community
integrations are free and open-source.

http://localhost:1313/images/go/sensu_catalog/catalog_integration_metadata.png

Search for integrations

The Sensu Catalog includes basic search using substring matching, as well as advanced searches
based on integration metadata like display name and class.

Catalog search operators

Sensu Catalog search supports two set-based operators:

Operator Description Example

in Included in ansible in tags

matches Substring matching display_name matches ansible

Catalog search metadata

Search the Sensu Catalog integrations based on the following metadata:

Metadata type Description

http://localhost:1313/images/go/sensu_catalog/catalog_metadata_search.gif

class Integration support category.

Available values:
- community : Supported by a Sensu community member
- enterprise : Supported by Sensu; requires a commercial license
- partner : Supported by a third-party company or service
- supported : Supported by Sensu; no license required

display_name Integration name.

provider General function of the integration.

Available values: alerts , deregistration , discovery , events ,
incidents , metrics , monitoring , remediation .

tags Descriptors added by the integration’s creator.

Quick search for integrations

The Sensu Catalog quick search allows you to search without using any particular syntax.
Type your
search term into the search feld on the Catalog page of the web UI and press Enter .
Sensu will auto-
complete a simple search statement for the resources on that page using substring matching:

http://localhost:1313/images/go/sensu_catalog/catalog_name_search.gif

Get information about an integration

In the Sensu Catalog, integrations are represented by tiles.
When you click an integration tile, the
integration’s detail page opens.
The detail page includes tabs for README, CHANGELOG, and
SENSU RESOURCES.

The README tab contains detailed information about the integration, including an overview, supported
dashboards, setup instructions, the plugins the integration requires, the metrics and alerts the
integration generates, and links to reference information.
The README also describes any additional
confguration needed to use the integration, like subscriptions to add to agent entities or secrets to
create for sensitive information.

The CHANGELOG tab lists the notable changes, improvements, and fxes for each version of the
integration.

The SENSU RESOURCES tab contains usable examples of all of the resource defnitions you need to
use the integration, including the plugin asset, secrets, checks, handlers, and pipelines.
Click the yaml

or json buttons to select the format for each defnition.

NOTE: The SENSU RESOURCES tab lists example resource defnitions that you must confgure
and install.
Use the INSTALL button to confgure and install the integration directly from your
browser or copy the example defnitions to confgure and create with sensuctl or the Sensu API.

http://localhost:1313/images/go/sensu_catalog/location_catalog_integration_info_tabs.png

Confgure and install an integration

When you fnd an integration you want to use, click the integration tile to open the detail page.
To
confgure and install an integration:

1. Click INSTALL to open the confguration dialog.
The confguration dialog is a multi-page form
with felds and prompts for collecting additional confguration attributes for the integration.

2. Type values in each attribute feld in the dialog to confgure the integration for your instance.
Use
the NEXT and BACK buttons to navigate through confguration dialog pages as needed.

3. Review the resource defnitions on the Summary page.
4. Click APPLY to save your confguration and create the integration resources.
5. Click FINISH on the confrmation page to close the confguration dialog.

The confguration dialog suggests values for each attribute feld.
These suggestions are collected from
your existing resources and refned based on the specifc requirements of the integration.
For example,
if you are setting up a metrics collection integration that requires a pipeline, the dialog will only suggest
existing metrics-compatible pipelines for that integration.
If you do not have any metrics-compatible
pipelines, the dialog will not make suggestions for that attribute.

The Summary page of the confguration dialog lists the defnition for each resource that Sensu will
create when you click APPLY .
These resource defnitions include the attribute values you provided in
the confguration dialog.
Click the dropdown arrows to review the resource defnitions:

NOTE: When you click APPLY in step 4, Sensu creates all of the resources the integration
requires.
Check resources are automatically published and will execute immediately.

The resulting resource defnitions represent Sensu’s recommended confguration for the integration.

Use secrets in integrations

The Sensu Catalog integrations are preconfgured to use Sensu’s Env secrets provider for sensitive
information the integrations might require, like passwords and API tokens.

Duplicate integrations and existing resources

You can reuse the same integration as long as all resource defnitions have unique names.

When you install an integration, Sensu checks your existing resources before creating new resources.
If
Sensu fnds an existing resource with the same name, the confguration dialog will prompt you to either
change the names of the existing resources or acknowledge that the new resources should overwrite
the existing resources.

If you want to keep the existing resources, use the Sensu API to change their names with PUT
requests before you continue and create the new resources.
Otherwise, click OVERWRITE to replace
the existing resources with the new resources.

http://localhost:1313/images/go/sensu_catalog/catalog_integration_summary_definitions.gif

View and manage your integrations

After you install an integration, Sensu creates and publishes the integration resources within your
current namespace.
The resources are listed on the confguration page for the resource type (checks,
flters, handlers, or mutators).

View and manage integration resources just like all of your other Sensu resources: in the web UI, with
sensuctl, or with the Sensu API.

Reuse integration resources

The integration defnitions listed in the SENSU RESOURCES tab are usable, portable defnitions for all
of the resources you need to use the integration.
These defnitions are universal monitoring as code
templates: they do not include a namespace or the specifc values you provide while confguring and
installing the integration.

Contribute an integration

The Sensu Catalog is an open marketplace, and you can contribute by sharing Sensu confgurations.

http://localhost:1313/images/go/sensu_catalog/catalog_rename_overwrite_prompt.gif

For contributing guidelines and more information, visit the Sensu Catalog GitHub repository.

https://github.com/sensu/catalog

Build a private catalog of Sensu
integrations

The Sensu Catalog is a collection of Sensu integrations that provide reference implementations for
effective monitoring and observability.
The offcial Sensu Catalog is available in the web UI, but you can
also create a private catalog of custom integrations and make it available to users in place of the
offcial Sensu Catalog.

Before you begin, make sure that your integration fles are saved in a repository that follows the
required organizational framework.

Update URLs in integration asset builds (optional)

If the assets for your private catalog are stored behind a frewall or are otherwise not publicly available,
update the asset defnitions in your sensu-resources.yaml fles to use the endpoint URL that will
serve your catalog.

For example, in the Sensu Catalog repository, asset defnitions include assets.bonsai.sensu.io in
the builds.url values:

COMMERCIAL FEATURE : Access the Sensu Catalog and integrations in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

NOTE: The Sensu Catalog is in public preview and is subject to change.

NOTE: If your catalog assets are stored publicly, you do not need to complete this step.
Continue to
Install the catalog-api command line tool.

type: Asset

api_version: core/v2

metadata:

https://github.com/sensu/catalog

If assets are not publicly available, replace assets.bonsai.sensu.io with your preferred URL in
asset builds.url values in all sensu-resources.yaml fles before you continue.
You do not need to
change the asset builds.SHA512 values.

Install the catalog-api command line interface tool

The catalog-api command line interface tool is an open-source static API generator: it renders static
HTTP API content that the Sensu web UI can consume.

To install the catalog-api tool:

 name: sensu/nginx-check

 namespace: default

spec:

 builds:

 - flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'arm'

 - entity.system.arm_version == 6

 headers: null

 sha512:

6471e770fa4232068e1d96b2ad79529483b23dcae109932f095a3d1e59fa22410205c2eb63948e265112

0b217b5bd908856d3cc318af803a45cc531c837a992e

 url:

https://assets.bonsai.sensu.io/02bff14ff7f692daab5cace39dcc6e184751285a/nginx-

check_0.1.0_linux_armv6.tar.gz

 - flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'arm'

 - entity.system.arm_version == 7

 headers: null

 sha512:

714e777c214fd5a7210b67030eb761f5d8c7f8e9ba55f6a0d64872f43f27848eaf51c17bd7b3e3efbdc4

19d4e4754c6143c705b06ddd750009f8068872e5d35d

 url:

https://assets.bonsai.sensu.io/02bff14ff7f692daab5cace39dcc6e184751285a/nginx-

check_0.1.0_linux_armv7.tar.gz

 - flters: ...

1. Clone the Sensu Catalog API repository and navigate to the local catalog-api repository:

2. Build the catalog-api tool:

3. Exit your local copy of the catalog-api repository:

Clone and validate the integration repository

The catalog-api tool consumes content from a repository that includes all the fles required to build a
catalog of integrations.
Follow these steps to clone your repository and validate that all fles are
organized properly:

1. Clone the repository that stores your Sensu integrations.
Replace <REPO_URL> with the URL
for your integrations repository uses Sensu’s public integration repository:

2. Navigate to your local copy of the repository that stores the Sensu integrations.
Replace
<REPO_NAME> with the repository name (for example, for https://github.com/sensu/catalog,
the <REPO_NAME> is catalog):

3. Validate the integration repository contents:

git clone https://github.com/sensu/catalog-api && cd catalog-api

go build

cd ..

git clone <REPO_URL>

cd <REPO_NAME>

https://github.com/sensu/catalog

The response lists the integrations found in the local integration repository:

Generate the private catalog

With a validated repository, you can generate your private catalog locally.
The generate subcommand
generates the static API in a temporary directory, /tmp/generated-api/ :

To specify a different temporary directory, use the --temp-dir command line fag:

Publish the static API to an endpoint

../catalog-api/catalog-api catalog validate

11:05AM INF Found integration version name=ansible-tower-remediation

namespace=ansible source=path version=99991231.0.0

11:05AM INF Found integration version name=aws-alb-monitoring namespace=aws

source=path version=99991231.0.0

11:05AM INF Found integration version name=aws-ec2-monitoring namespace=aws

source=path version=99991231.0.0

...

11:05AM INF Found integration version name=wavefront-metrics

namespace=wavefront source=path version=99991231.0.0

NOTE: The catalog-api command line tool also includes server and preview subcommands for
viewing your catalog in the web UI during development.

../catalog-api/catalog-api catalog generate

../catalog-api/catalog-api catalog generate --temp-dir /tmp/2523661925/release

Once you generate your private catalog in a temporary directory, you can serve the output on any
HTTP service and publish it to any endpoint.
For example, you can copy the private catalog contents
from the temporary directory to a storage service and use a content delivery network (CDN) to serve
the content from your storage service to the endpoint URL.

The only requirement is that the endpoint URL must be fetchable for your web UI users.
The web UI
fetches catalog content from your endpoint; the Sensu backend does not serve any of the catalog
content.

Create a UI GlobalConfg defnition

Use Sensu’s GlobalConfg resource to display the private catalog in the Sensu web UI.
Create a
GlobalConfg defnition that includes the endpoint URL for your private catalog as the url value (this
example uses https://catalog.sensu.io:443):

cat << EOF | sensuctl create

type: GlobalConfg

api_version: web/v1

metadata:

 name: private-catalog

spec:

 always_show_local_cluster: true

 catalog:

 url: "https://catalog.sensu.io:443"

 release_version: version

EOF

SHELL

cat << EOF | sensuctl create

{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "private-catalog"

 },

 "spec": {

SHELL

Confrm the private catalog is available in the web UI

Log into the Sensu web UI at the URL specifed in your GlobalConfg resource and navigate to the
Catalog page.
The Catalog page should include all of the integrations in your repository.

 "always_show_local_cluster": true,

 "catalog": {

 "url": "https://catalog.sensu.io:443",

 "release_version": "version"

 }

 }

}

EOF

Catalog integrations reference

The Sensu Catalog is a collection of Sensu integrations that provide reference implementations for
effective observability.
The contents of the offcial Sensu Catalog are periodically published with the
Sensu Catalog API, which is hosted at https://catalog.sensu.io and displayed within the Sensu web UI.

When users install integrations in the Sensu web UI, they receive prompts to enter information.
For
example, the DNS Monitoring integration includes prompts for the domain name, record type, record
class, servers, and port to query.
Sensu then applies the user’s customizations to the integration’s
resource defnitions and automatically deploys the integration confguration to agents in real time.
No
external confguration management is required.

Integration defnitions resemble other Sensu resources, but Sensu Go does not process them directly.
Instead, the catalog-api command line interface tool uses integration defnitions along with the other
fles in the catalog repository, like READMEs and dashboard images, to generate a static Catalog API.
The Sensu web UI uses the generated API fles to determine which integrations to display in the Sensu
Catalog.

The Sensu Catalog provides a way for you and your teams to confgure powerful real-time monitoring
and observability for the systems you rely on.
Integrations are self-service, and the Catalog is designed
to help you scale up with fewer barriers.

Integration example

This example shows an integration defnition for NGINX monitoring.
Integration defnitions are saved as
the sensu-integration.yaml fle in a catalog repository:

COMMERCIAL FEATURE : Access the Sensu Catalog and integrations in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

NOTE: The Sensu Catalog is in public preview and is subject to change.

api_version: catalog/v1

https://catalog.sensu.io/

type: Integration

metadata:

 namespace: nginx

 name: nginx-monitoring

spec:

 class: supported

 provider: monitoring

 display_name: NGINX Monitoring

 short_description: Monitor NGINX service health and collect metrics

 supported_platforms:

 - darwin

 - linux

 - windows

 tags:

 - http

 - nginx

 - webserver

 - service

 contributors:

 - "@nixwiz"

 - "@calebhailey"

 prompts:

 - type: section

 title: Confgure NGINX URL and Monitoring Thresholds

 - type: markdown

 body: |

 Specify the NGINX stub status URL and alerting thresholds for

numbers of active and waiting connections.

 - type: question

 name: default_url

 required: false

 input:

 type: string

 title: NGINX stub status URL

 description: Enter the NGINX stub_status URL

 default: http://127.0.0.1:80/nginx_status

 - type: question

 name: nginx_active_warn

 required: false

 input:

 type: integer

 title: Maximum active connections

 description: >-

 Enter the maximum number of active connections to allow before

sending a WARNING event (default is `300`)

 default: 300

 - type: question

 name: nginx_waiting_warn

 required: false

 input:

 type: integer

 title: Maximum waiting connections

 description: >-

 Enter the maximum number of waiting connections to allow before

sending a WARNING event (default is `30`)

 default: 30

 - type: section

 title: Confgure Sensu Subscriptions

 - type: markdown

 body: |

 Specify the subscriptions for Sensu agents that should execute the

`nginx-metrics` check.

 - type: question

 name: subscriptions

 input:

 type: array

 items:

 type: string

 title: Sensu Subscriptions

 ref: core/v2/entity/subscriptions

 default:

 - nginx

 - type: section

 title: Pipeline Confguration

 - type: markdown

 body: |

 Name the [pipelines] you want to use to process NGINX Monitoring integration

data.

 [pipelines]: https://docs.sensu.io/sensu-go/latest/observability-

pipeline/observe-process/pipelines/

 - type: question

 name: alerts_pipeline

 required: false

 input:

 type: string

 title: Alert pipeline name

 description: >-

 Which pipeline do you want to use for alerts due to failures

this integration detects?

 ref: core/v2/pipeline/metadata/name

 refFilter: .labels.provider == "alerts"

 - type: question

 name: incidents_pipeline

 required: false

 input:

 type: string

 title: Incident pipeline name

 description: >-

 Which pipeline do you want to use to process incidents due to

failures this integration detects?

 ref: core/v2/pipeline/metadata/name

 refFilter: .labels.provider == "incidents"

 - type: question

 name: metrics_pipeline

 required: false

 input:

 type: string

 title: Metrics pipeline name

 description: >-

 Which pipeline do you want to use to process the metrics this

integration collects?

 ref: core/v2/pipeline/metadata/name

 refFilter: .labels.provider == "metrics"

 resource_patches:

 - resource:

 api_version: core/v2

 type: CheckConfg

 name: nginx-metrics

 patches:

 - path: /spec/command

 op: replace

 value: >-

 nginx-check

 --url {{ .annotations.metrics_nginx_url | default "[[default_url]]" }}

 - path: /spec/subscriptions

 op: replace

Catalog repository example

The repository that stores Sensu integrations must organize fles in the following structure:

 value: subscriptions

 - path: /spec/pipelines/-

 op: add

 value:

 api_version: core/v2

 type: Pipeline

 name: "[[metrics_pipeline]]"

 - path: /spec/pipelines/-

 op: add

 value:

 api_version: core/v2

 type: Pipeline

 name: "[[alerts_pipeline]]"

 - path: /spec/pipelines/-

 op: add

 value:

 api_version: core/v2

 type: Pipeline

 name: "[[incidents_pipeline]]"

 - path: /spec/output_metric_thresholds/0/thresholds/0/max

 op: replace

 value: "[[nginx_active_warn]]"

 - path: /spec/output_metric_thresholds/1/thresholds/0/max

 op: replace

 value: "[[nginx_waiting_warn]]"

 post_install:

 - type: section

 title: Success

 - type: markdown

 body: |

 You enabled the NGINX Monitoring integration.

 The `nginx-metrics` check will run for all Sensu agents with these

subscriptions: [[subscriptions]].

File Description

img Images used in the integration README.md, such as screenshots of
available dashboards. Image fles must be GIF, JPEG, or PNG format.

integrations/

└── <namespace>/

 └── <integration_name>/

 ├── img/

 │ ├── dashboard-1.gif

 │ └── dashboard-2.png

 ├── CHANGELOG.md

 ├── README.md

 ├── logo.png

 ├── sensu-integration.yaml

 └── sensu-resources.yaml

 └── <integration_name>/

 ├── img/

 │ ├── dashboard-1.gif

 │ └── dashboard-2.png

 ├── CHANGELOG.md

 ├── README.md

 ├── logo.png

 ├── sensu-integration.yaml

 └── sensu-resources.yaml

└── <namespace>/

 └── <integration_name>/

 ├── img/

 │ ├── dashboard-1.gif

 │ └── dashboard-2.png

 ├── CHANGELOG.md

 ├── README.md

 ├── logo.png

 ├── sensu-integration.yaml

 └── sensu-resources.yaml

NOTE: In the context of catalog integration organization, “namespace” does not refer to the Sensu
role-based access control (RBAC) namespace.
In catalogs, namespaces are categories for
integrations.
For example, in the offcial Sensu Catalog, all integrations for AWS services are
organized within the aws namespace.

https://github.com/sensu/catalog/tree/main/integrations/aws
https://github.com/sensu/catalog/tree/main/integrations/aws

External image links are not supported. Optional.

CHANGELOG.md Changelog for the integration. Not displayed in the web UI. Optional.

README.md Help documentation for the integration, including an overview, setup
steps, descriptions of the events and metrics the integration produces,
and links to supplemental reference information. Sensu supports GitHub-
favored Markdown for integration READMEs. Required.

logo.png Logo image to display in the web UI integration browser. Logo fles must
be PNG format. Required.

sensu-

integration.yaml

Metadata for the integration, including title, description, prompts for
confguration, patches for updating integration resources, and post-
installation instructions. Integration metadata fles must be in YAML
format and must use the .yaml fle extension (not .yml). Required.

sensu-

resources.yaml

Sensu resources the integration will install, including checks, handlers,
event flters, pipelines, and assets. Do not include RBAC namespaces in
the resource defnitions in the sensu-resources.yaml fle. Resources
fles must be in YAML format and must use the .yaml fle extension
(not .yml). Required.

catalog-api command line interface tool

Sensu’s catalog-api command line interface (CLI) tool generates the static Catalog API to convert
integration fles into static API content that you can host on any HTTP web service.
The Sensu web UI
uses the generated API fles to determine which integrations to display in the catalog.

Use the catalog-api tool to generate a local Catalog API for testing as you develop new integrations
and to build and run a private catalog.
Integration fles must be stored in a repository that follows the
required organizational framework.

The catalog-api tool is written in Go.

catalog-api subcommands

NOTE: The catalog-api tool is an alpha feature and may include breaking changes.

https://github.github.com/gfm/
https://github.github.com/gfm/
https://github.com/sensu/catalog-api

The catalog-api tool provides the following subcommands.

Generate subcommand

The generate subcommand generates the contents of a catalog repository locally in a temporary
directory, /tmp/generated-api/ .

Output for the generate subcommand lists the name, catalog namespace, source, and version number
for all integration versions:

catalog-api catalog --help

USAGE

 catalog-api catalog [fags] <subcommand> [fags]

SUBCOMMANDS

 generate Generate a static catalog API

 validate Validate a catalog directory and its integrations

 server Serves static catalog API for development purposes

 preview Serves static catalog API & preview catalog web application for

development purposes

FLAGS

 -integrations-dir-name integrations path to the directory containing namespaced

integrations

 -log-level info log level of this command ([panic fatal error

warn info debug trace])

 -repo-dir . path to the catalog repository

../catalog-api/catalog-api catalog generate

10:40AM INF Found integration version name=ansible-tower-remediation

namespace=ansible source=git tag=ansible/ansible-tower-remediation/20220223.0.0

version=20220223.0.0

10:40AM INF Found integration version name=ansible-tower-remediation

namespace=ansible source=git tag=ansible/ansible-tower-remediation/20220421.0.0

version=20220421.0.0

10:40AM INF Found integration version name=aws-alb-monitoring namespace=aws

source=git tag=aws/aws-alb-monitoring/20220421.0.0 version=20220421.0.0

The last line of output lists the local path for the generated catalog.

Generate subcommand fags

The catalog-api generate subcommand provides the following confguration fags:

Validate subcommand

10:40AM INF Found integration version name=aws-ec2-monitoring namespace=aws

source=git tag=aws/aws-ec2-monitoring/20220421.0.0 version=20220421.0.0

...

10:40AM INF Found integration version name=timescaledb-metrics namespace=timescaledb

source=git tag=timescaledb/timescaledb-metrics/20220308.0.0 version=20220308.0.0

10:40AM INF Found integration version name=timescaledb-metrics namespace=timescaledb

source=git tag=timescaledb/timescaledb-metrics/20220421.0.0 version=20220421.0.0

10:40AM INF Found integration version name=wavefront-metrics namespace=wavefront

source=git tag=wavefront/wavefront-metrics/20220421.0.0 version=20220421.0.0

::set-output name=release-

dir::/var/folders/60/cljzzn5n05d91t4x71jx9xzm0000gn/T/3556668713/release

catalog-api catalog generate --help

USAGE

 catalog-api catalog generate [fags]

FLAGS

 -integrations-dir-name integrations path to the directory

containing namespaced integrations

 -log-level info log level of this

command ([panic fatal error warn info debug trace])

 -repo-dir . path to the catalog

repository

 -snapshot=false generate a catalog

api for the current catalog branch

 -temp-dir /var/folders/60/cljzzn5n05d91t4x71jx9xzm0000gn/T/ path to a temporary

directory for generated fles

 -watch=false enter watch mode,

which rebuilds on fle change

The validate subcommand confrms that all fles in a catalog repository are organized properly.

Output for the validate subcommand lists the name, catalog namespace, source, and version number
for integrations found:

Validate subcommand fags

The catalog-api validate subcommand provides the following confguration fags:

Server subcommand

The server subcommand starts a webserver to serve the JSON fles the catalog-api tool generates.
To
view your catalog in the Sensu web UI while running the server subcommand, you must also confgure

../catalog-api/catalog-api catalog validate

10:37AM INF Found integration version name=ansible-tower-remediation

namespace=ansible source=path version=99991231.0.0

10:37AM INF Found integration version name=aws-alb-monitoring namespace=aws

source=path version=99991231.0.0

10:37AM INF Found integration version name=aws-ec2-monitoring namespace=aws

source=path version=99991231.0.0

...

10:37AM INF Found integration version name=wavefront-metrics namespace=wavefront

source=path version=99991231.0.0

catalog-api catalog validate --help

USAGE

 catalog-api catalog validate [fags]

FLAGS

 -integrations-dir-name integrations path to the directory containing namespaced

integrations

 -log-level info log level of this command ([panic fatal error

warn info debug trace])

 -repo-dir . path to the catalog repository

a Sensu backend and create a GlobalConfg resource to point to the webserver.

The last line of the server subcommand response provides the address to use to view the content the
catalog-api tool is serving the web UI in your browser.
For example:

Visit your webserver address at port 3003 (for example, http://localhost:3003) to view the static Catalog
API content that catalog-api is serving.

Click the SHA-256 checksum to view the content for all catalog versions, including the integrations in
each catalog version; the JSON defnition for each integration version; the catalog repository fles for
each integration version; and a versions.json fle that lists all versions for the integration:

10:00AM INF Found integration version name=ansible-tower-remediation

namespace=ansible source=git tag=ansible/ansible-tower-remediation/20220223.0.0

version=20220223.0.0

10:00AM INF Found integration version name=ansible-tower-remediation

namespace=ansible source=git tag=ansible/ansible-tower-remediation/20220421.0.0

version=20220421.0.0

10:00AM INF Found integration version name=aws-alb-monitoring namespace=aws

source=git tag=aws/aws-alb-monitoring/20220421.0.0 version=20220421.0.0

...

10:00AM INF Found integration version name=wavefront-metrics namespace=wavefront

source=path version=99991231.0.0

10:00AM INF API generated

path=/var/folders/60/cljzzn5n05d91t4x71jx9xzm0000gn/T/2304694052

10:00AM INF API server started address=:3003

Click version.json to view the contents of the version.json fle for the content that catalog-api is serving:

Server subcommand fags

The catalog-api server subcommand provides the following confguration fags:

catalog-api catalog server --help

USAGE

 catalog-api catalog server [fags]

FLAGS

http://localhost:1313/images/go/catalog_reference/server_checksum.gif
http://localhost:1313/images/go/catalog_reference/server_versions_json.gif

Use the Sensu Catalog API server for integration development

When you’re developing integrations, it can be helpful to run the Sensu Catalog API server from your
local environment so that you can preview integrations as you work.
To do this, use the server
subcommand in the catalog-api command line tool.

1. Clone the Sensu Catalog API repository and navigate to the local catalog-api repository:

2. Build the catalog-api tool:

3. Exit the local catalog-api repository:

 -integrations-dir-name integrations path to the directory

containing namespaced integrations

 -log-level info log level of this

command ([panic fatal error warn info debug trace])

 -port 8083 port to use for dev

server

 -repo-dir . path to the catalog

repository

 -temp-dir /var/folders/60/cljzzn5n05d91t4x71jx9xzm0000gn/T/ path to a temporary

directory for generated fles

 -watch=false enter watch mode,

which rebuilds on fle change

 -without-snapshot=false generate a catalog

api using tags only

NOTE: Make sure you have a local Sensu instance running with access to the Sensu web UI.

git clone https://github.com/sensu/catalog-api && cd catalog-api

go build

cd ..

4. Clone the repository that stores your Sensu integrations.
This example uses Sensu’s public
integration repository:

5. Navigate to your local copy of the repository that stores the Sensu integrations.
This example
uses https://github.com/sensu/catalog, so the repository is catalog :

6. Run the catalog-api server subcommand:
This example uses https://github.com/sensu/catalog,
so the repository is catalog :

The . in the command tells Sensu to read the catalog contents from your local environment.
Use the -watch fag to reload the API as you save updates in integration fles so that you can
see them live in the Sensu web UI.

7. Create a GlobalConfg resource that specifes a local URL for displaying the the private catalog
in the Sensu web UI.

git clone https://github.com/sensu/catalog

cd ../catalog

../catalog-api/catalog-api catalog server --repo-dir . -watch

cat << EOF | sensuctl create

type: GlobalConfg

api_version: web/v1

metadata:

 name: private-catalog

spec:

 always_show_local_cluster: true

 catalog:

 url: "https://127.0.0.1:3000"

 release_version: version

EOF

SHELL

https://github.com/sensu/catalog
https://github.com/sensu/catalog

8. Navigate to the Catalog page in the Sensu web UI for your local instance (in this example,
https://127.0.0.1:3000).
The Catalog page should include all of the integrations in your local
repository and update automatically as you save local changes to your integration fles.

Preview subcommand

The preview subcommand starts a webserver like the server subcommand but also serves a preview
web UI that can communicate with the Sensu backend.
If you use the preview subcommand, you do not
need to interact with the Sensu backend or create a GlobalConfg resource.

The last line of the preview subcommand response provides the address to use to view the preview
catalog in your browser.
For example:

cat << EOF | sensuctl create

{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "private-catalog"

 },

 "spec": {

 "always_show_local_cluster": true,

 "catalog": {

 "url": "https://127.0.0.1:3000",

 "release_version": "version"

 }

 }

}

EOF

SHELL

9:57AM INF Found integration version name=ansible-tower-remediation

namespace=ansible source=git tag=ansible/ansible-tower-remediation/20220223.0.0

version=20220223.0.0

9:57AM INF Found integration version name=ansible-tower-remediation

namespace=ansible source=git tag=ansible/ansible-tower-remediation/20220421.0.0

Visit your webserver address at port 3003 (for example, http://localhost:3003) to view a preview of the
catalog in the Sensu web UI.

Preview subcommand fags

The catalog-api preview subcommand provides the following confguration fags:

version=20220421.0.0

9:57AM INF Found integration version name=aws-alb-monitoring namespace=aws

source=git tag=aws/aws-alb-monitoring/20220421.0.0 version=20220421.0.0

...

9:57AM INF Found integration version name=wavefront-metrics namespace=wavefront

source=path version=99991231.0.0

9:57AM INF API generated

path=/var/folders/60/cljzzn5n05d91t4x71jx9xzm0000gn/T/2316699223

9:57AM INF API server started address=:3003

catalog-api catalog preview --help

USAGE

 catalog-api catalog preview [fags]

FLAGS

 -api-url http://localhost:8080 host URL of Sensu

installation; optional

 -integrations-dir-name integrations path to the directory

containing namespaced integrations

 -log-level info log level of this

command ([panic fatal error warn info debug trace])

 -port 3003 port to use for dev

server

 -repo-dir . path to the catalog

repository

 -temp-dir /var/folders/60/cljzzn5n05d91t4x71jx9xzm0000gn/T/ path to a temporary

directory for generated fles

 -without-snapshot=false generate a catalog

api using tags only

 -without-watch=false enter watch mode,

which rebuilds on fle change

Catalog tags and versions

The catalog-api tool consumes and parses integration-specifc git tags to manage and generate
versioned integrations.
This makes it possible to give users access to earlier versions of integrations
and hedge against regressions in individual integrations.

For example, in the offcial Sensu Catalog repository, two versions of the Ansible Tower Remediation
are defned:

Using these tags, the catalog-api tool would generate the following version structure, with both
versions of the Ansible Tower Remediation integration:

git tag --list |grep ansible-tower-remediation

ansible/ansible-tower-remediation/20220223.0.0

ansible/ansible-tower-remediation/20220421.0.0

tree /tmp/generated-api/ -L 7

/tmp/generated-api/

├── release

│ ├── 5029648381dff2426ea247147456b4f1227fd6d9050fa42f0660e67a218f8c87

│ │ └── v1

│ │ ├── ansible

│ │ │ ├── ansible-tower-remediation

│ │ │ │ ├── 20220223.0.0

│ │ │ │ │ ├── CHANGELOG.md

│ │ │ │ │ ├── img

│ │ │ │ │ ├── logo.png

│ │ │ │ │ ├── README.md

│ │ │ │ │ └── sensu-resources.json

│ │ │ │ ├── 20220223.0.0.json

│ │ │ │ ├── 20220421.0.0

│ │ │ │ │ ├── CHANGELOG.md

│ │ │ │ │ ├── img

│ │ │ │ │ ├── logo.png

│ │ │ │ │ ├── README.md

│ │ │ │ │ └── sensu-resources.json

│ │ │ │ ├── 20220421.0.0.json

https://github.com/sensu/catalog
https://github.com/sensu/catalog/tree/main/integrations/ansible/ansible-tower-remediation

Catalog versions

Catalog builds are versioned so that every previous iteration of the catalog is available.
You are not
limited to providing only the most recent version of the catalog, and you can provide older versions as
a fallback.

The catalog-api tool generates builds into a checksum-based output directory structure.
The
version.json fle manages the path to the latest or production catalog API content and instructs the web
UI to load catalog contents from the specifed checksum directory.
When you run the catalog-api
generate subcommand to generate the catalog, catalog-api creates the version.json fle.

The contents of a version.json fle are similar to this example:

If you make any changes to your integration fles, the catalog-api tool will generate a new checksum
directory.
To revert to an older build of the catalog, change the release_sha256 in version.json to
point to a different release directory.

Generate version tags

The catalog-api tool uses version tags to create versions of integrations and present them to users
within the catalog.

If you update an integration, the frst step in publishing the updated integration is to generate a new tag
for it:

│ │ │ │ └── versions.json

│ │ │ └── ansible-tower-remediation.json

{

 "release_sha256":

"5029648381dff2426ea247147456b4f1227fd6d9050fa42f0660e67a218f8c87",

 "last_updated": 1655840571

}

git tag <integration_namespace>/<integration_flename>/<YYYYMMDD>.0.0

For example, to generate a new tag for an October 5, 2022 update to the Ansible Tower Remediation
integration:

Commit your changes to git after adding the tag.
Then, run the catalog-api generate subcommand to
generate a catalog that includes the tagged version:

If you update the integration again on the same day, update the tag to <YYYYMMDD>.0.1 .
To continue
the Ansible Tower Remediation example:

Commit your changes to git.
The next time you run the catalog-api generate subcommand, it will
generate a catalog that includes both tagged versions.

Private catalogs

The catalog-api tool renders static HTTP API content that the Sensu web UI can consume.
This means
you can create a private enterprise catalog of custom integrations and make it available to users in the
Sensu web UI.

You can use the offcial Sensu Catalog repository, https://github.com/sensu/catalog, as a starting point
for building your own private catalog.
To do this, clone the repository with the no-tags fag to get a
copy that does not include Sensu’s tags for the existing integrations:

The Catalog API defnes integrations globally rather than by namespace.
When you create a private
catalog, all integrations in your repository are available for all users across namespaces in the web UI.

git tag ansible/ansible-tower-remediation/20221005.0.0

../catalog-api/catalog-api catalog generate

git tag ansible/ansible-tower-remediation/20221005.0.1

git clone --no-tags https://github.com/sensu/catalog

https://github.com/sensu/catalog/tree/main/integrations/ansible/ansible-tower-remediation
https://github.com/sensu/catalog

Read Build a private catalog of Sensu integrations for more information.

Integration specifcation

Top-level attributes

api_version

description Top-level attribute that specifes the Sensu API group and version. For
integrations in this version of Sensu, the api_version should always be
catalog/v1 .

required true

type String

example

metadata

description Top-level scope that contains the integration’s name and namespace
information.

required true

type Map of key-value pairs

example

spec

api_version: catalog/v1

metadata:

 namespace: nginx

 name: nginx-monitoring

description Top-level map that includes integration spec attributes.

required true

type Map of key-value pairs

example
spec:

 class: supported

 provider: monitoring

 display_name: NGINX Monitoring

 short_description: Monitor NGINX service health and

collect metrics

 supported_platforms:

 - darwin

 - linux

 - windows

 tags:

 - http

 - nginx

 - webserver

 - service

 contributors:

 - "@nixwiz"

 - "@calebhailey"

 prompts:

 - type: section

 title: Confgure NGINX URL and Monitoring Thresholds

 - type: markdown

 body: |

 Specify the NGINX stub status URL and

alerting thresholds for numbers of active and waiting

connections.

 - type: question

 name: default_url

 required: false

 input:

 type: string

 title: NGINX stub status URL

 description: Enter the NGINX stub_status URL

 default: http://127.0.0.1:80/nginx_status

 - type: question

 name: nginx_active_warn

 required: false

 input:

 type: integer

 title: Maximum active connections

 description: >-

 Enter the maximum number of active

connections to allow before sending a WARNING event

(default is `300`)

 default: 300

 - type: question

 name: nginx_waiting_warn

 required: false

 input:

 type: integer

 title: Maximum waiting connections

 description: >-

 Enter the maximum number of waiting

connections to allow before sending a WARNING event

(default is `30`)

 default: 30

 - type: section

 title: Confgure Sensu Subscriptions

 - type: markdown

 body: |

 Specify the subscriptions for Sensu agents

that should execute the `nginx-metrics` check.

 - type: question

 name: subscriptions

 input:

 type: array

 items:

 type: string

 title: Sensu Subscriptions

 ref: core/v2/entity/subscriptions

 default:

 - nginx

 - type: section

 title: Pipeline Confguration

 - type: markdown

 body: |

 Name the [pipelines] you want to use to process

NGINX Monitoring integration data.

 [pipelines]: https://docs.sensu.io/sensu-

go/latest/observability-pipeline/observe-process/pipelines/

 - type: question

 name: alerts_pipeline

 required: false

 input:

 type: string

 title: Alert pipeline name

 description: >-

 Which pipeline do you want to use for

alerts due to failures this integration detects?

 ref: core/v2/pipeline/metadata/name

 refFilter: .labels.provider == "alerts"

 - type: question

 name: incidents_pipeline

 required: false

 input:

 type: string

 title: Incident pipeline name

 description: >-

 Which pipeline do you want to use to

process incidents due to failures this integration detects?

 ref: core/v2/pipeline/metadata/name

 refFilter: .labels.provider == "incidents"

 - type: question

 name: metrics_pipeline

 required: false

 input:

 type: string

 title: Metrics pipeline name

 description: >-

 Which pipeline do you want to use to

process the metrics this integration collects?

 ref: core/v2/pipeline/metadata/name

 refFilter: .labels.provider == "metrics"

 resource_patches:

 - resource:

 api_version: core/v2

 type: CheckConfg

 name: nginx-metrics

 patches:

 - path: /spec/command

 op: replace

 value: >-

 nginx-check

 --url {{ .annotations.metrics_nginx_url |

default "[[default_url]]" }}

 - path: /spec/subscriptions

 op: replace

 value: subscriptions

 - path: /spec/pipelines/-

 op: add

 value:

 api_version: core/v2

 type: Pipeline

 name: "[[metrics_pipeline]]"

 - path: /spec/pipelines/-

 op: add

 value:

 api_version: core/v2

 type: Pipeline

 name: "[[alerts_pipeline]]"

 - path: /spec/pipelines/-

 op: add

 value:

 api_version: core/v2

 type: Pipeline

 name: "[[incidents_pipeline]]"

 - path:

/spec/output_metric_thresholds/0/thresholds/0/max

 op: replace

 value: "[[nginx_active_warn]]"

 - path:

/spec/output_metric_thresholds/1/thresholds/0/max

 op: replace

 value: "[[nginx_waiting_warn]]"

 post_install:

 - type: section

 title: Success

 - type: markdown

 body: |

 You enabled the NGINX Monitoring integration.

 The `nginx-metrics` check will run for all Sensu

agents with these subscriptions: [[subscriptions]].

type

description Top-level attribute that specifes the resource type. For integrations, the
type should always be Integration .

required true

type String

example

Metadata attributes

name

description Name for the integration that is used internally by Sensu.

required true

type String

example

namespace

description Sensu RBAC namespace that the integration belongs to.

required false

type String

example

type: Integration

name: nginx-monitoring

Spec attributes

class

description Class to use for categorizing the integration in the web UI.

required true

type String

allowed values

example

contributors

description List of GitHub @usernames to display on integration detail pages in the
web UI.

required true

type Array

example

namespace: nginx

community for community-supported integrations

supported for Sensu-supported integrations

enterprise for Sensu-supported integrations that require a
commercial license

partner for integrations supported by Sensu’s third-party
partners

class: community

contributors:

 - "@nixwiz"

display_name

description Name to display for the integration in the web UI.

required true

type String

example

post_install

description Content to display for the fnal step in integration confguration.

The post_install dialog is helpful for confrming successful installation and
providing instructions for any further confguration an integration may
require. If you do not include a post_install array in your integration
defnition, Sensu will display a default “Success” window.

Read Post install attributes for more information.

required false

type Array

example

 - "@calebhailey"

display_name: NGINX Monitoring

post_install:

 - type: section

 title: Success

 - type: markdown

 body: |

 You enabled the NGINX Monitoring integration.

 The `nginx-metrics` check will run for all Sensu

agents with these subscriptions: [[subscriptions]].

prompts

description Attributes for soliciting user-provided variable values to use in
resource_patches . Read Prompts attributes for more information.

required true

type Map of key-value pairs

example
prompts:

 - type: section

 title: Confgure NGINX URL and Monitoring Thresholds

 - type: markdown

 body: |

 Specify the NGINX stub status URL and alerting

thresholds for numbers of active and waiting connections.

 - type: question

 name: default_url

 required: false

 input:

 type: string

 title: NGINX stub status URL

 description: Enter the NGINX stub_status URL

 default: http://127.0.0.1:80/nginx_status

 - type: question

 name: nginx_active_warn

 required: false

 input:

 type: integer

 title: Maximum active connections

 description: >-

 Enter the maximum number of active

connections to allow before sending a WARNING event

(default is `300`)

 default: 300

 - type: question

 name: nginx_waiting_warn

 required: false

 input:

 type: integer

 title: Maximum waiting connections

 description: >-

 Enter the maximum number of waiting

connections to allow before sending a WARNING event

(default is `30`)

 default: 30

 - type: section

 title: Confgure Sensu Subscriptions

 - type: markdown

 body: |

 Specify the subscriptions for Sensu agents that

should execute the `nginx-metrics` check.

 - type: question

 name: subscriptions

 input:

 type: array

 items:

 type: string

 title: Sensu Subscriptions

 ref: core/v2/entity/subscriptions

 default:

 - nginx

 - type: section

 title: Pipeline Confguration

 - type: markdown

 body: |

 Name the [pipelines] you want to use to process NGINX

Monitoring integration data.

 [pipelines]: https://docs.sensu.io/sensu-

go/latest/observability-pipeline/observe-process/pipelines/

 - type: question

 name: alerts_pipeline

 required: false

 input:

 type: string

 title: Alert pipeline name

 description: >-

 Which pipeline do you want to use for

alerts due to failures this integration detects?

 ref: core/v2/pipeline/metadata/name

 refFilter: .labels.provider == "alerts"

 - type: question

provider

description Integration function to use for categorizing the integration in the web UI.

required true

type String

allowed values alerts , deregistration , discovery , events , incidents ,
metrics , monitoring , remediation

example

resource_patches

 name: incidents_pipeline

 required: false

 input:

 type: string

 title: Incident pipeline name

 description: >-

 Which pipeline do you want to use to

process incidents due to failures this integration detects?

 ref: core/v2/pipeline/metadata/name

 refFilter: .labels.provider == "incidents"

 - type: question

 name: metrics_pipeline

 required: false

 input:

 type: string

 title: Metrics pipeline name

 description: >-

 Which pipeline do you want to use to

process the metrics this integration collects?

 ref: core/v2/pipeline/metadata/name

 refFilter: .labels.provider == "metrics"

provider: monitoring

description Attributes that defne how to apply changes to the integration resources
in the sensu-resources.yaml fle based on user responses to
prompts. Read Resource patches attributes for more information.

required true

type Map of key-value pairs

example
resource_patches:

 - resource:

 api_version: core/v2

 type: CheckConfg

 name: nginx-metrics

 patches:

 - path: /spec/command

 op: replace

 value: >-

 nginx-check

 --url {{ .annotations.metrics_nginx_url | default

"[[default_url]]" }}

 - path: /spec/subscriptions

 op: replace

 value: subscriptions

 - path: /spec/pipelines/-

 op: add

 value:

 api_version: core/v2

 type: Pipeline

 name: "[[metrics_pipeline]]"

 - path: /spec/pipelines/-

 op: add

 value:

 api_version: core/v2

 type: Pipeline

 name: "[[alerts_pipeline]]"

 - path: /spec/pipelines/-

 op: add

 value:

 api_version: core/v2

 type: Pipeline

 name: "[[incidents_pipeline]]"

short_description

description Brief description of the integration to display in the web UI.

required true

type String

example

supported_platforms

description Supported platforms for the integration. Used for checks only.

required true

type Array

example

tags

 - path:

/spec/output_metric_thresholds/0/thresholds/0/max

 op: replace

 value: "[[nginx_active_warn]]"

 - path:

/spec/output_metric_thresholds/1/thresholds/0/max

 op: replace

 value: "[[nginx_waiting_warn]]"

short_description: Monitor NGINX service health and collect

metrics

supported_platforms:

 - darwin

 - linux

 - windows

description Keywords for the integration. Used for integration searches in the web
UI.

required true

type Array

example

Post install attributes

body

description Markdown content to display in the integration post install dialog. If you
specify type: markdown , you must provide a body attribute.

required false

type String

example

title

description Section title to display in the integration post install dialog. If you specify
type: section , you must provide a title attribute.

required false

tags:

 - http

 - nginx

 - webserver

 - service

body: |

 You enabled the NGINX Monitoring integration.

 The `nginx-metrics` check will run for all Sensu agents

with these subscriptions: [[subscriptions]].

type String

example

type

description Type of post install content to display.

To confgure a window of post install content, include a type: section

attribute and a type: markdown attribute. For type: section ,
provide a title. For type: markdown , provide a body.

Each type: section attribute you add corresponds to one window of
post install content; if you need more than one window of post install
content, add another type: section attribute.

required false

type String

example

Prompts attributes

body

description Markdown content to display in a prompt. If you specify type:
markdown , you must include a body attribute. Body attributes are
useful for providing instructions at the top of each prompt window.

required false

type String

example

title: Success

type: section

input

description Confguration attributes for type: question prompts. Read Input
attributes for more information.

required false

type Map of key-value pairs

example

name

description Variable name for use as a reference in resource patches to substitute
user input for a specifc attribute’s value in an integration resource. You
can also interpolate integration variable names into string templates with
double square brackets (e.g. Hello, [[team]]!). Used with type:
question prompts.

required false

type String

example

required

body: |

 Specify the NGINX stub status URL and alerting

thresholds for numbers of active and waiting connections.

input:

 type: string

 title: NGINX stub status URL

 description: Enter the NGINX stub_status URL

 default: http://127.0.0.1:80/nginx_status

name: default_url

description If the associated prompt requires user input, true . Otherwise, false .
Used with type: question prompts.

required false

type Boolean

example

title

description Section title to display in the integration prompts dialog. If you specify
type: section , you must provide a title attribute.

required false

type String

example

type

description Type of prompt to display.

To confgure a window of prompts, include a type: section attribute
followed by a title. Within each window of prompts, use type:
question attributes to collect user responses and type: markdown
attributes to provide user instructions.

Each type: section attribute you add corresponds to one window of
prompts; if you need more than one window of prompts, add another
type: section attribute.

required false

type String

attribute:

title: Confgure NGINX URL and Monitoring Thresholds

example

Resource patches attributes

patches

description Updates to apply to the selected resource, in JSON Patch format.

Variable substitution and templating are supported with varname

references in double square brackets (for example, Hello,
[[varname]]).

If an individual operation fails, Sensu considers it optional and skips it.

All patches must specify a path , op (operation), and value . Read
Patches attributes for more information.

required false

type Map of key-value pairs

example

resource

description Identifcation information for the Sensu API resource to patch. The

type: section

patches:

 - path: /spec/command

 op: replace

 value: >-

 nginx-check

 --url {{ .annotations.metrics_nginx_url | default "[[

default_url]]" }}

 - path: /spec/subscriptions

 op: replace

 value: subscriptions

https://jsonpatch.com/

resource must be included in the integration’s sensu-resources.yaml

fle. Read Resource attributes for more information.

required false

type Map of key-value pairs

example

Input attributes

default

description Default value to use for the associated attribute if the user does not
specify a value.

required false

type String

example

description

description Description to display below the user input feld.

required false

type String

example

- resource:

 api_version: core/v2

 type: CheckConfg

 name: nginx-metrics

default: http://127.0.0.1:80/nginx_status

description: Enter the NGINX stub_status URL

format

description Format for the input value. Some display formats provide helpers that
simplify user input.

required false

type String

allowed values cron , duration ecmascript-5.1 , email , envvar , hostname ,
io.sensu.selector , ipv4 , ipv6 , tel , url , sh , sha-256 ,
sha-512

example

ref

description Reference to a Sensu API resource in the format
<api_group>/<version>/<api_resource>/<api_feld_path> (for

example, core/v2/pipelines/metadata/name refers to the names of
core/v2 pipelines resources).

The referenced resources are presented to the user in a drop-down
selector. Sensu captures the resource the user selects as the input
value.

required false

type String

example

refFilter

description Filters to apply to Sensu API resource references in Sensu Query

format: email

ref: core/v2/entity/subscriptions

Expression (SQE) format. Sensu uses refFilter values to flter ref
results.

required false

type String

example

title

description Label to display above the user input feld.

required true

type String

example

type

description Type of input requested.

required true

type String

allowed values boolean , integer , string

example

Patches attributes

refFilter: .labels.provider == "alerts"

title: NGINX stub status URL

type: string

op

description Patch operation to perform.

required false

type String

allowed values add , replace

example

path

description Path for the attribute to patch within the specifed Sensu resource. In
JSON Pointer format, which supports array indexes such as
/spec/subscriptions/0 . Use - to insert values at the end of an

array (for example, /spec/subscriptions/-).

required false

type String

example

value

description Built-in or user-entered value to apply in the patch. The built-in value is
unique_id , which randomly generates an 8-digit hexadecimal string

value (e.g. 168c41a1). User-entered variables are represented by
variable name references in double square brackets.

required false

type

example

op: replace

path: /spec/subscriptions

https://jsonpatch.com/#json-pointer

Resource attributes

api_version

description Sensu API group and version for the resource to patch.

required true

type String

example

name

description Name of the resource to patch.

required true

type String

example

type

description Type of the resource to patch.

required true

type String

example

value: [[subscriptions]]

api_version: core/v2

name: nginx-metrics

type: CheckConfg

Resource limits

There is no limit on the number of resources you can bundle into a single integration.
Each integration
can include as many checks, event flters, handlers, and pipelines as you need to achieve your
observability goals.
For example, you can develop a single host monitoring integration that installs all of
the checks you want to run on every server.

Check guidelines

For integrations that create checks, list the resource defnitions in your sensu-resources.yaml fle in
the following order:

1. CheckConfg
2. HookConfg
3. Secret
4. Asset

The sensu-integration.yaml fle for check resources should include at least one subscription,
whether it is provided as a default or requested with a prompt.
Subscriptions should be named
according to the check’s function.
For example, a PostgreSQL monitoring check could include a
subscription named postgresql .

Use the YAML >- multiline block scalar syntax to wrap the check command value and make it easier
to read.
For example:

Use tunables like tokens in your check commands as needed, sourced from entity annotations (not
labels) and with explicitly confgured default values.

Check resources should use interval scheduling with a minimum interval of 30 seconds.
Set check

spec:

 command: >-

 check-disk-usage.rb

 -w {{ .annotations.disk_usage_warning | default 85 }}

 -c {{ .annotations.disk_usage_critical | default 95 }}

timeout to a non-zero value that is no greater than 50% of the interval.

Prompts for check pipelines should use one of the following generic categories:

Pipeline guidelines

For integrations that create pipelines, list the resource defnitions in your sensu-resources.yaml fle
in the following order:

1. Pipeline
2. Handler, SumoLogicMetricsHandler, and TCPStreamHandler
3. Filter
4. Mutator
5. Secret
6. Asset

For alert and incident management pipelines, we recommend using the built-in is_incident and
not_silenced event flters instead of custom event flters that are confgured for specifc use cases.

Asset guidelines

Asset resources and their corresponding runtime_assets references in other Sensu resources must
include an asset version reference in their resource name.
For example, sensu/system-check:0.5.0 .

Asset resources should include an organization or author as the namespace in the resource name.
For
example, the offcial Sensu PagerDuty plugin hosted in the sensu organization on GitHub
(sensu/sensu-pagerduty-handler) and published to under the sensu organization on Bonsai
(sensu/sensu-pagerduty-handler) should be named sensu/sensu-pagerduty-handler .

For integrations contributed to the offcial Sensu Catalog, asset resources in the sensu-

Alerts

Incident management

Metrics

Events

Deregistration

Remediation

resources.yaml fle must refer to assets hosted on Bonsai.
Read Build a private catalog of Sensu
integrations for information about using assets that are stored behind a frewall or are otherwise not
publicly available.

https://bonsai.sensu.io/

Catalog API

The Catalog API is a static API that the catalog-api command line tool generates from a repository of
integrations, such as https://github.com/sensu/catalog.
The Sensu web UI uses the generated API fles
to determine which integrations to display in the Sensu Catalog.

Get the latest catalog SHA-256 checksum

Retrieves the latest catalog content version’s SHA-256 checksum.
The Sensu web UI uses the
checksum information to determine the latest API subpath.

Example

The following example queries the Sensu Catalog API for the latest content version:

The request returns the latest catalog content version’s SHA-256 checksum and the time of the last
update (in seconds since the Unix epoch):

COMMERCIAL FEATURE : Access the Catalog API in the packaged Sensu Go distribution.
For
more information, read Get started with commercial features.

NOTE: The Sensu Catalog is in public preview and is subject to change.

curl -X GET \

/version.json

{

 "release_sha256":

"af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb929dcf6",

 "last_updated": 1643664852

}

https://github.com/sensu/catalog

API Specifcation

/version.json (GET)

description Retrieves the latest content version’s SHA-256 checksum, which the
Sensu web UI uses to determine the latest API subpath. Also returns the
time of the last update in seconds since the Unix epoch.

endpoint /version.json

output

response codes The Catalog API is statically generated, so response codes indicate an
issue with the webserver that is serving the content.

Get all integration namespaces and names

Retrieves the list of integration namespaces and names for the catalog.

Example

The following example queries the Sensu Catalog API for integration namespaces and names:

{

 "release_sha256":

"af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb

929dcf6",

 "last_updated": 1643664852

}

Error: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X GET \

The request returns the list of integration namespaces and names:

API Specifcation

/<release_sha256>/v1/catalog.json (GET)

description Retrieves the list of integration namespaces
and names for the catalog.

endpoint /<release_sha256>/v1/catalog.json

output

/af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb929dcf6/v1/catalog.json

{

 "namespaced_integrations": {

 "nginx": [

 "nginx-monitoring"

],

 "system": [

 "host-monitoring"

]

 }

}

{

 "namespaced_integrations": {

 "nginx": [

 "nginx-monitoring"

],

 "system": [

 "host-monitoring"

]

 }

}

response codes The Catalog API is statically generated, so
response codes indicate an issue with the
webserver that is serving the content.

Get the confguration and versions for an integration

For the specifed integration, retrieves the confguration for the latest version and a list of
versions.

Example

The following example queries the Sensu Catalog API for an integration’s confguration and versions:

The request returns the latest content version’s SHA-256 checksum and the time of the last content
update in seconds since the Unix epoch:

Error: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X GET \

/af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb929dcf6/v1/nginx/nginx-

monitoring.json

{

 "metadata": {

 "name": "nginx-monitoring",

 "namespace": "nginx"

 },

 "display_name": "NGINX Monitoring",

 "class": "community",

 "contributors": [

 "@nixwiz",

 "@calebhailey"

],

 "provider": "agent/check",

 "short_description": "NGINX monitoring",

API Specifcation

/<release_sha256>/v1/<namespace>/<name>.json (GET)

description Retrieves the specifed
integration’s latest
confguration and a list of
versions.

endpoint /<release_sha256>/v1/<nam
espace>/<name>.json

output

 "supported_platforms": [

 "darwin",

 "linux",

 "windows"

],

 "tags": [

 "http",

 "nginx",

 "webserver"

],

 "versions": [

 "20220125.0.0",

 "20220126.0.0"

]

}

{

 "metadata": {

 "name": "nginx-

monitoring",

 "namespace":

"nginx"

 },

 "display_name":

"NGINX Monitoring",

 "class":

"community",

response codes The Catalog API is statically
generated, so response
codes indicate an issue with
the webserver that is serving
the content.

Get all versions for an integration

 "contributors": [

 "@nixwiz",

 "@calebhailey"

],

 "provider":

"agent/check",

 "short_description":

"NGINX monitoring",

"supported_platforms":

[

 "darwin",

 "linux",

 "windows"

],

 "tags": [

 "http",

 "nginx",

 "webserver"

],

 "versions": [

 "20220125.0.0",

 "20220126.0.0"

]

}

Error: 404 (Not
Found)

Error: 500 (Internal
Server Error)

Retrieves the list of available versions for the specifed integration.

Example

The following example queries the Sensu Catalog API for an integration’s available versions:

The request returns the integration’s available versions:

API Specifcation

/<release_sha256>/v1/<namespace>/<name>/versions.json (GET)

description Retrieves a list of
the available
versions for the
specifed
integration.

endpoint /<release_sha256>
/v1/<namespace>/
<name>/versions.j
son

output

curl -X GET \

/af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb929dcf6/v1/nginx/nginx-

monitoring/versions.json

[

 "20220125.0.0",

 "20220126.0.0"

]

[

response codes The Catalog API is
statically
generated, so
response codes
indicate an issue
with the webserver
that is serving the
content.

Get the confguration for an integration version

Retrieves the confguration for the specifed version of an integration.

Example

The following example queries the Sensu Catalog API for the specifed version of an integration:

"20220125.0.0"

,

"20220126.0.0"

]

Error: 404
(Not
Found)

Error: 500
(Internal
Server
Error)

curl -X GET \

/af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb929dcf6/v1/nginx/nginx-

monitoring/20220125.0.0.json

The request returns the confguration for the specifed version of the integration:

API Specifcation

/<release_sha256>/v1/<namespace>/<name>/<version>.json (GET)

description Retrieves the
latest content
version’s SHA-
256 checksum,
which the Sensu
web UI uses to
determine the
latest API

{

 "metadata": {

 "name": "nginx-monitoring",

 "namespace": "nginx"

 },

 "class": "community",

 "contributors": [

 "@nixwiz",

 "@calebhailey"

],

 "provider": "agent/check",

 "short_description": "NGINX monitoring",

 "supported_platforms": [

 "darwin",

 "linux",

 "windows"

],

 "tags": [

 "http",

 "nginx",

 "webserver"

],

 "version": "20220125.0.0"

}

subpath.

endpoint /<release_sha25
6>/v1/<namespa
ce>/<name>/<ver
sion>.json

output
{

"metadata":

{

 "name":

"nginx-

monitoring",

"namespace":

"nginx"

 },

 "class":

"community",

"contributor

s": [

"@nixwiz",

"@calebhaile

y"

],

"provider":

"agent/check

",

"short_descr

iption":

"NGINX

monitoring",

"supported_p

latforms": [

response codes The Catalog API
is statically
generated, so
response codes
indicate an issue
with the
webserver that is
serving the
content.

Get the Sensu resources for an integration

Retrieves the the Sensu resources for the specifed integration version, in JSON format.

"darwin",

 "linux",

"windows"

],

 "tags": [

 "http",

 "nginx",

"webserver"

],

 "version":

"20220125.0.

0"

}

Error:
404 (Not
Found)

Error:
500
(Internal
Server
Error)

Example

The following example queries the Sensu Catalog API for the Sensu resources for the specifed
integration version:

The request returns the Sensu resources for the requested integration version:

NOTE: The /<release_sha256>/v1/<namespace>/<name>/<version>/sensu-resources.json
endpoint does not include assets in the retreived Sensu resources.

curl -X GET \

/af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb929dcf6/v1/nginx/nginx-

monitoring/20220125.0.0/sensu-resources.json

{

 "api_version": "core/v2",

 "metadata": {

 "name": "nginx-healthcheck"

 },

 "spec": {

 "command": "check-nginx-status.rb --url {{ .annotations.check_nginx_status_url |

default \"http://localhost:80/nginx_status\" }}",

 "interval": 30,

 "pipelines": [

 {

 "api_version": "core/v2",

 "name": "alerts",

 "type": "Pipeline"

 },

 {

 "api_version": "core/v2",

 "name": "incident-management",

 "type": "Pipeline"

 }

],

 "publish": true,

API Specifcation

/<release_sha256>/v1/<namespace>/<name>/<version>/sensu-resources.json (GET)

description R
s
S
r
s
a
f
r
d
i
n
v
i
f

endpoint /
e
6
a
e
e
o
u
r
s

 "runtime_assets": [

 "sensu-plugins/sensu-plugins-nginx:3.1.2",

 "sensu/sensu-ruby-runtime:0.0.10"

],

 "subscriptions": [

 "nginx"

],

 "timeout": 10

 },

 "type": "CheckConfg"

}

output

response codes T
C
A
s
g
d
r

c
i
a
w
w
e
s
t
c

Get the integration README

Retrieves the README for the specifed integration version in Markdown format.

Example

The following example queries the Sensu Catalog API for the README for the specifed integration
version:

The request returns the README for the specifed integration version in Markdown format.

API Specifcation

/<release_sha256>/v1/<namespace>/<name>/<version>/readme.md (GET)

description Retrieves
the
READM
E for the
specifed

curl -X GET \

/af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb929dcf6/v1/nginx/nginx-

monitoring/20220125.0.0/readme.md

integratio
n version
in
Markdow
n format.

endpoint /<release
_sha256
>/v1/<na
mespace
>/<name
>/<versio
n>/read
me.md

output READM
E in
Markdow
n format

response codes The
Catalog
API is
statically
generate
d, so
response
codes
indicate
an issue
with the
webserv
er that is
serving
the
content.

E
rr
o
r:
4
0
4

Get the integration changelog

Retrieves the changelog for the specifed integration version in Markdown format.

Example

The following example queries the Sensu Catalog API for the changelog for the specifed integration

(
N
ot
F
o
u
n
d
)

E
rr
o
r:
5
0
0
(I
nt
e
r
n
al
S
e
rv
e
r
E
rr
o
r)

version:

The request returns the changelog for the specifed integration version in Markdown format.

API Specifcation

/<release_sha256>/v1/<namespace>/<name>/<version>/changelog.png (GET)

description Retrieve
s the
changel
g for the
specifed
integrati
n versio
in
Markdow
n format

endpoint /<releas
e_sha25
6>/v1/<n
amespa
e>/<nam
e>/<vers
on>/cha
ngelog.m
d

output Change
og in
Markdow
n format

response codes The
Catalog

curl -X GET \

/af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb929dcf6/v1/nginx/nginx-

monitoring/20220125.0.0/changelog.md

API is
statically
generate
d, so
respons
codes
indicate
an issue
with the
webserv
er that is
serving
the
content.

o

4
0
4
(

o
t

o

d
)

o

5
0
0
(

Get the integration logo

Retrieves the logo for the specifed integration version in PNG format.

Example

The following example queries the Sensu Catalog API for the logo for the specifed integration version:

The request returns the logo for the specifed integration version in PNG format.

API Specifcation

/<release_sha256>/v1/<namespace>/<name>/<version>/logo.png (GET)

t
e

a

S
e

v
e

o

curl -X GET \

/af3c54b86b90fac8977f1bdc80d955002dd3f441bdbb4cc603c94abbb929dcf6/v1/nginx/nginx-

monitoring/20220125.0.0/logo.md

description Retrieves
the logo for
the specifed
integration
version in
PNG format.

endpoint /<release_s
ha256>/v1/<
namespace
>/<name>/<
version>/log
o.md

output Logo in
PNG format

response codes The Catalog
API is
statically
generated,
so response
codes
indicate an
issue with
the
webserver
that is
serving the
content.

Erro
r:
404
(Not
Fou
nd)

Erro
r:
500
(Inte
rnal
Serv

er
Error
)

API

API version: v2

The Sensu backend REST API provides a centrally managed control plane for automated, repeatable
monitoring and observability workfow confguration and observation event data access.

If you have a healthy clustered backend, you only need to make Sensu API calls to any one of the
cluster members.
The cluster protocol will replicate your changes to all cluster members.

For information about the Sensu agent API, read the agent reference.

Available APIs

Access all of the data and functionality of Sensu’s frst-class API clients, sensuctl and the web UI, with
Sensu’s backend REST APIs.
Use the Sensu APIs and endpoints to customize your workfows and
integrate your favorite Sensu features with other tools and products.

core/v2 API endpoints

The core/v2 API includes endpoints for the following Sensu resources:

core/v2/apikeys

core/v2/assets

core/v2/checks

core/v2/cluster

core/v2/clusterrolebindings

core/v2/clusterroles

core/v2/entities

core/v2/events

core/v2/flters

Enterprise APIs

The enterprise APIs include:

Other endpoints

Sensu offers additional endpoints for basic authentication, health, license, metrics, and version:

core/v2/handlers

core/v2/hooks

core/v2/mutators

core/v2/namespaces

core/v2/pipelines

core/v2/rolebindings

core/v2/roles

core/v2/silenced

core/v2/tessen

core/v2/users

COMMERCIAL FEATURE : Access Sensu’s enterprise APIs in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

enterprise/authentication/v2

enterprise/bsm/v1

enterprise/federation/v1

enterprise/pipeline/v1

enterprise/prune/v1alpha

enterprise/searches/v1

enterprise/secrets/v1

enterprise/store/v1

enterprise/web/v1

URL format

Most core/v2 API endpoints use the standard URL format
/api/core/<version>/namespaces/<namespace> where:

For enterprise APIs for namespaced resources, the URL format also includes a group that indicates
the relevant enterprise feature:
/api/enterprise/<group>/<version>/namespaces/<namespace> .

For enterprise APIs for cluster-wide resources, the URL format does not include namespace elements:
/api/enterprise/<group>/<version> .

The endpoint-only APIs do not follow a standard URL format.

Namespaces in API URLs

The examples in the API documentation use the default namespace.

The Sensu API requires the authenticated user to have the correct access permissions for the
namespace specifed in the URL.
If the authenticated user has the correct cluster-wide permissions, you
can leave out the /namespaces/<namespace> portion of the URL to access Sensu resources across
namespaces.

Read the RBAC reference for more information about confguring Sensu users and access controls.

/auth

/health

/license

/metrics

/ready

/version

<version> is the API version: v2 .

<namespace> is the namespace name.

Data format

The Sensu API uses JSON-formatted requests and responses.

In terms of output formats, the Sensu API uses json output format for responses for APIs in the
core group.
For APIs that are not in the core group, responses are in the wrapped-json output

format.
The wrapped-json format includes an outer-level spec “wrapping” for resource attributes
and lists the resource type and api_version .

Sensu sends events to the backend in json format, without the spec attribute wrapper or type
and api_version attributes.

Versioning

The Sensu Go API is versioned according to the format v{majorVersion}{stabilityLevel}

{iterationNumber} , in which v2 is stable version 2.
The Sensu API guarantees backward
compatibility for stable versions of the API.

Sensu does not guarantee that an alpha or beta API will be maintained for any period of time.
Consider
alpha versions under active development — they may not be published for every release.
Beta APIs are
more stable than alpha versions, but they offer similarly short-lived lifespans and also are not
guaranteed to convert programmatically when the API is updated.

Request size limit

The default limit for API request body size is 0.512 MB.
Use the api-request-limit backend
confguration option to customize the API request body size limit if needed.

Access control

With the exception of the authentication, health, metrics, ready, and version API endpoints, the Sensu
API requires authentication using a JSON Web Token (JWT) access token or API key.

Code examples in the Sensu API docs use the environment variable $SENSU_API_KEY to represent a
valid API key in API requests.

https://tools.ietf.org/html/rfc7519

Authentication quickstart

To set up a local API testing environment, save your Sensu credentials and access token as
environment variables.

Save your Sensu credentials as environment variables:

Save your Sensu access token as an environment variable:

The sensuctl reference demonstrates how to use the sensuctl env command to export your access
token, token expiry time, and refresh token as environment variables.

Authenticate with /auth API endpoints

Use the authentication API and your Sensu username and password to generate access tokens and
refresh tokens.
The /auth API endpoint lets you generate short-lived API tokens using your Sensu
username and password.

1. Retrieve an access token for your user.
For example, to generate an access token using
example admin credentials:

NOTE: The authentication information on this page is specifc to the Sensu API.
For information
about using Sensu’s built-in basic authentication or external authentication providers to
authenticate to the Sensu web UI, API, or sensuctl, read the Control Access documentation.

export SENSU_USER=YOUR_USERNAME && SENSU_PASS=YOUR_PASSWORD

NOTE: The command to save your access token as an environment variable requires curl and jq.

export SENSU_ACCESS_TOKEN=`curl -X GET -u "$SENSU_USER:$SENSU_PASS" -s

http://localhost:8080/auth | jq -r ".access_token"`

curl -u 'YOUR_USERNAME:YOUR_PASSWORD' http://localhost:8080/auth

The access token should be included in the output, along with a refresh token:

The access and refresh tokens are JWTs that Sensu uses to digitally sign the details of users’
authenticated Sensu sessions.

2. Use the access token in the authentication header of the API request.
For example:

3. Refresh your access token every 15 minutes.
Access tokens last for approximately 15 minutes.
When your token expires, you should receive a 401 Unauthorized response from the API.
To
generate a new access token, use the /auth/token API endpoint, including the expired
access token in the authorization header and the refresh token in the request body:

The new access token should be included in the output:

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

-H 'Content-Type: application/json' \

-d '{"refresh_token": "eyJhbGciOiJIUzI1NiIs..."}' \

http://127.0.0.1:8080/auth/token

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1561055277,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

Generate an API access token with sensuctl

You can also generate an API access token using the sensuctl command line tool.
The user credentials
that you use to confgure sensuctl determine your permissions to get, list, create, update, and delete
resources with the Sensu API.

1. Install and confgure sensuctl.

2. Retrieve an access token for your user:

The access token should be included in the output:

3. Copy the access token into the authentication header of the API request.
For example:

4. Refresh your access token every 15 minutes.
Access tokens last for approximately 15 minutes.
When your token expires, you should receive a 401 Unauthorized response from the API.
To
regenerate a valid access token, run any sensuctl command (like sensuctl event list) and
repeat step 2.

Authenticate with an API key

Each Sensu API key (core/v2/apikey) is a persistent universally unique identifer (UUID) that maps to a
stored Sensu username.
The advantages of authenticating with API keys rather than access tokens
include:

cat ~/.confg/sensu/sensuctl/cluster|grep access_token

"access_token": "eyJhbGciOiJIUzI1NiIs...",

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

More effcient integration: Check and handler plugins and other code can integrate with the
Sensu API without implementing the logic required to authenticate via the /auth API
endpoint to periodically refresh the access token

Improved security: API keys do not require providing a username and password in check or

API keys are cluster-wide resources, so only cluster admins can grant, view, and revoke them.

Confgure an environment variable for API key authentication

Confgure the SENSU_API_KEY environment variable with your own API key to use it for authentication
in your Sensu API requests as shown in the Sensu API code examples.

Follow these steps to generate an API key and export it to the SENSU_API_KEY environment variable:

1. Generate an API key with sensuctl:

The response will include the new API key:

2. Export your API key to the SENSU_API_KEY environment variable:

handler defnitions

Better admin control: API keys can be created and revoked without changing the underlying
user’s password, but keep in mind that API keys will continue to work even if the user’s
password changes

NOTE: API keys are not supported for authentication providers such as LDAP and OIDC.

sensuctl api-key grant admin

Created: /api/core/v2/apikeys/83abef1e-e7d7-4beb-91fc-79ad90084d5b

PRO TIP: Sensuctl is the most direct way to generate an API key, but you can also use the
POST core/v2/apikeys endpoint.

export SENSU_API_KEY="83abef1e-e7d7-4beb-91fc-79ad90084d5b"

BASH

CMD

Authorization header for API key authentication

Similar to the Bearer [token] Authorization header, Key [api-key] will be accepted as an
Authorization header for authentication.

For example, a JWT Bearer [token] Authorization header might be:

If you’re using Key [api-key] to authenticate instead, the Authorization header might be:

Example

This example uses the API key directly (rather than the $SENSU_API_KEY environment variable) to
authenticate to core/v2/checks:

A successful request will return the HTTP response code HTTP/1.1 200 OK and the defnitions for
the checks in the default namespace.

SET SENSU_API_KEY="83abef1e-e7d7-4beb-91fc-79ad90084d5b"

$Env:SENSU_API_KEY = "83abef1e-e7d7-4beb-91fc-79ad90084d5b"

POWERSHELL

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

curl -H "Authorization: Key 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

Pagination

The Sensu API supports response pagination for most core/v2 GET endpoints that return an array.
You
can request a paginated response with the limit and continue query parameters.

Limit query parameter

The following request limits the response to a maximum of two objects:

The response includes the available objects up to the specifed limit.

Continue query parameter

If more objects are available beyond the limit you specifed in a request, the response header includes
a Sensu-Continue token you can use to request the next page of objects.

For example, the following response indicates that more than two users are available because it
provides a Sensu-Continue token in the response header:

curl http://127.0.0.1:8080/api/core/v2/users?limit=2 -H "Authorization: Key

$SENSU_API_KEY"

HTTP/1.1 200 OK

Content-Type: application/json

Sensu-Continue: L2RlZmF1bU2Vuc3UtTWFjQ

Sensu-Entity-Count: 3

Sensu-Entity-Limit: 100

Sensu-Entity-Warning:

Date: Fri, 14 Feb 2020 15:44:25 GMT

Content-Length: 132

[

 {

 "username": "alice",

 "groups": [

 "ops"

],

To request the next two available users, use the Sensu-Continue token included in the response
header:

If the response header does not include a Sensu-Continue token, there are no further objects to
return.
For example, this response header indicates that no further users are available:

 "disabled": false

 },

 {

 "username": "bob",

 "groups": [

 "ops"

],

 "disabled": false

 }

]

curl http://127.0.0.1:8080/api/core/v2/users?limit=2&continue=L2RlZmF1bU2Vuc3UtTWFjQ

\

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

Content-Type: application/json

Sensu-Entity-Count: 3

Sensu-Entity-Limit: 100

Sensu-Entity-Warning:

Date: Fri, 14 Feb 2020 15:46:02 GMT

Content-Length: 54

[

 {

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

 }

]

Etag response headers

All GET and PATCH requests return an Etag HTTP response header that identifes a specifc version
of the resource.
Use the Etag value from the response header to conditionally execute PATCH requests
that use the If-Match and If-None-Match headers.

If Sensu cannot execute a PATCH request because one of the conditions failed, the request will return
the HTTP response code 412 Precondition Failed .

If-Match example

A successful request will return the HTTP response code HTTP/1.1 200 OK .

If-None-Match example

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-H 'If-Match: "drrn157624731797"' \

-d '{

 "metadata": {

 "labels": {

 "region": "us-west-1"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/sensu-slack-handler

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-H 'If-None-Match: "drrn157624731797", "reew237527931897"' \

-d '{

 "metadata": {

 "labels": {

 "region": "us-west-1"

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/ETag
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-Match
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-None-Match

A successful request will return the HTTP response code HTTP/1.1 200 OK .

Response fltering

The Sensu API supports response fltering for all GET endpoints that return an array.
You can flter
resources based on their labels with the labelSelector query parameter and based on certain pre-
determined felds with the feldSelector query parameter.

Label selector

The labelSelector query parameter allows you to group resources by the label attributes specifed
in the resource metadata object.
All resources support labels within the metadata object.

Field selector

The feldSelector query parameter allows you to organize and select subsets of resources based
on certain felds.
Here’s the list of available felds:

Resource Fields

Asset asset.name asset.namespace asset.flters

Check check.name check.namespace check.handlers check.publish
check.round_robin check.runtime_assets check.subscriptions

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/sensu-slack-handler

COMMERCIAL FEATURE : Access API response fltering in the packaged Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: To search based on felds and labels in the Sensu web UI, read Search in the web UI.

ClusterRole clusterrole.name

ClusterRoleBinding clusterrolebinding.name clusterrolebinding.role_ref.name
clusterrolebinding.role_ref.type

Entity entity.name entity.namespace entity.deregister
entity.entity_class entity.subscriptions

Event event.name event.namespace event.is_silenced
event.check.handlers event.check.is_silenced
event.check.name event.check.publish
event.check.round_robin event.check.runtime_assets
event.check.state event.check.status
event.check.subscriptions event.entity.deregister
event.entity.entity_class event.entity.name
event.entity.subscriptions

Extension extension.name extension.namespace

Filter flter.name flter.namespace flter.action
flter.runtime_assets

Handler handler.name handler.namespace handler.flters
handler.handlers handler.mutator handler.type

Hook hook.name hook.namespace

Mutator mutator.name mutator.namespace mutator.runtime_assets

Namespace namespace.name

Pipeline pipeline.name pipeline.namespace

Role role.name role.namespace

RoleBinding rolebinding.name rolebinding.namespace
rolebinding.role_ref.name rolebinding.role_ref.type

Secrets secret.name secret.namespace secret.provider secret.id

SecretsProviders provider.name

Silenced silenced.name silenced.namespace silenced.check
silenced.creator silenced.expire_on_resolve
silenced.subscription

User user.username user.disabled user.groups

API-specifc syntax

To create an API response flter, you’ll write a brief flter statement.
The operators and examples
sections demonstrate how to construct API response flter statements for different operators and
specifc purposes.

The flter statement construction is slightly different for different operators, but there are a few general
syntax rules that apply to all flter statements.

Spaces in the flter statement

As shown in this example:

Quotation marks around the flter statement

Place the entire flter statement inside single quotes:

Exception: If the flter statement contains a shell variable, you must use double quotation marks
around the statement:

'feldSelector=silenced.expire_on_resolve == true'

Do not use spaces around the = between the selector type and the rest of the flter
statement.

Do use spaces around the operator (in this example, the ==).

'feldSelector=linux in check.subscriptions'

"labelSelector=host == $HOSTNAME"

If you use single quotes around a flter statement that contains a shell variable, the single quotes will
keep the variable intact instead of expanding it.

Values that begin with a number or include special characters

If you are fltering for a value that begins with a number, place the value in double quotes:

Likewise, to use a label or feld selector with string values that include special characters like hyphens
and underscores, place the value in double quotes:

Filter operators

Sensu’s API response fltering supports two equality-based operators, two set-based operators, one
substring matching operator, and one logical operator.

operator description example

== Equality check.publish == true

!= Inequality check.namespace != "default"

in Included in linux in check.subscriptions

notin Not included in slack notin check.handlers

matches Substring
matching

check.name matches "linux-"

NOTE: This exception only applies to shell variables.
It does not apply for variables in languages
that treat single and double quotation marks interchangeably, like JavaScript.

'feldSelector=entity.name == "1b04994n"'

'labelSelector:region == "us-west-1"'

&& Logical AND check.publish == true && slack in

check.handlers

Equality-based operators

Sensu’s two equality-based operators are == (equality) and != (inequality).

For example, to retrieve only checks with the label type and value server :

To retrieve checks that are not in the production namespace:

Set-based operators

Sensu’s two set-based operators for lists of values are in and notin .

For example, to retrieve checks with a linux subscription:

To retrieve checks that do not use the slack handler:

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'labelSelector=type == "server"'

NOTE: Use the fag --data-urlencode in cURL to encode the query parameter.
Include the -G

fag so the request appends the query parameter data to the URL.

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'feldSelector=check.namespace != "production"'

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'feldSelector=linux in check.subscriptions'

The in and notin operators have two important conditions:

Substring matching operator

Sensu’s substring matching operator is matches .

For example, to retrieve all checks whose name includes linux :

Suppose you are using Sensu to monitor 1000 entities that are named incrementally and according to
technology.
For example, your webservers are named webserver-1 through webserver-25 , and
your CPU entities are named cpu-1 through cpu-300 , and so on.
In this case, you can use
matches to retrieve all of your webserver entities:

Similarly, if you have entities labeled for different regions, you can use matches to fnd the entities
that are labeled for the US (for example, us-east-1 , us-west-1 , and so on):

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'feldSelector=slack notin check.handlers'

First, they only work when the underlying value you’re fltering for is a string.
You can flter for
strings and arrays of strings with in and notin operators, but you cannot use them to flter
for integer, foat, array, or Boolean values.

Second, to flter for a string, the string must be to the left of the operator: string [in|notin]
selector .
To flter for an array of strings, the array must be to the right of the operator:
selector [in|notin] [string1,string2] .

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'feldSelector=check.name matches "linux"'

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'feldSelector=entity.name matches "webserver-"'

The matches operator only works when the underlying value you’re fltering for is a string.
You can
flter for strings and arrays of strings with the matches operator, but you cannot use it to flter for
integer, foat, array, or Boolean values.
Also, the string must be to the right of the operator: selector
matches string .

Logical operator

Sensu’s logical operator is && (AND).
Use it to combine multiple statements separated with the logical
operator in feld and label selectors.

For example, the following cURL request retrieves checks that are not confgured to be published and
include the linux subscription:

To retrieve checks that are not published, include a linux subscription, and are in the dev
namespace:

Combined selectors

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'labelSelector:region matches "us"'

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'feldSelector=check.publish != true && linux in

check.subscriptions'

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'feldSelector=check.publish != true && linux in check.subscriptions

&& dev in check.namespace'

NOTE: Sensu does not have the OR logical operator.

You can use feld and label selectors in a single request.
For example, to retrieve only checks that
include a linux subscription and do not include a label for type server :

Examples

Values with special characters

To use a label or feld selector with string values that include special characters like hyphens and
underscores, place the value in single or double quotes:

Use selectors with arrays of strings

To retrieve checks that are in either the dev or production namespace:

Filter events by entity or check

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'feldSelector=linux in check.subscriptions' \

--data-urlencode 'labelSelector=type != "server"'

curl -H "Authorization: Key $SENSU_API_KEY" -X GET

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'labelSelector=region == "us-west-1"'

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'feldSelector="entity:i-0c1f8a116b84ea50c" in entity.subscriptions'

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'feldSelector=check.namespace in [dev,production]'

To retrieve events for a specifc check (checkhttp):

Similary, to retrieve only events for the server entity:

Filter events by severity

Use the event.check.status feld selector to retrieve events by severity.
For example, to retrieve all
events at 2 (CRITICAL) status:

Filter all incidents

To retrieve all incidents (all events whose status is not 0):

Filter checks, entities, or events by subscription

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/events

-G \

--data-urlencode 'feldSelector=checkhttp in event.check.name'

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/events

-G \

--data-urlencode 'feldSelector=server in event.entity.name'

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/events

-G \

--data-urlencode 'feldSelector=event.check.status == "2"'

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/events

-G \

--data-urlencode 'feldSelector=event.entity.status != "0"'

To list all checks that include the linux subscription:

Similarly, to list all entities that include the linux subscription:

To list all events for the linux subscription, use the event.entity.subscriptions feld selector:

Filter silenced resources and silences

Filter silenced resources by namespace

To list all silenced resources for a particular namespace (in this example, the default namespace):

Likewise, to list all silenced resources except those in the default namespace:

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

--data-urlencode 'feldSelector=linux in check.subscriptions'

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'feldSelector=linux in entity.subscriptions'

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/events

-G \

--data-urlencode 'feldSelector=linux in event.entity.subscriptions'

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.namespace == "default"'

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.namespace != "default"'

To list all silenced events for all namespaces:

Filter silences by creator

To list all silences created by the user alice :

To list all silences that were not created by the admin user:

Filter silences by silence subscription

To retrieve silences with a specifc subscription (in this example, linux):

Another way to make the same request is:

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/events

-G \

--data-urlencode 'feldSelector=event.is_silenced == true'

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.creator == "alice"'

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.creator != "admin"'

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.subscription == "linux"'

curl -H "Authorization: Key $SENSU_API_KEY"

Filter silenced resources by expiration

To list all silenced resources that expire only when a matching check resolves:

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=linux in silenced.subscription'

NOTE: For this feld selector, subscription means the subscription specifed for the silence.
In
other words, this flter retrieves silences with a particular subscription, not silenced entities or
checks with a matching subscription.

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.expire_on_resolve == true'

Core API

Sensu’s core/v2 API provides GET, POST, PUT, and DELETE access to Sensu events and resources.
The core/v2 API includes endpoints for the following Sensu resources:

core/v2/apikeys

core/v2/assets

core/v2/checks

core/v2/cluster

core/v2/clusterrolebindings

core/v2/clusterroles

core/v2/entities

core/v2/events

core/v2/flters

core/v2/handlers

core/v2/hooks

core/v2/mutators

core/v2/namespaces

core/v2/pipelines

core/v2/rolebindings

core/v2/roles

core/v2/silenced

core/v2/tessen

core/v2/users

core/v2/apikeys

Get all API keys

The /apikeys GET endpoint retrieves all API keys.

Example

The following example demonstrates a GET request to the /apikeys API endpoint:

The request will result in a successful HTTP/1.1 200 OK response and a JSON array that contains all
API keys, similar to this example:

NOTE: Requests to core/v2/apikeys endpoints require you to authenticate with a Sensu API
key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/apikeys \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "metadata": {

 "name": "83abef1e-e7d7-4beb-91fc-79ad90084d5b",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1570640363

 },

 {

 "metadata": {

API Specifcation

/apikeys (GET)

description Returns the list of API keys.

example url http://hostname:8080/api/core/v2/apikeys

pagination This endpoint supports pagination using the limit and continue
query parameters. Read the API overview for details.

response type Array

response codes

output

 "name": "94jhid83j-96kg-2ewr-bab3-ppd3d49tdd94",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1651257929

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "83abef1e-e7d7-4beb-91fc-79ad90084d5b",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1570640363

 },

 {

 "metadata": {

 "name": "94jhid83j-96kg-2ewr-bab3-ppd3d49tdd94",

 "created_by": "admin"

Create a new API key

The /apikeys API endpoint provides HTTP POST access to create a new API key.

Example

In the following example, an HTTP POST request is submitted to the /apikeys API endpoint to
create a new API key.

The request returns a successful HTTP HTTP/1.1 201 Created response, along with a Location
header that contains the relative path to the new API key.

API Specifcation

 },

 "username": "admin",

 "created_at": 1651257929

 }

]

NOTE: For the /apikeys POST endpoint, authenticate with a Sensu access token, which you
can generate with /auth API endpoints or sensuctl.
This example uses $SENSU_ACCESS_TOKEN to
represent a valid Sensu access token.

If you prefer, you can create a new API key with sensuctl instead of using this endpoint.

curl -X POST \

-H "Authorization: Bearer $SENSU_ACCESS_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "username": "admin"

}' \

http://127.0.0.1:8080/api/core/v2/apikeys

/apikeys (POST)

description Creates a new API key, a Sensu-generated universally unique identifer
(UUID). The response will include HTTP 201 and a Location header
that contains the relative path to the new API key.

example URL http://hostname:8080/api/core/v2/apikeys

request payload

response codes

Get a specifc API key

The /apikeys/:apikey GET endpoint retrieves the specifed API key.

Example

The following example queries the /apikeys/:apikey API:

The request returns a successful HTTP/1.1 200 OK response and the requested :apikey
defnition, similar to the example below, or an error if the key is not found:

{

 "username": "admin"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-91fc-79ad90084d5b \

-H "Authorization: Key $SENSU_API_KEY"

API Specifcation

/apikeys/:apikey (GET)

description Returns the specifed API key.

example url http://hostname:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-91fc-
79ad90084d5b

response type Map

response codes

output

{

 "metadata": {

 "name": "83abef1e-e7d7-4beb-91fc-79ad90084d5b",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1570640363

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "83abef1e-e7d7-4beb-91fc-79ad90084d5b",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1570640363

}

Update an API key with PATCH

The /apikeys/:apikey PATCH endpoint updates the specifed API key.

Example

The following example queries the /apikeys/:apikey API updates the username for the specifed
:apikey defnition and returns a successful HTTP/1.1 200 OK response.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

API Specifcation

/apikeys/:apikey (PATCH)

description Updates the specifed API key.

example url http://hostname:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-
91fc-79ad90084d5b

response type Map

response codes

NOTE: You cannot change a resource’s name or namespace with a PATCH request.

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

{

 "username": "devteam"

} \

http://127.0.0.1:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-91fc-79ad90084d5b

Success: 200 (OK)

Missing: 404 (Not Found)

https://tools.ietf.org/html/rfc7396

output

Delete an API key

The /apikeys/:apikey API endpoint provides HTTP DELETE access to remove an API key.

Example

The following example shows a request to the /apikeys/:apikey API endpoint to delete the API key
83abef1e-e7d7-4beb-91fc-79ad90084d5b , resulting in a successful HTTP/1.1 204 No Content

response.

API Specifcation

/apikeys/:apikey (DELETE)

description Revokes the specifed API key.

example URL http://hostname:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-
91fc-79ad90084d5b

response codes

Error: 500 (Internal Server Error)

{

 "username": "devteam"

}

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-91fc-79ad90084d5b

Success: 204 (No Content)

Error: 500 (Internal Server Error)

core/v2/assets

Get all assets

The /assets API endpoint provides HTTP GET access to dynamic runtime asset data.

Example

The following example demonstrates a GET request to the /assets API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains
dynamic runtime asset defnitions, similar to this example:

NOTE: Requests to core/v2/assets API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "url": "https://github.com/sensu/sensu-infuxdb-

handler/releases/download/3.1.2/sensu-infuxdb-handler_3.1.2_linux_amd64.tar.gz",

 "sha512":

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9b

1257bb479676bc155b24e21bf93c722b812b0f15cb3bd",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

API Specifcation

/assets (GET)

description Returns the list of dynamic runtime assets.

 "builds": null,

 "metadata": {

 "name": "sensu-infuxdb-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 },

 {

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

example url http://hostname:8080/api/core/v2/namespaces/default/assets

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "url": "https://github.com/sensu/sensu-infuxdb-

handler/releases/download/3.1.2/sensu-infuxdb-

handler_3.1.2_linux_amd64.tar.gz",

 "sha512":

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13

a13e7540bac2b63e324f39d9b1257bb479676bc155b24e21bf93c722b81

2b0f15cb3bd",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-infuxdb-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 },

 {

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-

handler_1.0.3_linux_amd64.tar.gz",

Create a new dynamic runtime asset

The /assets API endpoint provides HTTP POST access to dynamic runtime asset data.

Example

In the following example, an HTTP POST request is submitted to the /assets API endpoint to create
a role named sensu-slack-handler :

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66

556e9079e1270521999b5871473e6c851f51b34097c54fdb8d18eedb706

4df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-handler_1.0.3_linux_amd64.tar.gz",

The request returns a successful HTTP/1.1 201 Created response.

API Specifcation

/assets (POST)

description Creates a Sensu dynamic runtime asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets

payload

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 },

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets

{

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-

handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66

556e9079e1270521999b5871473e6c851f51b34097c54fdb8d18eedb706

4df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

response codes

Get a specifc dynamic runtime asset

The /assets/:asset API endpoint provides HTTP GET access to dynamic runtime asset data for
specifc :asset defnitions, by asset name .

Example

The following example queries the /assets/:asset API endpoint for the :asset named
check_script :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :asset defnition (in this example, for the :asset named check_script):

],

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 },

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/sensu-slack-handler \

-H "Authorization: Key $SENSU_API_KEY"

API Specifcation

/assets/:asset (GET)

description Returns the specifed dynamic runtime asset.

example url http://hostname:8080/api/core/v2/namespaces/default/assets/sensu-
slack-handler

response type Map

response codes

[

 {

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

output

Create or update a dynamic runtime asset

The /assets/:asset API endpoint provides HTTP PUT access to create or update specifc :asset

defnitions, by dynamic runtime asset name.

Example

In the following example, an HTTP PUT request is submitted to the /assets/:asset API endpoint to
create the dynamic runtime asset sensu-slack-handler :

[

 {

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-

handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a

66556e9079e1270521999b5871473e6c851f51b34097c54fdb8d18eed

b7064df9019adc8",

 "flters": [

 "entity.system.os = 'linux'",

 "entity.system.arch = 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/assets/:asset (PUT)

description Creates or updates the specifed Sensu dynamic runtime asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets/sensu-
slack-handler

payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 },

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/sensu-slack-

handler

{

 "url": "https://github.com/sensu/sensu-slack-

response codes

Update a dynamic runtime asset with PATCH

The /assets/:asset API endpoint provides HTTP PATCH access to update :asset defnitions,
specifed by asset name.

handler/releases/download/1.0.3/sensu-slack-

handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a

66556e9079e1270521999b5871473e6c851f51b34097c54fdb8d18eed

b7064df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 },

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

Example

In the following example, an HTTP PATCH request is submitted to the /assets/:asset API endpoint
to add a label for the sensu-slack-handler asset.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

The request will return a successful HTTP/1.1 200 OK response.

API Specifcation

/assets/:asset (PATCH)

description Updates the specifed Sensu asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets/sensu
-slack-handler

payload

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "metadata": {

 "labels": {

 "region": "us-west-1"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/sensu-slack-handler

{

 "metadata": {

 "labels": {

 "region": "us-west-1"

 }

 }

https://tools.ietf.org/html/rfc7396

response codes

Delete a dynamic runtime asset

The /assets/:asset API endpoint provides HTTP DELETE access so you can delete a dynamic
runtime assets.

Example

The following example shows a request to the /assets/:asset API endpoint to delete the asset
sensu-slack-handler , resulting in a successful HTTP/1.1 204 No Content response:

API Specifcation

/assets/:asset (DELETE)

description Deletes the specifed Sensu dynamic runtime asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets/sens
u-slack-handler

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: Deleting a dynamic runtime asset does not remove the downloaded fles from the asset
cache or remove any references to the deleted asset in other resources.

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/sensu-slack-handler \

-H "Authorization: Key $SENSU_API_KEY"

response codes

Get a subset of assets with response fltering

The /assets API endpoint supports response fltering for a subset of asset data based on labels and
the following felds:

Example

The following example demonstrates a request to the /assets API endpoint with response fltering
that excludes dynamic runtime asset defnitions that are in the production namespace:

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only dynamic runtime asset defnitions that are not in the production namespace:

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

asset.name

asset.namespace

asset.flters

curl -H "Authorization: Key X" http://127.0.0.1:8080/api/core/v2/assets -G \

--data-urlencode 'feldSelector=asset.namespace != "production"'

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

[

 {

 "flters": null,

 "builds": [

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_windows_amd64.tar.gz",

 "sha512":

"900cfdf28d6088b929c4bf9a121b628971edee5fa5cbc91a6bc1df3bd9a7f8adb1fcfb7b1ad70589ed5

b4f5ec87d9a9a3ba95bcf2acda56b0901406f14f69fe7",

 "flters": [

 "entity.system.os == 'windows'",

 "entity.system.arch == 'amd64'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_darwin_amd64.tar.gz",

 "sha512":

"db81ee70426114e4cd4b3f180f2b0b1e15b4bffc09d7f2b41a571be2422f4399af3fbd2fa2918b88319

09ab4bc2d3f58d0aa0d7b197d3a218b2391bb5c1f6913",

 "flters": [

 "entity.system.os == 'darwin'",

 "entity.system.arch == 'amd64'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_armv7.tar.gz",

 "sha512":

"400aacce297176e69f3a88b0aab0ddfdbe9dd6a37a673cb1774c8d4750a91cf7713a881eef26ea21d20

0f74cb20818161c773490139e6a6acb92cbd06dee994c",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'armv7'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_arm64.tar.gz",

 "sha512":

"bef7802b121ac2a2a5c5ad169d6003f57d8b4f5e83eae998a0e0dd1e7b89678d4a62e678d153edacdd6

5fd1d0123b5f51308622690455e77cec6deccfa183397",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'arm64'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_386.tar.gz",

 "sha512":

"a2dcb5324952567a61d76a2e331c1c16df69ef0e0b9899515dad8d1531b204076ad0c008f59fc2f4735

a5a779afb0c1baa132268c41942b203444e377fe8c8e5",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == '386'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_amd64.tar.gz",

 "sha512":

"24539739b5eb19bbab6eda151d0bcc63a0825afdfef3bc1ec3670c7b0a00fbbb2fd006d605a7a038b32

269a22026d8947324f2bc0acdf35e8563cf4cb8660d7f",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": null

 }

],

 "metadata": {

 "name": "check-cpu-usage",

 "namespace": "default",

 "annotations": {

API Specifcation

/assets (GET) with response flters

description Returns the list of assets that match the response flters
applied in the API request.

example url http://hostname:8080/api/core/v2/assets

pagination This endpoint supports pagination using the limit
and continue query parameters.

response type Array

response codes

output

 "io.sensu.bonsai.api_url":

"https://bonsai.sensu.io/api/v1/assets/sensu/check-cpu-usage",

 "io.sensu.bonsai.name": "check-cpu-usage",

 "io.sensu.bonsai.namespace": "sensu",

 "io.sensu.bonsai.tags": "",

 "io.sensu.bonsai.tier": "Community",

 "io.sensu.bonsai.url": "https://bonsai.sensu.io/assets/sensu/check-cpu-

usage",

 "io.sensu.bonsai.version": "0.2.2"

 },

 "created_by": "admin"

 },

 "headers": null

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "flters": null,

 "builds": [

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e8819

89c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_windows_amd64.tar.gz",

 "sha512":

"900cfdf28d6088b929c4bf9a121b628971edee5fa5c

bc91a6bc1df3bd9a7f8adb1fcfb7b1ad70589ed5b4f5

ec87d9a9a3ba95bcf2acda56b0901406f14f69fe7",

 "flters": [

 "entity.system.os == 'windows'",

 "entity.system.arch == 'amd64'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e8819

89c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_darwin_amd64.tar.gz",

 "sha512":

"db81ee70426114e4cd4b3f180f2b0b1e15b4bffc09d

7f2b41a571be2422f4399af3fbd2fa2918b8831909ab

4bc2d3f58d0aa0d7b197d3a218b2391bb5c1f6913",

 "flters": [

 "entity.system.os == 'darwin'",

 "entity.system.arch == 'amd64'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e8819

89c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_armv7.tar.gz",

 "sha512":

"400aacce297176e69f3a88b0aab0ddfdbe9dd6a37a6

73cb1774c8d4750a91cf7713a881eef26ea21d200f74

cb20818161c773490139e6a6acb92cbd06dee994c",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'armv7'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e8819

89c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_arm64.tar.gz",

 "sha512":

"bef7802b121ac2a2a5c5ad169d6003f57d8b4f5e83e

ae998a0e0dd1e7b89678d4a62e678d153edacdd65fd1

d0123b5f51308622690455e77cec6deccfa183397",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'arm64'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e8819

89c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_386.tar.gz",

 "sha512":

"a2dcb5324952567a61d76a2e331c1c16df69ef0e0b9

899515dad8d1531b204076ad0c008f59fc2f4735a5a7

79afb0c1baa132268c41942b203444e377fe8c8e5",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == '386'"

],

 "headers": null

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e8819

89c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_amd64.tar.gz",

 "sha512":

"24539739b5eb19bbab6eda151d0bcc63a0825afdfef

3bc1ec3670c7b0a00fbbb2fd006d605a7a038b32269a

22026d8947324f2bc0acdf35e8563cf4cb8660d7f",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": null

 }

],

 "metadata": {

 "name": "check-cpu-usage",

 "namespace": "default",

 "annotations": {

 "io.sensu.bonsai.api_url":

"https://bonsai.sensu.io/api/v1/assets/sensu

/check-cpu-usage",

 "io.sensu.bonsai.name": "check-cpu-

usage",

 "io.sensu.bonsai.namespace":

"sensu",

 "io.sensu.bonsai.tags": "",

 "io.sensu.bonsai.tier": "Community",

 "io.sensu.bonsai.url":

"https://bonsai.sensu.io/assets/sensu/check-

cpu-usage",

 "io.sensu.bonsai.version": "0.2.2"

 },

 "created_by": "admin"

 },

 "headers": null

 }

]

core/v2/checks

Get all checks

The /checks API endpoint provides HTTP GET access to check data.

Example

The following example demonstrates a GET request to the /checks API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
check defnitions in the default namespace:

NOTE: Requests to core/v2/checks API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "command": "check-cpu-usage -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default",

 "created_by": "admin"

 },

 "secrets": null,

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

]

 },

 {

 "command": "http-perf --url http://localhost --warning 1s --critical 2s",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "http-checks"

],

 "subscriptions": [

 "webserver"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "nagios_perfdata",

 "output_metric_handlers": "sensu_to_sumo",

 "env_vars": null,

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default",

 "created_by": "admin"

 },

 "secrets": null,

 "pipelines": []

 },

 {

 "command": "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-

query up",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "sensu-prometheus-collector"

],

 "subscriptions": [

 "app_tier"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "infuxdb_line",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "prometheus_metrics",

API Specifcation

/checks (GET)

description Returns the list of checks.

example url http://hostname:8080/api/core/v2/namespaces/default/checks

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "namespace": "default",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 },

 "secrets": null,

 "pipelines": [

 {

 "name": "prometheus_metrics_workfows",

 "type": "Pipeline",

 "api_version": "core/v2"

 }

]

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "command": "check-cpu-usage -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default",

 "created_by": "admin"

 },

 "secrets": null,

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

]

 },

 {

 "command": "http-perf --url http://localhost --warning

1s --critical 2s",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "http-checks"

],

 "subscriptions": [

 "webserver"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "nagios_perfdata",

 "output_metric_handlers": "sensu_to_sumo",

 "env_vars": null,

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default",

 "created_by": "admin"

 },

 "secrets": null,

 "pipelines": []

 },

 {

 "command": "sensu-prometheus-collector -prom-url

http://localhost:9090 -prom-query up",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "sensu-prometheus-collector"

],

 "subscriptions": [

 "app_tier"

],

 "proxy_entity_name": "",

 "check_hooks": null,

Create a new check

The /checks API endpoint provides HTTP POST access to create checks.

Example

In the following example, an HTTP POST request is submitted to the /checks API endpoint to create
a check_cpu check.
The request includes the check defnition in the request body.

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "infuxdb_line",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "prometheus_metrics",

 "namespace": "default",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 },

 "secrets": null,

 "pipelines": [

 {

 "name": "prometheus_metrics_workfows",

 "type": "Pipeline",

 "api_version": "core/v2"

 }

]

 }

]

curl -X POST \

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/checks (POST)

description Creates a Sensu check.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks

example payload

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "command": "check-cpu-usage.sh -w 75 -c 90",

 "subscriptions": [

 "system"

],

 "interval": 60,

 "publish": true,

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "runtime_assets": [

 "check-cpu-usage"

],

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

{

 "command": "check-cpu-usage.sh -w 75 -c 90",

 "subscriptions": [

payload parameters Required check attributes: interval (integer) or cron (string) and a
metadata scope that contains name (string) and namespace (string).

For more information about creating checks, read the checks reference.

response codes

Get a specifc check

The /checks/:check API endpoint provides HTTP GET access to :check defnitions, specifed by
check name.

Example

 "system"

],

 "interval": 60,

 "publish": true,

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "runtime_assets": [

 "check-cpu-usage"

],

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The following example queries the /checks/:check API endpoint for the :check named
check_cpu :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :check defnition (in this example, check_cpu):

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check_cpu \

-H "Authorization: Key $SENSU_API_KEY"

{

 "command": "check-cpu-usage.sh -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default",

 "created_by": "admin"

 },

 "secrets": null,

API Specifcation

/checks/:check (GET)

description Returns the specifed check.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check_
cpu

response type Map

response codes

output

 "pipelines": [

 {

 "name": "incident_alerts",

 "type": "Pipeline",

 "api_version": "core/v2"

 }

]

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "command": "check-cpu-usage.sh -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

Create or update a check

The /checks/:check API endpoint provides HTTP PUT access to create and update :check

defnitions, specifed by check name.

Example

In the following example, an HTTP PUT request is submitted to the /checks/:check API endpoint to
update the check_cpu check:

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default",

 "created_by": "admin"

 },

 "secrets": null,

 "pipelines": [

 {

 "name": "incident_alerts",

 "type": "Pipeline",

 "api_version": "core/v2"

 }

]

}

curl -X PUT \

-H "Authorization: Key $SENSU API KEY" \

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/checks/:check (PUT)

description Creates or updates the specifed Sensu check.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check_c
pu

payload

-H 'Content-Type: application/json' \

-d '{

 "command": "check-cpu-usage.sh -w 75 -c 90",

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "system"

],

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check_cpu

{

 "command": "check-cpu-usage.sh -w 75 -c 90",

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

payload parameters Required check attributes: interval (integer) or cron (string) and
a metadata scope that contains name (string) and namespace
(string). For more information about creating checks, read the checks
reference.

response codes

Update a check with PATCH

The /checks/:check API endpoint provides HTTP PATCH access to update :check defnitions,
specifed by check name.

 "name": "incident_alerts"

 }

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "system"

],

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

Example

In the following example, an HTTP PATCH request is submitted to the /checks/:check API endpoint
to update the subscriptions array for the check_cpu check, resulting in a HTTP/1.1 200 OK
response and the updated check defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

API Specifcation

/checks/:check (PATCH)

description Updates the specifed Sensu check.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/chec
k_cpu

payload

response codes

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "subscriptions": [

 "system",

 "health"

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check_cpu

{

 "subscriptions": [

 "system",

 "health"

]

}

https://tools.ietf.org/html/rfc7396

Delete a check

The /checks/:check API endpoint provides HTTP DELETE access to delete a check from Sensu,
specifed by the check name.

Example

The following example shows a request to the /checks/:check API endpoint to delete the check
named check_cpu , which will result in a successful HTTP/1.1 204 No Content response:

API Specifcation

/checks/:check (DELETE)

description Removes the specifed check from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/ch
eck_cpu

response codes

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check_cpu

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Create an ad hoc check execution request

The /checks/:check/execute API endpoint provides HTTP POST access to create an ad hoc check
execution request so you can execute a check on demand.

Example

In the following example, an HTTP POST request is submitted to the /checks/:check/execute API
endpoint to execute the check_cpu check.
The request includes the check name in the request body.

The request will return a successful HTTP/1.1 202 Accepted response and an issued timestamp:

PRO TIP: Include the subscriptions attribute with the request body to override the
subscriptions confgured in the check defnition.
This gives you the fexibility to execute a check on
any Sensu entity or group of entities on demand.

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "check": "check_cpu",

 "subscriptions": [

 "entity:i-424242"

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check_cpu/execute

{"issued":1543861798}

NOTE: If you specify a round robin check, Sensu will execute the check on all agents with a
matching subscription.
After the ad hoc execution, the check will run as scheduled in round robin
fashion.

To execute a round robin check on a single agent, include the agent’s entity name subscription in

API Specifcation

/checks/:check/execute (POST)

description Creates an ad hoc request to execute the specifed check.

example URL http://hostname:8080/api/core/v2/namespaces/default/che
cks/check_cpu/execute

payload

payload parameters

response codes

the request body.
For example, if the entity is named webserver1 , use the subscription
entity:webserver1 .

{

 "check": "check_cpu",

 "subscriptions": [

 "entity:i-424242"

]

}

Required: check (the name of the check to
execute).

Optional: subscriptions (an array of
subscriptions to publish the check request to).
When provided with the request, the
subscriptions attribute overrides any

subscriptions confgured in the check defnition.

Success: 202 (Accepted)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Assign a hook to a check

The /checks/:check/hooks/:type API endpoint provides HTTP PUT access to assign a hook to a
check.

Example

In the following example, an HTTP PUT request is submitted to the /checks/:check/hooks/:type

API endpoint, assigning the process_tree hook to the check_cpu check in the event of a
critical type check result:

The request returns a successful HTTP/1.1 201 Created response.

API Specifcation

checks/:check/hooks/:type (PUT)

description Assigns a hook to a check (specifed by the check name
and check response type).

example URL http://hostname:8080/api/core/v2/namespaces/default/ch
ecks/check_cpu/hooks/critical

example payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "critical": [

 "process_tree"

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check_cpu/hooks/critical

{

 "critical": [

 "process_tree"

]

payload parameters This endpoint requires a JSON map of check response
types (for example, critical or warning). Each
must contain an array of hook names.

response codes

Remove a hook from a check

The /checks/:check/hooks/:type/hook/:hook API endpoint provides HTTP DELETE access to a
remove a hook from a check.

Example

The following example shows a request to the /checks/:check/hooks/:type/hook/:hook API
endpoint to remove the process_tree hook from the check_cpu check, resulting in a successful
HTTP/1.1 204 No Content response:

API Specifcation

/checks/:check/hooks/:type/hook/:hook (DELETE)

description Removes a single hook from a check
(specifed by the check name, check

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check_cpu/hooks/critical

/hook/process_tree

response type, and hook name). Read
the checks reference for available
types.

example url http://hostname:8080/api/core/v2/nam
espaces/default/checks/check_cpu/ho
oks/critical/hook/process_tree

response codes

Get a subset of checks with response fltering

The /checks API endpoint supports response fltering for a subset of check data based on labels and
the following felds:

Example

The following example demonstrates a request to the /checks API endpoint with response fltering
for only check defnitions whose subscriptions include system :

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server
Error)

check.name

check.namespace

check.handlers

check.publish

check.round_robin

check.runtime_assets

check.subscriptions

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/checks

-G \

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only check defnitions whose subscriptions include system :

--data-urlencode 'feldSelector="system" in check.subscriptions'

[

 {

 "command": "check-cpu-usage.sh -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system",

 "health"

],

 "proxy_entity_name": "",

 "check_hooks": [

 {

 "critical": [

 "process_tree"

]

 }

],

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default",

 "created_by": "admin"

API Specifcation

/checks (GET) with response flters

description Returns the list of checks that match the response
flters applied in the API request.

example url http://hostname:8080/api/core/v2/checks

pagination This endpoint supports pagination using the limit
and continue query parameters.

response type Array

response codes

output

 },

 "secrets": null,

 "pipelines": [

 {

 "name": "incident_alerts",

 "type": "Pipeline",

 "api_version": "core/v2"

 }

]

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "command": "check-cpu-usage.sh -w 75 -c

90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system",

 "health"

],

 "proxy_entity_name": "",

 "check_hooks": [

 {

 "critical": [

 "process_tree"

]

 }

],

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default",

 "created_by": "admin"

 },

 "secrets": null,

 "pipelines": [

 {

 "name": "incident_alerts",

 "type": "Pipeline",

 "api_version": "core/v2"

 }

]

 }

]

core/v2/cluster

Get all cluster data

The /cluster/members API endpoint provides HTTP GET access to Sensu cluster data.

Example

The following example demonstrates a request to the /cluster/members API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains a
Sensu cluster defnition:

NOTE: Requests to core/v2/cluster API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/cluster/members \

-H "Authorization: Key $SENSU_API_KEY"

{

 "header": {

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148554927,

 "name": "default",

 "peerURLs": [

API Specifcation

/cluster/members (GET)

description Returns the etcd cluster defnition.

example url http://hostname:8080/api/core/v2/cluster/members

query parameters timeout : Defnes the timeout when querying etcd. Default is 3 .

response type Map

response codes

example output

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://127.0.0.1:2379"

]

 }

]

}

Success: 200 (OK)

Error: 500 (Internal Server Error)

{

 "header": {

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148554927,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

Create a new cluster member

The /cluster/members API endpoint provides HTTP POST access to create a Sensu cluster
member.

Example

In the following example, an HTTP POST request is submitted to the /cluster/members API
endpoint to create a Sensu cluster member.
The request includes the cluster member peer address in
the request URL:

The request will return a successful HTTP/1.1 201 Created response along with the updated cluster
defnition:

 "clientURLs": [

 "http://127.0.0.1:2379"

]

 }

]

}

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380

{

 "header": {

 "cluster_id": 4255616304056077000,

 "member_id": 9882886658148555000,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148555000,

 "name": "default",

API Specifcation

/cluster/members/:member (POST)

description Creates a cluster member.

example url http://hostname:8080/api/core/v2/cluster/members?
peer-addrs=http://127.0.0.1:2380

query parameters

response codes

Create or update a cluster member

The /cluster/members/:member API endpoint provides HTTP PUT access to create or update a
cluster member, by the cluster member’s hex-encoded ID.

Example

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://localhost:2379"

]

 }

]

}

Required: peer-addrs (a comma-delimited
list of peer addresses).

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

The following example submits an HTTP PUT request to the /cluster/members/:member API
endpoint to update the member whose hex-encoded ID is 8927110dc66458af .

The request will return a HTTP/1.1 200 OK response and the updated cluster defnition:

IMPORTANT : The PUT /cluster/members/:member URL uses the cluster member’s hex-
encoded UInt64 ID, not the member ID listed in the cluster defnition.

To get the correct hex-encoded UInt64 ID for the member, run sensuctl cluster member-list .
The frst column in the response lists the ID you need for the PUT /cluster/members/:member
URL.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/cluster/members/8927110dc66458af?peer-

addrs=http://127.0.0.1:2380

{

 "header": {

 "cluster_id": 4255616304056077000,

 "member_id": 9882886658148555000,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148555000,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://localhost:2379"

]

 }

]

}

API Specifcation

/cluster/members/:member (PUT)

description Creates or updates a cluster member.

example url http://hostname:8080/api/core/v2/cluster/members/8927
110dc66458af?peer-addrs=http://127.0.0.1:2380

url parameters Required: Hex-encoded UInt64 cluster member ID
generated using sensuctl cluster member-list (in
this example, 8927110dc66458af).

query parameters Required: peer-addrs (a comma-delimited list of peer
addresses).

response codes

example output

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "header": {

 "cluster_id": 4255616304056077000,

 "member_id": 9882886658148555000,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148555000,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://localhost:2379"

]

 }

]

Delete a cluster member

The /cluster/members/:member API endpoint provides HTTP DELETE access to remove a Sensu
cluster member.

Example

The following example shows a request to the /cluster/members/:member API endpoint to remove
the Sensu cluster member with the ID 8927110dc66458af , which will result in a successful HTTP/1.1
204 No Content response.

API Specifcation

/cluster/members/:member (DELETE)

description Removes a member from a Sensu cluster (specifed
by the member ID).

example url http://hostname:8080/api/core/v2/cluster/members/
8927110dc66458af

}

IMPORTANT : The DELETE /cluster/members/:member URL uses the cluster member’s hex-
encoded UInt64 ID, not the member ID listed in the cluster defnition.

To get the correct hex-encoded UInt64 ID for the member, run sensuctl cluster member-list .
The frst column in the response lists the ID you need for the DELETE
/cluster/members/:member URL.

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/cluster/members/8927110dc66458a

f

url parameters Required: Hex-encoded UInt64 cluster member ID
generated using sensuctl cluster member-list
(in this example, 8927110dc66458af)

response codes

Get a cluster ID

The /cluster/id API endpoint provides HTTP GET access to the Sensu cluster ID.

Example

The following example demonstrates a request to the /cluster/id API endpoint:

The request will return an HTTP/1.1 200 OK response and a string that contains the Sensu cluster
ID:

API Specifcation

/cluster/id (GET)

description Returns the unique Sensu cluster ID.

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X GET \

 -H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/cluster/id

"23481e76-5844-4d07-b714-6e2ffbbf9315"

example url http://hostname:8080/api/core/v2/cluster/id

query parameters timeout : Defnes the timeout when querying etcd. Default is 3 .

response type String

response codes

example output

Success: 200 (OK)

Error: 500 (Internal Server Error)

"23481e76-5844-4d07-b714-6e2ffbbf9315"

core/v2/clusterrolebindings

Get all cluster role bindings

The /clusterrolebindings API endpoint provides HTTP GET access to cluster role binding data.

Example

The following example demonstrates a GET request to the /clusterrolebindings API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
cluster role binding defnitions:

NOTE: Requests to core/v2/clusterrolebindings API endpoints require you to authenticate
with a Sensu API key or access token.
The code examples in this document use the environment
variable $SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "cluster-admins"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

API Specifcation

/clusterrolebindings (GET)

description Returns the list of cluster role bindings.

example url http://hostname:8080/api/core/v2/clusterrolebindings

pagination This endpoint supports pagination using the limit and
continue query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

 },

 "metadata": {

 "name": "cluster-admin",

 "created_by": "admin"

 }

 },

 {

 "subjects": [

 {

 "type": "Group",

 "name": "system:agents"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "system:agent"

 },

 "metadata": {

 "name": "system:agent",

 "created_by": "admin"

 }

 }

]

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "cluster-admins"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "cluster-admin",

 "created_by": "admin"

 }

 },

 {

 "subjects": [

 {

 "type": "Group",

 "name": "system:agents"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "system:agent"

 },

 "metadata": {

 "name": "system:agent"

 }

 }

]

Create a new cluster role binding

The /clusterrolebindings API endpoint provides HTTP POST access to create a cluster role
binding.

Example

In the following example, an HTTP POST request is submitted to the /clusterrolebindings API
endpoint to create a cluster role binding that assigns the cluster-admin cluster role to the user
bob .
The request includes the cluster role binding defnition in the request body,

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/clusterrolebindings (POST)

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}' \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings

description Creates a Sensu cluster role binding.

example URL http://hostname:8080/api/core/v2/clusterrolebindings

payload

response codes

Get a specifc cluster role binding

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP GET access to
cluster role binding data for specifc :clusterrolebinding defnitions, by cluster role binding name .

Example

The following example queries the /clusterrolebindings/:clusterrolebinding API endpoint for
the :clusterrolebinding named bob-binder :

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :clusterrolebinding defnition (in this example, bob-binder):

API Specifcation

/clusterrolebindings/:clusterrolebinding (GET)

description Returns the specifed cluster role binding.

example url http://hostname:8080/api/core/v2/clusterrol
ebindings/bob-binder

response type Map

response codes

curl -X GET \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/bob-binder \

-H "Authorization: Key $SENSU_API_KEY"

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder",

 "created_by": "admin"

 }

}

Success: 200 (OK)

output

Create or update a cluster role binding

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP PUT access to
create or update a cluster role binding, by cluster role binding name .

Example

In the following example, an HTTP PUT request is submitted to the
/clusterrolebindings/:clusterrolebinding API endpoint to create a cluster role binding that

assigns the cluster-admin cluster role to users in the group ops .
The request includes the cluster
role binding defnition in the request body:

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder",

 "created_by": "admin"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/clusterrolebindings/:clusterrolebinding (PUT)

description Creates or updates the specifed Sensu
cluster role binding.

example URL http://hostname:8080/api/core/v2/clusterrol
ebindings/ops-group-binder

payload

-d '{

 "subjects": [

 {

 "type": "Group",

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "ops-group-binder"

 }

}' \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-group-binder

{

 "subjects": [

 {

 "type": "Group",

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

response codes

Update a cluster role binding with PATCH

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP PATCH access to
update :clusterrolebinding defnitions, specifed by cluster role binding name.

Example

In the following example, an HTTP PATCH request is submitted to the
/clusterrolebindings/:clusterrolebinding API endpoint to update the subjects array for the
ops-group-binder check, resulting in a HTTP/1.1 200 OK response and the updated cluster role

binding defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

 },

 "metadata": {

 "name": "ops-group-binder"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

https://tools.ietf.org/html/rfc7396

API Specifcation

/clusterrolebindings/:clusterrolebinding (PATCH)

description Updates the specifed Sensu cluster
role binding.

example URL http://hostname:8080/api/core/v2/cluster
rolebindings/ops-group-binder

payload

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "subjects": [

 {

 "type": "Group",

 "name": "ops_team_1"

 },

 {

 "type": "Group",

 "name": "ops_team_2"

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-group-binder

{

 "subjects": [

 {

 "type": "Group",

 "name": "ops_team_1"

 },

 {

 "type": "Group",

 "name": "ops_team_2"

 }

]

}

response codes

Delete a cluster role binding

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP DELETE access to
delete a cluster role binding from Sensu (specifed by the cluster role binding name).

Example

The following example shows a request to the /clusterrolebindings/:clusterrolebinding API
endpoint to delete the check named ops-binding , which will result in a successful HTTP/1.1 204
No Content response:

API Specifcation

/clusterrolebindings/:clusterrolebinding (DELETE)

description Removes a cluster role binding from
Sensu (specifed by the cluster role
binding name).

example url http://hostname:8080/api/core/v2/clust
errolebindings/ops-binding

response codes

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server
Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-binding

Success: 204 (No Content)

Get a subset of cluster role bindings with response fltering

The /clusterrolebindings API endpoint supports response fltering for a subset of cluster role
binding data based on labels and the following felds:

Example

The following example demonstrates a request to the /clusterrolebindings API endpoint with
response fltering to retrieve only cluster role binding defnitions whose role_ref.name includes
cluster-user :

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only cluster role binding defnitions whose role_ref.name includes cluster-user :

Missing: 404 (Not Found)

Error: 500 (Internal Server
Error)

clusterrolebinding.name

clusterrolebinding.role_ref.name

clusterrolebinding.role_ref.type

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/clusterrolebindings -G \

--data-urlencode 'feldSelector="cluster-user" in clusterrolebinding.role_ref.name'

[

 {

 "subjects": [

 {

 "type": "User",

 "name": "ann"

 }

],

API Specifcation

/clusterrolebindings (GET) with response flters

description Returns the list of cluster role bindings
that match the response flters applied in
the API request.

example url http://hostname:8080/api/core/v2/clusterr

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-user"

 },

 "metadata": {

 "name": "ann-binder",

 "created_by": "admin"

 }

 },

 {

 "subjects": [

 {

 "type": "User",

 "name": "bonita"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-user"

 },

 "metadata": {

 "name": "bonita-binder",

 "created_by": "admin"

 }

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

olebindings

pagination This endpoint supports pagination using
the limit and continue query
parameters.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "subjects": [

 {

 "type": "User",

 "name": "ann"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-user"

 },

 "metadata": {

 "name": "ann-binder",

 "created_by": "admin"

 }

 },

 {

 "subjects": [

 {

 "type": "User",

 "name": "bonita"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-user"

 },

 "metadata": {

https://tools.ietf.org/html/rfc7396

 "name": "bonita-binder",

 "created_by": "admin"

 }

 }

]

core/v2/clusterroles

Get all cluster roles

The /clusterroles API endpoint provides HTTP GET access to cluster role data.

Example

The following example demonstrates a GET request to the /clusterroles API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
cluster role defnitions:

NOTE: Requests to core/v2/clusterroles API endpoints require you to authenticate with a
Sensu API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/clusterroles \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "assets",

 "checks",

 "entities",

 "extensions",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "silenced",

 "roles",

 "rolebindings"

],

 "resource_names": null

 },

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "namespaces"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "cluster-admin",

 "created_by": "admin"

API Specifcation

/clusterroles (GET)

description Returns the list of cluster roles.

example url http://hostname:8080/api/core/v2/clusterroles

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "assets",

 "checks",

 "entities",

 "extensions",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "silenced",

 "roles",

 "rolebindings"

],

 "resource_names": null

 },

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "namespaces"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "cluster-admin",

 "created_by": "admin"

 }

 }

]

Create a new cluster role

The /clusterroles API endpoint provides HTTP POST access to create a cluster role.

Example

In the following example, an HTTP POST request is submitted to the /clusterroles API endpoint to
create a global-event-reader cluster role.
The request includes the cluster role defnition in the
request body:

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/clusterroles

/clusterroles (POST)

description Creates a Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles

payload

response codes

Get a specifc cluster role

The /clusterroles/:clusterrole API endpoint provides HTTP GET access to cluster role data for
specifc :clusterrole defnitions, by cluster role name .

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Example

The following example queries the /clusterroles/:clusterrole API endpoint for the
:clusterrole named global-event-reader :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :clusterrole defnition (in this example, global-event-reader):

API Specifcation

/clusterroles/:clusterrole (GET)

description Returns the specifed cluster role.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader \

-H "Authorization: Key $SENSU_API_KEY"

{

 "metadata": {

 "name": "global-event-reader",

 "created_by": "admin"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

example url http://hostname:8080/api/core/v2/clusterroles/global-event-
reader

response type Map

response codes

output

Create or update a cluster role

The /clusterroles/:clusterrole API endpoint provides HTTP PUT access to create or update a
cluster role, by cluster role name.

Example

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "global-event-reader",

 "created_by": "admin"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

In the following example, an HTTP PUT request is submitted to the /clusterroles/:clusterrole

API endpoint to update the global-event-reader cluster role by adding "checks" to the
resources:

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/clusterroles/:clusterrole (PUT)

description Creates or updates the specifed Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles/global-event-
reader

payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "checks",

 "events"

],

 "resource_names": null

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/clusterroles

response codes

Update a cluster role with PATCH

The /clusterroles/:clusterrole API endpoint provides HTTP PATCH access to update
:clusterrole defnitions, specifed by cluster role name.

Example

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

In the following example, an HTTP PATCH request is submitted to the
/clusterroles/:clusterrole API endpoint to update the verbs array within the rules array for the
global-event-admin cluster role, resulting in a HTTP/1.1 200 OK response and the updated check

defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

API Specifcation

/clusterroles/:clusterrole (PATCH)

description Updates the specifed Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles/global-
event-admin

payload

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-admin

{

 "rules": [

https://tools.ietf.org/html/rfc7396

response codes

Delete a cluster role

The /clusterroles/:clusterrole API endpoint provides HTTP DELETE access to delete a cluster
role from Sensu (specifed by the cluster role name).

Example

The following example shows a request to the /clusterroles/:clusterrole API endpoint to delete
the cluster role global-event-reader , resulting in a successful HTTP/1.1 204 No Content
response:

API Specifcation

 {

 "verbs": [

 "*"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader

/clusterroles/:clusterrole (DELETE)

description Removes a cluster role from Sensu (specifed by the
cluster role name).

example url http://hostname:8080/api/core/v2/clusterroles/global-
event-reader

response codes

Get a subset of cluster roles with response fltering

The /clusterroles API endpoint supports response fltering for a subset of cluster role data based
on labels and the clusterrole.name feld.

Example

The following example demonstrates a request to the /clusterroles API endpoint with response
fltering for only cluster role defnitions whose clusterrole.name includes admin :

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only cluster role defnitions whose clusterrole.name includes admin :

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/clusterroles -G \

--data-urlencode 'feldSelector=clusterrole.name matches "admin"'

[

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "assets",

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "silenced",

 "roles",

 "rolebindings"

],

 "resource_names": null

 },

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "namespaces"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "*"

],

API Specifcation

/clusterroles (GET) with response flters

description Returns the list of cluster roles that match the
response flters applied in the API request.

example url http://hostname:8080/api/core/v2/clusterroles

pagination This endpoint supports pagination using the
limit and continue query parameters.

response type Array

response codes

output

 "resource_names": null

 }

],

 "metadata": {

 "name": "cluster-admin"

 }

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "rules": [

 {

 "verbs": [

 "*"

],

https://tools.ietf.org/html/rfc7396

 "resources": [

 "assets",

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "silenced",

 "roles",

 "rolebindings"

],

 "resource_names": null

 },

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "namespaces"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "cluster-admin"

 }

 }

]

core/v2/entities

Get all entities

The /entities API endpoint provides HTTP GET access to entity data.

Example

The following example demonstrates a GET request to the /entities API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
entity defnitions in the default namespace:

NOTE: Requests to core/v2/entities API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "entity_class": "agent",

 "sensu_agent_version": "1.0.0",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

 }

]

API Specifcation

/entities (GET)

description Returns the list of entities.

example url http://hostname:8080/api/core/v2/namespaces/default/entities

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "entity_class": "agent",

 "sensu_agent_version": "1.0.0",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

Create a new entity

The /entities API endpoint provides HTTP POST access to create a Sensu entity.

Example

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

 }

]

In the following example, an HTTP POST request is submitted to the /entities API endpoint to
create a proxy entity named sensu-centos .
The request includes the entity defnition in the request
body:

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/entities (POST)

description Creates a Sensu entity.

example URL http://hostname:8080/api/core/v2/namespaces/default/entities

payload

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity_class": "proxy",

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "web"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities

{

 "entity_class": "proxy",

 "sensu_agent_version": "1.0.0",

response codes

Get a specifc entity

The /entities/:entity API endpoint provides HTTP GET access to entity data for specifc
:entity defnitions, by entity name .

Example

The following example queries the /entities/:entity API endpoint for the :entity named
sensu-centos :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :entity defnition (in this example, sensu-centos):

 "subscriptions": [

 "web"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/sensu-centos \

-H "Authorization: Key $SENSU_API_KEY"

{

 "entity_class": "agent",

 "sensu_agent_version": "1.0.0",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

API Specifcation

/entities/:entity (GET)

description Returns the specifed entity.

example url http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

response type Map

response codes

output

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "entity_class": "agent",

 "sensu_agent_version": "1.0.0",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

}

Create or update an entity

The /entities/:entity API endpoint provides HTTP PUT access to create or update the specifed
Sensu entity.

Example

In the following example, an HTTP PUT request is submitted to the /entities/:entity API
endpoint to update the entity named sensu-centos .
The request includes the updated entity defnition
in the request body:

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
updated entity defnition:

NOTE: This endpoint will not update agent-managed entities.
Requests to update agent-managed
entities via the Sensu backend REST API will fail and return HTTP 409 Confict .

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity_class": "proxy",

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "web",

 "system"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/sensu-centos

API Specifcation

/entities/:entity (PUT)

description Creates or updates the specifed Sensu entity.

example URL http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

{

 "entity_class": "proxy",

 "system": {

 "network": {

 "interfaces": null

 },

 "libc_type": "",

 "vm_system": "",

 "vm_role": "",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "web",

 "system"

],

 "last_seen": 0,

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "sensu_agent_version": "1.0.0"

}

NOTE: When you create an entity via an HTTP PUT request, the
entity will use the namespace in the request URL.

payload

response codes

Update an entity with PATCH

The /entities/:entity API endpoint provides HTTP PATCH access to update entity
confguration attributes in :entity defnitions, specifed by entity name:

{

 "entity_class": "proxy",

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "web",

 "system"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: This endpoint will not update agent-managed entities.
Requests to update agent-managed
entities via the Sensu backend REST API will fail and return HTTP 409 Confict .

labels

annotations

created_by

Example

In the following example, an HTTP PATCH request is submitted to the /entities/:entity API
endpoint to add a label for the sensu-centos entity, resulting in a HTTP/1.1 200 OK response and
the updated entity defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

entity_class

user

subscriptions

deregister

deregistration

redact

keepalive_handler

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "metadata": {

 "labels": {

 "region": "us-west-1"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/sensu-centos

https://tools.ietf.org/html/rfc7396

API Specifcation

/entities/:entity (PATCH)

description Updates the specifed Sensu entity.

example URL http://hostname:8080/api/core/v2/namespaces/default/entities/sens
u-centos

payload

response codes

Delete an entity

The /entities/:entity API endpoint provides HTTP DELETE access to delete an entity from
Sensu (specifed by the entity name).

Example

The following example shows a request to the /entities/:entity API endpoint to delete the entity
sensu-centos , which will result in a successful HTTP/1.1 204 No Content response:

{

 "metadata": {

 "labels": {

 "region": "us-west-1"

 }

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/sensu-centos \

API Specifcation

/entities/:entity (DELETE)

description Removes a entity from Sensu (specifed by the entity name).

example url http://hostname:8080/api/core/v2/namespaces/default/entities/sen
su-centos

response codes

Get a subset of entities with response fltering

The /entities API endpoint supports response fltering for a subset of entity data based on labels
and the following felds:

Example

The following example demonstrates a request to the /entities API endpoint with response fltering
for only entity defnitions whose subscriptions include linux :

-H "Authorization: Key $SENSU_API_KEY"

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

entity.name

entity.namespace

entity.deregister

entity.entity_class

entity.subscriptions

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only entity defnitions whose subscriptions include linux :

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'feldSelector="linux" in entity.subscriptions'

[

 {

 "entity_class": "agent",

 "system": {

 "network": {

 "interfaces": null

 },

 "libc_type": "",

 "vm_system": "",

 "vm_role": "",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "linux",

 "entity:datastore01"

],

 "last_seen": 0,

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "datastore01",

 "namespace": "default",

 "labels": {

 "region": "us-west-1",

 "service_type": "datastore",

 "sensu.io/managed_by": "sensuctl"

 }

 },

 "sensu_agent_version": ""

 },

 {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::c68e:8fd8:32f0:7c5d/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:3b:a9:9f",

 "addresses": [

 "192.168.56.23/24",

 "fe80::a00:27ff:fe3b:a99f/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "linux",

API Specifcation

/entities (GET) with response flters

description Returns the list of entities that match the response
flters applied in the API request.

example url http://hostname:8080/api/core/v2/entities

pagination This endpoint supports pagination using the limit
and continue query parameters.

 "entity:sensu-centos"

],

 "last_seen": 1644615964,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "sensu_agent_version": "6.6.5"

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

https://tools.ietf.org/html/rfc7396

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "entity_class": "agent",

 "system": {

 "network": {

 "interfaces": null

 },

 "libc_type": "",

 "vm_system": "",

 "vm_role": "",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "linux",

 "entity:datastore01"

],

 "last_seen": 0,

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "datastore01",

 "namespace": "default",

 "labels": {

 "region": "us-west-1",

 "service_type": "datastore",

 "sensu.io/managed_by": "sensuctl"

 }

 },

 "sensu_agent_version": ""

 },

 {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::c68e:8fd8:32f0:7c5d/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:3b:a9:9f",

 "addresses": [

 "192.168.56.23/24",

 "fe80::a00:27ff:fe3b:a99f/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "linux",

 "entity:sensu-centos"

],

 "last_seen": 1644615964,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "sensu_agent_version": "6.6.5"

 }

]

core/v2/events

Get all events

The /events API endpoint provides HTTP GET access to event data.

Example

The following example demonstrates a request to the /events API endpoint, resulting in a JSON
array that contains event defnitions.

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
event defnitions in the default namespace:

PRO TIP: The core/v2/events API endpoints are primarily designed to provide HTTP access to
event data created by agent-executed checks.
To test your Sensu observability pipeline, use the
agent API to create new ad hoc events or sensuctl or the web UI to execute existing checks on
demand.

NOTE: Requests to core/v2/events API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "check": {

 "command": "check-cpu-usage -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 5.052973881,

 "executed": 1620313661,

 "history": [

 {

 "status": 0,

 "executed": 1620313601

 },

 {

 "status": 0,

 "executed": 1620313661

 }

],

 "issued": 1620313661,

 "output": "CheckCPU TOTAL OK: total=0.2 user=0.2 nice=0.0 system=0.0 idle=99.8

iowait=0.0 irq=0.0 softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1620313661,

 "occurrences": 2,

 "occurrences_watermark": 2,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "processed_by": "server1",

 "scheduler": "memory"

 },

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "server1",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::bc00:e2c8:1059:3868/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:73:87:93",

 "addresses": [

 "172.28.128.57/24",

 "fe80::a00:27ff:fe73:8793/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:server1"

],

 "last_seen": 1620313661,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "server1",

 "namespace": "default"

 },

 "sensu_agent_version": "6.2.7"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "id": "da53be74-be42-4862-a481-b7e3236e8e6d",

API Specifcation

/events (GET)

description Returns the list of events.

example url http://hostname:8080/api/core/v2/namespaces/default/events

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "metadata": {

 "namespace": "default"

 },

 "sequence": 3,

 "timestamp": 1620313666

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "check": {

 "command": "check-cpu-usage -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 5.052973881,

 "executed": 1620313661,

 "history": [

 {

 "status": 0,

 "executed": 1620313601

 },

 {

 "status": 0,

 "executed": 1620313661

 }

],

 "issued": 1620313661,

 "output": "CheckCPU TOTAL OK: total=0.2 user=0.2

nice=0.0 system=0.0 idle=99.8 iowait=0.0 irq=0.0

softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1620313661,

 "occurrences": 2,

 "occurrences_watermark": 2,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "processed_by": "server1",

 "scheduler": "memory"

 },

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "server1",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::bc00:e2c8:1059:3868/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:73:87:93",

 "addresses": [

 "172.28.128.57/24",

 "fe80::a00:27ff:fe73:8793/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:server1"

],

 "last_seen": 1620313661,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "server1",

 "namespace": "default"

 },

 "sensu_agent_version": "6.2.7"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "id": "da53be74-be42-4862-a481-b7e3236e8e6d",

 "metadata": {

 "namespace": "default"

 },

 "sequence": 3,

 "timestamp": 1620313666

 }

Create a new event

The /events API endpoint provides HTTP POST access to create an event and send it to the Sensu
observability pipeline.

Example

In the following example, an HTTP POST request is submitted to the /events API endpoint to create
an event.
The request includes information about the check and entity represented by the event:

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "state": "failing",

 "status": 2,

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

The request will return a successful HTTP/1.1 201 Created response.

To create useful, actionable events, we recommend using check attributes like status (0 for OK,
1 for warning, 2 for critical) and output , as well as adding pipelines , as shown in this example

For more information about event attributes and their available values, read the event specifcation.

For events created with this endpoint, the following attributes have the default value 0 unless you
specify a different value for testing:

The last_ok attribute will default to 0 even if you manually specify OK status in the request body.

The sensu_agent_version attribute will return with a null value for events created with this endpoint
because these events are not created by an agent-executed check.

API Specifcation

/events (POST)

description Creates a new Sensu event. To update an existing event, use the
/events PUT endpoint.

If you create a new event that references an entity that does not already
exist, sensu-backend will automatically create a proxy entity in the same
namespace when the event is published.

If you create an event that references an existing entity but includes
different information for entity attributes, Sensu will not make any
changes to the existing entity’s defnition based on the event you create
via the API.

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

executed

issued

last_seen

status

example URL http://hostname:8080/api/core/v2/namespaces/default/events

payload

response codes

NOTE: An agent cannot belong to, execute checks in, or create
events in more than one namespace.

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "state": "failing",

 "status": 2,

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

]

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Get event data for a specifc entity

The /events/:entity API endpoint provides HTTP GET access to event data specifc to an
:entity , by entity name .

Example

The following example queries the /events/:entity API endpoint for Sensu events for the
server1 entity:

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
Sensu events for the server1 entity:

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1 \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "check": {

 "command": "check-cpu-usage -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 5.052973881,

 "executed": 1620313661,

 "history": [

 {

 "status": 0,

 "executed": 1620313601

 },

 {

 "status": 0,

 "executed": 1620313661

 }

],

 "issued": 1620313661,

 "output": "CheckCPU TOTAL OK: total=0.2 user=0.2 nice=0.0 system=0.0 idle=99.8

iowait=0.0 irq=0.0 softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1620313661,

 "occurrences": 2,

 "occurrences_watermark": 2,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "processed_by": "server1",

 "scheduler": "memory"

 },

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "server1",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::bc00:e2c8:1059:3868/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:73:87:93",

 "addresses": [

 "172.28.128.57/24",

 "fe80::a00:27ff:fe73:8793/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:server1"

],

 "last_seen": 1620313661,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "server1",

 "namespace": "default"

 },

 "sensu_agent_version": "6.2.7"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "id": "da53be74-be42-4862-a481-b7e3236e8e6d",

 "metadata": {

 "namespace": "default"

 },

 "sequence": 3,

 "timestamp": 1620313666

 },

 {

 "check": {

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 20,

 "low_fap_threshold": 0,

 "publish": false,

 "runtime_assets": null,

 "subscriptions": [],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 120,

 "round_robin": false,

 "executed": 1620313714,

 "history": [

 {

 "status": 0,

 "executed": 1620313314

 },

 {

 "status": 0,

 "executed": 1620313334

 },

 {

 "status": 0,

 "executed": 1620313354

 },

 {

 "...": 0,

 "...": 1620313374

 }

],

 "issued": 1620313714,

 "output": "Keepalive last sent from server1 at 2021-05-06 15:08:34 +0000 UTC",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1620313714,

 "occurrences": 358,

 "occurrences_watermark": 358,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "keepalive",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "processed_by": "server1",

 "scheduler": "etcd"

 },

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "server1",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::bc00:e2c8:1059:3868/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:73:87:93",

 "addresses": [

 "172.28.128.57/24",

 "fe80::a00:27ff:fe73:8793/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:server1"

],

 "last_seen": 1620313714,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "server1",

 "namespace": "default"

 },

 "sensu_agent_version": "6.2.7"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "id": "8717b1dc-47d2-4b73-a259-ee2645cadbf5",

 "metadata": {

 "namespace": "default"

 },

 "sequence": 359,

 "timestamp": 1620313714

API Specifcation

/events/:entity (GET)

description Returns a list of events for the specifed entity.

example url http://hostname:8080/api/core/v2/namespaces/default/events/server1

pagination This endpoint supports pagination using the limit and continue
query parameters.

response type Array

response codes

output

 }

]

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

[

 {

 "check": {

 "command": "check-cpu-usage -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 5.052973881,

 "executed": 1620313661,

 "history": [

 {

 "status": 0,

 "executed": 1620313601

 },

 {

 "status": 0,

 "executed": 1620313661

 }

],

 "issued": 1620313661,

 "output": "CheckCPU TOTAL OK: total=0.2 user=0.2

nice=0.0 system=0.0 idle=99.8 iowait=0.0 irq=0.0

softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1620313661,

 "occurrences": 2,

 "occurrences_watermark": 2,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "processed_by": "server1",

 "scheduler": "memory"

 },

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "server1",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::bc00:e2c8:1059:3868/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:73:87:93",

 "addresses": [

 "172.28.128.57/24",

 "fe80::a00:27ff:fe73:8793/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:server1"

],

 "last_seen": 1620313661,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "server1",

 "namespace": "default"

 },

 "sensu_agent_version": "6.2.7"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "id": "da53be74-be42-4862-a481-b7e3236e8e6d",

 "metadata": {

 "namespace": "default"

 },

 "sequence": 3,

 "timestamp": 1620313666

 },

 {

 "check": {

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 20,

 "low_fap_threshold": 0,

 "publish": false,

 "runtime_assets": null,

 "subscriptions": [],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 120,

 "round_robin": false,

 "executed": 1620313714,

 "history": [

 {

 "status": 0,

 "executed": 1620313314

 },

 {

 "status": 0,

 "executed": 1620313334

 },

 {

 "status": 0,

 "executed": 1620313354

 },

 {

 "...": 0,

 "...": 1620313374

 }

],

 "issued": 1620313714,

 "output": "Keepalive last sent from server1 at

2021-05-06 15:08:34 +0000 UTC",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1620313714,

 "occurrences": 358,

 "occurrences_watermark": 358,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "keepalive",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "processed_by": "server1",

 "scheduler": "etcd"

 },

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "server1",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::bc00:e2c8:1059:3868/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:73:87:93",

 "addresses": [

 "172.28.128.57/24",

 "fe80::a00:27ff:fe73:8793/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:server1"

],

 "last_seen": 1620313714,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "server1",

 "namespace": "default"

 },

 "sensu_agent_version": "6.2.7"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "id": "8717b1dc-47d2-4b73-a259-ee2645cadbf5",

 "metadata": {

Get event data for a specifc entity and check

The /events/:entity/:check API endpoint provides HTTP GET access to event data for the
specifed entity and check.

Example

In the following example, an HTTP GET request is submitted to the /events/:entity/:check API
endpoint to retrieve the event for the server1 entity and the check_cpu check:

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
Sensu events for the server1 entity and check_cpu check:

 "namespace": "default"

 },

 "sequence": 359,

 "timestamp": 1620313714

 }

]

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/check_cpu \

-H "Authorization: Key $SENSU_API_KEY"

{

 "check": {

 "command": "check-cpu-usage -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 5.050929017,

 "executed": 1620313539,

 "history": null,

 "issued": 1620313539,

 "output": "CheckCPU TOTAL OK: total=2.85 user=2.65 nice=0.0 system=0.2

idle=97.15 iowait=0.0 irq=0.0 softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1620313539,

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "processed_by": "server1",

 "scheduler": ""

 },

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "server1",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::bc00:e2c8:1059:3868/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:73:87:93",

 "addresses": [

 "172.28.128.57/24",

 "fe80::a00:27ff:fe73:8793/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:server1"

],

 "last_seen": 1620313539,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

API Specifcation

/events/:entity/:check (GET)

description Returns an event for the specifed entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/s
erver1/check_cpu

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "server1",

 "namespace": "default"

 },

 "sensu_agent_version": "6.2.7"

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "id": "9a9c7515-0a04-43f3-9351-d8da88942b1b",

 "metadata": {

 "namespace": "default"

 },

 "sequence": 1,

 "timestamp": 1620313546

}

response type Map

response codes

output

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "check": {

 "command": "check-cpu-usage -w 75 -c 90",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 5.050929017,

 "executed": 1620313539,

 "history": null,

 "issued": 1620313539,

 "output": "CheckCPU TOTAL OK: total=2.85

user=2.65 nice=0.0 system=0.2 idle=97.15

iowait=0.0 irq=0.0 softirq=0.0 steal=0.0 guest=0.0

guest_nice=0.0\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1620313539,

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "processed_by": "server1",

 "scheduler": ""

 },

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "server1",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::bc00:e2c8:1059:3868/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:73:87:93",

 "addresses": [

 "172.28.128.57/24",

 "fe80::a00:27ff:fe73:8793/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "system",

 "entity:server1"

],

 "last_seen": 1620313539,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "server1",

 "namespace": "default"

 },

 "sensu_agent_version": "6.2.7"

 },

 "pipelines": [

 {

Create a new event for an entity and check

The /events/:entity/:check API endpoint provides HTTP POST access to create an event and
send it to the Sensu observability pipeline.

Example

In the following example, an HTTP POST request is submitted to the /events/:entity/:check API
endpoint to create an event for the server1 entity and the server-health check and process it
using the incident_alerts pipeline.
The event includes a status code of 1 , indicating a warning,
and an output message of Server error .

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

],

 "id": "9a9c7515-0a04-43f3-9351-d8da88942b1b",

 "metadata": {

 "namespace": "default"

 },

 "sequence": 1,

 "timestamp": 1620313546

}

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

The request will return a successful HTTP/1.1 201 Created response.

You can use sensuctl or the Sensu web UI to view the event:

The response should list the event with the status and output specifed in the request:

For events created with this endpoint, the following attributes have the default value 0 unless you
specify a different value for testing:

 "output": "Server error",

 "status": 1,

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

]

} \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

NOTE: A namespace is not required to create the event.
The event will use the namespace in the
URL by default.

sensuctl event list

 Entity Check Output Status Silenced Timestamp

────────────── ───────────── ─────────────────────────────────── ──────── ──────────

───────────────────────────────

 server1 server-health Server error 1 false 2019-03-14 16:56:09 +0000 UTC

The last_ok attribute will default to 0 even if you manually specify OK status in the request body.

The sensu_agent_version attribute will return with a null value for events created with this endpoint
because these events are not created by an agent-executed check.

API Specifcation

/events/:entity/:check (POST)

description Creates an event for the specifed entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events
/server1/server-health

payload

executed

issued

last_seen

status

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

response codes

Create or update an event for an entity and check

The /events/:entity/:check API endpoint provides HTTP PUT access to create or update an
event and send it to the Sensu observability pipeline.

Example

In the following example, an HTTP PUT request is submitted to the /events/:entity/:check API
endpoint to create an event for the server1 entity and the server-health check and process it
using the incident_alerts pipeline.
The event includes a status code of 1 , indicating a warning,
and an output message of Server error .

 "name": "incident_alerts"

 }

]

}

Success: 201 (Created)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

The request will return a successful HTTP/1.1 201 Created response.

You can use sensuctl or the Sensu web UI to view the event:

The response should list the event with the status and output specifed in the request:

API Specifcation

 "status": 1,

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

NOTE: A namespace is not required to create the event.
The event will use the namespace in the
URL by default.

sensuctl event list

 Entity Check Output Status Silenced Timestamp

────────────── ───────────── ─────────────────────────────────── ──────── ──────────

───────────────────────────────

 server1 server-health Server error 1 false 2019-03-14 16:56:09 +0000 UTC

/events/:entity/:check (PUT)

description Creates an event for the specifed entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/s
erver1/server-health

payload

payload parameters Review the payload parameters section below.

response codes

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

]

}

Success: 201 (Created)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Payload parameters

The /events/:entity/:check PUT endpoint requires a request payload that contains an entity

scope and a check scope.

Example request with minimum required event attributes

The request will return a successful HTTP/1.1 201 Created response.

The minimum required attributes let you create an event using the /events/:entity/:check PUT
endpoint, but the request can include any attributes defned in the event specifcation.
To create useful,

The entity scope contains information about the component of your infrastructure
represented by the event.
At minimum, Sensu requires the entity scope to contain the
entity_class (agent or proxy) and the entity name and namespace within a
metadata scope.
For more information about entity attributes, review the entity specifcation.

The check scope contains information about the event status and how the event was created.
At minimum, Sensu requires the check scope to contain a name within a metadata scope
and either an interval or cron attribute.
For more information about check attributes,
review the check specifcation.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1"

 }

 },

 "check": {

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

actionable events, we recommend adding check attributes such as the event status (0 for OK, 1
for warning, 2 for critical), an output message, and one or more pipelines .
For more information
about these attributes and their available values, review the event specifcation.

Example request with minimum recommended event attributes

The request will return a successful HTTP/1.1 201 Created response.

Create metrics events

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "incident_alerts"

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

In addition to the entity and check scopes, Sensu events can include a metrics scope that
contains metrics in Sensu metric format.
Read the events reference and for more information about
Sensu metric format.

Example request including metrics

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "status": 0,

 "output_metric_handlers": ["infuxdb"],

 "interval": 60,

 "metadata": {

 "name": "server-metrics"

 }

 },

 "metrics": {

 "handlers": [

 "infuxdb"

],

 "points": [

 {

 "name": "server1.server-metrics.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "server1.server-metrics.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

The request will return a successful HTTP/1.1 201 Created response.

Delete an event

Example

The following example shows a request to the /events/:entity/:check API endpoint to delete the
event produced by the server1 entity and check_cpu check, resulting in a successful HTTP/1.1
204 No Content response.

API Specifcation

/events/:entity/:check (DELETE)

description Deletes the event created by the specifed entity using the
specifed check.

example url http://hostname:8080/api/core/v2/namespaces/default/eve

 }

]

 },

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "metrics_workfows"

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-metrics

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/check_cpu \

-H "Authorization: Key $SENSU_API_KEY"

nts/server1/check_cpu

response codes

Get a subset of events with response fltering

The /events API endpoint supports response fltering for a subset of event data based on labels and
the following felds:

Example

The following example demonstrates a request to the /events API endpoint with response fltering

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

event.name

event.namespace

event.is_silenced

event.check.handlers

event.check.is_silenced

event.check.name

event.check.publish

event.check.round_robin

event.check.runtime_assets

event.check.status

event.check.subscriptions

event.entity.deregister

event.entity.entity_class

event.entity.name

event.entity.subscriptions

for events from entities whose subscriptions include linux :

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only event defnitions for entities whose subscriptions include linux :

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/events

-G \

--data-urlencode 'feldSelector="linux" in event.entity.subscriptions'

[

 {

 "timestamp": 1644848031,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

 "fe80::c68e:8fd8:32f0:7c5d/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:3b:a9:9f",

 "addresses": [

 "192.168.56.23/24",

 "fe80::a00:27ff:fe3b:a99f/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "linux",

 "entity:sensu-centos",

 "system"

],

 "last_seen": 1644848029,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin"

 },

 "sensu_agent_version": "6.6.5"

 },

 "check": {

 "command": "check-cpu-usage -w 1 -c 2",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 2.010462294,

 "executed": 1644848029,

 "history": [

 {

 "status": 2,

 "executed": 1644847740

 },

 {

 "status": 1,

 "executed": 1644847755

 },

 {

 "status": 1,

 "executed": 1644847770

 },

 {

 "status": 2,

 "executed": 1644847785

 },

 {

 "status": 2,

 "executed": 1644847800

 },

 {

 "status": 1,

 "executed": 1644847815

 },

 {

 "status": 2,

 "executed": 1644847830

 },

 {

 "status": 1,

 "executed": 1644847845

 },

 {

 "status": 1,

 "executed": 1644847860

 },

 {

 "status": 1,

 "executed": 1644847875

 },

 {

 "status": 1,

 "executed": 1644847890

 },

 {

 "status": 0,

 "executed": 1644847905

 },

 {

 "status": 2,

 "executed": 1644847920

 },

 {

 "status": 1,

 "executed": 1644847935

 },

 {

 "status": 0,

 "executed": 1644847950

 },

 {

 "status": 0,

 "executed": 1644847965

 },

 {

 "status": 2,

 "executed": 1644847980

 },

 {

 "status": 2,

 "executed": 1644847995

 },

 {

 "status": 1,

 "executed": 1644848010

 },

 {

 "status": 1,

 "executed": 1644848014

 },

 {

 "status": 0,

 "executed": 1644848029

 }

],

 "issued": 1644848029,

 "output": "check-cpu-usage OK: 0.51% CPU usage | cpu_idle=99.49,

cpu_system=0.51, cpu_user=0.00, cpu_nice=0.00, cpu_iowait=0.00, cpu_irq=0.00,

cpu_softirq=0.00, cpu_steal=0.00, cpu_guest=0.00, cpu_guestnice=0.00\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 59,

 "last_ok": 1644848029,

 "occurrences": 1,

 "occurrences_watermark": 2,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "secrets": null,

API Specifcation

/events (GET) with response flters

description Returns the list of events that match the response
flters applied in the API request.

example url http://hostname:8080/api/core/v2/events

pagination This endpoint supports pagination using the limit
and continue query parameters.

response type Array

response codes

 "is_silenced": false,

 "scheduler": "memory",

 "processed_by": "sensu-centos",

 "pipelines": []

 },

 "metadata": {

 "namespace": "default"

 },

 "id": "f5ef6190-a8e2-4660-9ad1-02ae0a2e89f4",

 "sequence": 2,

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "metrics_workfows"

 }

]

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

output

Error: 500 (Internal Server Error)

[

 {

 "timestamp": 1644848031,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "08:00:27:8b:c9:3f",

 "addresses": [

 "10.0.2.15/24",

"fe80::c68e:8fd8:32f0:7c5d/64"

]

 },

 {

 "name": "eth1",

 "mac": "08:00:27:3b:a9:9f",

 "addresses": [

 "192.168.56.23/24",

"fe80::a00:27ff:fe3b:a99f/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "vbox",

 "vm_role": "guest",

 "cloud_provider": "",

 "processes": null

 },

 "subscriptions": [

 "linux",

 "entity:sensu-centos",

 "system"

],

 "last_seen": 1644848029,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin"

 },

 "sensu_agent_version": "6.6.5"

 },

 "check": {

 "command": "check-cpu-usage -w 1 -c

2",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 15,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "check-cpu-usage"

],

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 2.010462294,

 "executed": 1644848029,

 "history": [

 {

 "status": 2,

 "executed": 1644847740

 },

 {

 "status": 1,

 "executed": 1644847755

 },

 {

 "status": 1,

 "executed": 1644847770

 },

 {

 "status": 2,

 "executed": 1644847785

 },

 {

 "status": 2,

 "executed": 1644847800

 },

 {

 "status": 1,

 "executed": 1644847815

 },

 {

 "status": 2,

 "executed": 1644847830

 },

 {

 "status": 1,

 "executed": 1644847845

 },

 {

 "status": 1,

 "executed": 1644847860

 },

 {

 "status": 1,

 "executed": 1644847875

 },

 {

 "status": 1,

 "executed": 1644847890

 },

 {

 "status": 0,

 "executed": 1644847905

 },

 {

 "status": 2,

 "executed": 1644847920

 },

 {

 "status": 1,

 "executed": 1644847935

 },

 {

 "status": 0,

 "executed": 1644847950

 },

 {

 "status": 0,

 "executed": 1644847965

 },

 {

 "status": 2,

 "executed": 1644847980

 },

 {

 "status": 2,

 "executed": 1644847995

 },

 {

 "status": 1,

 "executed": 1644848010

 },

 {

 "status": 1,

 "executed": 1644848014

 },

 {

 "status": 0,

 "executed": 1644848029

 }

],

 "issued": 1644848029,

 "output": "check-cpu-usage OK: 0.51%

CPU usage | cpu_idle=99.49, cpu_system=0.51,

cpu_user=0.00, cpu_nice=0.00,

cpu_iowait=0.00, cpu_irq=0.00,

cpu_softirq=0.00, cpu_steal=0.00,

cpu_guest=0.00, cpu_guestnice=0.00\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 59,

 "last_ok": 1644848029,

 "occurrences": 1,

 "occurrences_watermark": 2,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check_cpu",

 "namespace": "default"

 },

 "secrets": null,

 "is_silenced": false,

 "scheduler": "memory",

 "processed_by": "sensu-centos",

 "pipelines": []

 },

 "metadata": {

 "namespace": "default"

 },

 "id": "f5ef6190-a8e2-4660-9ad1-

02ae0a2e89f4",

 "sequence": 2,

 "pipelines": [

 {

 "api_version": "core/v2",

 "type": "Pipeline",

 "name": "metrics_workfows"

 }

]

 }

]

core/v2/flters

Get all event flters

The /flters API endpoint provides HTTP GET access to event flter data.

Example

The following example demonstrates a GET request to the /flters API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
event flter defnitions in the default namespace:

NOTE: Requests to core/v2/flters API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters \

-H "Authorization: Bearer $TOKEN"

[

 {

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

API Specifcation

/flters (GET)

description Returns the list of event flters.

example url http://hostname:8080/api/core/v2/namespaces/default/flters

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "runtime_assets": null

 },

 {

 "metadata": {

 "name": "state_change_only",

 "namespace": "default"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "development_flter",

Create a new event flter

The /flters API endpoint provides HTTP POST access to create an event flter.

Example

In the following example, an HTTP POST request is submitted to the /flters API endpoint to create
the event flter development_flter .

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": null

 },

 {

 "metadata": {

 "name": "state_change_only",

 "namespace": "default"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "development_flter",

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/flters (POST)

description Creates a Sensu event flter.

example URL http://hostname:8080/api/core/v2/namespaces/default/flters

payload

response codes

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": []

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters

{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": []

}

Success: 201 (Created)

Get a specifc event flter

The /flters/:flter API endpoint provides HTTP GET access to event flter data for specifc
:flter defnitions, by flter name.

Example

The following example queries the /flters/:flter API endpoint for the :flter named
state_change_only :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :flter defnition (in this example, state_change_only):

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/state_change_only \

-H "Authorization: Bearer $TOKEN"

{

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

}

API Specifcation

/flters/:flter (GET)

description Returns the specifed event flter.

example url http://hostname:8080/api/core/v2/namespaces/default/flters/state_chang
e_only

response type Map

response codes

output

Create or update an event flter

The /flters/:flter API endpoint provides HTTP PUT access to create or update an event flter.

Example

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

}

In the following example, an HTTP PUT request is submitted to the /flters API endpoint to create
the event flter development_flter :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/flters/:flter (PUT)

description Creates or updates the specifed Sensu event flter.

example URL http://hostname:8080/api/core/v2/namespaces/default/flters/developmen
t_flter

payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": []

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/development_flter

{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

response codes

Update a flter with PATCH

The /flters/:flter API endpoint provides HTTP PATCH access to update :flter defnitions,
specifed by flter name.

Example

In the following example, an HTTP PATCH request is submitted to the /flters/:flter API endpoint
to update the expressions array for the us-west flter, resulting in a HTTP/1.1 200 OK response
and the updated event flter defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": []

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

curl -X PATCH \

https://tools.ietf.org/html/rfc7396

API Specifcation

/flters/:flter (PATCH)

description Updates the specifed Sensu flter.

example URL http://hostname:8080/api/core/v2/namespaces/default/flter/us-west

payload

response codes

Delete an event flter

The /flters/:flter API endpoint provides HTTP DELETE access to delete an event flter from
Sensu (specifed by the flter name).

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "expressions": [

 "event.check.occurrences == 3"

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flter/us-west

{

 "expressions": [

 "event.check.occurrences == 3"

]

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Example

The following example shows a request to the /flters/:flter API endpoint to delete the event flter
development_flter , which will result in a successful HTTP/1.1 204 No Content response:

API Specifcation

/flters/:flter (DELETE)

description Removes the specifed event flter from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/flters/develop
ment_flter

response codes

Get a subset of flters with response fltering

The /flters API endpoint supports response fltering for a subset of flter data based on labels and
the following felds:

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/development_flter \

-H "Authorization: Key $SENSU_API_KEY"

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

flter.name

flter.namespace

flter.action

flter.runtime_assets

Example

The following example demonstrates a request to the /flters API endpoint with response fltering
for only flter defnitions whose action is allow :

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only event flter defnitions whose action is allow :

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/flters

-G \

--data-urlencode 'feldSelector=flter.action == allow'

[

 {

 "metadata": {

 "name": "flter_interval_60_hourly",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "allow",

 "expressions": [

 "event.check.interval == 60",

 "event.check.occurrences == 1 || event.check.occurrences % 60 == 0"

],

 "runtime_assets": null

 },

 {

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

 }

]

API Specifcation

/flters (GET) with response flters

description Returns the list of flters that match the response flters
applied in the API request.

example url http://hostname:8080/api/core/v2/flters

pagination This endpoint supports pagination using the limit and
continue query parameters.

response type Array

response codes

output

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "flter_interval_60_hourly",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "allow",

 "expressions": [

 "event.check.interval == 60",

 "event.check.occurrences == 1 ||

event.check.occurrences % 60 == 0"

],

 "runtime_assets": null

 },

 {

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

 }

]

core/v2/handlers

Get all handlers

The /handlers API endpoint provides HTTP GET access to handler data.

Example

The following example demonstrates a GET request to the /handlers API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
handler defnitions in the default namespace:

NOTE: Requests to core/v2/handlers API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "created_by": "admin"

 },

 "type": "pipe",

 "command": "sensu-infuxdb-handler -d sensu",

 "timeout": 0,

 "handlers": null,

API Specifcation

/handlers (GET)

description Returns the list of handlers.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers

pagination This endpoint supports pagination using the limit and continue

 "flters": null,

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "runtime_assets": ["sensu/sensu-infuxdb-handler"]

 },

 {

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "created_by": "admin"

 },

 "type": "pipe",

 "command": "sensu-slack-handler --channel '#monitoring'",

 "timeout": 0,

 "handlers": null,

 "flters": [

 "is_incident",

 "not_silenced"

],

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "runtime_assets": ["sensu/sensu-infuxdb-handler"]

 }

]

query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "created_by": "admin"

 },

 "type": "pipe",

 "command": "sensu-infuxdb-handler -d sensu",

 "timeout": 0,

 "handlers": null,

 "flters": null,

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:808

6",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "runtime_assets": ["sensu/sensu-infuxdb-handler"]

 },

 {

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "type": "pipe",

 "command": "sensu-slack-handler --channel

'#monitoring'",

 "timeout": 0,

Create a new handler

The /handlers API endpoint provides HTTP POST access to create a handler.

Example

In the following example, an HTTP POST request is submitted to the /handlers API endpoint to
create the event handler infux-db :

 "handlers": null,

 "flters": [

 "is_incident",

 "not_silenced"

],

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T000000

00/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX"

],

 "runtime_assets": ["sensu/sensu-slack-handler"]

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/handlers (POST)

description Creates a Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers

payload

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers

{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:808

6",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

response codes

Get a specifc handler

The /handlers/:handler API endpoint provides HTTP GET access to handler data for specifc
:handler defnitions, by handler name.

Example

The following example queries the /handlers/:handler API endpoint for the :handler named
slack :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :handler defnition (in this example, slack):

 "type": "pipe"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack \

-H "Authorization: Key $SENSU_API_KEY"

{

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

API Specifcation

/handlers/:handler (GET)

description Returns a handler.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers/sla
ck

response type Map

response codes

output

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

Create or update a handler

The /handlers/:handler API endpoint provides HTTP PUT access to create or update a specifc
:handler defnition, by handler name.

Example

In the following example, an HTTP PUT request is submitted to the /handlers/:handler API
endpoint to create the handler infux-db :

 "annotations": null

 },

 "command": "sensu-slack-handler --channel

'#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T

00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/handlers/:handler (PUT)

description Creates or updates the specifed Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers/inf
ux-db

payload

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": ["sensu/sensu-infuxdb-handler"],

 "timeout": 0,

 "type": "pipe"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/infux-db

{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.loc

al:8086",

response codes

Update a handler with PATCH

The /handlers/:handler API endpoint provides HTTP PATCH access to update :handler

defnitions, specifed by handler name.

Example

In the following example, an HTTP PATCH request is submitted to the /handlers/:handler API
endpoint to update the flters array for the infux-db handler, resulting in an HTTP/1.1 200 OK

response and the updated handler defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

https://tools.ietf.org/html/rfc7396

API Specifcation

/handlers/:handler (PATCH)

description Updates the specifed Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers
/infux-db

payload

response codes

Delete a handler

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "flters": [

 "us-west",

 "is_incident"

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/infux-db

{

 "flters": [

 "us-west",

 "is_incident"

]

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The /handlers/:handler API endpoint provides HTTP DELETE access to delete a handler from
Sensu (specifed by the handler name).

Example

The following example shows a request to the /handlers/:handler API endpoint to delete the
handler slack , which will result in a successful HTTP/1.1 204 No Content response.

API Specifcation

/handlers/:handler (DELETE)

description Removes the specifed handler from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/handler
s/slack

response codes

Get a subset of handlers with response fltering

The /handlers API endpoint supports response fltering for a subset of handler data based on labels
and the following felds:

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack \

-H "Authorization: Key $SENSU_API_KEY"

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

handler.name

handler.namespace

Example

The following example demonstrates a request to the /handlers API endpoint with response fltering
for only handler defnitions in the default namespace and whose flters include
state_change_only :

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only handler defnitions in the default namespace and whose flters include
state_change_only :

handler.flters

handler.handlers

handler.mutator

handler.type

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/handlers -G \

--data-urlencode 'feldSelector=state_change_only in handler.flters &&

handler.namespace == default'

[

 {

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "created_by": "admin"

 },

 "type": "pipe",

 "command": "sensu-slack-handler --channel '#monitoring'",

 "timeout": 0,

 "handlers": null,

 "flters": [

 "state_change_only"

],

 "env_vars": null,

 "runtime_assets": [

 "sensu-slack-handler"

API Specifcation

/handlers (GET) with response flters

description Returns the list of handlers that match the response
flters applied in the API request.

example url http://hostname:8080/api/core/v2/handlers

pagination This endpoint supports pagination using the limit
and continue query parameters.

response type Array

response codes

output

],

 "secrets": [

 {

 "name": "SLACK_WEBHOOK_URL",

 "secret": "slack_webhook_url"

 }

]

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "created_by": "admin"

 },

 "type": "pipe",

 "command": "sensu-slack-handler --

channel '#monitoring'",

 "timeout": 0,

 "handlers": null,

 "flters": [

 "state_change_only"

],

 "env_vars": null,

 "runtime_assets": [

 "sensu-slack-handler"

],

 "secrets": [

 {

 "name": "SLACK_WEBHOOK_URL",

 "secret": "slack_webhook_url"

 }

]

 }

]

core/v2/hooks

Get all hooks

The /hooks API endpoint provides HTTP GET access to hook data.

Example

The following example demonstrates a GET request to the /hooks API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
hook defnitions in the default namespace:

NOTE: Requests to core/v2/hooks API endpoints require you to authenticate with a Sensu API
key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "metadata": {

 "name": "nginx-log",

 "namespace": "default",

 "created_by": "admin"

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

API Specifcation

/hooks (GET)

description Returns the list of hooks.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 },

 {

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "created_by": "admin"

 },

 "command": "ps -eo user,pid,cmd:50,%cpu --sort=-%cpu | head -n 6",

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "nginx-log",

 "namespace": "default",

Create a new hook

The /hooks API endpoint provides HTTP POST access to create a hook.

Example

In the following example, an HTTP POST request is submitted to the /hooks API endpoint to create
the hook process-tree :

 "created_by": "admin"

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

 },

 {

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "created_by": "admin"

 },

 "command": "ps -eo user,pid,cmd:50,%cpu --sort=-%cpu |

head -n 6",

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/hooks (POST)

description Creates a Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks

payload

response codes

 "labels": null,

 "annotations": null

 },

 "command": "ps -eo user,pid,cmd:50,%cpu --sort=-%cpu | head -n 6",

 "timeout": 10,

 "stdin": false

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Get a specifc hook

The /hooks/:hook API endpoint provides HTTP GET access to hook data for specifc :hook
defnitions, by hook name.

Example

The following example queries the /hooks/:hook API endpoint for the :hook named process-
tree :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :hook defnition (in this example, process-tree):

API Specifcation

/hooks/:hook (GET)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree \

-H "Authorization: Key $SENSU_API_KEY"

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

description Returns the specifed hook.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

response type Map

response codes

output

Create or update a hook

The /hooks/:hook API endpoint provides HTTP PUT access to create or update specifc :hook

defnitions, by hook name.

Example

In the following example, an HTTP PUT request is submitted to the /hooks/:hook API endpoint to
create the hook nginx-log :

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/hooks/:hook (PUT)

description Creates or updates the specifed Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks/nginx-log

payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "nginx-log",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

 "timeout": 10,

 "stdin": false

 }' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/nginx-log

{

 "metadata": {

 "name": "nginx-log",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

 "timeout": 10,

 "stdin": false

 }

response codes

Update a hook with PATCH

The /hooks/:hook API endpoint provides HTTP PATCH access to update :hook defnitions,
specifed by hook name.

Example

In the following example, an HTTP PATCH request is submitted to the /hooks/:hook API endpoint to
update the timeout for the process-tree hook, resulting in an HTTP/1.1 200 OK response and the
updated hook defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "timeout": 20

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hook/process-tree

https://tools.ietf.org/html/rfc7396

API Specifcation

/hooks/:hook (PATCH)

description Updates the specifed Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks/process
-tree

payload

response codes

Delete a hook

The /hooks/:hook API endpoint provides HTTP DELETE access to delete a check hook from Sensu
(specifed by the hook name).

Example

The following example shows a request to the /hooks/:hook API endpoint to delete the hook
process-tree , resulting in a successful HTTP/1.1 204 No Content response:

{

 "timeout": 20

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree \

-H "Authorization: Key $SENSU_API_KEY"

API Specifcation

/hooks/:hook (DELETE)

description Removes the specifed hook from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks/proces
s-tree

response codes

Get a subset of hooks with response fltering

The /hooks API endpoint supports response fltering for a subset of hook data based on labels and
the following felds:

Example

The following example demonstrates a request to the /hooks API endpoint with response fltering for
only hook defnitions in the production namespace:

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only hook defnitions in the production namespace:

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

hook.name

hook.namespace

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/hooks

-G \

--data-urlencode 'feldSelector=hook.namespace == production'

API Specifcation

/hooks (GET) with response flters

description Returns the list of hooks that match the response flters
applied in the API request.

[

 {

 "metadata": {

 "name": "process_tree",

 "namespace": "production",

 "created_by": "admin"

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

 },

 {

 "metadata": {

 "name": "restart_nginx",

 "namespace": "production",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 },

 "command": "sudo systemctl start nginx",

 "timeout": 60,

 "stdin": false,

 "runtime_assets": null

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

example url http://hostname:8080/api/core/v2/hooks

pagination This endpoint supports pagination using the limit
and continue query parameters.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "process_tree",

 "namespace": "production",

 "created_by": "admin"

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

 },

 {

 "metadata": {

 "name": "restart_nginx",

 "namespace": "production",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 },

 "command": "sudo systemctl start nginx",

 "timeout": 60,

 "stdin": false,

 "runtime_assets": null

 }

]

core/v2/mutators

Get all mutators

The /mutators API endpoint provides HTTP GET access to mutator data.

Example

The following example demonstrates a GET request to the /mutators API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
mutator defnitions in the default namespace:

NOTE: Requests to core/v2/mutators API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

API Specifcation

/mutators (GET)

description Returns the list of mutators.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "env_vars": [],

 "runtime_assets": [],

 "secrets": null,

 "type": "pipe"

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

Create a new mutator

The /mutators API endpoint provides HTTP POST access to create mutators.

Example

In the following example, an HTTP POST request is submitted to the /mutators API endpoint to
create the mutator example-mutator :

The request will return a successful HTTP/1.1 201 Created response.

 "runtime_assets": [],

 "secrets": null,

 "type": "pipe"

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": [],

 "secrets": null,

 "type": "pipe"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators

API Specifcation

/mutators (POST)

description Creates a Sensu mutator.

example URL http://hostname:8080/api/core/v2/namespaces/default/mutators

payload

response codes

Get a specifc mutator

The /mutators/:mutator API endpoint provides HTTP GET access to mutator data for specifc
:mutator defnitions, by mutator name.

Example

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": [],

 "secrets": null,

 "type": "pipe"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The following example queries the /mutators/:mutator API endpoint for the :mutator named
example-mutator :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :mutator defnition (in this example, example-mutator):

API Specifcation

/mutators/:mutator (GET)

description Returns the specifed mutator.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators/ex
ample-mutator

response type Map

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator \

-H "Authorization: Key $SENSU_API_KEY"

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": [],

 "secrets": null,

 "type": "pipe"

}

response codes

output

Create or update a mutator

The /mutators/:mutator API endpoint provides HTTP PUT access to mutator data to create or
update specifc :mutator defnitions, by mutator name.

Example

In the following example, an HTTP PUT request is submitted to the /mutators/:mutator API
endpoint to create the mutator example-mutator :

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": [],

 "secrets": null,

 "type": "pipe"

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/mutators/:mutator (PUT)

description Creates or updates a Sensu mutator.

example URL http://hostname:8080/api/core/v2/namespaces/default/mutators/ex
ample-mutator

payload

-d '{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": [],

 "secrets": null,

 "type": "pipe"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": [],

 "secrets": null,

response codes

Update a mutator with PATCH

The /mutators/:mutator API endpoint provides HTTP PATCH access to update :mutator

defnitions, specifed by mutator name.

Example

In the following example, an HTTP PATCH request is submitted to the /mutators/:mutator API
endpoint to update the timeout for the example-mutator mutator, resulting in an HTTP/1.1 200 OK

response and the updated mutator defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

 "type": "pipe"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "timeout": 10

}' \

https://tools.ietf.org/html/rfc7396

API Specifcation

/mutators/:mutator (PATCH)

description Updates the specifed Sensu mutator.

example URL http://hostname:8080/api/core/v2/namespaces/default/mutator
s/process-tree

payload

response codes

Delete a mutator

The /mutators/:mutator API endpoint provides HTTP DELETE access to delete a mutator from
Sensu (specifed by the mutator name).

Example

The following example shows a request to the /mutators/:mutator API endpoint to delete the
mutator example-mutator , resulting in a successful HTTP/1.1 204 No Content response.

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator

{

 "timeout": 10

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator \

API Specifcation

/mutators/:mutator (DELETE)

description Removes the specifed mutator from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/mutato
rs/example-mutator

response codes

Get a subset of mutators with response fltering

The /mutators API endpoint supports response fltering for a subset of mutator data based on labels
and the following felds:

Example

The following example demonstrates a request to the /mutators API endpoint with response fltering
for only mutator defnitions that are in the production namespace:

-H "Authorization: Key $SENSU_API_KEY"

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

mutator.name

mutator.namespace

mutator.runtime_assets

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/mutators -G \

--data-urlencode 'feldSelector=mutator.namespace == production'

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only mutator defnitions in the production namespace:

[

 {

 "metadata": {

 "name": "add_check_label",

 "namespace": "production",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 },

 "timeout": 0,

 "env_vars": null,

 "runtime_assets": null,

 "secrets": null,

 "type": "javascript",

 "eval": "data = JSON.parse(JSON.stringify(event)); delete

data.check.metadata.name; delete data.entity.metadata.labels.app_id; return

JSON.stringify(data)"

 },

 {

 "metadata": {

 "name": "example-mutator",

 "namespace": "production",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": null,

 "runtime_assets": [

 "example-mutator-asset"

],

 "secrets": null,

 "type": "pipe"

 }

API Specifcation

/mutators (GET) with response flters

description Returns the list of mutators that match the response
flters applied in the API request.

example url http://hostname:8080/api/core/v2/mutators

pagination This endpoint supports pagination using the limit
and continue query parameters.

response type Array

response codes

output

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "add_check_label",

 "namespace": "production",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 },

 "timeout": 0,

 "env_vars": null,

 "runtime_assets": null,

 "secrets": null,

 "type": "javascript",

 "eval": "data =

JSON.parse(JSON.stringify(event)); delete

data.check.metadata.name; delete

data.entity.metadata.labels.app_id; return

JSON.stringify(data)"

 },

 {

 "metadata": {

 "name": "example-mutator",

 "namespace": "production",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": null,

 "runtime_assets": [

 "example-mutator-asset"

],

 "secrets": null,

 "type": "pipe"

 }

]

core/v2/namespaces

Get all namespaces

The /namespaces API endpoint provides HTTP GET access to namespace data.

Example

The following example demonstrates a GET request to the /namespaces API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains
namespace defnitions:

NOTE: Requests to core/v2/namespaces API endpoints require you to authenticate with a
Sensu API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

API Specifcation

/namespaces (GET)

description Returns the list of namespaces.

example url http://hostname:8080/api/core/v2/namespaces

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Create a new namespace

The /namespaces API endpoint provides HTTP POST access to create Sensu namespaces.

Example

In the following example, an HTTP POST request is submitted to the /namespaces API endpoint to

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

create the namespace development :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/namespaces (POST)

description Creates a Sensu namespace.

example URL http://hostname:8080/api/core/v2/namespaces

payload

response codes

Create or update a namespace

The /namespaces/:namespace API endpoint provides HTTP PUT access to create or update specifc
Sensu namespaces, by namespace name.

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "name": "development"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces

{

 "name": "development"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Example

In the following example, an HTTP PUT request is submitted to the /namespaces/:namespace API
endpoint to create the namespace development :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/namespaces/:namespace (PUT)

description Creates or updates a Sensu namespace.

example URL http://hostname:8080/api/core/v2/namespaces/developm
ent

payload

response codes

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "name": "development"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/development

{

 "name": "development"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Delete a namespace

The /namespaces/:namespace API endpoint provides HTTP DELETE access to delete a namespace
from Sensu (specifed by the namespace name).

Example

The following example shows a request to the /namespaces/:namespace API endpoint to delete the
namespace development , resulting in a successful HTTP/1.1 204 No Content response.

Namespaces must be empty before you can delete them.
If the response to your delete request
includes Error: resource is invalid: namespace is not empty , the namespace may still
contain events or other resources.
To remove all resources and events so that you can delete a
namespace, use this sensuctl dump command (replace <namespace-name> with the namespace you
want to empty):

API Specifcation

/namespaces/:namespace (DELETE)

description Removes the specifed namespace from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/devel
opment

response codes

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/development \

-H "Authorization: Key $SENSU_API_KEY"

sensuctl dump entities,events,assets,checks,flters,handlers,secrets/v1.Secret --

namespace <namespace-name> | sensuctl delete

Success: 204 (No Content)

Get a subset of namespaces with response fltering

The /namespaces API endpoint supports response fltering for a subset of namespace data based on
labels and the feld namespace.name .

Example

The following example demonstrates a request to the /namespaces API endpoint with response
fltering for only the namespace defnitions for the production namespace:

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only namespace defnitions for the production namespace:

API Specifcation

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/namespaces -G \

--data-urlencode 'feldSelector=namespace.name == production'

[

 {

 "name": "production"

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

/namespaces (GET) with response flters

description Returns the list of namespaces that match the
response flters applied in the API request.

example url http://hostname:8080/api/core/v2/namespaces

pagination This endpoint supports pagination using the
limit and continue query parameters.

response type Array

response codes

output

Get all namespaces for a specifc user

The /user-namespaces API endpoint provides HTTP GET access to the namespaces the current
user can access.

Example

The following example demonstrates a GET request to the /user-namespaces API endpoint:

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "name": "production"

 }

]

COMMERCIAL FEATURE : Access the /user-namespaces API endpoint in the packaged Sensu
Go distribution.
For more information, read Get started with commercial features.

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only the namespaces the current user can access:

API Specifcation

/user-namespaces (GET)

description Returns the list of namespaces a user has access to.

example url http://hostname:8080/api/enterprise/user-namespaces

response type Array

response codes

output

curl -X GET \

http://127.0.0.1:8080/api/enterprise/user-namespaces \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

core/v2/pipelines

Get all pipelines

The /pipelines API endpoint provides HTTP GET access to pipeline data.

Example

The following example demonstrates a GET request to the /pipelines API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
pipeline defnitions in the default namespace:

IMPORTANT : The pipelines you can create and manage with this core/v2/pipelines API are
observation event processing workfows made up of flters, mutators, and handlers.

Pipelines are different from the resources you can create and manage with the
enterprise/pipeline/v1 API, which allows you to create and manage resources that can only

be used in pipelines.

NOTE: Requests to core/v2/pipelines API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/pipelines \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "metadata": {

 "name": "labeled_emails",

 "namespace": "default",

 "created_by": "admin"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 },

 {

 "metadata": {

 "name": "slack_pipeline",

 "namespace": "default",

 "created_by": "admin"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

API Specifcation

/pipelines (GET)

description Returns the list of pipelines.

example url http://hostname:8080/api/core/v2/namespaces/default/pipelines

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "slack",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

]

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "labeled_emails",

 "namespace": "default",

 "created_by": "admin"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 },

 {

Create a new pipeline

The /pipelines API endpoint provides HTTP POST access to create a pipeline.

 "metadata": {

 "name": "slack_pipeline",

 "namespace": "default",

 "created_by": "admin"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "slack",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

]

Example

In the following example, an HTTP POST request is submitted to the /pipelines API endpoint to
create the pipeline resource labeled_emails :

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "labeled_emails",

 "namespace": "default"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

 {

 "api_version": "core/v2",

 "type": "EventFilter",

 "name": "is_incident"

 },

 {

 "api_version": "core/v2",

 "type": "EventFilter",

 "name": "state_change_only"

 }

],

 "mutator": {

 "api_version": "core/v2",

 "type": "Mutator",

 "name": "add_labels"

 },

 "handler": {

 "api_version": "core/v2",

 "type": "Handler",

 "name": "email"

 }

 }

]

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/pipelines (POST)

description Creates a Sensu pipeline.

example URL http://hostname:8080/api/core/v2/namespaces/default/pipelines

payload

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/pipelines

{

 "metadata": {

 "name": "labeled_email",

 "namespace": "default"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

 {

 "api_version": "core/v2",

 "type": "EventFilter",

 "name": "is_incident"

 },

 {

 "api_version": "core/v2",

 "type": "EventFilter",

 "name": "state_change_only"

 }

],

 "mutator": {

 "api_version": "core/v2",

 "type": "Mutator",

 "name": "add_labels"

 },

 "handler": {

response codes

Get a specifc pipeline

The /pipelines/:pipeline API endpoint provides HTTP GET access to pipeline data for specifc
:pipeline defnitions, by pipeline name.

Example

The following example queries the /pipelines/:pipeline API endpoint for the :pipeline named
labeled_emails :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :pipeline defnition (in this example, labeled_emails):

 "api_version": "core/v2",

 "type": "Handler",

 "name": "email"

 }

 }

]

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/pipelines/labeled_emails \

-H "Authorization: Key $SENSU_API_KEY"

{

 "metadata": {

 "name": "labeled_emails",

API Specifcation

/pipelines/:pipeline (GET)

description Returns a pipeline.

example url http://hostname:8080/api/core/v2/namespaces/default/pipelines/la
beled_emails

 "namespace": "default",

 "created_by": "admin"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

}

response type Map

response codes

output

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "labeled_emails",

 "namespace": "default",

 "created_by": "admin"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

Create or update a pipeline

The /pipelines/:pipeline API endpoint provides HTTP PUT access to create or update a specifc
:pipeline defnition, by pipeline name.

Example

In the following example, an HTTP PUT request is submitted to the /pipelines/:pipeline API
endpoint to update slack_pipeline to use javascript_mutator instead of the add_labels
mutator:

]

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "slack_pipeline",

 "namespace": "default"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

 {

 "api_version": "core/v2",

 "type": "EventFilter",

 "name": "is_incident"

 },

 {

 "api_version": "core/v2",

 "type": "EventFilter",

 "name": "state_change_only"

 }

],

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/pipelines/:pipeline (PUT)

description Creates or updates the specifed Sensu pipeline.

example URL http://hostname:8080/api/core/v2/namespaces/default/pipelines/sl
ack_pipeline

payload

 "mutator": {

 "api_version": "core/v2",

 "type": "Mutator",

 "name": "javascript_mutator"

 },

 "handler": {

 "api_version": "core/v2",

 "type": "Handler",

 "name": "slack"

 }

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/pipelines/slack_pipeline

{

 "metadata": {

 "name": "slack_pipeline",

 "namespace": "default"

 },

 "workfows": [

 {

 "name": "default",

 "flters": [

 {

 "api_version": "core/v2",

 "type": "EventFilter",

 "name": "is_incident"

response codes

Update a pipeline with PATCH

The /pipelines/:pipeline API endpoint provides HTTP PATCH access to update :pipeline

defnitions, specifed by pipeline name.

 },

 {

 "api_version": "core/v2",

 "type": "EventFilter",

 "name": "state_change_only"

 }

],

 "mutator": {

 "api_version": "core/v2",

 "type": "Mutator",

 "name": "javascript_mutator"

 },

 "handler": {

 "api_version": "core/v2",

 "type": "Handler",

 "name": "slack"

 }

 }

]

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

Example

In the following example, an HTTP PATCH request is submitted to the /pipelines/:pipeline API
endpoint to update the mutator for slack_pipeline , resulting in an HTTP/1.1 200 OK response
and the updated pipeline defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

API Specifcation

/pipelines/:pipeline (PATCH)

description Updates the specifed Sensu pipeline.

example URL http://hostname:8080/api/core/v2/namespaces/default/pipeline
s/slack_pipeline

payload

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "workfows": [

 {

 "mutator": {

 "api_version": "core/v2",

 "type": "Mutator",

 "name": "javascript_mutator_2"

 }

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/pipelines/slack_pipeline

{

 "workfows": [

https://tools.ietf.org/html/rfc7396

response codes

Delete a pipeline

The /pipelines/:pipeline API endpoint provides HTTP DELETE access to delete a pipeline from
Sensu (specifed by the pipeline name).

Example

The following example shows a request to the /pipelines/:pipeline API endpoint to delete
slack_pipeline , resulting in a successful HTTP/1.1 204 No Content response:

API Specifcation

/pipelines/:pipeline (DELETE)

 {

 "mutator": {

 "api_version": "core/v2",

 "type": "Mutator",

 "name": "javascript_mutator"

 }

 }

]

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/pipelines/slack_pipeline \

-H "Authorization: Key $SENSU_API_KEY"

description Removes the specifed pipeline from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/pipelin
es/slack_pipeline

response codes

Get a subset of pipelines with response fltering

The /pipelines API endpoint supports response fltering for a subset of pipeline data based on
labels and the following felds:

Example

The following example demonstrates a request to the /pipelines API endpoint with response
fltering for only pipeline defnitions in the production namespace:

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only pipeline defnitions in the production namespace:

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

pipeline.name

pipeline.namespace

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/pipelines -G \

--data-urlencode 'feldSelector=pipeline.namespace == production'

[

 {

 "metadata": {

 "name": "sensu_email_alerts",

 "namespace": "production",

 "created_by": "admin"

 },

 "workfows": [

 {

 "name": "labeled_email_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 },

 {

 "metadata": {

 "name": "sensu_to_sumo",

 "namespace": "production",

 "created_by": "admin"

 },

 "workfows": [

 {

 "name": "logs_to_sumologic",

 "handler": {

 "name": "sumologic",

API Specifcation

/pipelines (GET) with response flters

description Returns the list of pipelines that match the response
flters applied in the API request.

example url http://hostname:8080/api/core/v2/pipelines

pagination This endpoint supports pagination using the limit
and continue query parameters.

response type Array

response codes

output

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "sensu_email_alerts",

 "namespace": "production",

 "created_by": "admin"

 },

 "workfows": [

https://tools.ietf.org/html/rfc7396

 {

 "name": "labeled_email_alerts",

 "flters": [

 {

 "name": "is_incident",

 "type": "EventFilter",

 "api_version": "core/v2"

 },

 {

 "name": "state_change_only",

 "type": "EventFilter",

 "api_version": "core/v2"

 }

],

 "mutator": {

 "name": "add_labels",

 "type": "Mutator",

 "api_version": "core/v2"

 },

 "handler": {

 "name": "email",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 },

 {

 "metadata": {

 "name": "sensu_to_sumo",

 "namespace": "production",

 "created_by": "admin"

 },

 "workfows": [

 {

 "name": "logs_to_sumologic",

 "handler": {

 "name": "sumologic",

 "type": "Handler",

 "api_version": "core/v2"

 }

 }

]

 }

]

core/v2/rolebindings

Get all role bindings

The /rolebindings API endpoint provides HTTP GET access to role binding data.

Example

The following example demonstrates a GET request to the /rolebindings API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
role binding defnitions in the default namespace:

NOTE: Requests to core/v2/rolebindings API endpoints require you to authenticate with a
Sensu API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

API Specifcation

/rolebindings (GET)

description Returns the list of role bindings.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

Create a new role binding

The /rolebindings API endpoint provides HTTP POST access to create Sensu role bindings.

Example

In the following example, an HTTP POST request is submitted to the /rolebindings API endpoint to
create a role binding named readers-group-binding :

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/rolebindings (POST)

description Creates a Sensu role binding.

example URL http://hostname:8080/api/core/v2/namespaces/default/rolebindings

payload

response codes

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Get a specifc role binding

The /rolebindings/:rolebinding API endpoint provides HTTP GET access to role binding data for
specifc :rolebinding defnitions, by role binding name .

Example

The following example queries the /rolebindings/:rolebinding API endpoint for the
:rolebinding named readers-group-binding).

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :rolebinding defnition (in this example, readers-group-binding):

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/readers-group-

binding \

-H "Authorization: Key $SENSU_API_KEY"

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default",

 "created_by": "admin"

 }

}

API Specifcation

/rolebindings/:rolebinding (GET)

description Returns the specifed role binding.

example url http://hostname:8080/api/core/v2/namespaces/default/role
bindings/readers-group-binding

response type Map

response codes

output

Create or update a role binding

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default",

 "created_by": "admin"

 }

}

The /rolebindings/:rolebinding API endpoint provides HTTP PUT access to create or update
role binding data for specifc :rolebinding defnitions, by role binding name .

Example

In the following example, an HTTP PUT request is submitted to the /rolebindings/:rolebinding

API endpoint to create the role binding dev-binding :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/rolebindings/:rolebinding (PUT)

description Creates or updates a Sensu role binding.

example URL http://hostname:8080/api/core/v2/namespaces/default/role

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "subjects": [

 {

 "type": "Group",

 "name": "devs"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "workfow-creator"

 },

 "metadata": {

 "name": "dev-binding",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/dev-binding

bindings/dev-binding

payload

response codes

Update a role binding with PATCH

The /rolebindings/:rolebinding API endpoint provides HTTP PATCH access to update
:rolebinding defnitions, specifed by role binding name.

{

 "subjects": [

 {

 "type": "Group",

 "name": "devs"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "workfow-creator"

 },

 "metadata": {

 "name": "dev-binding",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

Example

In the following example, an HTTP PATCH request is submitted to the
/rolebindings/:rolebinding API endpoint to add a group to the subjects array for the dev-

binding role binding, resulting in an HTTP/1.1 200 OK response and the updated role binding
defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/rolebindings/:rolebinding (PATCH)

description Updates the specifed Sensu role binding.

example URL http://hostname:8080/api/core/v2/namespaces/default/r
olebindings/dev-binding

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "subjects": [

 {

 "type": "Group",

 "name": "dev_team_1"

 },

 {

 "type": "Group",

 "name": "dev_team_2"

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/dev-binding

https://tools.ietf.org/html/rfc7396

payload

response codes

Delete a role binding

The /rolebindings/:rolebinding API endpoint provides HTTP DELETE access to delete a role
binding from Sensu (specifed by the role binding name).

Example

The following example shows a request to the /rolebindings/:rolebinding API endpoint to delete
the role binding dev-binding , resulting in a successful HTTP/1.1 204 No Content response.

{

 "subjects": [

 {

 "type": "Group",

 "name": "dev_team_1"

 },

 {

 "type": "Group",

 "name": "dev_team_2"

 }

]

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/dev-binding \

-H "Authorization: Key $SENSU_API_KEY"

API Specifcation

/rolebindings/:rolebinding (DELETE)

description Removes the specifed role binding from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default
/rolebindings/dev-binding

response codes

Get a subset of role bindings with response fltering

The /rolebindings API endpoint supports response fltering for a subset of role binding data based
on labels and the following felds:

Example

The following example demonstrates a request to the /rolebindings API endpoint with response
fltering for only role binding defnitions with event-reader as the rolebinding.role_ref.name:

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

rolebinding.name

rolebinding.namespace

rolebinding.role_ref.name

rolebinding.role_ref.type

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/rolebindings -G \

--data-urlencode 'feldSelector="event-reader" in rolebinding.role_ref.name'

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only role binding defnitions with event-reader as the rolebinding.role_ref.name:

[

 {

 "subjects": [

 {

 "type": "User",

 "name": "ann"

 },

 {

 "type": "User",

 "name": "bonita"

 },

 {

 "type": "Group",

 "name": "admins"

 },

 {

 "type": "Group",

 "name": "read-events"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "event-reader"

 },

 "metadata": {

 "name": "event-reader-binding",

 "namespace": "default",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 }

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

API Specifcation

/rolebindings (GET) with response flters

description Returns the list of role bindings that match the
response flters applied in the API request.

example url http://hostname:8080/api/core/v2/rolebindings

pagination This endpoint supports pagination using the
limit and continue query parameters.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "subjects": [

 {

 "type": "User",

 "name": "ann"

 },

 {

 "type": "User",

 "name": "bonita"

 },

 {

 "type": "Group",

 "name": "admins"

 },

 {

 "type": "Group",

 "name": "read-events"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "event-reader"

 },

 "metadata": {

 "name": "event-reader-binding",

 "namespace": "default",

 "labels": {

 "sensu.io/managed_by":

"sensuctl"

 },

 "created_by": "admin"

 }

 }

]

core/v2/roles

Get all roles

The /roles API endpoint provides HTTP GET access to role data.

Example

The following example demonstrates a GET request to the /roles API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
role defnitions in the default namespace:

NOTE: Requests to core/v2/roles API endpoints require you to authenticate with a Sensu API
key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

API Specifcation

/roles (GET)

description Returns the list of roles.

example url http://hostname:8080/api/core/v2/namespaces/default/roles

pagination This endpoint supports pagination using the limit and continue
query parameters.

 "resource_names": null

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default",

 :created_by": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "get"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default",

 "created_by": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "get"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

Create a new role

The /roles API endpoint provides HTTP POST access to create Sensu roles.

Example

In the following example, an HTTP POST request is submitted to the /roles API endpoint to create
a role named event-reader :

 "metadata": {

 "name": "read-only",

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": []

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default"

 }

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/roles (POST)

description Creates a Sensu role.

example URL http://hostname:8080/api/core/v2/namespaces/default/roles

payload

response codes

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles

{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": []

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Get a specifc role

The /roles/:role API endpoint provides HTTP GET access to role data for specifc :role
defnitions, by role name.

Example

The following example queries the /roles/:role API endpoint for the :role named read-only :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :role defnition (in this example, read-only):

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/read-only \

-H "Authorization: Key $SENSU_API_KEY"

{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default",

 "created_by": "admin"

 }

}

API Specifcation

/roles/:role (GET)

description Returns the specifed Sensu role.

example url http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

response type Map

response codes

output

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default",

 "created_by": "admin"

 }

}

Create or update a role

The /roles/:role API endpoint provides HTTP PUT access to create or update specifc :role

defnitions, by role name.

Example

In the following example, an HTTP PUT request is submitted to the /roles/:role API endpoint to
create the role read-only :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/roles/:role (PUT)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/read-only

description Creates or updates the specifed Sensu role.

example URL http://hostname:8080/api/core/v2/namespaces/default/roles/event-reader

payload

response codes

Update a role with PATCH

The /roles/:role API endpoint provides HTTP PATCH access to update :role defnitions,
specifed by role name.

{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: You cannot change a resource’s name or namespace with a PATCH request.
Use a PUT
request instead.

Example

In the following example, an HTTP PATCH request is submitted to the /roles/:role API endpoint to
update the verbs array within the rules array for the global-event-admin role, resulting in an
HTTP/1.1 200 OK response and the updated role defnition.

We support JSON merge patches, so you must set the Content-Type header to
application/merge-patch+json for PATCH requests.

API Specifcation

/roles/:role (PATCH)

description Updates the specifed Sensu role.

Also, you cannot add elements to an array with a PATCH request — you must replace the entire
array.

curl -X PATCH \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/merge-patch+json' \

-d '{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/event-reader

https://tools.ietf.org/html/rfc7396

example URL http://hostname:8080/api/core/v2/namespaces/default/roles/event-
reader

payload

response codes

Delete a role

The /roles/:role API endpoint provides HTTP DELETE access to delete a role from Sensu
(specifed by the role name).

Example

The following example shows a request to the /roles/:role API endpoint to delete the role read-

only , resulting in a successful HTTP/1.1 204 No Content response:

{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

API Specifcation

/roles/:role (DELETE)

description Removes the specifed role from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

response codes

Get a subset of roles with response fltering

The /roles API endpoint supports response fltering for a subset of role data based on labels and
the following felds:

Example

The following example demonstrates a request to the /roles API endpoint with response fltering for
only role defnitions that are in the development namespace:

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/read-only \

-H "Authorization: Key $SENSU_API_KEY"

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

role.name

role.namespace

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/roles

-G \

--data-urlencode 'feldSelector=role.namespace == development'

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only role defnitions in the development namespace:

[

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "admin_role",

 "namespace": "development",

 "created_by": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

],

 "resources": [

 "assets",

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "rolebindings",

 "roles",

 "silenced"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "namespaced-resources-all-verbs",

 "namespace": "development",

 "created_by": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "system:pipeline",

 "namespace": "development"

 }

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

API Specifcation

/roles (GET) with response flters

description Returns the list of roles that match the response flters
applied in the API request.

example url http://hostname:8080/api/core/v2/roles

pagination This endpoint supports pagination using the limit and
continue query parameters.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "admin_role",

 "namespace": "development",

 "created_by": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list",

 "create",

 "update",

 "delete"

],

 "resources": [

 "assets",

 "checks",

 "entities",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "pipelines",

 "rolebindings",

 "roles",

 "silenced"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "namespaced-resources-all-

verbs",

 "namespace": "development",

 "created_by": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "system:pipeline",

 "namespace": "development"

 }

 }

]

core/v2/silenced

Get all silences

The /silenced API endpoint provides HTTP GET access to silencing entry data.

Example

The following example demonstrates a GET request to the /silenced API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
silencing defnitions in the default namespace:

NOTE: Requests to core/v2/silenced API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced

[

 {

 "metadata": {

 "name": "*:http",

 "namespace": "default",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "check": "http",

API Specifcation

/silenced (GET)

description Returns the list of silences.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced

pagination This endpoint does not support pagination.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "reason": "Testing",

 "begin": 1605024595,

 "expire_at": 0

 },

 {

 "metadata": {

 "name": "linux:*",

 "namespace": "default",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205,

 "expire_at": 0

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

Create a new silence

The /silenced API endpoint provides HTTP POST access to create silencing entries.

Example

In the following example, an HTTP POST request is submitted to the /silenced API endpoint to

[

 {

 "metadata": {

 "name": "*:http",

 "namespace": "default",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "check": "http",

 "reason": "Testing",

 "begin": 1605024595,

 "expire_at": 0

 },

 {

 "metadata": {

 "name": "linux:*",

 "namespace": "default",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205,

 "expire_at": 0

 }

]

create the silencing entry linux:check_cpu :

The request will return a successful HTTP/1.1 201 Created response.

Here’s another example that shows an HTTP POST request to the /silenced API endpoint to create
the silencing entry *:http , which will create a silence for any event with the check name http ,
regardless of the originating entities’ subscriptions:

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "linux:check_cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "*:http",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/silenced (POST)

description Creates a Sensu silencing entry.

example URL http://hostname:8080/api/core/v2/namespaces/default/silenced

payload

response codes

 "creator": "admin",

 "check": "http",

 "reason": "Testing"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced

{

 "metadata": {

 "name": "linux:check_cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Get a specifc silence

The /silenced/:silenced API endpoint provides HTTP GET access to silencing entry data for
specifc :silenced defnitions, by silencing entry name.

Example

The following example queries the /silenced/:silenced API endpoint for the silencing entry named
linux:check_cpu :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :silenced defnition (in this example, linux:check_cpu):

API Specifcation

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check_cpu

{

 "metadata": {

 "name": "linux:check_cpu",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}

/silenced/:silenced (GET)

description Returns the specifed silencing entry.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/lin
ux:check_cpu

response type Map

response codes

output

Create or update a silence

The /silenced/:silenced API endpoint provides HTTP PUT access to create or update specifc
:silenced defnitions, by silencing entry name.

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "linux:check_cpu",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}

Example

In the following example, an HTTP PUT request is submitted to the /silenced/:silenced API
endpoint to create the silencing entry linux:check-server :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/silenced/:silenced (PUT)

description Creates or updates a Sensu silencing entry.

example URL http://hostname:8080/api/core/v2/namespaces/default/silenced/lin
ux:check-server

payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "linux:check-server",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check-server

{

 "metadata": {

 "name": "linux:check-server",

response codes

Delete a silence

The /silenced/:silenced API endpoint provides HTTP DELETE access to delete a silencing entry
(specifed by the silencing entry name).

Example

In the following example, querying the /silenced/:silenced API endpoint to delete the the silencing
entry named linux:check_cpu results in a successful HTTP/1.1 204 No Content response:

API Specifcation

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check_cpu

/silenced/:silenced (DELETE)

description Removes the specifed silencing entry from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/silence
d/linux:check_cpu

response codes

Get all silences for a specifc subscription

The /silenced/subscriptions/:subscription API endpoint provides HTTP GET access to
silencing entry data by subscription name.

Example

The following example queries the silenced/subscriptions/:subscription API endpoint for
silences for the given subscription (in this example, for the linux subscription):

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only silencing defnitions for the linux subscription:

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/subscriptions/linux

[

 {

 "metadata": {

 "name": "linux:check_cpu",

 "namespace": "default",

 "created_by": "admin",

API Specifcation

/silenced/subscriptions/:subscription (GET)

description Returns all silences for the specifed
subscription.

example url http://hostname:8080/api/core/v2/namespaces
/default/silenced/subscriptions/linux

pagination This endpoint supports pagination using the
limit and continue query parameters.

response type Array

response codes

output

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

 }

]

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "linux:check_cpu",

 "namespace": "default",

 "created_by": "admin",

Get all silences for a specifc check

The /silenced/checks/:check API endpoint provides HTTP GET access to silencing entry data by
check name.

Example

The following example queries the silenced/checks/:check API endpoint for silences for the
specifed check (in this example, for the check_cpu check):

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only silencing defnitions for the check_cpu check:

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

 }

]

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/checks/check_cpu

[

 {

 "metadata": {

 "name": "linux:check_cpu",

 "namespace": "default",

 "created_by": "admin",

API Specifcation

/silenced/checks/:check (GET)

description Returns all silences for the specifed check.

example url http://hostname:8080/api/core/v2/namespaces/default/silenc
ed/checks/check_cpu

pagination This endpoint supports pagination using the limit and
continue query parameters.

response type Array

response codes

output

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "check": "linux",

 "begin": 1542671205

 }

]

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "linux:check_cpu",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

Get a subset of silences with response fltering

The /silenced API endpoint supports response fltering for a subset of silences data based on
labels and the following felds:

Example

The following example demonstrates a request to the /silenced API endpoint with response fltering
for only silencing defnitions in the development namespace:

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "check": "linux",

 "begin": 1542671205

 }

]

silenced.name

silenced.namespace

silenced.check

silenced.creator

silenced.expire_on_resolve

silenced.subscription

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector="development" in silenced.namespace'

contains only silencing defnitions in the development namespace:

API Specifcation

/silenced (GET) with response flters

description Returns the list of silences that match the response
flters applied in the API request.

example url http://hostname:8080/api/core/v2/silenced

pagination This endpoint supports pagination using the limit
and continue query parameters.

response type Array

response codes

[

 {

 "metadata": {

 "name": "linux:*",

 "namespace": "development",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1644868317,

 "expire_at": 0

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

Error: 500 (Internal Server Error)

output
[

 {

 "metadata": {

 "name": "linux:*",

 "namespace": "development",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1644868317,

 "expire_at": 0

 }

]

core/v2/tessen

The core/v2/tessen API endpoints provide HTTP access to manage Tessen confguration.
Access to
core/v2/tessen is restricted to the default admin user.

Get the active Tessen confguration

The /tessen API endpoint provides HTTP GET access to the active Tessen confguration.

Example

The following example demonstrates an HTTP GET request to the /tessen API endpoint:

The request returns an HTTP 200 OK response and a JSON map that contains the active Tessen
confguration, indicating whether Tessen is enabled:

API Specifcation

NOTE: Requests to core/v2/tessen API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/tessen \

-H "Authorization: Key $SENSU_API_KEY"

{

 "opt_out": false

}

/tessen (GET)

description Returns the active Tessen confguration. An "opt_out": false

response indicates that Tessen is enabled. An "opt_out": true

response indicates that Tessen is disabled.

example url http://hostname:8080/api/core/v2/tessen

response type Map

response codes

example output

Opt in to or out of Tessen

The /tessen API endpoint provides HTTP PUT access to opt in to or opt out of Tessen for
unlicensed Sensu instances.

Example

In the following example, an HTTP PUT request is submitted to the /tessen API endpoint to opt in to
Tessen using the opt_out attribute:

Success: 200 (OK)

Error: 500 (Internal Server Error)

{

 "opt_out": false

}

NOTE: Tessen is enabled by default on Sensu backends and required for licensed Sensu
instances.
If you have a licensed instance and want to opt out of Tessen, contact your account
manager.

curl -X PUT \

The request returns an HTTP 200 OK response and the resulting Tessen confguration.

API Specifcation

/tessen (PUT)

description Updates the active Tessen confguration for unlicensed Sensu instances.
Tessen is enabled by default on Sensu backends and required for
licensed Sensu instances.

example url http://hostname:8080/api/core/v2/tessen

request parameters Required: opt_out (for unlicensed instances, set to false to enable
Tessen; set to true to opt out of Tessen).

response codes

example output

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "opt_out": false

}' \

http://127.0.0.1:8080/api/core/v2/tessen

{

 "opt_out": false

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "opt_out": false

}

core/v2/users

Get all users

The /users API endpoint provides HTTP GET access to user data.

Example

The following example demonstrates a GET request to the /users API:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains all
user defnitions:

NOTE: The core/v2/users API endpoints allow you to create and manage user credentials with
Sensu’s built-in basic authentication.
To confgure user credentials with an external provider like
Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or OpenID Connect 1.0
protocol (OIDC), use Sensu’s enterprise/authentication/v2 API endpoints.

Requests to core/v2/users API endpoints require you to authenticate with a Sensu API key or
access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/users \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "username": "admin",

 "groups": [

 "cluster-admins"

],

API Specifcation

/users (GET)

description Returns the list of users.

example url http://hostname:8080/api/core/v2/users

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "disabled": false

 },

 {

 "username": "agent",

 "groups": [

 "system:agents"

],

 "disabled": false

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "username": "admin",

 "groups": [

 "cluster-admins"

],

 "disabled": false

 },

Create a new user

The /users API endpoint provides HTTP POST access to create a user using Sensu’s basic
authentication provider.

Example

The following example demonstrates a POST request to the /users API endpoint to create the user
alice :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

 {

 "username": "agent",

 "groups": [

 "system:agents"

],

 "disabled": false

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "temporary",

 "disabled": false

}' \

http://127.0.0.1:8080/api/core/v2/users

/users (POST)

description Creates a Sensu user.

example URL http://hostname:8080/api/core/v2/users

payload parameters Required: username (string), groups (array; sets of shared
permissions that apply to this user), password (string; at least eight
characters), and disabled (when set to true , invalidates user
credentials and permissions).

payload

response codes

Get a specifc user

The /users/:user API endpoint provides HTTP GET access to user data for a specifc user by
username .

Example

The following example queries the /users/:user API for the alice user:

{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "temporary",

 "disabled": false

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :user defnition (in this example, alice):

API Specifcation

/users/:user (GET)

description Returns the specifed user.

example url http://hostname:8080/api/core/v2/users/alice

response type Map

response codes

output

curl -X GET \

http://127.0.0.1:8080/api/core/v2/users/alice \

-H "Authorization: Key $SENSU_API_KEY"

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "username": "alice",

 "groups": [

 "ops"

],

Create or update a user

The /users/:user API endpoint provides HTTP PUT access to create or update user data for a
specifc user by username .

Example

The following example demonstrates a PUT request to the /users API endpoint to update the user
alice (for example, to add the user to the devel group):

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

 "disabled": false

}

NOTE: Use the PUT /users/:user/reset_password or PUT /users/:user/password API
endpoints to reset or change the user password, respectively.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "groups": [

 "ops",

 "devel"

],

 "password": "password",

 "disabled": false

}' \

http://127.0.0.1:8080/api/core/v2/users/alice

/users/:user (PUT)

description Creates or updates user data for the specifed Sensu user.

example URL http://hostname:8080/api/core/v2/users/alice

payload

response codes

Disable a user

The /users/:user API endpoint provides HTTP DELETE access to disable a specifc user by
username .

Example

In the following example, an HTTP DELETE request is submitted to the /users/:user API endpoint
to disable the user alice , resulting in a successful HTTP/1.1 204 No Content response.

{

 "username": "alice",

 "groups": [

 "ops",

 "devel"

],

 "password": "password",

 "disabled": false

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/users/alice

API Specifcation

/users/:user (DELETE)

description Disables the specifed user.

example url http://hostname:8080/api/core/v2/users/alice

response codes

Reset a user’s password

The /users/:user/reset_password API endpoint provides HTTP PUT access to reset a user’s
password.

Example

In the following example, an HTTP PUT request is submitted to the /users/:user/reset_password

API endpoint to reset the password for the user alice .

The password_hash is the user’s new password, hashed via bcrypt.
Use sensuctl user hash-

password to generate the password_hash .

NOTE: This endpoint disables but does not delete the user.
You can reinstate disabled users.

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

NOTE: The /users/:user/reset_password API endpoint requires explicit users permissions.
With these permissions, you can use /users/:user/reset_password to reset a user’s password.
This differs from the /users/:user/password API endpoint, which allows users to change their
own passwords without explicit permissions.

https://en.wikipedia.org/wiki/Bcrypt

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/users/:user/reset_password (PUT)

description Resets the password for the specifed Sensu user.

example URL http://hostname:8080/api/core/v2/users/alice/reset_pas
sword

payload parameters Required:

payload

response codes

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "password_hash": "$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAyNm"

}' \

http://127.0.0.1:8080/api/core/v2/users/alice/reset_password

username : string; the username for the Sensu
user

password_hash : string; the new user
password, hashed via bcrypt

{

 "username": "alice",

 "password_hash":

"$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLG

HjEqxJbzPsreQAyNm"

}

https://en.wikipedia.org/wiki/Bcrypt

Change your password

The /users/:user/password API endpoint provides HTTP PUT access to change your Sensu user
password.

Example

In the following example, an HTTP PUT request is submitted to the /users/:user/password API
endpoint to update the password for the user alice .

The password is your current password in cleartext.
The password_hash is your new password
hashed via bcrypt.
Use sensuctl user hash-password to generate the password_hash .

The request will return a successful HTTP/1.1 201 Created response.

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: The /users/:user/password API endpoint allows a user to update their own password,
without any permissions.
This differs from the /users/:user/reset_password API endpoint,
which requires explicit users permissions to change the user password.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "password": "P@ssw0rd!",

 "password_hash": "$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAyNm"

}' \

http://127.0.0.1:8080/api/core/v2/users/alice/password

https://en.wikipedia.org/wiki/Bcrypt

API Specifcation

/users/:user/password (PUT)

description Changes the password for the specifed Sensu user.

example URL http://hostname:8080/api/core/v2/users/alice/password

payload parameters Required:

payload

response codes

Reinstate a disabled user

The /users/:user/reinstate API endpoint provides HTTP PUT access to reinstate a disabled
user.

username : string; the username for the Sensu user

password : string; the user’s current password in
cleartext

password_hash : string; the user’s hashed password
via bcrypt

{

 "username": "alice",

 "password": "P@ssw0rd!",

 "password_hash":

"$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJ

bzPsreQAyNm"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

https://en.wikipedia.org/wiki/Bcrypt

Example

In the following example, an HTTP PUT request is submitted to the /users/:user/reinstate API
endpoint to reinstate the disabled user alice :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/users/:user/reinstate (PUT)

description Reinstates a disabled user.

example URL http://hostname:8080/api/core/v2/users/alice/reinstate

response codes

Remove a user from all groups

The /users/:user/groups API endpoint provides HTTP DELETE access to remove the specifed
user from all groups.

Example

In the following example, an HTTP DELETE request is submitted to the /users/:user/groups API
endpoint to remove the user alice from all groups within Sensu, resulting in a successful HTTP/1.1

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

http://127.0.0.1:8080/api/core/v2/users/alice/reinstate

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

204 No Content response:

API Specifcation

/users/:user/groups (DELETE)

description Removes the specifed user from all groups.

example url http://hostname:8080/api/core/v2/users/alice/groups

response codes

Assign a user to a group

The /users/:user/groups/:group API endpoint provides HTTP PUT access to assign a user to a
group.

Example

In the following example, an HTTP PUT request is submitted to the /users/:user/groups/:group

API endpoint to add the user alice to the group ops :

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups/ops

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/users/:user/groups/:group (PUT)

description Adds the specifed user to the specifed group.

example URL http://hostname:8080/api/core/v2/users/alice/groups/ops

response codes

Remove a user from a specifc group

The /users/:user/groups/:group API endpoint provides HTTP DELETE access to remove the
specifed user from a specifc group.

Example

In the following example, an HTTP DELETE request is submitted to the
/users/:user/groups/:group API endpoint to remove the user alice from the group ops ,

resulting in a successful HTTP/1.1 204 No Content response:

API Specifcation

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups/ops

/users/:user/groups/:group (DELETE)

description Removes the specifed user from the specifed
group.

example url http://hostname:8080/api/core/v2/users/alice/groups/
ops

response codes

Get a subset of users with response fltering

The /users API endpoint supports response fltering for a subset of user data based on labels and
the following felds:

Example

The following example demonstrates a request to the /users API endpoint with response fltering for
only user defnitions whose user.groups include dev :

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only user defnitions whose user.groups include dev :

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

user.username

user.disabled

user.groups

curl -H "Authorization: Key $SENSU_API_KEY" http://127.0.0.1:8080/api/core/v2/users

-G \

--data-urlencode 'feldSelector="dev" in user.groups'

https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Bcrypt

API Specifcation

/users (GET) with response flters

description Returns the list of users that match the response flters
applied in the API request.

example url http://hostname:8080/api/core/v2/users

pagination This endpoint supports pagination using the limit and
continue query parameters.

response type Array

response codes

[

 {

 "username": "alice",

 "groups": [

 "ops",

 "dev"

],

 "disabled": false

 },

 {

 "username": "balan",

 "groups": [

 "testing",

 "dev"

],

 "disabled": false

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

Error: 500 (Internal Server Error)

output
[

 {

 "username": "alice",

 "groups": [

 "ops",

 "dev"

],

 "disabled": false

 },

 {

 "username": "balan",

 "groups": [

 "testing",

 "dev"

],

 "disabled": false

 }

]

Enterprise APIs

Sensu’s enterprise APIs provide programmatic access to commercial features.
The enterprise APIs
include:

COMMERCIAL FEATURE : Access Sensu’s enterprise APIs in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

enterprise/authentication/v2

enterprise/bsm/v1

enterprise/federation/v1

enterprise/pipeline/v1

enterprise/prune/v1alpha

enterprise/searches/v1

enterprise/secrets/v1

enterprise/store/v1

enterprise/web/v1

enterprise/authentication/v2

Get active authentication provider confgurations

The /authproviders API endpoint provides HTTP GET access to authentication provider
confguration in Sensu.

Example

The following example queries the /authproviders API endpoint for the authentication provider
confgurations in Sensu:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
authentication provider confgurations:

COMMERCIAL FEATURE : Access authentication providers for single sign-on (SSO) in the
packaged Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: Requests to enterprise/authentication/v2 API endpoints require you to authenticate
with a Sensu API key or access token.
The code examples in this document use the environment
variable $SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/authentication/v2/authproviders \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "oidc",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "oidc_auth",

 "created_by": "admin"

 },

 "spec": {

 "additional_scopes": [

 "groups",

 "email"

],

 "client_id": "xxxxxxxxxxxxxxxxxxxx",

 "client_secret": "xx",

 "disable_offine_access": false,

 "groups_claim": "groups",

 "groups_prefx": "oidc:",

 "redirect_uri": "http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2/oidc/callback",

 "server": "https://oidc.example.com:9031",

 "username_claim": "email",

 "username_prefx": "oidc:"

 }

 },

 {

 "type": "ldap",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "openldap",

 "created_by": "admin"

 },

 "spec": {

 "groups_prefx": "",

 "servers": [

 {

 "binding": {

 "password": "YOUR_PASSWORD",

 "user_dn": "cn=binder,dc=acme,dc=org"

 },

 "client_cert_fle": "",

 "client_key_fle": "",

 "default_upn_domain": "",

 "group_search": {

 "attribute": "member",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

API Specifcation

/authproviders (GET)

description Returns the list of active authentication providers.

example url http://hostname:8080/api/enterprise/authentication/v2/authproviders

query parameters types : Defnes which type of authentication provider to retrieve. Join
with & to retrieve multiple types: ?types=AD&types=OIDC .

pagination This endpoint supports pagination using the limit and continue
query parameters. Read the API overview for details.

response type Array

response codes

 "object_class": "groupOfNames"

 },

 "host": "127.0.0.1",

 "insecure": false,

 "port": 636,

 "security": "tls",

 "trusted_ca_fle": "",

 "user_search": {

 "attribute": "uid",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "username_prefx": ""

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

output
[

 {

 "type": "oidc",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "oidc_auth",

 "created_by": "admin"

 },

 "spec": {

 "additional_scopes": [

 "groups",

 "email"

],

 "client_id": "xxxxxxxxxxxxxxxxxxxx",

 "client_secret":

"xx",

 "disable_offine_access": false,

 "groups_claim": "groups",

 "groups_prefx": "oidc:",

 "redirect_uri": "http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2

/oidc/callback",

 "server": "https://oidc.example.com:9031",

 "username_claim": "email",

 "username_prefx": "oidc:"

 }

 },

 {

 "type": "ldap",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "openldap",

 "created_by": "admin"

 },

 "spec": {

 "groups_prefx": "",

 "servers": [

 {

 "binding": {

 "password": "YOUR_PASSWORD",

 "user_dn": "cn=binder,dc=acme,dc=org"

Get the confguration for a specifc authentication provider

The /authproviders/:name API endpoint provides HTTP GET access to the authentication provider
confguration for a specifc :name .

Example

In the following example, an HTTP GET request is submitted to the /authproviders/:name API
endpoint to retrieve the openldap authenthication provider confguration:

 },

 "client_cert_fle": "",

 "client_key_fle": "",

 "default_upn_domain": "",

 "group_search": {

 "attribute": "member",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "host": "127.0.0.1",

 "insecure": false,

 "port": 636,

 "security": "tls",

 "trusted_ca_fle": "",

 "user_search": {

 "attribute": "uid",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "username_prefx": ""

 }

 }

]

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested authentication provider :name defnition (in this example, openldap):

curl -X GET \

http://127.0.0.1:8080/api/enterprise/authentication/v2/authproviders/openldap \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json'

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "openldap",

 "created_by": "admin"

 },

 "spec": {

 "groups_prefx": "",

 "servers": [

 {

 "binding": {

 "password": "YOUR_PASSWORD",

 "user_dn": "cn=binder,dc=acme,dc=org"

 },

 "client_cert_fle": "",

 "client_key_fle": "",

 "default_upn_domain": "",

 "group_search": {

 "attribute": "member",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "host": "127.0.0.1",

 "insecure": false,

 "port": 636,

 "security": "tls",

 "trusted_ca_fle": "",

 "user_search": {

 "attribute": "uid",

API Specifcation

/authproviders/:name (GET)

description Returns the confguration for an authentication provider for the
specifed confgured provider name.

example url http://hostname:8080/api/enterprise/authentication/v2/authprov
iders/openldap

response type Map

response codes

output

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "username_prefx": ""

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "openldap",

 "created_by": "admin"

 },

 "spec": {

 "groups_prefx": "",

 "servers": [

 {

Create or update the confguration for a specifc
authentication provider

The /authproviders/:name API endpoint provides HTTP PUT access to create or update the
authentication provider confguration for a specifc :name .

Example

 "binding": {

 "password": "YOUR_PASSWORD",

 "user_dn": "cn=binder,dc=acme,dc=org"

 },

 "client_cert_fle": "",

 "client_key_fle": "",

 "default_upn_domain": "",

 "group_search": {

 "attribute": "member",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "host": "127.0.0.1",

 "insecure": false,

 "port": 636,

 "security": "tls",

 "trusted_ca_fle": "",

 "user_search": {

 "attribute": "uid",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "username_prefx": ""

 }

}

In the following example, an HTTP PUT request is submitted to the /authproviders/:name API
endpoint to create the openldap authenthication provider:

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/authproviders/:name (PUT)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "Type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

}' \

http://127.0.0.1:8080/api/enterprise/authentication/v2/authproviders/openldap

description Creates or updates the authentication provider confguration
for the specifed name. Read the authentication guide for more
information about supported providers.

example url http://hostname:8080/api/enterprise/authentication/v2/authprovi
ders/openldap

payload

payload parameters All attributes shown in the example payload are required. For
more information about confguring authentication providers,
read the authentication guide.

response codes

{

 "Type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Delete the confguration for a specifc authentication provider

The /authproviders/:name API endpoint provides HTTP DELETE access to delete the
authentication provider confguration from Sensu for a specifc :name .

Example

The following example shows a request to the /authproviders/:name API endpoint to delete the
confguration for the authentication provider openldap , resulting in a successful HTTP/1.1 204 No
Content response:

API Specifcation

/authproviders/:name (DELETE)

description Deletes the authentication provider confguration from
Sensu for the specifed name.

example url http://hostname:8080/api/enterprise/authentication/v2/auth
providers/openldap

response codes

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/authproviders/openldap

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

enterprise/bsm/v1

Get all service components

The /service-components API endpoint provides HTTP GET access to a list of service components.

Example

The following example demonstrates a GET request to the /service-components API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
service component defnitions in the default namespace:

COMMERCIAL FEATURE : Access business service monitoring (BSM) in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

Requests to enterprise/bsm/v1 API endpoints require you to authenticate with a Sensu API
key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/service-components \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

API Specifcation

/service-components (GET)

description Returns the list of service components.

example url http://hostname:8080/api/enterprise/bsm/v1/namespaces/defau

 "name": "webservers",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "cron": "",

 "handlers": [

 "slack"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in event.check.subscriptions"

 }

],

 "rules": [

 {

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 },

 "name": "webservers_50-70",

 "template": "aggregate"

 }

],

 "services": [

 "website-services"

]

 }

 }

]

lt/service-components

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "webservers",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "cron": "",

 "handlers": [

 "slack"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in

event.check.subscriptions"

 }

],

 "rules": [

 {

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 },

 "name": "webservers_50-70",

 "template": "aggregate"

 }

],

Create a new service component

The /service-components API endpoint provides HTTP POST access to create service
components.

Example

The following example demonstrates a request to the /service-components API endpoint to create
the service component webservers :

 "services": [

 "website-services"

]

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "webservers"

 },

 "spec": {

 "cron": "",

 "handlers": [

 "slack"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in event.check.subscriptions"

 }

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/service-components (POST)

description Creates a new business service component (if none exists).

example URL http://hostname:8080/api/enterprise/bsm/v1/namespaces/def
ault/service-components

payload

],

 "rules": [

 {

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 },

 "name": "webservers_50-70",

 "template": "aggregate"

 }

],

 "services": [

 "website-services"

]

 }

}' \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/service-components

{

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "webservers"

 },

 "spec": {

 "cron": "",

 "handlers": [

 "slack"

response codes

Get a specifc service component

The /service-components/:service-component API endpoint provides HTTP GET access to data
for a specifc :service-component , by service compnent name.

Example

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in

event.check.subscriptions"

 }

],

 "rules": [

 {

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 },

 "name": "webservers_50-70",

 "template": "aggregate"

 }

],

 "services": [

 "website-services"

]

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The following example queries the /service-components/:service-component API endpoint for a
specifc :service-component :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :service-component defnition (in this example, webservers):

curl -X GET \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/service-

components/webservers \

-H "Authorization: Key $SENSU_API_KEY"

{

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "webservers",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "cron": "",

 "handlers": [

 "slack"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in event.check.subscriptions"

 }

],

 "rules": [

 {

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 },

 "name": "webservers_50-70",

 "template": "aggregate"

API Specifcation

/service-components/:service-component (GET)

description Returns the specifed business service
component.

example url http://hostname:8080/api/enterprise/bsm
/v1/namespaces/default/service-
components/webservers

response type Map

response codes

output

 }

],

 "services": [

 "website-services"

]

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server
Error)

{

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "webservers",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "cron": "",

 "handlers": [

Create or update a service component

The /service-components/:service-component API endpoint provides HTTP PUT access to
create or update a specifc :service-component , by service component name.

Example

The following example demonstrates a request to the /service-components/:service-component

 "slack"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in

event.check.subscriptions"

 }

],

 "rules": [

 {

 "arguments": {

 "critical_threshold":

70,

 "warning_threshold":

50

 },

 "name": "webservers_50-

70",

 "template": "aggregate"

 }

],

 "services": [

 "website-services"

]

 }

}

API endpoint to update the service component webservers :

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "webservers"

 },

 "spec": {

 "cron": "",

 "handlers": [

 "slack"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in event.check.subscriptions"

 }

],

 "rules": [

 {

 "arguments": {

 "critical_threshold": 70,

 "warning_threshold": 50

 },

 "name": "webservers_50-70",

 "template": "aggregate"

 }

],

 "services": [

 "website-services"

]

 }

}' \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/service-

components/webservers

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/service-components/:service-component (PUT)

description Creates or updates the specifed
business service component.

example URL http://hostname:8080/api/enterprise/bsm
/v1/namespaces/default/service-
components/webservers

payload
{

 "type": "ServiceComponent",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "webservers"

 },

 "spec": {

 "cron": "",

 "handlers": [

 "slack"

],

 "interval": 60,

 "query": [

 {

 "type": "feldSelector",

 "value": "webserver in

event.check.subscriptions"

 }

],

 "rules": [

 {

 "arguments": {

 "critical_threshold":

70,

 "warning_threshold":

50

response codes

Delete a service component

The /service-components/:service-component API endpoint provides HTTP DELETE access to
delete the specifed service component from Sensu.

Example

The following example shows a request to the /service-components/:service-component API
endpoint to delete the service component webservers , resulting in a successful HTTP/1.1 204 No
Content response:

 },

 "name": "webservers_50-

70",

 "template": "aggregate"

 }

],

 "services": [

 "website-services"

]

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/service-

components/webservers

API Specifcation

/service-components/:service-component (DELETE)

description Deletes the specifed business
service component from Sensu.

example url http://hostname:8080/api/enterprise
/bsm/v1/namespaces/default/servic
e-components/webservers

response codes

Get all rule templates

The /rule-templates API endpoint provides HTTP GET access to a list of rule templates.

Example

The following example demonstrates a GET request to the /rule-templates API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
rule template defnitions in the default namespace:

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server
Error)

curl -X GET \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/rule-templates \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a critical status if there the

number of critical events is equal to or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a critical status if the percentage

of non-zero events is equal to or greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers to use for produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from aggregate data and include them in

the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a warning status if there the

number of critical events is equal to or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a warning status if the percentage

of non-zero events is equal to or greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed service - aggregate one or more events

into a single event. This BSM rule template allows you to treat the results of

multiple disparate check executions – executed across multiple disparate systems –

as a single event. This template is extremely useful in dynamic environments and/or

environments that have a reasonable tolerance for failure. Use this template when a

service can be considered healthy as long as a minimum threshold is satisfed (for

example, at least 5 healthy web servers? at least 70% of N processes healthy?).",

 "eval": "\nif (events && events.length == 0) {\n event.check.output =

\"WARNING: No events selected for aggregate\n\";\n event.check.status = 1;\n

return event;\n}\n\nevent.annotations[\"io.sensu.bsm.selected_event_count\"] =

events.length;\n\npercentOK = sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var handlers = [];\n\n if

(!!args[\"metric_handlers\"]) {\n handlers =

args[\"metric_handlers\"].slice();\n }\n\n var ts = Math.foor(new

Date().getTime() / 1000);\n\n event.timestamp = ts;\n\n var tags = [\n

{\n name: \"service\",\n value: event.entity.name\n

},\n {\n name: \"entity\",\n value: event.entity.name\n

},\n {\n name: \"check\",\n value: event.check.name\n

}\n];\n\n event.metrics = sensu.NewMetrics({\n handlers: handlers,\n

points: [\n {\n name: \"percent_non_zero\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n name: \"percent_ok\",\n

timestamp: ts,\n value: percentOK,\n tags: tags\n

},\n {\n name: \"percent_warning\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n name:

\"percent_critical\",\n timestamp: ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n tags: tags\n

},\n {\n name: \"percent_unknown\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n name:

\"count_non_zero\",\n timestamp: ts,\n value:

API Specifcation

sensu.CountBySeverity(\"non-zero\"),\n tags: tags\n },\n

{\n name: \"count_ok\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"ok\"),\n tags: tags\n },\n

{\n name: \"count_warning\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"warning\"),\n tags: tags\n

},\n {\n name: \"count_critical\",\n

timestamp: ts,\n value: sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n name:

\"count_unknown\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n tags: tags\n }\n

]\n });\n\n if (!!args[\"set_metric_annotations\"]) {\n var i = 0;\n\n

while(i < event.metrics.points.length) {\n

event.annotations[\"io.sensu.bsm.selected_event_\" + event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n i++;\n }\n

}\n}\n\nif (!!args[\"critical_threshold\"] && percentOK <=

args[\"critical_threshold\"]) {\n event.check.output = \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 2;\n return

event;\n}\n\nif (!!args[\"warning_threshold\"] && percentOK <=

args[\"warning_threshold\"]) {\n event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 1;\n return

event;\n}\n\nif (!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n if (crit >= args[\"critical_count\"])

{\n event.check.output = \"CRITICAL: \" + args[\"critical_count\"].toString()

+ \" or more selected events are in a critical state (\" + crit.toString() +

\")\n\";\n event.check.status = 2;\n return event;\n }\n}\n\nif

(!!args[\"warning_count\"]) {\n warn = sensu.CountBySeverity(\"warning\");\n\n

if (warn >= args[\"warning_count\"]) {\n event.check.output = \"WARNING: \" +

args[\"warning_count\"].toString() + \" or more selected events are in a warning

state (\" + warn.toString() + \")\n\";\n event.check.status = 1;\n

return event;\n }\n}\n\nevent.check.output = \"Everything looks good (\" +

percentOK.toString() + \"% OK)\";\nevent.check.status = 0;\n\nreturn event;\n"

 }

 }

]

/rule-templates (GET)

description Returns the list of rule templates.

example url http://hostname:8080/api/enterprise/bsm/v1/namespaces/default/rule-
templates

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a

critical status if there the number of critical events

is equal to or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a

critical status if the percentage of non-zero events is

equal to or greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers to use for

produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from

aggregate data and include them in the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event

with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a

warning status if there the number of critical events is

equal to or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a

warning status if the percentage of non-zero events is

equal to or greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed service -

aggregate one or more events into a single event. This

BSM rule template allows you to treat the results of

multiple disparate check executions – executed across

multiple disparate systems – as a single event. This

template is extremely useful in dynamic environments

and/or environments that have a reasonable tolerance for

failure. Use this template when a service can be

considered healthy as long as a minimum threshold is

satisfed (for example, at least 5 healthy web servers?

at least 70% of N processes healthy?).",

 "eval": "\nif (events && events.length == 0) {\n

event.check.output = \"WARNING: No events selected for

aggregate\n\";\n event.check.status = 1;\n return

event;\n}\n\nevent.annotations[\"io.sensu.bsm.selected_e

vent_count\"] = events.length;\n\npercentOK =

sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var handlers =

[];\n\n if (!!args[\"metric_handlers\"]) {\n

handlers = args[\"metric_handlers\"].slice();\n }\n\n

var ts = Math.foor(new Date().getTime() / 1000);\n\n

event.timestamp = ts;\n\n var tags = [\n {\n

name: \"service\",\n value:

event.entity.name\n },\n {\n

name: \"entity\",\n value:

event.entity.name\n },\n {\n

name: \"check\",\n value: event.check.name\n

}\n];\n\n event.metrics = sensu.NewMetrics({\n

handlers: handlers,\n points: [\n {\n

name: \"percent_non_zero\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"percent_ok\",\n timestamp: ts,\n

value: percentOK,\n tags: tags\n

},\n {\n name:

\"percent_warning\",\n timestamp: ts,\n

value: sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"percent_critical\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"percent_unknown\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n

name: \"count_non_zero\",\n timestamp:

ts,\n value: sensu.CountBySeverity(\"non-

zero\"),\n tags: tags\n },\n

{\n name: \"count_ok\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"ok\"),\n tags:

tags\n },\n {\n

name: \"count_warning\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"count_critical\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"count_unknown\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n

tags: tags\n }\n]\n });\n\n if

(!!args[\"set_metric_annotations\"]) {\n var i =

0;\n\n while(i < event.metrics.points.length) {\n

event.annotations[\"io.sensu.bsm.selected_event_\" +

event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n

i++;\n }\n }\n}\n\nif

(!!args[\"critical_threshold\"] && percentOK <=

args[\"critical_threshold\"]) {\n event.check.output

= \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of

selected events are OK (\" + percentOK.toString() +

\"%)\n\";\n event.check.status = 2;\n return

event;\n}\n\nif (!!args[\"warning_threshold\"] &&

percentOK <= args[\"warning_threshold\"]) {\n

event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of selected

events are OK (\" + percentOK.toString() + \"%)\n\";\n

event.check.status = 1;\n return event;\n}\n\nif

(!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n if (crit >=

args[\"critical_count\"]) {\n event.check.output

= \"CRITICAL: \" + args[\"critical_count\"].toString() +

\" or more selected events are in a critical state (\" +

crit.toString() + \")\n\";\n event.check.status =

2;\n return event;\n }\n}\n\nif

(!!args[\"warning_count\"]) {\n warn =

sensu.CountBySeverity(\"warning\");\n\n if (warn >=

args[\"warning_count\"]) {\n event.check.output =

Create a new rule template

The /rule-templates API endpoint provides HTTP POST access to create rule templates.

Example

The following example demonstrates a request to the /rule-templates API endpoint to create the
rule template aggregate :

\"WARNING: \" + args[\"warning_count\"].toString() + \"

or more selected events are in a warning state (\" +

warn.toString() + \")\n\";\n event.check.status =

1;\n return event;\n

}\n}\n\nevent.check.output = \"Everything looks good (\"

+ percentOK.toString() + \"% OK)\";\nevent.check.status

= 0;\n\nreturn event;\n"

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a critical status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a critical status if the percentage

of non-zero events is equal to or greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers to use for produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from aggregate data and include them in

the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a warning status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a warning status if the percentage of

non-zero events is equal to or greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed service - aggregate one or more events

into a single event. This BSM rule template allows you to treat the results of

multiple disparate check executions – executed across multiple disparate systems –

as a single event. This template is extremely useful in dynamic environments and/or

environments that have a reasonable tolerance for failure. Use this template when a

service can be considered healthy as long as a minimum threshold is satisfed (for

example, at least 5 healthy web servers? at least 70% of N processes healthy?).",

 "eval": "\nif (events && events.length == 0) {\n event.check.output =

\"WARNING: No events selected for aggregate\n\";\n event.check.status = 1;\n

return event;\n}\n\nevent.annotations[\"io.sensu.bsm.selected_event_count\"] =

events.length;\n\npercentOK = sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var handlers = [];\n\n if

(!!args[\"metric_handlers\"]) {\n handlers =

args[\"metric_handlers\"].slice();\n }\n\n var ts = Math.foor(new

Date().getTime() / 1000);\n\n event.timestamp = ts;\n\n var tags = [\n

{\n name: \"service\",\n value: event.entity.name\n

},\n {\n name: \"entity\",\n value: event.entity.name\n

},\n {\n name: \"check\",\n value: event.check.name\n

}\n];\n\n event.metrics = sensu.NewMetrics({\n handlers: handlers,\n

points: [\n {\n name: \"percent_non_zero\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n name: \"percent_ok\",\n

timestamp: ts,\n value: percentOK,\n tags: tags\n

},\n {\n name: \"percent_warning\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n name:

\"percent_critical\",\n timestamp: ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n tags: tags\n

},\n {\n name: \"percent_unknown\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n name:

\"count_non_zero\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"non-zero\"),\n tags: tags\n },\n

{\n name: \"count_ok\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"ok\"),\n tags: tags\n },\n

{\n name: \"count_warning\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"warning\"),\n tags: tags\n

},\n {\n name: \"count_critical\",\n

timestamp: ts,\n value: sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n name:

\"count_unknown\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n tags: tags\n }\n

]\n });\n\n if (!!args[\"set_metric_annotations\"]) {\n var i = 0;\n\n

while(i < event.metrics.points.length) {\n

event.annotations[\"io.sensu.bsm.selected_event_\" + event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n i++;\n }\n

}\n}\n\nif (!!args[\"critical_threshold\"] && percentOK <=

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/rule-templates (POST)

description Creates a new rule template (if none exists).

example URL http://hostname:8080/api/enterprise/bsm/v1/namespaces/default/rul
e-templates

payload

args[\"critical_threshold\"]) {\n event.check.output = \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 2;\n return

event;\n}\n\nif (!!args[\"warning_threshold\"] && percentOK <=

args[\"warning_threshold\"]) {\n event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 1;\n return

event;\n}\n\nif (!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n if (crit >= args[\"critical_count\"])

{\n event.check.output = \"CRITICAL: \" + args[\"critical_count\"].toString()

+ \" or more selected events are in a critical state (\" + crit.toString() +

\")\n\";\n event.check.status = 2;\n return event;\n }\n}\n\nif

(!!args[\"warning_count\"]) {\n warn = sensu.CountBySeverity(\"warning\");\n\n

if (warn >= args[\"warning_count\"]) {\n event.check.output = \"WARNING: \" +

args[\"warning_count\"].toString() + \" or more selected events are in a warning

state (\" + warn.toString() + \")\n\";\n event.check.status = 1;\n

return event;\n }\n}\n\nevent.check.output = \"Everything looks good (\" +

percentOK.toString() + \"% OK)\";\nevent.check.status = 0;\n\nreturn event;\n"

 }

}' \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/rule-templates

{

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a

critical status if there the number of critical events

is equal to or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a

critical status if the percentage of non-zero events is

equal to or greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers to use for

produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from

aggregate data and include them in the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event

with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a

warning status if there the number of critical events

is equal to or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a

warning status if the percentage of non-zero events is

equal to or greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed service -

aggregate one or more events into a single event. This

BSM rule template allows you to treat the results of

multiple disparate check executions – executed across

multiple disparate systems – as a single event. This

template is extremely useful in dynamic environments

and/or environments that have a reasonable tolerance

for failure. Use this template when a service can be

considered healthy as long as a minimum threshold is

satisfed (for example, at least 5 healthy web servers?

at least 70% of N processes healthy?).",

 "eval": "\nif (events && events.length == 0) {\n

event.check.output = \"WARNING: No events selected for

aggregate\n\";\n event.check.status = 1;\n return

event;\n}\n\nevent.annotations[\"io.sensu.bsm.selected_

event_count\"] = events.length;\n\npercentOK =

sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var handlers =

[];\n\n if (!!args[\"metric_handlers\"]) {\n

handlers = args[\"metric_handlers\"].slice();\n

}\n\n var ts = Math.foor(new Date().getTime() /

1000);\n\n event.timestamp = ts;\n\n var tags =

[\n {\n name: \"service\",\n

value: event.entity.name\n },\n {\n

name: \"entity\",\n value:

event.entity.name\n },\n {\n

name: \"check\",\n value: event.check.name\n

}\n];\n\n event.metrics = sensu.NewMetrics({\n

handlers: handlers,\n points: [\n {\n

name: \"percent_non_zero\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"percent_ok\",\n timestamp: ts,\n

value: percentOK,\n tags: tags\n

},\n {\n name:

\"percent_warning\",\n timestamp: ts,\n

value: sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"percent_critical\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"percent_unknown\",\n timestamp:

ts,\n value:

sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n

name: \"count_non_zero\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"count_ok\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"ok\"),\n

tags: tags\n },\n {\n

name: \"count_warning\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"count_critical\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"count_unknown\",\n timestamp:

ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n

tags: tags\n }\n]\n });\n\n if

(!!args[\"set_metric_annotations\"]) {\n var i =

0;\n\n while(i < event.metrics.points.length)

{\n

event.annotations[\"io.sensu.bsm.selected_event_\" +

event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n

i++;\n }\n }\n}\n\nif

(!!args[\"critical_threshold\"] && percentOK <=

args[\"critical_threshold\"]) {\n event.check.output

response codes

Get a specifc rule template

= \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of

selected events are OK (\" + percentOK.toString() +

\"%)\n\";\n event.check.status = 2;\n return

event;\n}\n\nif (!!args[\"warning_threshold\"] &&

percentOK <= args[\"warning_threshold\"]) {\n

event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of

selected events are OK (\" + percentOK.toString() +

\"%)\n\";\n event.check.status = 1;\n return

event;\n}\n\nif (!!args[\"critical_count\"]) {\n

crit = sensu.CountBySeverity(\"critical\");\n\n if

(crit >= args[\"critical_count\"]) {\n

event.check.output = \"CRITICAL: \" +

args[\"critical_count\"].toString() + \" or more

selected events are in a critical state (\" +

crit.toString() + \")\n\";\n event.check.status

= 2;\n return event;\n }\n}\n\nif

(!!args[\"warning_count\"]) {\n warn =

sensu.CountBySeverity(\"warning\");\n\n if (warn >=

args[\"warning_count\"]) {\n event.check.output

= \"WARNING: \" + args[\"warning_count\"].toString() +

\" or more selected events are in a warning state (\" +

warn.toString() + \")\n\";\n event.check.status

= 1;\n return event;\n

}\n}\n\nevent.check.output = \"Everything looks good

(\" + percentOK.toString() + \"%

OK)\";\nevent.check.status = 0;\n\nreturn event;\n"

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The /rule-templates/:rule-template API endpoint provides HTTP GET access to data for a
specifc rule template by name.

Example

The following example queries the /rule-templates/:rule-template API endpoint for a specifc
:rule-template :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :rule-template defnition (in this example, aggregate):

curl -X GET \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/rule-

templates/aggregate \

-H "Authorization: Key $SENSU_API_KEY"

{

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a critical status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a critical status if the percentage

of non-zero events is equal to or greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers to use for produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from aggregate data and include them in

the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a warning status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a warning status if the percentage of

non-zero events is equal to or greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed service - aggregate one or more events

into a single event. This BSM rule template allows you to treat the results of

multiple disparate check executions – executed across multiple disparate systems –

as a single event. This template is extremely useful in dynamic environments and/or

environments that have a reasonable tolerance for failure. Use this template when a

service can be considered healthy as long as a minimum threshold is satisfed (for

example, at least 5 healthy web servers? at least 70% of N processes healthy?).",

 "eval": "\nif (events && events.length == 0) {\n event.check.output =

\"WARNING: No events selected for aggregate\n\";\n event.check.status = 1;\n

return event;\n}\n\nevent.annotations[\"io.sensu.bsm.selected_event_count\"] =

events.length;\n\npercentOK = sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var handlers = [];\n\n if

(!!args[\"metric_handlers\"]) {\n handlers =

args[\"metric_handlers\"].slice();\n }\n\n var ts = Math.foor(new

Date().getTime() / 1000);\n\n event.timestamp = ts;\n\n var tags = [\n

{\n name: \"service\",\n value: event.entity.name\n

},\n {\n name: \"entity\",\n value: event.entity.name\n

},\n {\n name: \"check\",\n value: event.check.name\n

}\n];\n\n event.metrics = sensu.NewMetrics({\n handlers: handlers,\n

points: [\n {\n name: \"percent_non_zero\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n name: \"percent_ok\",\n

timestamp: ts,\n value: percentOK,\n tags: tags\n

},\n {\n name: \"percent_warning\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n name:

\"percent_critical\",\n timestamp: ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n tags: tags\n

},\n {\n name: \"percent_unknown\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n name:

\"count_non_zero\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"non-zero\"),\n tags: tags\n },\n

{\n name: \"count_ok\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"ok\"),\n tags: tags\n },\n

{\n name: \"count_warning\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"warning\"),\n tags: tags\n

},\n {\n name: \"count_critical\",\n

timestamp: ts,\n value: sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n name:

\"count_unknown\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n tags: tags\n }\n

]\n });\n\n if (!!args[\"set_metric_annotations\"]) {\n var i = 0;\n\n

while(i < event.metrics.points.length) {\n

event.annotations[\"io.sensu.bsm.selected_event_\" + event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n i++;\n }\n

}\n}\n\nif (!!args[\"critical_threshold\"] && percentOK <=

args[\"critical_threshold\"]) {\n event.check.output = \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 2;\n return

event;\n}\n\nif (!!args[\"warning_threshold\"] && percentOK <=

args[\"warning_threshold\"]) {\n event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of selected events are OK (\" +

API Specifcation

/rule-templates/:rule-template (GET)

description Returns the specifed rule template.

example url http://hostname:8080/api/enterprise/bsm/v1/namespa
ces/default/rule-templates/aggregate

response type Map

response codes

output

percentOK.toString() + \"%)\n\";\n event.check.status = 1;\n return

event;\n}\n\nif (!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n if (crit >= args[\"critical_count\"])

{\n event.check.output = \"CRITICAL: \" + args[\"critical_count\"].toString()

+ \" or more selected events are in a critical state (\" + crit.toString() +

\")\n\";\n event.check.status = 2;\n return event;\n }\n}\n\nif

(!!args[\"warning_count\"]) {\n warn = sensu.CountBySeverity(\"warning\");\n\n

if (warn >= args[\"warning_count\"]) {\n event.check.output = \"WARNING: \" +

args[\"warning_count\"].toString() + \" or more selected events are in a warning

state (\" + warn.toString() + \")\n\";\n event.check.status = 1;\n

return event;\n }\n}\n\nevent.check.output = \"Everything looks good (\" +

percentOK.toString() + \"% OK)\";\nevent.check.status = 0;\n\nreturn event;\n"

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event

with a critical status if there the number

of critical events is equal to or greater

than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event

with a critical status if the percentage of

non-zero events is equal to or greater than

this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers

to use for produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics

from aggregate data and include them in the

produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the

produced event with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event

with a warning status if there the number

of critical events is equal to or greater

than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event

with a warning status if the percentage of

non-zero events is equal to or greater than

this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed

service - aggregate one or more events into

a single event. This BSM rule template

allows you to treat the results of multiple

disparate check executions – executed

across multiple disparate systems – as a

single event. This template is extremely

useful in dynamic environments and/or

environments that have a reasonable

tolerance for failure. Use this template

when a service can be considered healthy as

long as a minimum threshold is satisfed

(for example, at least 5 healthy web

servers? at least 70% of N processes

healthy?).",

 "eval": "\nif (events && events.length

== 0) {\n event.check.output =

\"WARNING: No events selected for

aggregate\n\";\n event.check.status =

1;\n return

event;\n}\n\nevent.annotations[\"io.sensu.b

sm.selected_event_count\"] =

events.length;\n\npercentOK =

sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var

handlers = [];\n\n if

(!!args[\"metric_handlers\"]) {\n

handlers =

args[\"metric_handlers\"].slice();\n

}\n\n var ts = Math.foor(new

Date().getTime() / 1000);\n\n

event.timestamp = ts;\n\n var tags = [\n

{\n name: \"service\",\n

value: event.entity.name\n },\n

{\n name: \"entity\",\n

value: event.entity.name\n },\n

{\n name: \"check\",\n

value: event.check.name\n }\n

];\n\n event.metrics =

sensu.NewMetrics({\n handlers:

handlers,\n points: [\n

{\n name:

\"percent_non_zero\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"percent_ok\",\n

timestamp: ts,\n value:

percentOK,\n tags: tags\n

},\n {\n name:

\"percent_warning\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"percent_critical\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n

 tags: tags\n

},\n {\n name:

\"percent_unknown\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n

name: \"count_non_zero\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"count_ok\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"ok\"),\n

tags: tags\n },\n {\n

name: \"count_warning\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"count_critical\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"count_unknown\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n

tags: tags\n }\n]\n

});\n\n if

(!!args[\"set_metric_annotations\"]) {\n

var i = 0;\n\n while(i <

event.metrics.points.length) {\n

event.annotations[\"io.sensu.bsm.selected_e

vent_\" + event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n

 i++;\n }\n }\n}\n\nif

(!!args[\"critical_threshold\"] &&

percentOK <= args[\"critical_threshold\"])

{\n event.check.output = \"CRITICAL:

Less than \" +

args[\"critical_threshold\"].toString() +

\"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n

event.check.status = 2;\n return

event;\n}\n\nif

(!!args[\"warning_threshold\"] && percentOK

<= args[\"warning_threshold\"]) {\n

event.check.output = \"WARNING: Less than

\" + args[\"warning_threshold\"].toString()

+ \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n

event.check.status = 1;\n return

event;\n}\n\nif

(!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n

if (crit >= args[\"critical_count\"]) {\n

Create or update a rule template

The /rule-templates/:rule-template API endpoint provides HTTP PUT access to create or
update a specifc rule template by name.

Example

The following example demonstrates a request to the /rule-templates/:rule-template API
endpoint to update the rule template aggregate :

event.check.output = \"CRITICAL: \" +

args[\"critical_count\"].toString() + \" or

more selected events are in a critical

state (\" + crit.toString() + \")\n\";\n

event.check.status = 2;\n return

event;\n }\n}\n\nif

(!!args[\"warning_count\"]) {\n warn =

sensu.CountBySeverity(\"warning\");\n\n

if (warn >= args[\"warning_count\"]) {\n

event.check.output = \"WARNING: \" +

args[\"warning_count\"].toString() + \" or

more selected events are in a warning state

(\" + warn.toString() + \")\n\";\n

event.check.status = 1;\n return

event;\n }\n}\n\nevent.check.output =

\"Everything looks good (\" +

percentOK.toString() + \"%

OK)\";\nevent.check.status = 0;\n\nreturn

event;\n"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event with a critical status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event with a critical status if the percentage

of non-zero events is equal to or greater than this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers to use for produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics from aggregate data and include them in

the produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the produced event with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event with a warning status if there the number

of critical events is equal to or greater than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event with a warning status if the percentage of

non-zero events is equal to or greater than this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed service - aggregate one or more events

into a single event. This BSM rule template allows you to treat the results of

multiple disparate check executions – executed across multiple disparate systems –

as a single event. This template is extremely useful in dynamic environments and/or

environments that have a reasonable tolerance for failure. Use this template when a

service can be considered healthy as long as a minimum threshold is satisfed (for

example, at least 5 healthy web servers? at least 70% of N processes healthy?).",

 "eval": "\nif (events && events.length == 0) {\n event.check.output =

\"WARNING: No events selected for aggregate\n\";\n event.check.status = 1;\n

return event;\n}\n\nevent.annotations[\"io.sensu.bsm.selected_event_count\"] =

events.length;\n\npercentOK = sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var handlers = [];\n\n if

(!!args[\"metric_handlers\"]) {\n handlers =

args[\"metric_handlers\"].slice();\n }\n\n var ts = Math.foor(new

Date().getTime() / 1000);\n\n event.timestamp = ts;\n\n var tags = [\n

{\n name: \"service\",\n value: event.entity.name\n

},\n {\n name: \"entity\",\n value: event.entity.name\n

},\n {\n name: \"check\",\n value: event.check.name\n

}\n];\n\n event.metrics = sensu.NewMetrics({\n handlers: handlers,\n

points: [\n {\n name: \"percent_non_zero\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n name: \"percent_ok\",\n

timestamp: ts,\n value: percentOK,\n tags: tags\n

},\n {\n name: \"percent_warning\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n name:

\"percent_critical\",\n timestamp: ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n tags: tags\n

},\n {\n name: \"percent_unknown\",\n

timestamp: ts,\n value: sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n name:

\"count_non_zero\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"non-zero\"),\n tags: tags\n },\n

{\n name: \"count_ok\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"ok\"),\n tags: tags\n },\n

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

{\n name: \"count_warning\",\n timestamp: ts,\n

value: sensu.CountBySeverity(\"warning\"),\n tags: tags\n

},\n {\n name: \"count_critical\",\n

timestamp: ts,\n value: sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n name:

\"count_unknown\",\n timestamp: ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n tags: tags\n }\n

]\n });\n\n if (!!args[\"set_metric_annotations\"]) {\n var i = 0;\n\n

while(i < event.metrics.points.length) {\n

event.annotations[\"io.sensu.bsm.selected_event_\" + event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n i++;\n }\n

}\n}\n\nif (!!args[\"critical_threshold\"] && percentOK <=

args[\"critical_threshold\"]) {\n event.check.output = \"CRITICAL: Less than \" +

args[\"critical_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 2;\n return

event;\n}\n\nif (!!args[\"warning_threshold\"] && percentOK <=

args[\"warning_threshold\"]) {\n event.check.output = \"WARNING: Less than \" +

args[\"warning_threshold\"].toString() + \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n event.check.status = 1;\n return

event;\n}\n\nif (!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n if (crit >= args[\"critical_count\"])

{\n event.check.output = \"CRITICAL: \" + args[\"critical_count\"].toString()

+ \" or more selected events are in a critical state (\" + crit.toString() +

\")\n\";\n event.check.status = 2;\n return event;\n }\n}\n\nif

(!!args[\"warning_count\"]) {\n warn = sensu.CountBySeverity(\"warning\");\n\n

if (warn >= args[\"warning_count\"]) {\n event.check.output = \"WARNING: \" +

args[\"warning_count\"].toString() + \" or more selected events are in a warning

state (\" + warn.toString() + \")\n\";\n event.check.status = 1;\n

return event;\n }\n}\n\nevent.check.output = \"Everything looks good (\" +

percentOK.toString() + \"% OK)\";\nevent.check.status = 0;\n\nreturn event;\n"

 }

}' \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/rule-

templates/aggregate

/rule-templates/:rule-template (PUT)

description Creates or updates the specifed rule template.

example URL http://hostname:8080/api/enterprise/bsm/v1/namespa
ces/default/rule-templates/aggregate

payload
{

 "type": "RuleTemplate",

 "api_version": "bsm/v1",

 "metadata": {

 "name": "aggregate"

 },

 "spec": {

 "arguments": {

 "properties": {

 "critical_count": {

 "description": "create an event

with a critical status if there the number

of critical events is equal to or greater

than this count",

 "type": "number"

 },

 "critical_threshold": {

 "description": "create an event

with a critical status if the percentage of

non-zero events is equal to or greater than

this threshold",

 "type": "number"

 },

 "metric_handlers": {

 "default": {},

 "description": "metric handlers

to use for produced metrics",

 "items": {

 "type": "string"

 },

 "type": "array"

 },

 "produce_metrics": {

 "default": {},

 "description": "produce metrics

from aggregate data and include them in the

produced event",

 "type": "boolean"

 },

 "set_metric_annotations": {

 "default": {},

 "description": "annotate the

produced event with metric annotations",

 "type": "boolean"

 },

 "warning_count": {

 "description": "create an event

with a warning status if there the number

of critical events is equal to or greater

than this count",

 "type": "number"

 },

 "warning_threshold": {

 "description": "create an event

with a warning status if the percentage of

non-zero events is equal to or greater than

this threshold",

 "type": "number"

 }

 },

 "required": null

 },

 "description": "Monitor a distributed

service - aggregate one or more events into

a single event. This BSM rule template

allows you to treat the results of multiple

disparate check executions – executed

across multiple disparate systems – as a

single event. This template is extremely

useful in dynamic environments and/or

environments that have a reasonable

tolerance for failure. Use this template

when a service can be considered healthy as

long as a minimum threshold is satisfed

(for example, at least 5 healthy web

servers? at least 70% of N processes

healthy?).",

 "eval": "\nif (events && events.length

== 0) {\n event.check.output =

\"WARNING: No events selected for

aggregate\n\";\n event.check.status =

1;\n return

event;\n}\n\nevent.annotations[\"io.sensu.b

sm.selected_event_count\"] =

events.length;\n\npercentOK =

sensu.PercentageBySeverity(\"ok\");\n\nif

(!!args[\"produce_metrics\"]) {\n var

handlers = [];\n\n if

(!!args[\"metric_handlers\"]) {\n

handlers =

args[\"metric_handlers\"].slice();\n

}\n\n var ts = Math.foor(new

Date().getTime() / 1000);\n\n

event.timestamp = ts;\n\n var tags = [\n

{\n name: \"service\",\n

value: event.entity.name\n },\n

{\n name: \"entity\",\n

value: event.entity.name\n },\n

{\n name: \"check\",\n

value: event.check.name\n }\n

];\n\n event.metrics =

sensu.NewMetrics({\n handlers:

handlers,\n points: [\n

{\n name:

\"percent_non_zero\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"percent_ok\",\n

timestamp: ts,\n value:

percentOK,\n tags: tags\n

},\n {\n name:

\"percent_warning\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"percent_critical\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"critical\"),\n

 tags: tags\n

},\n {\n name:

\"percent_unknown\",\n

timestamp: ts,\n value:

sensu.PercentageBySeverity(\"unknown\"),\n

tags: tags\n },\n {\n

name: \"count_non_zero\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"non-zero\"),\n

tags: tags\n },\n {\n

name: \"count_ok\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"ok\"),\n

tags: tags\n },\n {\n

name: \"count_warning\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"warning\"),\n

tags: tags\n },\n {\n

name: \"count_critical\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"critical\"),\n

tags: tags\n },\n {\n

name: \"count_unknown\",\n

timestamp: ts,\n value:

sensu.CountBySeverity(\"unknown\"),\n

tags: tags\n }\n]\n

});\n\n if

(!!args[\"set_metric_annotations\"]) {\n

var i = 0;\n\n while(i <

event.metrics.points.length) {\n

event.annotations[\"io.sensu.bsm.selected_e

vent_\" + event.metrics.points[i].name] =

event.metrics.points[i].value.toString();\n

 i++;\n }\n }\n}\n\nif

(!!args[\"critical_threshold\"] &&

percentOK <= args[\"critical_threshold\"])

{\n event.check.output = \"CRITICAL:

Less than \" +

args[\"critical_threshold\"].toString() +

\"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n

response codes

event.check.status = 2;\n return

event;\n}\n\nif

(!!args[\"warning_threshold\"] && percentOK

<= args[\"warning_threshold\"]) {\n

event.check.output = \"WARNING: Less than

\" + args[\"warning_threshold\"].toString()

+ \"% of selected events are OK (\" +

percentOK.toString() + \"%)\n\";\n

event.check.status = 1;\n return

event;\n}\n\nif

(!!args[\"critical_count\"]) {\n crit =

sensu.CountBySeverity(\"critical\");\n\n

if (crit >= args[\"critical_count\"]) {\n

event.check.output = \"CRITICAL: \" +

args[\"critical_count\"].toString() + \" or

more selected events are in a critical

state (\" + crit.toString() + \")\n\";\n

event.check.status = 2;\n return

event;\n }\n}\n\nif

(!!args[\"warning_count\"]) {\n warn =

sensu.CountBySeverity(\"warning\");\n\n

if (warn >= args[\"warning_count\"]) {\n

event.check.output = \"WARNING: \" +

args[\"warning_count\"].toString() + \" or

more selected events are in a warning state

(\" + warn.toString() + \")\n\";\n

event.check.status = 1;\n return

event;\n }\n}\n\nevent.check.output =

\"Everything looks good (\" +

percentOK.toString() + \"%

OK)\";\nevent.check.status = 0;\n\nreturn

event;\n"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Delete a rule template

The /rule-templates/:rule-template API endpoint provides HTTP DELETE access to delete the
specifed rule template from Sensu.

Example

The following example shows a request to the /rule-templates/:rule-template API endpoint to
delete the rule template aggregate , resulting in a successful HTTP/1.1 204 No Content response.

API Specifcation

/rule-templates/:rule-template (DELETE)

description Deletes the specifed rule template from Sensu.

example url http://hostname:8080/api/enterprise/bsm/v1/rule-
templates/aggregate

response codes

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/bsm/v1/namespaces/default/rule-

templates/aggregate

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

enterprise/federation/v1

Get all replicators

The /etcd-replicators API endpoint provides HTTP GET access to a list of replicators.

Example

The following example demonstrates a GET request to the /etcd-replicators API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
etcd replicator defnitions:

COMMERCIAL FEATURE : Access federation in the packaged Sensu Go distribution.
For more
information, read Get started with commercial features.

NOTE: Requests to enterprise/federation/v1 API endpoints require you to authenticate with
a Sensu API key or access token.
The code examples in this document use the environment
variable $SENSU_API_KEY to represent a valid API key in API requests.

NOTE: The etcd-replicators datatype is only accessible for users who have a cluster role that
permits access to replication resources.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

API Specifcation

/etcd-replicators (GET)

description Returns the list of replicators.

example url http://hostname:8080/api/enterprise/federation/v1/etcd-replicators

response type Array

response codes

output

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator",

 "created_by": "admin"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

Create a new replicator

The /etcd-replicators API endpoint provides HTTP POST access to create replicators.

Example

The following example demonstrates a request to the /etcd-replicators API endpoint to create the
replicator my_replicator :

 "name": "my_replicator",

 "created_by": "admin"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-

authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

 }

]

NOTE: Create a replicator for each resource type you want to replicate.
Replicating namespace

resources will not replicate the resources that belong to those namespaces.

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/etcd-replicators (POST)

description Creates a new replicator (if none exists).

example URL http://hostname:8080/api/enterprise/federation/v1/etcd-replicators

payload

 "metadata": {

 "name": "my_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}' \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-

authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

response codes

Get a specifc replicator

The /etcd-replicators/:etcd-replicator API endpoint provides HTTP GET access to data for a
specifc :etcd-replicator , by replicator name.

Example

The following example queries the /etcd-replicators/:etcd-replicator API endpoint for a
specifc :etcd-replicator .

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :etcd-replicator defnition (in this example, my_replicator):

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: The etcd-replicators datatype is only accessible for users who have a cluster role that
permits access to replication resources.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators/my_replicator \

-H "Authorization: Key $SENSU_API_KEY"

{

API Specifcation

/etcd-replicators/:etcd-replicator (GET)

description Returns the specifed replicator.

example url http://hostname:8080/api/enterprise/federation/v1/e
tcd-replicators/my_replicator

response type Map

response codes

output

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator",

 "created_by": "admin"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

Create or update a replicator

The /etcd-replicators/:etcd-replicator API endpoint provides HTTP PUT access to create or
update a specifc :etcd-replicator , by replicator name.

Example

The following example demonstrates a request to the /etcd-replicators/:etcd-replicator API
endpoint to update the replicator my_replicator :

 "name": "my_replicator",

 "created_by": "admin"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-

certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-

etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator"

 },

 "spec": {

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/etcd-replicators/:etcd-replicator (PUT)

description Creates or updates the specifed replicator. The
replicator resource and API version cannot be
altered.

example URL http://hostname:8080/api/enterprise/federation/v1/e
tcd-replicators/my_replicator

payload

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}' \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators/my-replicator

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-

certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-

etcd.example.com:2379",

response codes

Delete a replicator

The /etcd-replicators/:etcd-replicator API endpoint provides HTTP DELETE access to delete
the specifed replicator from Sensu.

Example

The following example shows a request to the /etcd-replicators/:etcd-replicator API endpoint
to delete the replicator my_replicator , resulting in a successful HTTP/1.1 204 No Content
response.

API Specifcation

/etcd-replicators/:etcd-replicator (DELETE)

description Deletes the specifed replicator from Sensu.

example url http://hostname:8080/api/enterprise/federation

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators/my_replicator

/v1/etcd-replicators/my_replicator

response codes

Get all clusters

The /clusters API endpoint provides HTTP GET access to a list of clusters.

Example

The following example demonstrates a request to the /clusters API endpoint, resulting in a list of
clusters.

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
cluster defnitions:

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/enterprise/federation/v1/clusters \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a",

 "created_by": "admin"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

API Specifcation

/clusters (GET)

description Returns the list of clusters.

example url http://hostname:8080/api/enterprise/federation/v1/clusters

response type Array

response codes

output

 "http://10.0.0.3:8080"

]

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a",

 "created_by": "admin"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

 }

]

Get a specifc cluster

The /clusters/:cluster API endpoint provides HTTP GET access to data for a specifc cluster ,
by cluster name.

Example

The following example queries the /clusters/:cluster API endpoint for a specifc :cluster .

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :cluster defnition (in this example, us-west-2a):

API Specifcation

curl -X GET \

http://127.0.0.1:8080/api/enterprise/federation/v1/clusters/us-west-2a \

-H "Authorization: Key $SENSU_API_KEY"

{

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a",

 "created_by": "admin"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

}

/clusters/:cluster (GET)

description Returns the specifed cluster.

example url http://hostname:8080/api/enterprise/federation/v1/clusters/us-west-
2a

response type Map

response codes

output

Create or update a cluster

The /clusters/:cluster API endpoint provides HTTP PUT access to create or update a specifc
cluster , by cluster name.

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a",

 "created_by": "admin"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

}

Example

The following example demonstrates a request to the /clusters/:cluster API endpoint to update
the cluster us-west-2a :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/clusters/:cluster (PUT)

description Creates or updates the specifed cluster.

example URL http://hostname:8080/api/enterprise/federation/v1/clusters/us-west-
2a

NOTE: Only cluster admins have PUT access to clusters.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

}' \

http://127.0.0.1:8080/api/enterprise/federation/v1/clusters/us-west-2a

payload

response codes

Delete a cluster

The /clusters/:cluster API endpoint provides HTTP DELETE access to delete the specifed
cluster from Sensu.

Example

The following example shows a request to the /clusters/:cluster API endpoint to delete the
cluster us-west-2a , resulting in a successful HTTP/1.1 204 No Content response.

{

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: Only cluster admins have DELETE access to clusters.

curl -X DELETE \

API Specifcation

/clusters/:cluster (DELETE)

description Deletes the specifed cluster from Sensu.

example url http://hostname:8080/api/enterprise/federation/v1/clusters/us-
west-2a

response codes

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/federation/v1/clusters/us-west-2a

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

enterprise/pipeline/v1

Get all Sumo Logic metrics handler resources

The /sumo-logic-metrics-handlers API endpoint provides HTTP GET access to Sumo Logic
metrics handler data.

Example

The following example demonstrates a GET request to the /sumo-logic-metrics-handlers API
endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
Sumo Logic metrics handler defnitions in the default namespace:

IMPORTANT : The enterprise/pipeline/v1 API endpoints do not allow you to create and
manage pipelines, which are composed of observation event processing workfows.
Instead,
enterprise/pipeline/v1 API endpoints allow you to create and manage resources that can

only be used within pipelines (the Sumo Logic metrics handlers and TCP stream handlers).

COMMERCIAL FEATURE : Access enterprise/pipeline/v1 API endpoints in the packaged
Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: Requests to enterprise/pipeline/v1 endpoints require you to authenticate with a
Sensu API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/sumo-logic-

metrics-handlers \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "sumologic_http_log_metrics_us1",

 "namespace": "default"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us1"

 }

],

 "max_connections": 10,

 "timeout": "30s"

 }

 },

 {

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "sumologic_http_log_metrics_us2",

 "namespace": "default"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us2"

 }

],

 "max_connections": 10,

 "timeout": "30s"

 }

 }

]

API Specifcation

/sumo-logic-metrics-handlers (GET)

description Returns the list of Sumo Logic metrics handlers.

example url http://hostname:8080/api/enterprise/pipeline/v1/name
spaces/default/sumo-logic-metrics-handlers

pagination This endpoint supports pagination using the limit
and continue query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name":

"sumologic_http_log_metrics_us1",

 "namespace": "default"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us1"

 }

],

 "max_connections": 10,

Create a new Sumo Logic metrics handler

The /sumo-logic-metrics-handlers API endpoint provides HTTP POST access to create a Sumo
Logic metrics handler.

Example

In the following example, an HTTP POST request is submitted to the /sumo-logic-metrics-

handlers API endpoint to create the Sumo Logic metrics handler
sumologic_http_log_metrics_us1 :

 "timeout": "30s"

 }

 },

 {

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name":

"sumologic_http_log_metrics_us2",

 "namespace": "default"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us2"

 }

],

 "max_connections": 10,

 "timeout": "30s"

 }

 }

]

curl -X POST \

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/sumo-logic-metrics-handlers (POST)

description Creates a Sensu Sumo Logic metrics handler.

example URL http://hostname:8080/api/enterprise/pipeline/v1/nam
espaces/default/sumo-logic-metrics-handlers

payload

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "sumologic_http_log_metrics_us1"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us1"

 }

],

 "max_connections": 10,

 "timeout": "30s"

 }

}' \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/sumo-logic-

metrics-handlers

{

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name":

response codes

Get a specifc Sumo Logic metrics handler

The /sumo-logic-metrics-handlers/:sumo-logic-metrics-handler API endpoint provides HTTP
GET access to Sumo Logic metrics handler data for specifc :sumo-logic-metrics-handler
defnitions, by handler name .

Example

The following example queries the /sumo-logic-metrics-handlers/:sumo-logic-metrics-
handler API endpoint for the :sumo-logic-metrics-handler named
sumologic_http_log_metrics_us1 :

"sumologic_http_log_metrics_us1"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us1"

 }

],

 "max_connections": 10,

 "timeout": "30s"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/sumo-logic-

metrics-handlers/sumologic_http_log_metrics_us1 \

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :sumo-logic-metrics-handler defnition (in this example,
sumologic_http_log_metrics_us1):

API Specifcation

/sumo-logic-metrics-handlers/:sumo-logic-metrics-handler (GET)

description Returns a Sumo
Logic metrics handler.

example url http://hostname:8080/
api/enterprise/pipeline
/v1/namespaces/defa
ult/sumo-logic-
metrics-

-H "Authorization: Key $SENSU_API_KEY"

{

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "sumologic_http_log_metrics_us1",

 "namespace": "default"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

 "secret": "sumologic_metrics_us1"

 }

],

 "max_connections": 10,

 "timeout": "30s"

 }

}

handlers/sumologic_h
ttp_log_metrics_us1

response type Map

response codes

output

Success: 200
(OK)

Missing: 404
(Not Found)

Error: 500
(Internal
Server Error)

{

 "type":

"SumoLogicMetric

sHandler",

 "api_version":

"pipeline/v1",

 "metadata": {

 "name":

"sumologic_http_

log_metrics_us1"

,

 "namespace":

"default"

 },

 "spec": {

 "url":

"$SUMO_LOGIC_SOU

RCE_URL",

 "secrets": [

 {

 "name":

"SUMO_LOGIC_SOUR

CE_URL",

"secret":

"sumologic_metri

Create or update a Sumo Logic metrics handler

The /sumo-logic-metrics-handlers/:sumo-logic-metrics-handler API endpoint provides HTTP
PUT access to create or update a specifc :sumo-logic-metrics-handler defnition, by handler
name.

Example

In the following example, an HTTP PUT request is submitted to the /sumo-logic-metrics-

handlers/:sumo-logic-metrics-handler API endpoint to create
sumologic_http_log_metrics_us2 :

cs_us1"

 }

],

"max_connections

": 10,

 "timeout":

"30s"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "SumoLogicMetricsHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "sumologic_http_log_metrics_us2"

 },

 "spec": {

 "url": "$SUMO_LOGIC_SOURCE_URL",

 "secrets": [

 {

 "name": "SUMO_LOGIC_SOURCE_URL",

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/sumo-logic-metrics-handlers/:sumo-logic-metrics-handler (PUT)

description Creates or updates
the specifed Sensu
Sumo Logic metrics
handler.

example URL http://hostname:8080/
api/enterprise/pipeline
/v1/namespaces/defa
ult/sumo-logic-
metrics-
handlers/sumologic_h
ttp_log_metrics_us2

payload

 "secret": "sumologic_metrics_us2"

 }

],

 "max_connections": 10,

 "timeout": "30s"

 }

}' \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/sumo-logic-

metrics-handlers/sumologic_http_log_metrics_us2

{

 "type":

"SumoLogicMetric

sHandler",

 "api_version":

"pipeline/v1",

 "metadata": {

 "name":

"sumologic_http_

log_metrics_us2"

response codes

Delete a Sumo Logic metrics handler

The /sumo-logic-metrics-handlers/:sumo-logic-metrics-handler API endpoint provides HTTP

 },

 "spec": {

 "url":

"$SUMO_LOGIC_SOU

RCE_URL",

 "secrets": [

 {

 "name":

"SUMO_LOGIC_SOUR

CE_URL",

"secret":

"sumologic_metri

cs_us2"

 }

],

"max_connections

": 10,

 "timeout":

"30s"

 }

}

Success: 201
(Created)

Malformed:
400 (Bad
Request)

Error: 500
(Internal
Server Error)

DELETE access to delete a Sumo Logic metrics handler from Sensu (specifed by the handler name).

Example

The following example shows a request to the /sumo-logic-metrics-handlers/:sumo-logic-
metrics-handler API endpoint to delete the Sumo Logic metrics handler
sumologic_http_log_metrics_us2 , resulting in a successful HTTP/1.1 204 No Content

response.

API Specifcation

/sumo-logic-metrics-handlers/:sumo-logic-metrics-handler (DELETE)

description Removes the
specifed Sumo
Logic metrics
handler from
Sensu.

example url http://hostname:8
080/api/enterpris
e/pipeline/v1/na
mespaces/defaul
t/sumo-logic-
metrics-
handlers/sumolo
gic_http_log_met
rics_us2

response codes

curl -X DELETE \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/sumo-logic-

metrics-handlers/sumologic_http_log_metrics_us2 \

-H "Authorization: Key $SENSU_API_KEY"

Success:
204 (No
Content)

Get all TCP stream handler resources

The /tcp-stream-handlers API endpoint provides HTTP GET access to TCP stream handler data.

Example

The following example demonstrates a GET request to the /tcp-stream-handlers API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
TCP stream handler defnitions in the default namespace:

Missing:
404 (Not
Found)

Error:
500
(Internal
Server
Error)

curl -X GET \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/tcp-stream-

handlers \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "TCPStreamHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "incident_log",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

API Specifcation

/tcp-stream-handlers (GET)

description Returns the list of TCP stream handlers.

example url http://hostname:8080/api/enterprise/pipeline/v1/namespaces/de
fault/tcp-stream-handlers

pagination This endpoint supports pagination using the limit and
continue query parameters.

 "address": "127.0.0.1:4242",

 "max_connections": 10,

 "max_reconnect_delay": "10s",

 "min_reconnect_delay": "10ms",

 "tls_ca_cert_fle": "",

 "tls_cert_fle": "",

 "tls_key_fle": ""

 }

 },

 {

 "type": "TCPStreamHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "logstash",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "max_connections": 10,

 "max_reconnect_delay": "10s",

 "min_reconnect_delay": "10ms",

 "tls_ca_cert_fle": "/path/to/tls/ca.pem",

 "tls_cert_fle": "/path/to/tls/cert.pem",

 "tls_key_fle": "/path/to/tls/key.pem"

 }

 }

]

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "TCPStreamHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "incident_log",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "max_connections": 10,

 "max_reconnect_delay": "10s",

 "min_reconnect_delay": "10ms",

 "tls_ca_cert_fle": "",

 "tls_cert_fle": "",

 "tls_key_fle": ""

 }

 },

 {

 "type": "TCPStreamHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "logstash",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "max_connections": 10,

 "max_reconnect_delay": "10s",

 "min_reconnect_delay": "10ms",

Create a new TCP stream handler

The /tcp-stream-handlers API endpoint provides HTTP POST access to create a TCP stream
handler.

Example

In the following example, an HTTP POST request is submitted to the /tcp-stream-handlers API
endpoint to create the TCP stream handler logstash :

 "tls_ca_cert_fle": "/path/to/tls/ca.pem",

 "tls_cert_fle": "/path/to/tls/cert.pem",

 "tls_key_fle": "/path/to/tls/key.pem"

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "api_version": "pipeline/v1",

 "type": "TCPStreamHandler",

 "metadata": {

 "name": "logstash"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "tls_ca_cert_fle": "/path/to/tls/ca.pem",

 "tls_cert_fle": "/path/to/tls/cert.pem",

 "tls_key_fle": "/path/to/tls/key.pem",

 "max_connections": 10,

 "min_reconnect_delay": "10ms",

 "max_reconnect_delay": "10s"

 }

}' \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/tcp-stream-

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/tcp-stream-handlers (POST)

description Creates a Sensu TCP stream handler.

example URL http://hostname:8080/api/enterprise/pipeline/v1/namespaces/
default/tcp-stream-handlers

payload

response codes

handlers

{

 "api_version": "pipeline/v1",

 "type": "TCPStreamHandler",

 "metadata": {

 "name": "logstash"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "tls_ca_cert_fle": "/path/to/tls/ca.pem",

 "tls_cert_fle": "/path/to/tls/cert.pem",

 "tls_key_fle": "/path/to/tls/key.pem",

 "max_connections": 10,

 "min_reconnect_delay": "10ms",

 "max_reconnect_delay": "10s"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Get a specifc TCP stream handler

The /tcp-stream-handlers/:tcp-stream-handler API endpoint provides HTTP GET access to
TCP stream handler data for specifc :tcp-stream-handler defnitions, by handler name .

Example

The following example queries the /tcp-stream-handlers/:tcp-stream-handler API endpoint for
the :tcp-stream-handler named logstash :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :tcp-stream-handler defnition (in this example, logstash):

curl -X GET \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/tcp-stream-

handlers/logstash \

-H "Authorization: Key $SENSU_API_KEY"

{

 "type": "TCPStreamHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "logstash",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "max_connections": 10,

 "max_reconnect_delay": "10s",

 "min_reconnect_delay": "10ms",

 "tls_ca_cert_fle": "/path/to/tls/ca.pem",

 "tls_cert_fle": "/path/to/tls/cert.pem",

 "tls_key_fle": "/path/to/tls/key.pem"

 }

}

API Specifcation

/tcp-stream-handlers/:tcp-stream-handler (GET)

description Returns a TCP stream handler.

example url http://hostname:8080/api/enterprise/pipel
ine/v1/namespaces/default/tcp-stream-
handlers/logstash

response type Map

response codes

output

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "TCPStreamHandler",

 "api_version": "pipeline/v1",

 "metadata": {

 "name": "logstash",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "max_connections": 10,

 "max_reconnect_delay":

"10s",

 "min_reconnect_delay":

"10ms",

 "tls_ca_cert_fle":

"/path/to/tls/ca.pem",

 "tls_cert_fle":

"/path/to/tls/cert.pem",

 "tls_key_fle":

"/path/to/tls/key.pem"

Create or update a TCP stream handler

The /tcp-stream-handlers/:tcp-stream-handler API endpoint provides HTTP PUT access to
create or update a specifc :tcp-stream-handler defnition, by handler name.

Example

In the following example, an HTTP PUT request is submitted to the /tcp-stream-handlers/:tcp-

stream-handler API endpoint to create the handler incident_log :

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "api_version": "pipeline/v1",

 "type": "TCPStreamHandler",

 "metadata": {

 "name": "incident_log"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "max_connections": 10,

 "min_reconnect_delay": "10ms",

 "max_reconnect_delay": "10s"

 }

}' \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/tcp-stream-

handlers/incident_log

/tcp-stream-handlers/:tcp-stream-handler (PUT)

description Creates or updates the specifed Sensu
TCP stream handler.

example URL http://hostname:8080/api/enterprise/pipel
ine/v1/namespaces/default/tcp-stream-
handlers/incident_log

payload

response codes

Delete a TCP stream handler

The /tcp-stream-handlers/:tcp-stream-handler API endpoint provides HTTP DELETE access to
delete a TCP stream handler from Sensu (specifed by the handler name).

{

 "api_version": "pipeline/v1",

 "type": "TCPStreamHandler",

 "metadata": {

 "name": "incident_log"

 },

 "spec": {

 "address": "127.0.0.1:4242",

 "max_connections": 10,

 "min_reconnect_delay":

"10ms",

 "max_reconnect_delay": "10s"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Example

The following example shows a request to the /tcp-stream-handlers/:tcp-stream-handler API
endpoint to delete the TCP stream handler incident_log , resulting in a successful HTTP/1.1 204
No Content response:

API Specifcation

/tcp-stream-handlers/:tcp-stream-handler (DELETE)

description Removes the specifed TCP stream
handler from Sensu.

example url http://hostname:8080/api/enterprise/
pipeline/v1/namespaces/default/tcp-
stream-handlers/incident_log

response codes

curl -X DELETE \

http://127.0.0.1:8080/api/enterprise/pipeline/v1/namespaces/default/tcp-stream-

handlers/incident_log \

-H "Authorization: Key $SENSU_API_KEY"

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server
Error)

enterprise/prune/v1alpha

Create a new pruning command

The /prune/v1alpha API endpoint provides HTTP POST access to create a pruning command to
delete resources that are not specifed in the request body.

Example

In the following example, an HTTP POST request is submitted to the /prune/v1alpha API endpoint
to create a pruning command for the checks specifed in the request body in the dev namespace
created by any user:

COMMERCIAL FEATURE : Access pruning via enterprise/prune/v1alpha API endpoints in
the packaged Sensu Go distribution.
For more information, read Get started with commercial
features.

NOTE: The enterprise/prune/v1alpha API endpoints are an alpha feature and may include
breaking changes.

The pruning operation follows the role-based access control (RBAC) permissions of the current
user.
For example, to prune resources in the dev namespace, the current user who sends the
prune command must have delete access to the dev namespace.

Requests to enterprise/prune/v1alpha API endpoints require you to authenticate with a
Sensu API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X POST \

http://127.0.0.1:8080/api/enterprise/prune/v1alpha\?types\=core/v2.CheckConfg\&allUs

ers\=true\&namespaces\=dev \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

The request returns a successful HTTP/1.1 201 Created response and a list of the resources that
were pruned:

API Specifcation

/prune/v1alpha (POST)

description Creates a pruning command to delete the specifed resources.

example URL http://hostname:8080/api/enterprise/prune/v1alpha?
types=core/v2.CheckConfg&allUsers=true&namespaces=dev?
types=core/v2.CheckConfg&allUsers=true&namespaces=dev

-d '{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "name": "check-echo",

 "namespace": "dev",

 "labels": {

 "region": "us-west-2",

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

}'

[

 {

 "type": "CheckConfg",

 "api_version": "core/v2",

 "name": "check-echo",

 "namespace": "dev",

 "labels": {

 "region": "us-west-2",

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 }

]

example payload

query parameters

To use multiple values for the parameters that allow them, you must
specify the parameter multiple times (for example, ?
users=admin&users=dev) rather than using a comma-separated

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "name": "check-echo",

 "namespace": "dev",

 "labels": {

 "region": "us-west-2",

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

}

type : The fully-qualifed name of the resource you want to
prune. Example: ?type=core/v2.CheckConfg .

allUsers : Prune resources created by all users. Mutually
exclusive with the users parameter. Defaults to false.
Example: ?allUsers=true .

clusterWide : Prune any cluster-wide (non-namespaced)
resources that are not defned in the confguration. Defaults
to false. Example: ?clusterWide=true .

dryRun : Print the resources that will be pruned but does
not actually delete them. Defaults to false. Example: ?
dryRun=true .

labelSelector : Prune only resources that match the
specifed labels (accepts multiple values). Labels are a
commercial feature. Example: ?labelSelector=[...] .

namespaces : The namespace where you want to apply
pruning. Example: ?namespaces=dev .

users : Prune only resources that were created by the
specifed users (accepts multiple values). Defaults to the
currently confgured sensuctl user. Example: ?

users=admin .

list.

output

response codes

[

 {

 "type": "CheckConfg",

 "api_version": "core/v2",

 "name": "check-echo",

 "namespace": "dev",

 "labels": {

 "region": "us-west-2",

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 }

]

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

enterprise/searches/v1

Get all searches

The /searches API endpoint provides HTTP GET access to the list of saved searches.

Example

The following example demonstrates a GET request to the /search API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
search defnitions in the default namespace:

COMMERCIAL FEATURE : Access saved searches in the packaged Sensu Go distribution.
For
more information, read Get started with commercial features.

NOTE: Requests to enterprise/searches/v1 API endpoints require you to authenticate with a
Sensu API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/searches/v1/namespaces/default/searches \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "incidents-us-west",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "labelSelector:region == \"us-west-1\"",

 "status:incident"

],

 "resource": "core.v2/Event"

 }

 },

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

 },

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "web-agent",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "class:agent",

 "subscription:web"

],

 "resource": "core.v2/Entity"

 }

 }

]

API Specifcation

/searches (GET)

description Returns the list of saved searches.

example url http://hostname:8080/api/enterprise/searches/v1/namespaces/default/se
arches

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "incidents-us-west",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "labelSelector:region == \"us-west-1\"",

 "status:incident"

],

 "resource": "core.v2/Event"

 }

 },

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

Get a specifc search

The /searches/:search API endpoint provides HTTP GET access to a specifc :search defnition,
by the saved search name .

Example

The following example queries the /searches/:search API endpoint for the :search named
silenced-events :

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

 },

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "web-agent",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "class:agent",

 "subscription:web"

],

 "resource": "core.v2/Entity"

 }

 }

]

curl -X GET \

http://127.0.0.1:8080/api/enterprise/searches/v1/namespaces/default/searches/silence

d-events \

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :search defnition (in this example, silenced-events):

API Specifcation

/searches/:search (GET)

description Returns the specifed search.

example url http://hostname:8080/api/enterprise/searches/v1/namespaces/defa
ult/searches/silenced-events

response type Map

response codes

output

-H "Authorization: Key $SENSU_API_KEY"

{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Create or update a search

The /searches/:search API endpoint provides HTTP PUT access to create or update a saved
search by the saved search name .

Example

In the following example, an HTTP PUT request is submitted to the /searches/:search API
endpoint to create or update a saved search for events that are silenced.
The request includes the
saved search defnition in the request body.

{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/searches/:search (PUT)

description Creates or updates the specifed saved search.

example URL http://hostname:8080/api/enterprise/searches/v1/namespaces/defa
ult/searches/silenced-events

payload

response codes

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

}' \

http://127.0.0.1:8080/api/enterprise/searches/v1/namespaces/default/searches/silence

d-events

{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

}

Success: 201 (Created)

Delete a search

The /searches/:search API endpoint provides HTTP DELETE access to delete a saved search
from Sensu (specifed by the saved search name).

Example

The following example shows a request to the /searches/:search API endpoint to delete the saved
search silenced-events , resulting in a successful HTTP/1.1 204 No Content response.

API Specifcation

/searches/:search (DELETE)

description Removes a saved search from Sensu (specifed by the search
name).

example url http://hostname:8080/api/enterprise/searches/v1/namespaces
/default/searches/silenced-events

response codes

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/searches/v1/namespaces/default/searches/silence

d-events

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

enterprise/secrets/v1

Get all secrets providers

The /providers API endpoint provides HTTP GET access to a list of secrets providers.

Example

The following example demonstrates a GET request to the /providers API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
secrets provider defnitions:

COMMERCIAL FEATURE : Access secrets management in the packaged Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: Requests to enterprise/secrets/v1 API endpoints require you to authenticate with a
Sensu API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

API Specifcation

/providers (GET)

description Returns the list of secrets providers.

example url http://hostname:8080/api/enterprise/secrets/v1/providers

query parameters types : Defnes which type of secrets provider to retrieve. Join with &
to retrieve multiple types: ?types=Env&types=VaultProvider .

response fltering This endpoint supports API response fltering.

response type Array

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

 }

]

NOTE: In addition to the VaultProvider type, enterprise/secrets/v1 API also includes the Env

secrets provider type that can retrieve backend environment variables as secrets.
Learn more in the
secrets providers reference.

response codes

output

Get a specifc secrets provider

The /providers/:provider API endpoint provides HTTP GET access to data for a specifc secrets
:provider , by provider name.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

 }

]

Example

The following example queries the /providers/:provider API endpoint for the requested
:provider , my_vault :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :provider defnition (in this example, my_vault):

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers/my_vault \

-H "Authorization: Key $SENSU_API_KEY"

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

}

API Specifcation

/providers/:provider (GET)

description Returns the specifed secrets provider.

example url http://hostname:8080/api/enterprise/secrets/v1/providers/my_vau
lt

response type Map

response codes

output

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address":

"https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert":

"/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

Create or update a secrets provider

The /providers/:provider API endpoint provides HTTP PUT access to create or update a specifc
:provider , by provider name.

Example

The following example demonstrates a request to the /providers/:provider API endpoint to
update the provider my_vault :

 }

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

The request will return a successful HTTP/1.1 201 Created response and the complete defnition for
the provider you created or updated.

API Specifcation

/providers/:provider (PUT)

description Creates or updates the specifed secrets provider. The provider
resource and API version cannot be altered.

example URL http://hostname:8080/api/enterprise/secrets/v1/providers/my_vau
lt

payload

 }

 }

}' \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers/my_vault

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault"

 },

 "spec": {

 "client": {

 "address":

"https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert":

"/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

response codes

Delete a secrets provider

The /providers/:provider API endpoint provides HTTP DELETE access to delete the specifed
provider from Sensu.

Example

The following example shows a request to the /providers/:provider API endpoint to delete the
provider my_vault , resulting in a successful HTTP/1.1 204 No Content response:

API Specifcation

/providers/:provider (DELETE)

description Deletes the specifed provider from Sensu.

example url http://hostname:8080/api/enterprise/secrets/v1/providers/my
_vault

 }

 }

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers/my_vault

response codes

Get a subset of secrets providers with response fltering

The /providers API endpoint supports response fltering for a subset of secrets providers data
based on labels and the provider.name feld.

Example

The following example demonstrates a request to the /providers API endpoint with response
fltering for only secrets provider defnitions whose name includes vault :

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only provider defnitions whose names include vault :

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers -G \

--data-urlencode 'feldSelector=provider.name matches vault'

[

 {

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "vault_dev",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address": "http://localhost:8200",

 "agent_address": "",

 "max retries": 2,

 "rate_limiter": {

 "burst": 100,

 "limit": 10

 },

 "timeout": "20s",

 "tls": null,

 "token": "\\u003croot_token\\u003e",

 "version": "v2"

 }

 }

 },

 {

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

API Specifcation

/providers (GET) with response flters

description Returns the list of secrets providers that match the
response flters applied in the API request.

example url http://hostname:8080/api/enterprise/secrets/v1/provi
ders

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "vault_dev",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address":

"http://localhost:8200",

 "agent_address": "",

 "max_retries": 2,

 "rate_limiter": {

 "burst": 100,

 "limit": 10

 },

 "timeout": "20s",

 "tls": null,

 "token":

"\\u003croot_token\\u003e",

 "version": "v2"

Get all secrets

The /secrets API endpoint provides HTTP GET access to a list of secrets.

Example

The following example demonstrates a GET request to the /secrets API endpoint:

 }

 }

 },

 {

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address":

"https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert":

"/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

 }

]

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
secret defnitions in the default namespace:

API Specifcation

/secrets (GET)

description Returns the list of secrets for the specifed namespace.

example url http://hostname:8080/api/enterprise/secrets/v1/namespaces/default/secr
ets

response fltering This endpoint supports API response fltering.

response type Array

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/namespaces/default/secrets \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

 }

]

response codes

output

Get a specifc secret

The /secrets/:secret API endpoint provides HTTP GET access to data for a specifc secret , by
secret name.

Example

The following example queries the /secrets/:secret API endpoint for the requested :secret :

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

 }

]

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/namespaces/default/secrets/sensu-

ansible-token \

-H "Authorization: Key $SENSU_API_KEY"

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :secret defnition (in this example, sensu-ansible-token):

API Specifcation

/secrets/:secret (GET)

description Returns the specifed secret.

example url http://hostname:8080/api/enterprise/secrets/v1/namespaces/default/s
ecrets/sensu-ansible-token

response type Map

response codes

output

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

Create or update a secret

The /secrets/:secret API endpoint provides HTTP PUT access to create or update a specifc
secret , by secret name.

Example

The following example demonstrates a request to the /secrets/:secret API endpoint to update the
secret sensu-ansible-token .

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

}' \

http://127.0.0.1:8080/api/enterprise/secrets/v1/namespaces/default/secrets/sensu-

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/secrets/:secret (PUT)

description Creates or updates the specifed secret.

example URL http://hostname:8080/api/enterprise/secrets/v1/namespaces/default/s
ecrets/sensu-ansible-token

payload

response codes

Delete a secret

The /secrets/:secret API endpoint provides HTTP DELETE access to delete the specifed secret

ansible-token

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

from Sensu.

Example

The following example shows a request to the /secrets/:secret API endpoint to delete the secret
sensu-ansible-token , resulting in a successful HTTP/1.1 204 No Content response:

API Specifcation

/secrets/:secret (DELETE)

description Deletes the specifed secret from Sensu.

example url http://hostname:8080/api/enterprise/secrets/v1/namespaces/defa
ult/secrets/sensu-ansible-token

response codes

Get a subset of secrets with response fltering

The /secrets API endpoint supports response fltering for a subset of secrets data based on labels
and the following felds:

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/secrets/v1/namespaces/default/secrets/sensu-

ansible-token

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

secret.name

secret.namespace

Example

The following example demonstrates a request to the /secrets API endpoint with response fltering,
resulting in a JSON array that contains only secrets defnitions for the vault provider.

The example request will result in a successful HTTP/1.1 200 OK response and a JSON array that
contains only secret defnitions for the vault provider:

secret.provider

secret.id

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/enterprise/secrets/v1/secrets -G \

--data-urlencode 'feldSelector=secret.provider == vault'

[

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "pagerduty_key",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/pagerduty#key",

 "provider": "vault"

 }

 },

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

API Specifcation

/secrets (GET) with response flters

description Returns the list of secrets that match the response
flters applied in the API request.

example url http://hostname:8080/api/enterprise/secrets/v1/secrets

response type Array

response codes

output

 "id": "secret/database#password",

 "provider": "vault"

 }

 },

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sumologic_url",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/sumologic#key",

 "provider": "vault"

 }

 }

]

NOTE: Read API response fltering for more flter statement examples that demonstrate how to
flter responses using different operators with label and feld selectors.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "pagerduty_key",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/pagerduty#key",

 "provider": "vault"

 }

 },

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/database#password",

 "provider": "vault"

 }

 },

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sumologic_url",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/sumologic#key",

 "provider": "vault"

 }

 }

]

enterprise/store/v1

Get all datastore providers

The /provider API endpoint provides HTTP GET access to Sensu datastore data.

Example

The following example demonstrates a GET request to the /provider API endpoint, resulting in a
JSON map that contains a list of Sensu datastore providers.

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
datastore provider defnitions:

COMMERCIAL FEATURE : Access the datastore feature in the packaged Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: Requests to enterprise/store/v1 API endpoints require you to authenticate with a
Sensu API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/store/v1/provider

-H "Authorization: Key $SENSU_API_KEY" \

[

 {

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-other-postgres",

API Specifcation

/provider (GET)

description Returns the list of datastore providers.

example url http://hostname:8080/api/enterprise/store/v1/provider

 "created_by": "admin"

 },

 "spec": {

 "batch_buffer": 0,

 "batch_size": 1,

 "batch_workers": 0,

 "dsn": "postgresql://user:secret@host:port/otherdbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20,

 "strict": true,

 "enable_round_robin": true

 }

 },

 {

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 },

 "spec": {

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20,

 "strict": true,

 "enable_round_robin": true

 }

 }

]

response type Map

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 },

 "spec": {

 "batch_buffer": 0,

 "batch_size": 1,

 "batch_workers": 0,

 "dsn":

"postgresql://user:secret@host:port/otherdbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20,

 "strict": true,

 "enable_round_robin": true

 }

 },

 {

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 },

 "spec": {

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20,

 "strict": true,

Get a specifc datastore provider

The /provider/:provider API endpoint provides HTTP GET access to retrieve a Sensu datastore
provider.

Example

The following example queries the /provider/:provider API endpoint for a specifc :provider :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :provider defnition (in this example, my-postgres):

 "enable_round_robin": true

 }

 }

]

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/store/v1/provider/my-postgres

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 },

 "spec": {

 "batch_buffer": 0,

 "batch_size": 1,

 "batch_workers": 0,

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

API Specifcation

/provider/:provider (GET)

description Returns the specifed datastore provider.

example url http://hostname:8080/api/enterprise/store/v1/provider/my-postgres

url parameters Required: my-postgres (name of provider to retrieve).

response codes

output

 "pool_size": 20,

 "strict": true,

 "enable_round_robin": true

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 },

 "spec": {

 "batch_buffer": 0,

 "batch_size": 1,

 "batch_workers": 0,

 "dsn":

"postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20,

 "strict": true,

Create or update a datastore provider

The /provider/:provider API endpoint provides HTTP PUT access to create or update a Sensu
datastore provider.

Example

The request will return a successful HTTP/1.1 201 Created response.

 "enable_round_robin": true

 }

}

curl -X PUT \

http://127.0.0.1:8080/api/enterprise/store/v1/provider/my-postgres \

-H "Authorization: Key $SENSU_API_KEY" \

-d '{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres"

 },

 "spec": {

 "batch_buffer": 0,

 "batch_size": 1,

 "batch_workers": 0,

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20,

 "strict": true,

 "enable_round_robin": true

 }

}'

API Specifcation

/provider/:provider (PUT)

description Creates a datastore provider.

example url http://hostname:8080/api/enterprise/store/v1/provider/my-postgres

url parameters Required: my-postgres (name to use for provider).

payload

response codes

Delete a datastore provider

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres"

 },

 "spec": {

 "batch_buffer": 0,

 "batch_size": 1,

 "batch_workers": 0,

 "dsn":

"postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20,

 "strict": true,

 "enable_round_robin": true

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

The /provider/:provider API endpoint provides HTTP DELETE access to remove a Sensu
datastore provider.

Example

The following example shows a request to the /provider/:provider API endpoint to remove the
Sensu datastore provider with the ID my-postgres , resulting in a successful HTTP/1.1 204 No
Content response.

API Specifcation

/provider/:provider (DELETE)

description Removes the specifed datastore provider.

example url http://hostname:8080/api/enterprise/store/v1/provider/my-
postgres

url parameters Required: my-postgres (name of provider to delete).

response codes

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/store/v1/provider/my-postgres

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

enterprise/web/v1

Get the web UI confguration

The /confg API endpoint provides HTTP GET access to the global web UI confguration.

Example

The following example demonstrates a GET request to the /confg API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON array that contains the
web UI confguration defnitions:

COMMERCIAL FEATURE : Access web UI confguration in the packaged Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: Requests to enterprise/web/v1 API endpoints require you to authenticate with a Sensu
API key or access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/web/v1/confg \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json'

[

 {

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "catalog": {

 "disabled": false,

 "release_version": "version",

 "url": "https://catalog.sensu.io"

 },

 "default_preferences": {

 "poll_interval": 120000,

 "page_size": 500,

 "serialization_format": "YAML",

 "theme": "sensu"

 },

 "license_expiry_reminder": "1080h0m0s",

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic"

]

 },

 "page_preferences": [

 {

 "order": "LASTSEEN",

 "page": "entities",

 "page_size": 50,

 "selector": "proxy in entity.subscriptions"

 },

 {

 "order": "NAME",

 "page": "checks",

 "page_size": 100

 }

],

 "signin_message": "with your **LDAP or system credentials**"

API Specifcation

/web (GET)

description Returns the list of global web UI confgurations.

example url http://hostname:8080/api/enterprise/web/v1/confg

response type Map

response codes

output

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "catalog": {

 "disabled": false,

 "release_version": "version",

 "url": "https://catalog.sensu.io"

 },

 "default_preferences": {

 "poll_interval": 120000,

 "page_size": 500,

 "serialization_format": "YAML",

 "theme": "sensu"

Get a specifc web UI confguration

The /confg/:globalconfg API endpoint provides HTTP GET access to global web UI confguration
data, specifed by confguration name.

 },

 "license_expiry_reminder": "1080h0m0s",

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic"

]

 },

 "page_preferences": [

 {

 "order": "LASTSEEN",

 "page": "entities",

 "page_size": 50,

 "selector": "proxy in entity.subscriptions"

 },

 {

 "order": "NAME",

 "page": "checks",

 "page_size": 100

 }

],

 "signin_message": "with your **LDAP or system

credentials**"

 }

 }

]

Example

The following example queries the /confg/:globalconfg API endpoint for the :globalconfg

named custom-web-ui :

The request will return a successful HTTP/1.1 200 OK response and a JSON map that contains the
requested :globalconfg defnition (in this example, custom-web-ui):

curl -X GET \

http://127.0.0.1:8080/api/enterprise/web/v1/confg/custom-web-ui \

-H "Authorization: Key $SENSU_API_KEY"

{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "catalog": {

 "disabled": false,

 "release_version": "version",

 "url": "https://catalog.sensu.io"

 },

 "default_preferences": {

 "poll_interval": 120000,

 "page_size": 500,

 "serialization_format": "YAML",

 "theme": "sensu"

 },

 "license_expiry_reminder": "1080h0m0s",

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

API Specifcation

/confg/:globalconfg (GET)

description Returns the specifed global web UI confguration.

example url http://hostname:8080/api/enterprise/web/v1/confg/custom-web-
ui

response type Map

response codes

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?width=500&height=250#sensu.io.graphic"

]

 },

 "page_preferences": [

 {

 "order": "LASTSEEN",

 "page": "entities",

 "page_size": 50,

 "selector": "proxy in entity.subscriptions"

 },

 {

 "order": "NAME",

 "page": "checks",

 "page_size": 100

 }

],

 "signin_message": "with your **LDAP or system credentials**"

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

output
{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "catalog": {

 "disabled": false,

 "release_version": "version",

 "url": "https://catalog.sensu.io"

 },

 "default_preferences": {

 "poll_interval": 120000,

 "page_size": 500,

 "serialization_format": "YAML",

 "theme": "sensu"

 },

 "license_expiry_reminder": "1080h0m0s",

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic"

]

 },

 "page_preferences": [

 {

 "order": "LASTSEEN",

 "page": "entities",

 "page_size": 50,

 "selector": "proxy in entity.subscriptions"

 },

 {

Create and update a web UI confguration

The /confg/:globalconfg API endpoint provides HTTP PUT access to create and update global
web UI confgurations, specifed by confguration name.

Example

In the following example, an HTTP PUT request is submitted to the /confg/:globalconfg API
endpoint to update the custom-web-ui confguration:

 "order": "NAME",

 "page": "checks",

 "page_size": 100

 }

],

 "signin_message": "with your **LDAP or system

credentials**"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui"

 },

 "spec": {

 "always_show_local_cluster": false,

 "catalog": {

 "disabled": false,

 "release_version": "version",

 "url": "https://catalog.sensu.io"

 },

 "default_preferences": {

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

 "poll_interval": 120000,

 "page_size": 500,

 "serialization_format": "YAML",

 "theme": "sensu"

 },

 "license_expiry_reminder": "1080h0m0s",

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?width=500&height=250#sensu.io.graphic"

]

 },

 "page_preferences": [

 {

 "order": "LASTSEEN",

 "page": "entities",

 "page_size": 50,

 "selector": "proxy in entity.subscriptions"

 },

 {

 "order": "NAME",

 "page": "checks",

 "page_size": 100

 }

],

 "signin_message": "with your **LDAP or system credentials**"

 }

}' \

http://127.0.0.1:8080/api/enterprise/web/v1/confg/custom-web-ui

/confg/:globalconfg (PUT)

description Creates or updates the specifed global web UI confguration.

example URL http://hostname:8080/api/enterprise/web/v1/confg/custom-web-
ui

payload
{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui"

 },

 "spec": {

 "always_show_local_cluster": false,

 "catalog": {

 "disabled": false,

 "release_version": "version",

 "url": "https://catalog.sensu.io"

 },

 "default_preferences": {

 "poll_interval": 120000,

 "page_size": 500,

 "serialization_format": "YAML",

 "theme": "sensu"

 },

 "license_expiry_reminder": "1080h0m0s",

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local",

 "https://grafana-host/render/metrics?

width=500&height=250#sensu.io.graphic"

]

 },

 "page_preferences": [

 {

response codes

Delete a web UI confguration

The /confg/:globalconfg API endpoint provides HTTP DELETE access to delete a global web UI
confguration from Sensu, specifed by the confguration name.

Example

The following example shows a request to the /confg/:globalconfg API endpoint to delete the
global web UI confguration named custom-web-ui , resulting in a successful HTTP/1.1 204 No
Content response:

 "order": "LASTSEEN",

 "page": "entities",

 "page_size": 50,

 "selector": "proxy in entity.subscriptions"

 },

 {

 "order": "NAME",

 "page": "checks",

 "page_size": 100

 }

],

 "signin_message": "with your **LDAP or system

credentials**"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/web/v1/confg/custom-web-ui

API Specifcation

/confg/:globalconfg (DELETE)

description Removes the specifed global web UI confguration from
Sensu.

example url http://hostname:8080/api/enterprise/web/v1/confg/custom-
web-ui

response codes
Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Other APIs

In addition to the core/v2 API and enterprise APIs, Sensu offers endpoints for basic authentication,
health, license, metrics, and version:

/auth

/health

/license

/metrics

/ready

/version

/auth

Generate an access token and a refresh token

The /auth API endpoint provides HTTP GET access to generate an access token and a refresh
token using Sensu’s basic authentication.

The access and refresh tokens are JSON Web Tokens (JWTs) that Sensu issues to record the details
of users’ authenticated Sensu sessions.
The backend digitally signs these tokens, and the tokens can’t
be changed without invalidating the signature.

Example

The following example queries the /auth API endpoint with a given username and password to
determine whether the credentials are valid and retrieve an access token and a refresh token:

The request results in a successful HTTP/1.1 200 OK response to indicate that the credentials are
valid, along with an access token and a refresh token:

API Specifcation

curl -X GET \

http://127.0.0.1:8080/auth \

-u myusername:mypassword

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

https://tools.ietf.org/html/rfc7519

/auth (GET)

description Generates an access and a refresh token used for accessing the API
using Sensu’s basic authentication. Access tokens last for approximately
15 minutes. When your token expires, you should receive a 401
Unauthorized response from the API. To generate a new access token,
use the /auth/token API endpoint.

example url http://hostname:8080/auth

output

response codes

Test basic auth user credentials

The /auth/test API endpoint provides HTTP GET access to test basic authentication user
credentials that were created with Sensu’s built-in basic authentication.

Example

In the following example, querying the /auth/test API endpoint with a given username and

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

Valid credentials: 200 (OK)

Invalid credentials: 401 (Unauthorized)

Error: 500 (Internal Server Error)

NOTE: The /auth/test endpoint only tests user credentials created with Sensu’s built-in basic
authentication.
It does not test user credentials defned via an authentication provider like
Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or OpenID Connect 1.0
protocol (OIDC).

password should return an HTTP/1.1 200 OK response, indicating that the credentials are valid:

API Specifcation

/auth/test (GET)

description Tests basic authentication credentials (username and password) that
were created with Sensu’s core/v2/users API.

example url http://hostname:8080/auth/test

response codes

Renew an access token

The /auth/token API endpoint provides HTTP POST access to renew an access token.

Example

In the following example, an HTTP POST request is submitted to the /auth/token API endpoint to
generate a valid access token.
The request includes the refresh token in the request body.

curl -X GET \

http://127.0.0.1:8080/auth/test \

-u myusername:mypassword

Valid credentials: 200 (OK)

Invalid credentials: 401 (Unauthorized)

Error: 500 (Internal Server Error)

curl -X POST \

http://127.0.0.1:8080/auth/token \

-H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

-H 'Content-Type: application/json' \

The request results in a successful HTTP/1.1 200 OK response, along with the new access token:

The access and refresh tokens are JSON Web Tokens (JWTs) that Sensu issues to record the details
of users’ authenticated Sensu sessions.
The backend digitally signs these tokens, and the tokens can’t
be changed without invalidating the signature.

API Specifcation

/auth/token (POST)

description Generates a new access token using a refresh token and an expired
access token.

example url http://hostname:8080/auth/token

example payload

output

response codes

-d '{"refresh_token": "eyJhbGciOiJIUzI1NiIs..."}'

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

{

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

https://tools.ietf.org/html/rfc7519

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

/health

Get health data for your Sensu instance

The /health API endpoint provides HTTP GET access to health data for your Sensu instance.

Example

The following example demonstrates a GET request to the /health API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON map that contains
Sensu health data:

curl -X GET \

http://127.0.0.1:8080/health

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 2882886652148554927,

 "MemberIDHex": "8923110df66458af",

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 4255616344056076734,

 "member_id": 2882886652148554927,

 "raft_term": 26

 },

 "PostgresHealth": [

API Specifcation

/health (GET)

description Returns health information about the Sensu instance.

example url http://hostname:8080/health

query parameters timeout : Defnes the timeout when querying etcd. Default is 3 .

response type Map

response codes

output

 {

 "Name": "my-postgres",

 "Active": false,

 "Healthy": false

 }

]

}

NOTE: If your Sensu instance is not confgured to use a PostgreSQL datastore, the health payload
will not include PostgresHealth .

Success: 200 (OK)

Error: 400 (Bad Request)

NOTE: The HTTP response codes for the health endpoint indicate
whether your request reached Sensu rather than the health of your
Sensu instance.
To determine the health of your Sensu instance, you
must process the JSON response body for your request.
The health
specifcation describes each attribute in the response body.

{

 "Alarms": null,

 "ClusterHealth": [

Get health data for your agent transport

The /health API endpoint provides HTTP GET access to health data for your Sensu agent transport
via the backend WebSocket.
Sensu backend /health API information is duplicated by this agent
transport API endpoint as an affordance to satisfy the load balancing and security requirements of
some deployments.

Example

The following example demonstrates a GET request to the backend WebSocket /health API
endpoint using the default WebSocket port 8081:

 {

 "MemberID": 2882886652148554927,

 "MemberIDHex": "8923110df66458af",

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 4255616344056076734,

 "member_id": 2882886652148554927,

 "raft_term": 26

 },

 "PostgresHealth": [

 {

 "Name": "my-postgres",

 "Active": false,

 "Healthy": false

 }

]

}

curl -X GET \

http://127.0.0.1:8081/health

The request results in a successful HTTP/1.1 200 OK response and a JSON map that contains
Sensu agent transport status:

API Specifcation

/health (GET)

description Returns health information about the Sensu agent transport.

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 2882886652148554927,

 "MemberIDHex": "8923110df66458af",

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 4255616344056076734,

 "member_id": 2882886652148554927,

 "raft_term": 26

 },

 "PostgresHealth": [

 {

 "Name": "my-postgres",

 "Active": false,

 "Healthy": false

 }

]

}

NOTE: If your Sensu instance is not confgured to use a PostgreSQL datastore, the health payload
will not include PostgresHealth .

example url http://hostname:8081/health

query parameters timeout : Defnes the timeout when querying etcd. Default is 3 .

response type Map

response codes

output

Success: 200 (OK)

Error: 400 (Bad Request)

NOTE: The HTTP response codes for the health endpoint indicate
whether your request reached Sensu rather than the health of your
Sensu instance.
To determine the health of your Sensu instance, you
must process the JSON response body for your request.
The health
specifcation describes each attribute in the response body.

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 2882886652148554927,

 "MemberIDHex": "8923110df66458af",

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 4255616344056076734,

 "member_id": 2882886652148554927,

 "raft_term": 26

 },

 "PostgresHealth": [

 {

 "Name": "my-postgres",

 "Active": false,

 "Healthy": false

 }

]

}

/license

For more information about commercial features designed for enterprises, read Get started with
commercial features.

Get the active license confguration

The /license API endpoint provides HTTP GET access to the active license confguration.

Example

The following example demonstrates a GET request to the /license API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON map that contains the
license defnition:

NOTE: Requests to /license API endpoints require you to authenticate with a Sensu API key or
access token.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/licensing/v2/license \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json'

{

 "type": "LicenseFile",

 "api_version": "licensing/v2",

 "metadata": {

 "labels": {

 "sensu.io/entity-count": "10",

 "sensu.io/entity-limit": "100"

API Specifcation

/license (GET)

description Returns the active commercial license confguration. To download your
license, log in to your Sensu account or contact the Sensu sales team for
a free trial.

example url http://hostname:8080/api/enterprise/licensing/v2/license

response type Map

response codes

 }

 },

 "spec": {

 "license": {

 "version": 1,

 "issuer": "Sensu, Inc.",

 "accountName": "my_account",

 "accountID": 1234567,

 "issued": "2019-01-01T13:40:25-08:00",

 "validUntil": "2020-01-01T13:40:25-08:00",

 "plan": "managed",

 "features": [

 "all"

],

 "signature": {

 "algorithm": "PSS",

 "hashAlgorithm": "SHA256",

 "saltLength": 20

 }

 },

 "signature": "XXXXXXXXXX",

 "metadata": {}

 }

}

Success: 200 (OK)

Error: 500 (Internal Server Error)

https://account.sensu.io/
https://sensu.io/contact?subject=contact-sales
https://sensu.io/contact?subject=contact-sales

output

Activate a commercial license

The /license API endpoint provides HTTP PUT access to activate a commercial license.

{

 "type": "LicenseFile",

 "api_version": "licensing/v2",

 "metadata": {

 "labels": {

 "sensu.io/entity-count": "10",

 "sensu.io/entity-limit": "100"

 }

 },

 "spec": {

 "license": {

 "version": 1,

 "issuer": "Sensu, Inc.",

 "accountName": "my_account",

 "accountID": 1234567,

 "issued": "2019-01-01T13:40:25-08:00",

 "validUntil": "2020-01-01T13:40:25-08:00",

 "plan": "managed",

 "features": [

 "all"

],

 "signature": {

 "algorithm": "PSS",

 "hashAlgorithm": "SHA256",

 "saltLength": 20

 }

 },

 "signature": "XXXXXXXXXX",

 "metadata": {}

 }

}

Example

In the following example, an HTTP PUT request is submitted to the /license API endpoint to create
the license defnition:

NOTE: For clustered confgurations, you only need to activate your license for one of the backends
within the cluster.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "LicenseFile",

 "api_version": "licensing/v2",

 "metadata": {

 "labels": {

 "sensu.io/entity-count": "10",

 "sensu.io/entity-limit": "100"

 }

 },

 "spec": {

 "license": {

 "version": 1,

 "issuer": "Sensu, Inc.",

 "accountName": "my_account",

 "accountID": 1234567,

 "issued": "2019-01-01T13:40:25-08:00",

 "validUntil": "2020-01-01T13:40:25-08:00",

 "plan": "managed",

 "features": [

 "all"

],

 "signature": {

 "algorithm": "PSS",

 "hashAlgorithm": "SHA256",

 "saltLength": 20

 }

 },

 "signature": "XXXXXXXXXX",

The request will return a successful HTTP/1.1 201 Created response.

API Specifcation

/license (PUT)

description Activates a commercial license or updates an existing license
confguration. To download your license, log in to your Sensu account or
contact the Sensu sales team for a free trial.

example url http://hostname:8080/api/enterprise/licensing/v2/license

payload

 "metadata": {}

 }

}' \

http://127.0.0.1:8080/api/enterprise/licensing/v2/license

{

 "type": "LicenseFile",

 "api_version": "licensing/v2",

 "metadata": {

 "labels": {

 "sensu.io/entity-count": "10",

 "sensu.io/entity-limit": "100"

 }

 },

 "spec": {

 "license": {

 "version": 1,

 "issuer": "Sensu, Inc.",

 "accountName": "my_account",

 "accountID": 1234567,

 "issued": "2019-01-01T13:40:25-08:00",

 "validUntil": "2020-01-01T13:40:25-08:00",

 "plan": "managed",

 "features": [

 "all"

],

 "signature": {

https://account.sensu.io/
https://sensu.io/contact?subject=contact-sales

response codes

Delete a commercial license

The /license API endpoint provides HTTP DELETE access to remove a commercial license.

Example

The following example shows a request to the /license API endpoint to delete the commercial
license, resulting in a successful HTTP/1.1 204 No Content response.

API Specifcation

/license (DELETE)

description Removes the commercial license.

 "algorithm": "PSS",

 "hashAlgorithm": "SHA256",

 "saltLength": 20

 }

 },

 "signature": "XXXXXXXXXX",

 "metadata": {}

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/enterprise/licensing/v2/license \

-H "Authorization: Key $SENSU_API_KEY"

example url http://hostname:8080/api/enterprise/licensing/v2/license

response codes
Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

/metrics

Get Sensu metrics

The /metrics API endpoint provides HTTP GET access to internal Sensu metrics in Prometheus
format, including embedded etcd, memory usage, garbage collection, and gRPC metrics.

Example

The following example demonstrates a GET request to the /metrics API endpoint:

The request results in a successful HTTP/1.1 200 OK response and plaintext output that contains
internal Sensu metrics:

curl -X GET \

http://127.0.0.1:8080/metrics

HELP etcd_debugging_mvcc_compact_revision The revision of the last compaction in

store.

TYPE etcd_debugging_mvcc_compact_revision gauge

etcd_debugging_mvcc_compact_revision 300

HELP etcd_debugging_mvcc_current_revision The current revision of store.

TYPE etcd_debugging_mvcc_current_revision gauge

etcd_debugging_mvcc_current_revision 316

HELP etcd_debugging_mvcc_db_compaction_keys_total Total number of db keys

compacted.

TYPE etcd_debugging_mvcc_db_compaction_keys_total counter

etcd_debugging_mvcc_db_compaction_keys_total 274

HELP etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds Bucketed

histogram of db compaction pause duration.

TYPE etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds histogram

etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds_bucket{le="1"} 0

etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds_bucket{le="2"} 0

https://prometheus.io/docs/concepts/data_model/

API Specifcation

/metrics (GET)

description Returns internal Sensu metrics in Prometheus format, including
embedded etcd, memory usage, garbage collection, and gRPC metrics.

example url http://hostname:8080/metrics

response type Prometheus-formatted plaintext

response codes

output

...

Success: 200 (OK)

Error: 500 (Internal Server Error)

HELP etcd_debugging_mvcc_compact_revision The revision of

the last compaction in store.

TYPE etcd_debugging_mvcc_compact_revision gauge

etcd_debugging_mvcc_compact_revision 300

HELP etcd_debugging_mvcc_current_revision The current

revision of store.

TYPE etcd_debugging_mvcc_current_revision gauge

etcd_debugging_mvcc_current_revision 316

HELP etcd_debugging_mvcc_db_compaction_keys_total Total

number of db keys compacted.

TYPE etcd_debugging_mvcc_db_compaction_keys_total counter

etcd_debugging_mvcc_db_compaction_keys_total 274

HELP

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds Bucketed histogram of db compaction pause duration.

TYPE

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds histogram

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds_bucket{le="1"} 0

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

https://prometheus.io/docs/concepts/data_model/

ds_bucket{le="2"} 0

...

/ready

Get API readiness data for your Sensu instance

The /ready API endpoint provides HTTP GET access to information about whether your Sensu
instance is ready to serve API requests.

Example

The following example demonstrates a GET request to the /ready API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a text response body:

If the backend confguration includes an api-serve-wait-time duration, the request will result in an
HTTP/1.1 503 Service Unavailable response.
Until the api-serve-wait-time duration expires,

the text response body will state that the API is unavailable:

curl -X GET \

http://127.0.0.1:8080/ready

ready

API unavailable during startup.

See api-serve-wait-time settings.

NOTE: 503 Service Unavailable responses include a Retry-After header that lists the
specifed api-serve-wait-time duration.

API Specifcation

/ready (GET)

description Returns information about whether the Sensu instance is ready to serve
API requests.

example url http://hostname:8080/ready

response type text

response codes

output 200 (OK):

503 (Service Unavailable):

Get agent connection readiness data for your Sensu
instance

The /ready agent transport API endpoint provides HTTP GET access to information about whether
your Sensu agent transport is ready to accept agent WebSocket connections.

Example

The following example demonstrates a GET request to the backend agent transport /ready endpoint

Success: 200 (OK)

Error: 503 (Service Unavailable)

ready

API unavailable during startup.

See api-serve-wait-time settings.

using the default agent listener port 8081:

The request results in a successful HTTP/1.1 200 OK response and a text response body:

If the backend confguration includes an agent-serve-wait-time duration, the request will result in
an HTTP/1.1 503 Service Unavailable response.
Until the agent-serve-wait-time duration
expires, the text response body will state that agentd is unavailable:

API Specifcation

/ready (GET)

description Returns information about whether the Sensu instance is ready to accept
agent connections.

example url http://hostname:8081/ready

response type text

response codes

curl -X GET \

http://127.0.0.1:8081/ready

ready

agentd temporarily unavailable during startup

NOTE: 503 Service Unavailable responses include a Retry-After header that lists the
specifed agent-serve-wait-time duration.

Success: 200 (OK)

Error: 503 (Service Unavailable)

output 200 (OK):

503 (Service Unavailable):

ready

agentd temporarily unavailable during startup

/version

Get the Sensu backend and etcd versions

The /version API endpoint provides HTTP GET access to the Sensu backend and etcd versions for
the Sensu instance.

Example

The following example demonstrates a GET request to the /version API endpoint:

The request results in a successful HTTP/1.1 200 OK response and a JSON map that contains
Sensu version data:

API Specifcation

/version (GET)

description Returns the etcd server version and Sensu backend version. For

curl -X GET \

http://127.0.0.1:8080/version

{

 "etcd": {

 "etcdserver": "3.5.0",

 "etcdcluster": "3.5.0"

 },

 "sensu_backend": "6.4.0"

}

clustered Sensu installations with the default embedded etcd, also
returns the etcd cluster version (which may not match the etcd server
version or the cluster versions of other backends in the cluster).

example url http://hostname:8080/version

response type Map

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

{

 "etcd": {

 "etcdserver": "3.5.0",

 "etcdcluster": "3.5.0"

 },

 "sensu_backend": "6.4.0"

}

Reference Index

This index links to every reference in the Sensu documentation.
Reference documentation includes
specifcations, examples, confguration notes, and other details about Sensu resources, the agent and
backend, and Sensu query expressions.

Active Directory (AD)

Agent

API keys

Assets

Backend

Catalog integrations

Checks

Datastore

Entities

Etcd replicators

Event flters

Events

Handlers

Health

Hooks

License

Lightweight Directory Access Protocol (LDAP)

Metrics

Mutators

Namespaces

OpenID Connect 1.0 protocol (OIDC)

Pipelines

Plugins

Ready

Role-based access control (RBAC)

Rule templates

Searches

Secrets

Secrets providers

Sensu query expressions

Service components

Silencing

Subscriptions

Sumo Logic metrics handlers

TCP stream handlers

Tessen

Tokens

Web UI confguration

Plugins

Sensu plugins provide executable scripts or other programs that you can use as Sensu checks,
handlers, and mutators.

Plugins are service-specifc and have different setup and confguration requirements.
Many Sensu-
supported plugins include quick-start templates that you only need to edit to match your confguration.
Each plugin has self-contained documentation with in-depth information about how to install and use it.

Find Sensu plugins

Use the Sensu Catalog to fnd and enable many plugins directly from your browser.
Follow the Catalog
prompts to confgure the Sensu resources you need and start processing your observability data with a
few clicks.

To fnd many more available Sensu plugins, search Bonsai, the Sensu asset hub.
Bonsai lists hundreds
of Sensu plugins with installation instructions and usage examples.

We also list popular Sensu plugins in the featured integrations section.

Write your own custom plugins

Write your own Sensu plugins in almost any programming language with Sensu’s plugin specifcation.
The Sensu Go plugin SDK library provides a framework for building Sensu Go plugins so that all you
need to do is defne plugin arguments and input validation and execution functions.

If you are interested in sharing your plugin with other Sensu users, you can fnd guidance for
contributing plugins, pinning versions, writing plugin READMEs, and transferring repos to community
responsibility at the Sensu plugins community GitHub repo

Use Nagios plugins

The Sensu plugin specifcation is compatible with the Nagios plugin specifcation, so you can use
Nagios plugins with Sensu without any modifcation.
Sensu allows you to bring new life to the 50+

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://bonsai.sensu.io/
https://github.com/sensu-community/sensu-plugin-sdk
https://github.com/sensu-plugins/community
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/pluginapi.html

plugins in the offcial Nagios Plugins project, a mature source of monitoring plugins, and more than
4000 plugins in the Nagios Exchange.

https://www.nagios.org/downloads/nagios-plugins/
https://exchange.nagios.org/

Assets reference

Dynamic runtime assets are shareable, reusable packages that make it easier to deploy Sensu plugins.
You can use dynamic runtime assets to provide the plugins, libraries, and runtimes you need to
automate your monitoring workfows.
Sensu supports dynamic runtime assets for checks, flters,
mutators, and handlers.

Use the Sensu Catalog to fnd, confgure, and install many dynamic runtime assets directly from your
browser.
Follow the Catalog prompts to confgure the Sensu resources you need and start processing
your observability data with a few clicks.

You can also discover, download, and share dynamic runtime assets using Bonsai, the Sensu asset
hub.
Read Use assets to install plugins to get started.

The Sensu backend executes handler, flter, and mutator dynamic runtime assets.
The Sensu agent
executes check dynamic runtime assets.
At runtime, the backend or agent sequentially evaluates
dynamic runtime assets that appear in the runtime_assets attribute of the handler, flter, mutator, or
check being executed.

Dynamic runtime asset example (minimum required
attributes)

This example shows a dynamic runtime asset resource defnition that includes the minimum required
attributes:

NOTE: Dynamic runtime assets are not required to use Sensu Go.
You can install Sensu plugins
using the sensu-install tool or a confguration management solution.

type: Asset

api_version: core/v2

metadata:

 name: check_script

spec:

YML

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://bonsai.sensu.io/
https://bonsai.sensu.io/

Install location for dynamic runtime assets

If you use a Sensu package, dynamic runtime assets are installed at /var/cache .

If you use a Sensu Docker image, dynamic runtime assets are installed at /var/lib .

Dynamic runtime asset builds

A dynamic runtime asset build is the combination of an artifact URL, SHA512 checksum, and optional
Sensu query expression flters.
Each asset defnition may describe one or more builds.

 builds:

 - sha512:

4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a8

7450576b2c58ad9ab40c9e2edc31b288d066b195b21b

 url: http://example.com/asset.tar.gz

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_script"

 },

 "spec": {

 "builds": [

 {

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a

87450576b2c58ad9ab40c9e2edc31b288d066b195b21b"

 }

]

 }

}

JSON

Asset example: Multiple builds

This example shows the resource defnition for the sensu/check-cpu-usage dynamic runtime asset,
which has multiple builds:

NOTE: Dynamic runtime assets that provide url and sha512 attributes at the top level of the
spec scope are single-build assets, and this form of asset defntion is deprecated.
We recommend

using multiple-build asset defntions, which specify one or more builds under the spec scope.

type: Asset

api_version: core/v2

metadata:

 name: check-cpu-usage

 labels:

 annotations:

 io.sensu.bonsai.url: https://bonsai.sensu.io/assets/sensu/check-cpu-usage

 io.sensu.bonsai.api_url: https://bonsai.sensu.io/api/v1/assets/sensu/check-cpu-

usage

 io.sensu.bonsai.tier: Community

 io.sensu.bonsai.version: 0.2.2

 io.sensu.bonsai.namespace: sensu

 io.sensu.bonsai.name: check-cpu-usage

 io.sensu.bonsai.tags: ''

spec:

 builds:

 - url:

https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_windows_amd64.tar.gz

 sha512:

900cfdf28d6088b929c4bf9a121b628971edee5fa5cbc91a6bc1df3bd9a7f8adb1fcfb7b1ad70589ed5b

4f5ec87d9a9a3ba95bcf2acda56b0901406f14f69fe7

 flters:

 - entity.system.os == 'windows'

 - entity.system.arch == 'amd64'

 - url:

https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_darwin_amd64.tar.gz

 sha512:

YML

https://bonsai.sensu.io/assets/sensu/check-cpu-usage

db81ee70426114e4cd4b3f180f2b0b1e15b4bffc09d7f2b41a571be2422f4399af3fbd2fa2918b883190

9ab4bc2d3f58d0aa0d7b197d3a218b2391bb5c1f6913

 flters:

 - entity.system.os == 'darwin'

 - entity.system.arch == 'amd64'

 - url:

https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_armv7.tar.gz

 sha512:

400aacce297176e69f3a88b0aab0ddfdbe9dd6a37a673cb1774c8d4750a91cf7713a881eef26ea21d200

f74cb20818161c773490139e6a6acb92cbd06dee994c

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'armv7'

 - url:

https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_arm64.tar.gz

 sha512:

bef7802b121ac2a2a5c5ad169d6003f57d8b4f5e83eae998a0e0dd1e7b89678d4a62e678d153edacdd65

fd1d0123b5f51308622690455e77cec6deccfa183397

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'arm64'

 - url:

https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_386.tar.gz

 sha512:

a2dcb5324952567a61d76a2e331c1c16df69ef0e0b9899515dad8d1531b204076ad0c008f59fc2f4735a

5a779afb0c1baa132268c41942b203444e377fe8c8e5

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == '386'

 - url:

https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_amd64.tar.gz

 sha512:

24539739b5eb19bbab6eda151d0bcc63a0825afdfef3bc1ec3670c7b0a00fbbb2fd006d605a7a038b322

69a22026d8947324f2bc0acdf35e8563cf4cb8660d7f

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-cpu-usage",

 "labels": null,

 "annotations": {

 "io.sensu.bonsai.url": "https://bonsai.sensu.io/assets/sensu/check-cpu-usage",

 "io.sensu.bonsai.api_url": "https://bonsai.sensu.io/api/v1/assets/sensu/check-

cpu-usage",

 "io.sensu.bonsai.tier": "Community",

 "io.sensu.bonsai.version": "0.2.2",

 "io.sensu.bonsai.namespace": "sensu",

 "io.sensu.bonsai.name": "check-cpu-usage",

 "io.sensu.bonsai.tags": ""

 }

 },

 "spec": {

 "builds": [

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_windows_amd64.tar.gz",

 "sha512":

"900cfdf28d6088b929c4bf9a121b628971edee5fa5cbc91a6bc1df3bd9a7f8adb1fcfb7b1ad70589ed5

b4f5ec87d9a9a3ba95bcf2acda56b0901406f14f69fe7",

 "flters": [

 "entity.system.os == 'windows'",

 "entity.system.arch == 'amd64'"

]

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_darwin_amd64.tar.gz",

 "sha512":

"db81ee70426114e4cd4b3f180f2b0b1e15b4bffc09d7f2b41a571be2422f4399af3fbd2fa2918b88319

09ab4bc2d3f58d0aa0d7b197d3a218b2391bb5c1f6913",

 "flters": [

 "entity.system.os == 'darwin'",

JSON

 "entity.system.arch == 'amd64'"

]

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_armv7.tar.gz",

 "sha512":

"400aacce297176e69f3a88b0aab0ddfdbe9dd6a37a673cb1774c8d4750a91cf7713a881eef26ea21d20

0f74cb20818161c773490139e6a6acb92cbd06dee994c",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'armv7'"

]

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_arm64.tar.gz",

 "sha512":

"bef7802b121ac2a2a5c5ad169d6003f57d8b4f5e83eae998a0e0dd1e7b89678d4a62e678d153edacdd6

5fd1d0123b5f51308622690455e77cec6deccfa183397",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'arm64'"

]

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

usage_0.2.2_linux_386.tar.gz",

 "sha512":

"a2dcb5324952567a61d76a2e331c1c16df69ef0e0b9899515dad8d1531b204076ad0c008f59fc2f4735

a5a779afb0c1baa132268c41942b203444e377fe8c8e5",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == '386'"

]

 },

 {

 "url":

"https://assets.bonsai.sensu.io/a7ced27e881989c44522112aa05dd3f25c8f1e49/check-cpu-

Asset example: Single build (deprecated)

This example shows the resource defnition for a dynamic runtime asset with a single build:

usage_0.2.2_linux_amd64.tar.gz",

 "sha512":

"24539739b5eb19bbab6eda151d0bcc63a0825afdfef3bc1ec3670c7b0a00fbbb2fd006d605a7a038b32

269a22026d8947324f2bc0acdf35e8563cf4cb8660d7f",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

 }

]

 }

}

type: Asset

api_version: core/v2

metadata:

 name: check_cpu_linux_amd64

 labels:

 origin: bonsai

 annotations:

 project_url: https://bonsai.sensu.io/assets/asachs01/sensu-go-cpu-check

 version: 0.0.3

spec:

 url:

https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_linux_amd64.tar.gz

 sha512:

487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58a72b786ef0ca396a0a12c8d006

ac7fa21923e0e9ae63419a4d56aec41fccb574c1a5d3

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 headers:

 Authorization: 'Bearer {{ .annotations.asset_token | default "N/A" }}'

YML

Dynamic runtime asset build evaluation

For each build provided in a dynamic runtime asset, Sensu will evaluate any defned flters to
determine whether any build matches the agent or backend service’s environment.
If all flters specifed

 X-Forwarded-For: client1, proxy1, proxy2

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu_linux_amd64",

 "labels": {

 "origin": "bonsai"

 },

 "annotations": {

 "project_url": "https://bonsai.sensu.io/assets/asachs01/sensu-go-cpu-check",

 "version": "0.0.3"

 }

 },

 "spec": {

 "url":

"https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_linux_amd64.tar.gz",

 "sha512":

"487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58a72b786ef0ca396a0a12c8d00

6ac7fa21923e0e9ae63419a4d56aec41fccb574c1a5d3",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer {{ .annotations.asset_token | default \"N/A\" }}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

}

JSON

on a build evaluate to true , that build is considered a match.
For dynamic runtime assets with multiple
builds, only the frst build that matches will be downloaded and installed.

Dynamic runtime asset build download

Sensu downloads the dynamic runtime asset build on the host system where the asset contents are
needed to execute the requested command.
For example, if a check defnition references a dynamic
runtime asset, the Sensu agent that executes the check will download the asset the frst time it
executes the check.
The dynamic runtime asset build the agent downloads will depend on the flter rules
associated with each build defned for the asset.

Sensu backends follow a similar process when pipeline elements (flters, mutators, and handlers)
request dynamic runtime asset installation as part of operation.

When Sensu fnds a matching build, it downloads the build artifact from the specifed URL.
If the asset
defnition includes headers, they are passed along as part of the HTTP request.
If the downloaded
artifact’s SHA512 checksum matches the checksum provided by the build, it is unpacked into the
Sensu service’s local cache directory.

Set the backend or agent’s local cache path with the cache-dir confguration option.
Disable dynamic
runtime assets for an agent with the agent disable-assets confguration option.

Use the assets-rate-limit and assets-burst-limit confguration options for the agent and
backend to confgure a global rate limit for fetching dynamic runtime assets.

Dynamic runtime asset build execution

The directory path of each dynamic runtime asset listed in a check, event flter, handler, or mutator
resource’s runtime_assets array is appended to the PATH before the resource’s command is
executed.
Subsequent check, event flter, handler, or mutator executions look for the dynamic runtime
asset in the local cache and ensure that the contents match the confgured checksum.

NOTE: Dynamic runtime asset builds are not downloaded until they are needed for command
execution.

NOTE: Dynamic runtime asset builds are unpacked into the cache directory that is confgured with
the cache-dir confguration option.

The following example demonstrates a use case with a Sensu check resource and an asset:

type: Asset

api_version: core/v2

metadata:

 name: sensu-prometheus-collector

spec:

 builds:

 - url:

https://assets.bonsai.sensu.io/ef812286f59de36a40e51178024b81c69666e1b7/sensu-

prometheus-collector_1.1.6_linux_amd64.tar.gz

 sha512:

a70056ca02662fbf2999460f6be93f174c7e09c5a8b12efc7cc42ce1ccb5570ee0f328a2dd8223f506df

3b5972f7f521728f7bdd6abf9f6ca2234d690aeb3808

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

type: CheckConfg

api_version: core/v2

metadata:

 name: prometheus_collector

spec:

 command: "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-query

up"

 interval: 10

 publish: true

 output_metric_handlers:

 - infuxdb

 output_metric_format: infuxdb_line

 runtime_assets:

 - sensu-prometheus-collector

 subscriptions:

 - system

YML

{

 "type": "Asset",

JSON

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-email-handler"

 },

 "spec": {

 "builds": [

 {

 "url":

"https://assets.bonsai.sensu.io/45eaac0851501a19475a94016a4f8f9688a280f6/sensu-

email-handler_0.2.0_linux_amd64.tar.gz",

 "sha512":

"d69df76612b74acd64aef8eed2ae10d985f6073f9b014c8115b7896ed86786128c20249fd370f30672b

f9a11b041a99adb05e3a23342d3ad80d0c346ec23a946",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

 }

]

 }

}

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "prometheus_collector"

 },

 "spec": {

 "command": "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-

query up",

 "handlers": [

 "infuxdb"

],

 "interval": 10,

 "publish": true,

 "output_metric_format": "infuxdb_line",

 "runtime_assets": [

 "sensu-prometheus-collector"

],

 "subscriptions": [

 "system"

]

Dynamic runtime asset format specifcation

Sensu expects a dynamic runtime asset to be a tar archive (optionally gzipped) that contains one or
more executables within a bin folder.
Any scripts or executables should be within a bin/ folder in the
archive.
Read the Sensu Go Plugin template for an example dynamic runtime asset and Bonsai
confguration.

The following are injected into the execution context:

Default cache directory

system sensu-backend sensu-agent

Linux /var/cache/sensu/sensu-

backend

/var/cache/sensu/sensu-agent

Windows N/A C:\ProgramData\sensu\cache\sens

u-agent

If the requested dynamic runtime asset is not in the local cache, it is downloaded from the asset URL.
The Sensu backend acts as an index of dynamic runtime asset builds, and does not provide storage or
hosting for the build artifacts.
Sensu expects dynamic runtime assets to be retrieved over HTTP or
HTTPS.

 }

}

{PATH_TO_ASSET}/bin is injected into the PATH environment variable

{PATH_TO_ASSET}/lib is injected into the LD_LIBRARY_PATH environment variable

{PATH_TO_ASSET}/include is injected into the CPATH environment variable

NOTE: You cannot create a dynamic runtime asset by creating an archive of an existing project
(as in previous versions of Sensu for plugins from the Sensu Plugins community).
Follow the steps
outlined in Contributing Assets for Existing Ruby Sensu Plugins, a Sensu Discourse guide.
For
further examples of Sensu users who have added the ability to use a community plugin as a
dynamic runtime asset, read this Discourse post.

https://github.com/sensu/sensu-go-plugin/
https://github.com/sensu-plugins/
https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165
https://discourse.sensu.io/t/how-to-use-the-sensu-plugins-kubernetes-plugin/1286

Example dynamic runtime asset structure

Dynamic runtime asset path

When you download and install a dynamic runtime asset, the asset fles are saved to a local path on
disk.
Most of the time, you won’t need to know this path — except in cases where you need to provide
the full path to dynamic runtime asset fles as part of a command argument.

The dynamic runtime asset directory path includes the asset’s checksum, which changes every time
underlying asset artifacts are updated.
This would normally require you to manually update the
commands for any of your checks, handlers, hooks, or mutators that consume the dynamic runtime
asset.
However, because the dynamic runtime asset directory path is exposed to asset consumers via
environment variables and the assetPath custom function, you can avoid these manual updates.

You can retrieve the dynamic runtime asset’s path as an environment variable in the command context
for checks, handlers, hooks, and mutators.
Token substitution with the assetPath custom function is
only available for check and hook commands.

The Sensu Windows agent uses cmd.exe for the check execution environment.
For all other operating
systems, the Sensu agent uses the Bourne shell (sh).

Environment variables for dynamic runtime asset paths

For each dynamic runtime asset, a corresponding environment variable will be available in the
command context.

Sensu generates the environment variable name by capitalizing the dynamic runtime asset’s complete

sensu-example-handler_1.0.0_linux_amd64

├── CHANGELOG.md

├── LICENSE

├── README.md

└── bin

 └── my-check.sh

└── lib

└── include

name, replacing any special characters with underscores, and appending the _PATH suffx.
The value
of the variable will be the path on disk where the dynamic runtime asset build has been unpacked.

Each asset page in Bonsai lists the asset’s complete name.
This example shows where the complete
name for the sensu/http-checks dynamic runtime asset is located in Bonsai:

An asset’s complete name includes both the part before the forward slash (sometimes called the
Bonsai namespace) and the part after the forward slash.

Consequently, the environment variable for the sensu/http-checks asset path is:

Linux environment variable example

The Linux environment interprets the content between the ${ and } characters as an environment
variable name and will substitute the value of that environment variable.

For example, to reference the path for the sensu/http-checks asset in your checks, handlers, hooks,
and mutators:

SENSU_HTTP_CHECKS_PATH

https://bonsai.sensu.io/assets/sensu/http-checks
http://localhost:1313/images/go/assets_reference/complete_name_location_bonsai_asset_paths.png
https://bonsai.sensu.io/assets/sensu/http-checks
https://bonsai.sensu.io/assets/sensu/http-checks

Windows environment variable example

The Windows console environment interprets the content between paired % characters as an
environment variable name and will substitute the value of that environment variable.

For example, to reference the path for the sensu/sensu-windows-powershell-checks asset in your
checks, handlers, hooks, and mutators:

assetPath function for dynamic runtime asset paths

The assetPath token subsitution function allows you to substitute a dynamic runtime asset’s local
path on disk so that you will not need to manually update your check or hook commands every time
the asset is updated.

Linux assetPath example

To use the assetPath token substitution function in a Linux environment, place it immediately after
the $ character.

For example, to use the assetPath function to reference the path for the sensu/http-checks asset in
your check or hook resources:

${SENSU_HTTP_CHECKS_PATH}

%SENSU_SENSU_WINDOWS_POWERSHELL_CHECKS_PATH%

NOTE: The assetPath function is only available where token substitution is available: the
command attribute of a check or hook resource.
To access a dynamic runtime asset path in a

handler or mutator command, you must use the environment variable.

${{assetPath "sensu/http-checks"}}

https://devblogs.microsoft.com/oldnewthing/20060823-00/?p=29993
https://devblogs.microsoft.com/oldnewthing/20060823-00/?p=29993
https://devblogs.microsoft.com/oldnewthing/20060823-00/?p=29993
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_environment_variables?view=powershell-7.1
https://bonsai.sensu.io/assets/sensu/sensu-windows-powershell-checks
https://bonsai.sensu.io/assets/sensu/http-checks

Windows assetPath example

To use the assetPath token substitution function in a Linux environment, place it between paired %
characters.

For example, to use the assetPath function to reference the path for the sensu/sensu-windows-
powershell-checks asset in your check or hook resources:

When running PowerShell plugins on Windows, the exit status codes that Sensu captures may not
match the expected values.
To correctly capture exit status codes from PowerShell plugins distributed
as dynamic runtime assets, use the asset path to construct the command.
The following example uses
the assetPath function for this purpose:

%{{assetPath "sensu/sensu-windows-powershell-checks"}}%

type: CheckConfg

api_version: core/v2

metadata:

 name: win-cpu-check

spec:

 command: powershell.exe -ExecutionPolicy ByPass -f %{{assetPath "sensu/sensu-

windows-powershell-checks"}}%\bin\check-windows-cpu-load.ps1 90 95

 subscriptions:

 - windows

 handlers:

 - slack

 - email

 runtime_assets:

 - sensu/sensu-windows-powershell-checks

 interval: 10

 publish: true

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

JSON

https://devblogs.microsoft.com/oldnewthing/20060823-00/?p=29993
https://devblogs.microsoft.com/oldnewthing/20060823-00/?p=29993
https://devblogs.microsoft.com/oldnewthing/20060823-00/?p=29993
https://bonsai.sensu.io/assets/sensu/sensu-windows-powershell-checks
https://bonsai.sensu.io/assets/sensu/sensu-windows-powershell-checks
https://github.com/sensu/sensu/issues/1919
https://github.com/sensu/sensu/issues/1919

Asset hello world Bourne shell example

In this example, you’ll run a script that outputs Hello World :

 "metadata": {

 "name": "win-cpu-check"

 },

 "spec": {

 "command": "powershell.exe -ExecutionPolicy ByPass -f %{{assetPath

\"sensu/sensu-windows-powershell-checks\"}}%\\bin\\check-windows-cpu-load.ps1 90

95",

 "subscriptions": [

 "windows"

],

 "handlers": [

 "slack",

 "email"

],

 "runtime_assets": [

 "sensu/sensu-windows-powershell-checks"

],

 "interval": 10,

 "publish": true

 }

}

hello-world.sh

#!/bin/sh

STRING="Hello World"

echo $STRING

if [$? -eq 0]; then

 exit 0

else

 exit 2

f

The frst step is to ensure that your directory structure is in place.
As noted in Example dynamic runtime
asset structure, your script could live in three potential directories in the project: /bin , /lib , or
/include .
For this example, put your script in the /bin directory.

1. Create the directory sensu-go-hello-world :

2. Navigate to the sensu-go-hello-world directory:

3. Create the directory /bin :

4. Copy the script into the /bin directory:

5. Confrm that the script is in the /bin directory:

The response should list the hello-world.sh script in the /bin directory:

mkdir sensu-go-hello-world

cd sensu-go-hello-world

mkdir bin

cp hello-world.sh bin/

tree

.

└── bin

 └── hello-world.sh

If you receive a command not found response, install tree and run the command again.

6. Make sure that the script is marked as executable:

If you do not receive a response, the command was successful.

Now that the script is in the directory, move on to the next step: packaging the sensu-go-hello-

world directory as a dynamic runtime asset tarball.

Package the dynamic runtime asset

Dynamic runtime assets are archives, so packaging the asset requires creating a tar.gz archive of your
project.

1. Navigate to the directory you want to tar up.

2. Create the tar.gz archive:

3. Generate a SHA512 sum for the tar.gz archive (this is required for the dynamic runtime asset to
work):

From here, you can host your dynamic runtime asset wherever you’d like.
To make the asset available
via Bonsai, you’ll need to host it on GitHub.
Learn more in The “Hello World” of Sensu Assets at the
Sensu Community Forum on Discourse.

To host your dynamic runtime asset on a different platform like Gitlab or Bitbucket, upload your asset
there.
You can also use Artifactory or even Apache or NGINX to serve your asset.
All that’s required for
your dynamic runtime asset to work is the URL to the asset and the SHA512 sum for the asset to be

chmod +x bin/hello-world.sh

tar -C sensu-go-hello-world -cvzf sensu-go-hello-world-0.0.1.tar.gz .

sha512sum sensu-go-hello-world-0.0.1.tar.gz | tee sha512sum.txt

https://bonsai.sensu.io/
https://discourse.sensu.io/t/the-hello-world-of-sensu-assets/1422

downloaded.

Asset specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Dynamic runtime assets should always be type Asset .

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
dynamic runtime assets in this version of Sensu, the api_version
should always be core/v2 .

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

type: Asset

YML

{

 "type": "Asset"

}

JSON

YML

example

metadata

description Top-level collection of metadata about the dynamic runtime asset,
including name , namespace , and created_by as well as custom
labels and annotations . The metadata map is always at the top

level of the asset defnition. This means that in wrapped-json and
yaml formats, the metadata scope occurs outside the spec scope.

Read metadata attributes for details.

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

api_version: core/v2

{

 "api_version": "core/v2"

}

JSON

metadata:

 name: check_script

 namespace: default

 created_by: admin

 labels:

 region: us-west-1

 annotations:

 playbook: www.example.url

YML

{

 "metadata": {

 "name": "check_script",

JSON

spec

description Top-level map that includes the dynamic runtime asset spec attributes.

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example (multiple
builds)

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "playbook": "www.example.url"

 }

 }

}

spec:

 builds:

 - url: http://example.com/asset-linux-amd64.tar.gz

 sha512:

487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58a

72b786ef0ca396a0a12c8d006ac7fa21923e0e9ae63419a4d56aec41fcc

b574c1a5d3

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 headers:

 Authorization: Bearer {{ .annotations.asset_token |

default "N/A" }}

 X-Forwarded-For: client1, proxy1, proxy2

 - url: http://example.com/asset-linux-armv7.tar.gz

 sha512:

70df8b7e9aa36cf942b972e1781af04815fa560441fcdea1d1538374066

a4603fc5566737bfd6c7ffa18314edb858a9f93330a57d430deeb7fd6f7

YML

5670a8c68b

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'arm'

 - entity.system.arm_version == 7

 headers:

 Authorization: Bearer {{ .annotations.asset_token |

default "N/A" }}

 X-Forwarded-For: client1, proxy1, proxy2

{

 "spec": {

 "builds": [

 {

 "url": "http://example.com/asset-linux-

amd64.tar.gz",

 "sha512":

"487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58

a72b786ef0ca396a0a12c8d006ac7fa21923e0e9ae63419a4d56aec41fc

cb574c1a5d3",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer {{

.annotations.asset_token | default \"N/A\" }}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 },

 {

 "url": "http://example.com/asset-linux-

armv7.tar.gz",

 "sha512":

"70df8b7e9aa36cf942b972e1781af04815fa560441fcdea1d153837406

6a4603fc5566737bfd6c7ffa18314edb858a9f93330a57d430deeb7fd6f

75670a8c68b",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'arm'",

JSON

example (single
build, deprecated)

 "entity.system.arm_version == 7"

],

 "headers": {

 "Authorization": "Bearer {{

.annotations.asset_token | default \"N/A\" }}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

 }

}

spec:

 url: http://example.com/asset.tar.gz

 sha512:

4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3

ef3c2e8d154812246e5dda4a87450576b2c58ad9ab40c9e2edc31b288d0

66b195b21b

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 headers:

 Authorization: Bearer {{ .annotations.asset_token |

default "N/A" }}

 X-Forwarded-For: client1, proxy1, proxy2

YML

{

 "spec": {

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a

3ef3c2e8d154812246e5dda4a87450576b2c58ad9ab40c9e2edc31b288d

066b195b21b",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

JSON

Metadata attributes

name

description Unique name of the dynamic runtime asset, validated with Go regex
\A[\w\.\-]+\z .

required true

type String

example

namespace

description Sensu RBAC namespace that the dynamic runtime asset belongs to.

required false

],

 "headers": {

 "Authorization": "Bearer {{ .annotations.asset_token

| default \"N/A\" }}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

}

name: check_script

YML

{

 "name": "check_script"

}

JSON

https://regex101.com/r/zo9mQU/2

type String

default default

example

created_by

description Username of the Sensu user who created the dynamic runtime asset or
last updated the asset. Sensu automatically populates the created_by
feld when the dynamic runtime asset is created or updated.

required false

type String

example

labels

namespace: production

YML

{

 "namespace": "production"

}

JSON

created_by: admin

YML

{

 "created_by": "admin"

}

JSON

description Custom attributes to include with observation event data that you can
use for response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata to include with observation event data that you
can access with event flters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

labels:

 environment: development

 region: us-west-2

YML

{

 "labels": {

 "environment": "development",

 "region": "us-west-2"

 }

}

JSON

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

builds

description List of dynamic runtime asset builds used to defne multiple artifacts that
provide the named asset.

required true, if url , sha512 and flters are not provided

type Array

example

annotations:

 managed-by: ops

 playbook: www.example.url

YML

{

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

 }

}

JSON

builds:

- url: http://example.com/asset-linux-amd64.tar.gz

 sha512:

YML

487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58a

72b786ef0ca396a0a12c8d006ac7fa21923e0e9ae63419a4d56aec41fcc

b574c1a5d3

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

- url: http://example.com/asset-linux-armv7.tar.gz

 sha512:

70df8b7e9aa36cf942b972e1781af04815fa560441fcdea1d1538374066

a4603fc5566737bfd6c7ffa18314edb858a9f93330a57d430deeb7fd6f7

5670a8c68b

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'arm'

 - entity.system.arm_version == 7

{

 "builds": [

 {

 "url": "http://example.com/asset-linux-amd64.tar.gz",

 "sha512":

"487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58

a72b786ef0ca396a0a12c8d006ac7fa21923e0e9ae63419a4d56aec41fc

cb574c1a5d3",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

 },

 {

 "url": "http://example.com/asset-linux-armv7.tar.gz",

 "sha512":

"70df8b7e9aa36cf942b972e1781af04815fa560441fcdea1d153837406

6a4603fc5566737bfd6c7ffa18314edb858a9f93330a57d430deeb7fd6f

75670a8c68b",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'arm'",

 "entity.system.arm_version == 7"

]

JSON

url

description URL location of the dynamic runtime asset. You can use token
substitution in the URLs of your asset defnitions so each backend or
agent can download dynamic runtime assets from the appropriate URL
without duplicating your assets (for example, if you want to host your
assets at different datacenters).

required true, unless builds are provided

type String

example

sha512

description Checksum of the dynamic runtime asset.

required true, unless builds are provided

type String

example

 }

]

}

url: http://example.com/asset.tar.gz

YML

{

 "url": "http://example.com/asset.tar.gz"

}

JSON

sha512: 4f926bf4328...

YML

flters

description Set of Sensu query expressions used to determine if the dynamic
runtime asset should be installed. If multiple expressions are included,
each expression must return true for Sensu to install the asset.

Filters for check dynamic runtime assets should match agent entity
platforms. Filters for handler and flter dynamic runtime assets should
match your Sensu backend platform. You can create asset flter
expressions using any supported entity.system attributes, including os ,
arch , platform , and platform_family .

required false

type Array

example

{

 "sha512": "4f926bf4328..."

}

JSON

PRO TIP: Dynamic runtime asset flters let you reuse checks across
platforms safely. Assign dynamic runtime assets for multiple
platforms to a single check, and rely on asset flters to ensure that
only the appropriate asset is installed on each agent.

flters:

- entity.system.os=='linux'

- entity.system.arch=='amd64'

YML

{

JSON

headers

description HTTP headers to apply to dynamic runtime asset retrieval requests. You
can use headers to access secured dynamic runtime assets. For
headers that require multiple values, separate the values with a comma.
You can use token substitution in your dynamic runtime asset headers
(for example, to include secure information for authentication).

required false

type Map of key-value string pairs

example

 "flters": [

 "entity.system.os=='linux'",

 "entity.system.arch=='amd64'"

]

}

headers:

 Authorization: Bearer {{ .annotations.asset_token |

default "N/A" }}

 X-Forwarded-For: client1, proxy1, proxy2

YML

{

 "headers": {

 "Authorization": "Bearer {{ .annotations.asset_token |

default \"N/A\" }}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

}

JSON

Dynamic runtime asset flters based on entity.system
attributes

Use the entity.system attributes in dynamic runtime asset flters to specify which systems and
confgurations an asset or asset builds can be used with.

For example, the sensu/sensu-ruby-runtime dynamic runtime asset defnition includes several builds,
each with flters for several entity.system attributes:

type: Asset

api_version: core/v2

metadata:

 name: sensu-ruby-runtime

 labels:

 annotations:

 io.sensu.bonsai.url: https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

 io.sensu.bonsai.api_url: https://bonsai.sensu.io/api/v1/assets/sensu/sensu-ruby-

runtime

 io.sensu.bonsai.tier: Community

 io.sensu.bonsai.version: 0.0.10

 io.sensu.bonsai.namespace: sensu

 io.sensu.bonsai.name: sensu-ruby-runtime

 io.sensu.bonsai.tags: ''

spec:

 builds:

 - url:

https://assets.bonsai.sensu.io/5123017d3dadf2067fa90fc28275b92e9b586885/sensu-ruby-

runtime_0.0.10_ruby-2.4.4_centos6_linux_amd64.tar.gz

 sha512:

cbee19124b7007342ce37ff9dfd4a1dde03beb1e87e61ca2aef606a7ad3c9bd0bba4e53873c07afa5ac4

6b0861967a9224511b4504dadb1a5e8fb687e9495304

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 - entity.system.platform_family == 'rhel'

 - parseInt(entity.system.platform_version.split('.')[0]) == 6

 - url:

https://assets.bonsai.sensu.io/5123017d3dadf2067fa90fc28275b92e9b586885/sensu-ruby-

runtime_0.0.10_ruby-2.4.4_debian_linux_amd64.tar.gz

YML

https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

 sha512:

a28952fd93fc63db1f8988c7bc40b0ad815eb9f35ef7317d6caf5d77ecfbfd824a9db54184400aa0c81c

29b34cb48c7e8c6e3f17891aaf84cafa3c134266a61a

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 - entity.system.platform_family == 'debian'

 - url:

https://assets.bonsai.sensu.io/5123017d3dadf2067fa90fc28275b92e9b586885/sensu-ruby-

runtime_0.0.10_ruby-2.4.4_alpine_linux_amd64.tar.gz

 sha512:

8d768d1fba545898a8d09dca603457eb0018ec6829bc5f609a1ea51a2be0c4b2d13e1aa46139ecbb0487

3449e4c76f463f0bdfbaf2107caf37ab1c8db87d5250

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 - entity.system.platform == 'alpine'

 - entity.system.platform_version.split('.')[0] == '3'

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-ruby-runtime",

 "labels": null,

 "annotations": {

 "io.sensu.bonsai.url": "https://bonsai.sensu.io/assets/sensu/sensu-ruby-

runtime",

 "io.sensu.bonsai.api_url": "https://bonsai.sensu.io/api/v1/assets/sensu/sensu-

ruby-runtime",

 "io.sensu.bonsai.tier": "Community",

 "io.sensu.bonsai.version": "0.0.10",

 "io.sensu.bonsai.namespace": "sensu",

 "io.sensu.bonsai.name": "sensu-ruby-runtime",

 "io.sensu.bonsai.tags": ""

 }

 },

 "spec": {

 "builds": [

JSON

 {

 "url":

"https://assets.bonsai.sensu.io/5123017d3dadf2067fa90fc28275b92e9b586885/sensu-ruby-

runtime_0.0.10_ruby-2.4.4_centos6_linux_amd64.tar.gz",

 "sha512":

"cbee19124b7007342ce37ff9dfd4a1dde03beb1e87e61ca2aef606a7ad3c9bd0bba4e53873c07afa5ac

46b0861967a9224511b4504dadb1a5e8fb687e9495304",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'",

 "entity.system.platform_family == 'rhel'",

 "parseInt(entity.system.platform_version.split('.')[0]) == 6"

]

 },

 {

 "url":

"https://assets.bonsai.sensu.io/5123017d3dadf2067fa90fc28275b92e9b586885/sensu-ruby-

runtime_0.0.10_ruby-2.4.4_debian_linux_amd64.tar.gz",

 "sha512":

"a28952fd93fc63db1f8988c7bc40b0ad815eb9f35ef7317d6caf5d77ecfbfd824a9db54184400aa0c81

c29b34cb48c7e8c6e3f17891aaf84cafa3c134266a61a",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'",

 "entity.system.platform_family == 'debian'"

]

 },

 {

 "url":

"https://assets.bonsai.sensu.io/5123017d3dadf2067fa90fc28275b92e9b586885/sensu-ruby-

runtime_0.0.10_ruby-2.4.4_alpine_linux_amd64.tar.gz",

 "sha512":

"8d768d1fba545898a8d09dca603457eb0018ec6829bc5f609a1ea51a2be0c4b2d13e1aa46139ecbb048

73449e4c76f463f0bdfbaf2107caf37ab1c8db87d5250",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'",

 "entity.system.platform == 'alpine'",

 "entity.system.platform_version.split('.')[0] == '3'"

]

 }

]

In this example, if you install the dynamic runtime asset on a system running Linux AMD64 Alpine
version 3.xx, Sensu will ignore the frst two builds and install the third.

All of the dynamic runtime asset flter expressions must evaluate as true for Sensu to download and
install the asset and run the check, handler, or flter that references the asset.

To continue this example, if you try to install the dynamic runtime asset on a system running Linux
AMD64 Alpine version 2.xx, the entity.system.platform_version argument will evaluate as
false .
In this case, the asset will not be downloaded and the check, handler, or flter that references

the asset will fail to run.

Add dynamic runtime asset flters to specify that an asset is compiled for any of the entity.system
attributes, including operating system, platform, platform version, and architecture.
Then, you can rely
on dynamic runtime asset flters to ensure that you install only the appropriate asset for each of your
agents.

Share an asset on Bonsai

Share your open-source dynamic runtime assets on Bonsai and connect with the Sensu community.
Bonsai supports dynamic runtime assets hosted on GitHub and released using GitHub releases.
For
more information about creating Sensu plugins, read the plugins reference.

Bonsai requires a bonsai.yml confguration fle in the root directory of your repository that includes
the project description, platforms, asset flenames, and SHA-512 checksums.
For a Bonsai-compatible
dynamic runtime asset template using Go and GoReleaser, review the Sensu Go plugin skeleton.

To share your dynamic runtime asset on Bonsai, log in to Bonsai with your GitHub account and
authorize Sensu.
After you are logged in, you can register your dynamic runtime asset on Bonsai by
adding the GitHub repository, a description, and tags.
Make sure to provide a helpful README for your
dynamic runtime asset with confguration examples.

 }

}

NOTE: Sensu downloads and installs the frst build whose flter expressions all evaluate as true .
If your system happens to match all of the flters for more than one build of a dynamic runtime
asset, Sensu will only install the frst build.

https://bonsai.sensu.io/
https://github.com/
https://help.github.com/articles/about-releases/
https://goreleaser.com/
https://github.com/sensu/sensu-go-plugin/
https://bonsai.sensu.io/sign-in
https://bonsai.sensu.io/new

bonsai.yml example

bonsai.yml specifcation

description

description Project description.

required true

type String

example

builds

description: "#{repo}"

builds:

- platform: "linux"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

- platform: "Windows"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_windows_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'windows'"

 - "entity.system.arch == 'amd64'"

description: "#{repo}"

description Array of dynamic runtime asset details per platform.

required true

type Array

example

Builds specifcation

platform

description Platform supported by the dynamic runtime asset.

required true

type String

example

arch

description Architecture supported by the dynamic runtime asset.

required true

type String

example

builds:

- platform: "linux"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

- platform: "linux"

asset_flename

description File name of the archive that contains the dynamic runtime asset.

required true

type String

example

sha_flename

description SHA-512 checksum for the dynamic runtime asset archive.

required true

type String

example

flter

description Filter expressions that describe the operating system and architecture
supported by the asset.

required false

type Array

example

 arch: "amd64"

asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

Delete dynamic runtime assets

Delete dynamic runtime assets with a DELETE request to the /assets API endpoint or with the
sensuctl asset delete command.

Removing a dynamic runtime asset from Sensu does not remove references to the deleted asset in
any other resource (including checks, flters, mutators, handlers, and hooks).
You must also update
resources and remove any reference to the deleted dynamic runtime asset.
Failure to do so will result in
errors like sh: asset.sh: command not found .

Errors as a result of failing to remove the dynamic runtime asset from checks and hooks will surface in
the event data.
Errors as a result of failing to remove the dynamic runtime asset reference on a mutator,
handler, or flter will only surface in the backend logs.

Deleting a dynamic runtime asset does not delete the archive or downloaded fles on disk.
You must
remove the archive and downloaded fles from the asset cache manually.

 - "entity.system.arch == 'amd64'"

Plugins reference

Sensu plugins provide executable scripts or other programs that you can use as Sensu checks,
handlers, and mutators.
Sensu plugins must comply with the following specifcation:

Supported programming languages

You can use any programming language that can satisfy the Sensu plugin specifcation requirements
— which is nearly any programming language in the world — to write Sensu plugins.

Using plugins written in programming languages other than Go requires you to install the
corresponding runtime.
For example, to use a Ruby plugin with Sensu Go, you must install the Sensu
Go Ruby Runtime asset.

Use Nagios plugins

The Sensu plugin specifcation is compatible with the Nagios plugin specifcation, so you can use the
50+ plugins in the offcial Nagios Plugins project and 4000+ plugins in the Nagios Exchange with
Sensu without any modifcation.

Accept input/data via stdin (handler and mutator plugins only)

Optionally able to parse a JSON data payload (that is, observation data in an event)

Output data to stdout or stderr

Produce an exit status code to indicate state:

0 indicates OK

1 indicates WARNING

2 indicates CRITICAL

exit status codes other than 0 , 1 , or 2 indicate an unknown or custom
status

Optionally able to parse command line arguments to modify plugin behavior

https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime
https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/pluginapi.html
https://www.nagios.org/downloads/nagios-plugins/
https://exchange.nagios.org/

Plugin execution

All plugins are executed by the Sensu backend.
Plugins must be executable fles that are discoverable
on the Sensu system (that is, installed in a system $PATH directory) or referenced with an absolute
path (for example, /opt/path/to/my/plugin).

Plugin confguration overrides

Many plugins support confguration overrides on a per-entity or per-check basis.
For example, some
plugins allow you to use annotations in individual entities and checks to set arguments that will
override any arguments set in a resource command or in backend runtime environment variables for
only that entity or check.

Read the Bonsai documentation for a plugin to learn about any confguration overrides the plugin
supports.

Go plugin example

The following example shows the structure for a very basic Sensu Go plugin.

NOTE: By default, Sensu installer packages will modify the system $PATH for the Sensu
processes to include /etc/sensu/plugins .
As a result, executable scripts (for example, plugins)
located in /etc/sensu/plugins will be valid commands.
This allows command attributes to use
relative paths for Sensu plugin commands, such as "command": "http-check --url
https://sensu.io" .

package main

import (

 "fmt"

 "log"

 "github.com/sensu-community/sensu-plugin-sdk/sensu"

 "github.com/sensu/sensu-go/types"

)

https://bonsai.sensu.io/

// Confg represents the check plugin confg.

type Confg struct {

 sensu.PluginConfg

 Example string

}

var (

 plugin = Confg{

 PluginConfg: sensu.PluginConfg{

 Name: "check_name",

 Short: "Description for check_name",

 Keyspace: "sensu.io/plugins/check_name/confg",

 },

 }

 options = []*sensu.PluginConfgOption{

 &sensu.PluginConfgOption{

 Path: "example",

 Env: "CHECK_EXAMPLE",

 Argument: "example",

 Shorthand: "e",

 Default: "",

 Usage: "An example string confguration option",

 Value: &plugin.Example,

 },

 }

)

func main() {

 check := sensu.NewGoCheck(&plugin.PluginConfg, options, checkArgs, executeCheck,

false)

 check.Execute()

}

func checkArgs(event *types.Event) (int, error) {

 if len(plugin.Example) == 0 {

 return sensu.CheckStateWarning, fmt.Errorf("--example or CHECK_EXAMPLE

environment variable is required")

 }

 return sensu.CheckStateOK, nil

}

To create this scaffolding for a Sensu Go check, handler, mutator, or sensuctl plugin, use the Sensu
Plugin Tool along with a default plugin template.
The plugin template repositories wrap the Sensu Plugin
SDK, which provides the framework for building Sensu Go plugins.

For a step-by-step walkthrough, read How to publish an asset with the Sensu Go SDK — you’ll learn
how to create a check plugin and a handler plugin with the Sensu Plugin SDK.
You can also watch our
30-minute webinar, Intro to assets with the Sensu Go SDK, and learn to build a check plugin for Sensu
Go.

Ruby plugin example

The following example demonstrates a very basic Sensu plugin in the Ruby programming language.

func executeCheck(event *types.Event) (int, error) {

 log.Println("executing check with --example", plugin.Example)

 return sensu.CheckStateOK, nil

}

#!/usr/bin/env ruby

#

require 'json'

Read the incoming JSON data from stdin

event = JSON.parse(stdin.read, :symbolize_names => true)

Create an output object using Ruby string interpolation

output = "The check named #{event[:check][:name]} generated the following output: #

{event[:output]}"

Convert the mutated event data back to JSON and output it to stdout

puts output

NOTE: This example is intended as a starting point for building a basic custom plugin in Ruby.
It
does not provide functionality.

https://github.com/sensu-community/sensu-plugin-tool
https://github.com/sensu-community/sensu-plugin-tool
https://github.com/sensu-community/sensu-plugin-tool#overview
https://github.com/sensu-community/sensu-plugin-sdk
https://github.com/sensu-community/sensu-plugin-sdk
https://sensu.io/blog/how-to-publish-an-asset-with-the-sensu-go-sdk
https://sensu.io/resources/webinar/intro-to-assets-with-the-sensu-go-sdk

Install Sensu plugins

Extend Sensu’s functionality with plugins, which provide executables for performing status or metric
checks, mutators for changing data to a desired format, and handlers for performing an action on a
Sensu event.

Install plugins with dynamic runtime assets

Dynamic runtime assets are shareable, reusable packages that make it easier to deploy Sensu plugins.
Read Use dynamic runtime assets to install plugins to become familiar with workfows that involve
assets.

Use the Sensu Catalog to fnd, confgure, and install many plugins directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your observability
data with a few clicks.

You can also use Bonsai, the Sensu asset hub, a centralized place for downloading and sharing
dynamic runtime assets.
Bonsai lists hundreds of plugins, libraries, and runtimes with instructions and
examples to help you automate your monitoring workfows.
You can also share your asset on Bonsai.

Install plugins with the sensu-install tool

To use community plugins that are not yet compatible with Sensu Go, use the sensu-install tool.

If you’ve used previous versions of Sensu, you’re probably familiar with the Sensu Community Plugins
organization on GitHub.
Although some of these plugins are enabled for Sensu Go, some do not include
the components necessary to work with Sensu Go.
Read each plugin’s instructions for information about
whether it is compatibile with Sensu Go.

NOTE: Dynamic runtime assets are not required to use Sensu Go.
You can install Sensu plugins
using the sensu-install tool or a confguration management solution.

NOTE: Plugins in the Sensu Plugins GitHub organization are community-maintained: anyone can

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://bonsai.sensu.io/
https://github.com/sensu-plugins/

The sensu-install tool comes with an embedded version of Ruby, so you don’t need to have Ruby
installed on your system.

To install a Sensu Community plugin with Sensu Go:

1. Install the sensu-plugins-ruby package from packagecloud.

2. Run the sensu-install command to install plugins in the Sensu Community Plugins GitHub
organization by repository name.
Plugins are installed into /opt/sensu-plugins-

ruby/embedded/bin .

To list all fags for the sensu-install command, run:

The response will be similar to this example:

For example, to install the Sensu InfuxDB plugin:

improve on them.
To get started with adding to a plugin or sharing your own, head to the Sensu
Community Slack channel.
Maintainers are always happy to help answer questions and point you in
the right direction.

sensu-install --help

Usage: sensu-install [options]

 -h, --help Display this message

 -v, --verbose Enable verbose logging

 -p, --plugin PLUGIN Install a Sensu PLUGIN

 -P, --plugins PLUGIN[,PLUGIN] PLUGIN or comma-delimited list of Sensu plugins

to install

 -e, --extension EXTENSION Install a Sensu EXTENSION

 -E, --extensions EXTENSION[,EXT] EXTENSION or comma-delimited list of Sensu

extensions to install

 -s, --source SOURCE Install Sensu plugins and extensions from a

custom SOURCE

 -c, --clean Clean up (remove) other installed versions of

the plugin(s) and/or extension(s)

 -x, --proxy PROXY Install Sensu plugins and extensions via a

PROXY URL

https://github.com/sensu-plugins/
https://packagecloud.io/sensu/community/
https://github.com/sensu-plugins/
https://github.com/sensu-plugins/
https://github.com/sensu-plugins/sensu-plugins-influxdb/
https://slack.sensu.io/
https://slack.sensu.io/

To install a specifc version of the Sensu InfuxDB plugin with sensu-install , run:

Use a confguration management tool or Sensu dynamic runtime assets to pin the versions of any
plugins installed in production.

Troubleshoot the sensu-install tool

Some plugins require additional tools to install them successfully.
An example is the Sensu disk checks
plugin.

To download and update package information:

sudo sensu-install -p infuxdb

sudo sensu-install -p 'sensu-plugins-infuxdb:2.0.0'

NOTE: We recommend specifying the plugin version you want to install to maintain the stability of
your observability infrastructure.
If you do not specify a version to install, Sensu automatically
installs the latest version, which may include breaking changes.

NOTE: If a plugin is not Sensu Go-enabled and there is no analogue on Bonsai, you can add the
necessary functionality to make the plugin compatible with Sensu Go.
Follow the Discourse guide
Contributing Assets for Existing Ruby Sensu Plugins to walk through the process.

sudo apt-get update

SHELL

sudo yum update

SHELL

https://github.com/sensu-plugins/sensu-plugins-disk-checks/
https://github.com/sensu-plugins/sensu-plugins-disk-checks/
https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165

Depending on the plugin, you may need to install developer tool packages:

sudo apt-get install build-essential

SHELL

sudo yum groupinstall "Development Tools"

SHELL

Use dynamic runtime assets to install
plugins

Dynamic runtime assets are shareable, reusable packages that make it easier to deploy Sensu plugins.
You can use assets to provide the plugins, libraries, and runtimes you need to automate your
monitoring workfows.
Read the asset reference for more information about dynamic runtime assets.
This
guide uses the sensu/sensu-pagerduty-handler dynamic runtime asset as an example.

Register an asset

To add the sensu/sensu-pagerduty-handler dynamic runtime asset to Sensu, use sensuctl asset add:

The response should be similar to this example:

NOTE: Dynamic runtime assets are not required to use Sensu Go.
You can install Sensu plugins
using the sensu-install tool or a confguration management solution.

sensuctl asset add sensu/sensu-pagerduty-handler:2.2.0 -r pagerduty-handler

fetching bonsai asset: sensu/sensu-pagerduty-handler:2.2.0

added asset: sensu/sensu-pagerduty-handler:2.2.0

You have successfully added the Sensu asset resource, but the asset will not get

downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the

appropriate

resource, populate the "runtime_assets" feld with ["pagerduty-handler"].

NOTE: Specify the asset version you want to install to maintain the stability of your observability
infrastructure.
If you do not specify a version to install, Sensu automatically installs the latest

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

This example uses the -r (rename) fag to specify a shorter name for the asset: pagerduty-
handler .

You can also open the Release Assets tab on asset pages in Bonsai to download the asset defnition
for your Sensu backend platform and architecture.

If you are using a Sensu package, the asset is installed at /var/cache .
If you are using a Sensu
Docker image, the asset is installed at /var/lib .

Adjust the asset defnition

Asset defnitions tell Sensu how to download and verify the asset when required by a check, flter,
mutator, or handler.

After you add or download the asset defnition, open the fle and adjust the namespace and flters
for your Sensu instance.
Here’s the asset defnition for version 2.2.0 of the sensu/sensu-pagerduty-
handler asset for Linux AMD64:

version, which may include breaking changes.

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

type: Asset

api_version: core/v2

metadata:

 annotations:

 io.sensu.bonsai.api_url: https://bonsai.sensu.io/api/v1/assets/sensu/sensu-

pagerduty-handler

 io.sensu.bonsai.name: sensu-pagerduty-handler

 io.sensu.bonsai.namespace: sensu

 io.sensu.bonsai.tags: handler

 io.sensu.bonsai.tier: Supported

 io.sensu.bonsai.url: https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-

handler

 io.sensu.bonsai.version: 2.2.0

YML

https://bonsai.sensu.io/
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

 name: pagerduty-handler

spec:

 builds:

 - flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 headers: null

 sha512:

adc6ee846b88a792cc0f384a942f8b7ff727c7d7cf6a3012a0bf97ae4bef770503f9d5c26f756047559c

145ac01c62d4db9af8574d0cc451a176f1be29f52ffc

 url:

https://assets.bonsai.sensu.io/87f00332d6f36f59ee188e9e2a94a2b84172d134/sensu-

pagerduty-handler_2.2.0_linux_amd64.tar.gz

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "annotations": {

 "io.sensu.bonsai.api_url": "https://bonsai.sensu.io/api/v1/assets/sensu/sensu-

pagerduty-handler",

 "io.sensu.bonsai.name": "sensu-pagerduty-handler",

 "io.sensu.bonsai.namespace": "sensu",

 "io.sensu.bonsai.tags": "handler",

 "io.sensu.bonsai.tier": "Supported",

 "io.sensu.bonsai.url": "https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-

handler",

 "io.sensu.bonsai.version": "2.2.0"

 },

 "name": "pagerduty-handler"

 },

 "spec": {

 "builds": [

 {

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": null,

 "sha512":

JSON

Filters for check dynamic runtime assets should match entity platforms.
Filters for handler and flter
dynamic runtime assets should match your Sensu backend platform.
If the provided flters are too
restrictive for your platform, replace os and arch with any supported entity system attributes (for
example, entity.system.platform_family == 'rhel').
You may also want to customize the asset
name to refect the supported platform (for example, pagerduty-handler-linux) and add custom

attributes with labels and annotations .

Enterprise-tier dynamic runtime assets (like the ServiceNow and Jira event handlers) require a
Sensu commercial license.
For more information about commercial features and to activate your
license, read Get started with commercial features.

Use sensuctl to verify that the asset is registered and ready to use:

Create a workfow

With the asset downloaded and registered, you can use it in a monitoring workfow.
Dynamic runtime
assets may provide executable plugins intended for use with a Sensu check, handler, mutator, or hook,
or JavaScript libraries intended to provide functionality for use in event flters.
The details in Bonsai are
the best resource for information about each asset’s capabilities and confguration.

"adc6ee846b88a792cc0f384a942f8b7ff727c7d7cf6a3012a0bf97ae4bef770503f9d5c26f756047559

c145ac01c62d4db9af8574d0cc451a176f1be29f52ffc",

 "url":

"https://assets.bonsai.sensu.io/87f00332d6f36f59ee188e9e2a94a2b84172d134/sensu-

pagerduty-handler_2.2.0_linux_amd64.tar.gz"

 }

]

 }

}

sensuctl asset list --format yaml

SHELL

sensuctl asset list --format wrapped-json

SHELL

https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler

For example, to use the Sensu PagerDuty Handler asset, you would create a pagerduty handler that
includes your PagerDuty service API key in place of SECRET and pagerduty-handler as a runtime
asset:

type: Handler

api_version: core/v2

metadata:

 name: pagerduty

spec:

 command: sensu-pagerduty-handler

 env_vars:

 - PAGERDUTY_TOKEN=SECRET

 flters:

 - is_incident

 runtime_assets:

 - pagerduty-handler

 timeout: 10

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "pagerduty"

 },

 "spec": {

 "type": "pipe",

 "command": "sensu-pagerduty-handler",

 "env_vars": [

 "PAGERDUTY_TOKEN=SECRET"

],

 "runtime_assets": [

 "pagerduty-handler"

],

 "timeout": 10,

 "flters": [

 "is_incident"

JSON

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

Save the defnition to a fle (for example, pagerduty-handler.yml or pagerduty-handler.json),
and add it to Sensu with sensuctl:

Now that Sensu can create incidents in PagerDuty, you can automate this workfow by adding the
pagerduty handler to your Sensu service check defnitions.
Read Monitor server resources to learn

more.

Next steps

Read these resources for more information about using dynamic runtime assets in Sensu:

Follow Send PagerDuty alerts with Sensu to confgure a check that generates status events and a
handler that sends Sensu alerts to PagerDuty for non-OK events.

]

 }

}

sensuctl create --fle pagerduty-handler.yml

SHELL

sensuctl create --fle pagerduty-handler.json

SHELL

Assets reference

Asset format specifcation

Share assets on Bonsai

Featured Integrations

Sensu integrations include plugins, libraries, and runtimes that extend Sensu’s functionality and allow
you to automate your monitoring and observability workfows.
You can also rely on Sensu’s integrations
to get work done with Sensu as part of your existing workfows.

Integrations are service-specifc and have different setup and confguration requirements.
Each
integration has self-contained documentation with in-depth information about how to install and use it.
Many of the featured integrations include curated quick-start templates that you only need to edit to
match your confguration.

Although this category focuses on our most popular featured integrations, you can fnd more
supported-, Enterprise-, and community-tier integrations at Bonsai, the Sensu asset hub.

Alerting and incident management

Auto-remediation

Deregistration

Email

Jira

PagerDuty

ServiceNow

Slack

Ansible

Rundeck

SaltStack

Chef

https://bonsai.sensu.io/

Time-series and long-term event storage

EC2

Puppet

Elasticsearch

Graphite

InfuxDB

OpenTSDB

Prometheus

Sumo Logic

TimescaleDB

Wavefront

Ansible integration

The Sensu Ansible Handler plugin is a Sensu handler that launches Ansible Tower job templates for
automated remediation based on Sensu observability event data.

Features

The Sensu Ansible Handler plugin supports both Ansible Tower and Ansible AWX implementations of
the Ansible Tower API, authenticating using Ansible Tower API tokens.

Get the plugin

For a turnkey experience with the Sensu Ansible Handler plugin, use the Sensu Catalog in the web UI
to confgure and install it.
Or, use our curated, confgurable quick-start template to integrate Sensu with
your existing Ansible Tower workfows.

COMMERCIAL FEATURE : Access the Sensu Ansible Handler integration in the packaged Sensu
Go distribution.
For more information, read Get started with commercial features.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Specify a default Ansible Tower job template for remediation actions for all checks and use
check annotations to override the default as needed on a check-by check-basis.

Automatically limit Ansible jobs to the host that matches the Sensu entity name encoded in a
Sensu event.

Optional job template requests: use Sensu check annotations to specify a set of Ansible Tower
job template requests to run for matching Sensu event occurrence and severity conditions.

Keep your Ansible Tower host and auth token secure with Sensu environment variables and
secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-ansible-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/blob/docs-archive/integrations/ansible/ansible-tower-handler.yaml
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

You can also add the Sensu Ansible Handler plugin with a dynamic runtime asset from Bonsai, the
Sensu asset hub, to build your own workfow or integrate Sensu with your existing Ansible workfows.
Dynamic runtime assets are shareable, reusable packages that make it easier to deploy Sensu
plugins.

Confguration management

Use the offcial Sensu Go Ansible Collection for confguration management for your Sensu instance.
The documentation site includes installation instructions, example playbooks, and module references

https://bonsai.sensu.io/assets/sensu/sensu-ansible-handler
https://galaxy.ansible.com/sensu/sensu_go
https://sensu.github.io/sensu-go-ansible/

Chef integration

The Sensu Chef Handler plugin is a Sensu handler that deletes a Sensu entity with a failing keepalive
check when the entity’s corresponding Chef node no longer exists.

Features

Get the plugin

Add the Sensu Chef Handler plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub, to
build your own workfow or integrate Sensu with your existing Chef workfows.
Dynamic runtime assets
are shareable, reusable packages that make it easier to deploy Sensu plugins.

Confguration management

Use the offcial Chef Cookbook for Sensu Go for confguration management for your Sensu instance.

NOTE: The Sensu Chef Handler plugin is an example of Sensu’s deregistration integrations.
To fnd
more integrations, search Bonsai, the Sensu asset hub.

Use Sensu annotations to override Sensu entity names with corresponding Chef node names.

Keep your sensitive API authentication information secure with Sensu environment variables
and secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-chef-handler
https://bonsai.sensu.io/assets/sensu/sensu-chef-handler
https://supermarket.chef.io/cookbooks/sensu-go
https://bonsai.sensu.io/

EC2 integration

The Sensu EC2 Handler plugin is a Sensu handler that checks an AWS EC2 instance and removes it
from Sensu if it is not in one of the specifed states.

Features

Get the plugin

For a turnkey experience with the Sensu EC2 Handler plugin, use our curated, confgurable quick-start
template to integrate Sensu with your existing AWS EC2 workfows.

You can also add the Sensu EC2 Handler plugin with a dynamic runtime asset from Bonsai, the Sensu
asset hub, to build your own workfow or integrate Sensu with your existing EC2 workfows.
Dynamic
runtime assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

More resources

Set up a limited service account with the access and permissions required to automatically remove
AWS EC2 instances using the Sensu EC2 Handler integration.

NOTE: The Sensu EC2 Handler plugin is an example of Sensu’s deregistration integrations.
To fnd
more integrations, search Bonsai, the Sensu asset hub.

Tunable arguments: use Sensu annotations to set custom instance ID, instance ID labels,
timeouts, and more in EC2.

Specify custom values for Sensu event metric points via metric tags.

Keep your AWS EC2 API token, username, and password secure with Sensu environment
variables and secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler
https://github.com/sensu/catalog/blob/docs-archive/integrations/aws/aws-ec2-deregistration.yaml
https://github.com/sensu/catalog/blob/docs-archive/integrations/aws/aws-ec2-deregistration.yaml
https://bonsai.sensu.io/assets/sensu/sensu-ec2-handler
https://bonsai.sensu.io/

Elasticsearch integration

The Sensu Elasticsearch Handler plugin is a Sensu handler that sends observation data from Sensu
events and metrics to Elasticsearch.
With this handler, the Sensu observation data you send to
Elasticsearch is available for indexing and visualization in Kibana.

Features

Get the plugin

For a turnkey experience with the Sensu Elasticsearch Handler plugin, use the Sensu Catalog in the

COMMERCIAL FEATURE : Access the Sensu Elasticsearch Handler integration in the packaged
Sensu Go distribution.
For more information, read Get started with commercial features.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Query metrics points within Elasticsearch: the handler automatically mutates metrics data by
creating a top-level object with metric point names and their associated values.

Index entire events for searching within Kibana.

Use daily, weekly, monthly, and yearly index specifcation (for example, sensu_events-2020-
11-10).

Omit the transmission of certain redundant event felds to reduce the number of items indexed.

Specify custom values for Sensu event metric points via metric tags.

Use event-based templating to include observation data from event attributes to add
meaningful, actionable context.

Keep your Elasticsearch username and password secure with Sensu environment variables
and secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-elasticsearch-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

web UI to confgure and install it.
Or, use our curated, confgurable quick-start template for events and
metrics data storage.

You can also add the Sensu Elasticsearch Handler plugin with a dynamic runtime asset from Bonsai,
the Sensu asset hub, to build your own workfow or integrate Sensu with your existing Elasticsearch
workfows.
Dynamic runtime assets are shareable, reusable packages that make it easier to deploy
Sensu plugins.

https://github.com/sensu/catalog/blob/docs-archive/integrations/elasticsearch/elasticsearch.yaml
https://bonsai.sensu.io/assets/sensu/sensu-elasticsearch-handler

Email integration

The Sensu Email Handler plugin is a Sensu handler that sends email alerts based on your event data.
With this handler, Sensu can send email messages to the email addresses you specify based on event
data generated by your Sensu checks.

Features

The Sensu Email Handler plugin supports the login authentication mechanisms required for use with
Google Mail, Offce 365, and other standards-based email providers and transports.

Get the plugin

For a turnkey experience with the Sensu Email Handler plugin, use the Sensu Catalog in the web UI to
confgure and install it.
Or, use our curated, confgurable quick-start template to integrate Sensu with
your existing workfows and send email alerts.

You can also add the Sensu Email Handler plugin with a dynamic runtime asset from Bonsai, the
Sensu asset hub, to build your own workfow or integrate Sensu with your existing email workfows.
Dynamic runtime assets are shareable, reusable packages that make it easier to deploy Sensu
plugins.

More resources

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Use event-based templating to include observation data from event attributes to add
meaningful, actionable context to your email alert messages.

Keep your email provider username and password secure with Sensu environment variables
and secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/blob/docs-archive/integrations/email/email.yaml
https://bonsai.sensu.io/assets/sensu/sensu-email-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Walk through adding and confguring the Sensu Email Handler asset in the Send email alerts with the
Sensu Go Email Handler guide.

Graphite integration

The Sensu Graphite Handler plugin is a Sensu handler that sends Sensu metrics to the time-series
database Graphite so you can store, instrument, and visualize Sensu metrics data.

Features

Get the plugin

For a turnkey experience with the Sensu Graphite Handler plugin, use our curated, confgurable quick-
start template to integrate Sensu with your existing workfows and store Sensu metrics in Graphite.

To build your own workfow or integrate Sensu with existing workfows, add the Sensu Graphite
Handler plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub.
Dynamic runtime
assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

NOTE: The Sensu Graphite Handler plugin is an example of Sensu’s time-series and long-term
event storage integrations.
To fnd more integrations, search Bonsai, the Sensu asset hub.

Transform metrics to Graphite format: extract and transform the metrics you collect from
different sources in formats like Infux, Nagios, and OpenTSDB and populate them into
Graphite.

Specify custom values for Sensu event metric points via metric tags.

Keep your Graphite host and port secure with Sensu environment variables and secrets
management.

https://bonsai.sensu.io/assets/sensu/sensu-go-graphite-handler
https://github.com/sensu/catalog/blob/docs-archive/integrations/graphite/graphite.yaml
https://github.com/sensu/catalog/blob/docs-archive/integrations/graphite/graphite.yaml
https://bonsai.sensu.io/assets/sensu/sensu-go-graphite-handler
https://bonsai.sensu.io/assets/sensu/sensu-go-graphite-handler
https://bonsai.sensu.io/

InfuxDB integration

The Sensu InfuxDB Handler plugin is a Sensu handler that sends Sensu metrics to the time-series
database InfuxDB so you can store, instrument, and visualize Sensu metrics data.
You can also use the
Sensu InfuxDB Handler integration to create metrics from Sensu status check results for long-term
storage in InfuxDB.

Features

Get the plugin

For a turnkey experience with the Sensu InfuxDB Handler plugin, use the Sensu Catalog in the web UI
to confgure and install it.
Or, use our curated, confgurable quick-start template to integrate Sensu with
your existing workfows and store Sensu metrics in InfuxDB.

To build your own workfow or integrate Sensu with existing workfows, add the Sensu InfuxDB
Handler plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub.
Dynamic runtime
assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Transform metrics to InfuxDB format: extract and transform the metrics you collect from
different sources in formats like Graphite, OpenTSDB, Nagios, and Infux and populate them
into InfuxDB.

Mutate check status into metrics to be stored in InfuxDB.

Specify custom values for Sensu event metric points via metric tags.

Keep your InfuxDB username and password secure with Sensu environment variables and
secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/blob/docs-archive/integrations/influxdb/influxdb.yaml
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Jira integration

The Sensu Jira Handler plugin is a Sensu handler that creates and updates Jira issues based on
observation data from Sensu events.

Features

Get the plugin

For a turnkey experience with the Sensu Jira Handler plugin, use our curated, confgurable quick-start
template to send alerts based on Sensu events to Jira Service Desk.

Add the Sensu Jira Handler plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub, to
build your own workfow or integrate Sensu with your existing Jira workfows.
Dynamic runtime assets
are shareable, reusable packages that make it easier to deploy Sensu plugins.

COMMERCIAL FEATURE : Access the Sensu Jira Handler integration in the packaged Sensu Go
distribution.
For more information, read Get started with commercial features.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Tunable arguments: use Sensu annotations to set custom project names, issue types,
resolution states, and more in Jira

Use event-based templating to include observation data from event attributes to add
meaningful, actionable context.

Keep your Jira username, password, and API token secure with Sensu environment variables
and secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-jira-handler
https://github.com/sensu/catalog/blob/docs-archive/integrations/jira/jira-servicedesk.yaml
https://github.com/sensu/catalog/blob/docs-archive/integrations/jira/jira-servicedesk.yaml
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

OpenTSDB integration

The Sensu OpenTSDB Handler plugin is a Sensu handler that sends Sensu metrics to an OpenTSDB
server via its Telnet-style API.
This allows you to extract, tag, and store Sensu metrics data in an
OpenTSDB database.

Features

Get the plugin

To build your own workfow or integrate Sensu with existing workfows, add the Sensu OpenTSDB
Handler plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub.
Dynamic runtime
assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

NOTE: The Sensu OpenTSDB Handler plugin is an example of Sensu’s time-series and long-term
event storage integrations.
To fnd more integrations, search Bonsai, the Sensu asset hub.

Transform metrics to OpenTSDB format: extract and transform the metrics you collect from
different sources in formats like Graphite, Infux, and Nagios and populate them into
OpenTSDB.

Specify custom values for Sensu event metric points via metric tags.

https://bonsai.sensu.io/assets/sensu/sensu-opentsdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-opentsdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-opentsdb-handler
https://bonsai.sensu.io/

PagerDuty integration

The Sensu PagerDuty Handler plugin is a Sensu handler that manages PagerDuty incidents and
operator alerts.
With this handler, Sensu can trigger and resolve PagerDuty incidents according to the
PagerDuty schedules, notifcations, and escalation, response, and orchestration workfows you already
have confgured.

Features

Get the plugin

For a turnkey experience with the Sensu PagerDuty Handler plugin, use the Sensu Catalog in the web
UI to confgure and install it.
Or, use our curated, confgurable quick-start template for incident
management to integrate Sensu with your existing PagerDuty workfows.

To build your own workfow or integrate Sensu with existing workfows, add the Sensu PagerDuty
Handler plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub.
Dynamic runtime
assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Optional severity mapping: match Sensu check statuses with PagerDuty incident severities via
a JSON document.

Use event-based templating to create deduplication key arguments to group repeated alerts
into one incident and summary template arguments to make sure your PagerDuty notifcations
include the event data your operators need to take action.

Authenticate and route alerts based on PagerDuty teams using check and agent annotations.

Keep your PagerDuty integration key secure with Sensu environment variables and secrets
management.

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/blob/docs-archive/integrations/pagerduty/pagerduty-handler.yaml
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

More resources
Follow the Use dynamic runtime assets to install plugins guide to learn how to add and
confgure Sensu PagerDuty Handler asset.

Demo the Sensu PagerDuty Handler integration with the Send Sensu Go alerts to PagerDuty
guide.

Prometheus integrations

Sensu has two Prometheus plugins: the Prometheus Collector and the Prometheus Pushgateway
Handler.
Both help you get Sensu observability data into Prometheus.

Sensu Prometheus Collector

The Sensu Prometheus Collector plugin is a Sensu check that collects metrics from a Prometheus
exporter or the Prometheus query API and outputs the metrics to stdout in Infux, Graphite, or JSON
format.

Features

Sensu Prometheus Pushgateway Handler

The Sensu Prometheus Pushgateway Handler plugin is a Sensu handler that sends Sensu metrics to a
Prometheus Pushgateway, which Prometheus can then scrape.

Features

NOTE: The Sensu Prometheus plugins are examples of Sensu’s time-series and long-term event
storage integrations.
To fnd more integrations, search Bonsai, the Sensu asset hub.

Turn Sensu into a super-powered Prometheus metric poller with Sensu’s publish/subscribe
model and client auto-registration (discovery) capabilities.

Confgure your Sensu instance to deliver the collected metrics to a time-series database like
InfuxDB or Graphite.

Specify custom values for Sensu event metric points via metric tags.

Keep metrics endpoint authentication information secure with Sensu environment variables and
secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-prometheus-collector
https://bonsai.sensu.io/assets/portertech/sensu-prometheus-pushgateway-handler
https://bonsai.sensu.io/
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Get the plugins

To build your own workfow or integrate Sensu with existing workfows, add the Sensu Prometheus
plugins with a dynamic runtime asset from Bonsai, the Sensu asset hub.
Dynamic runtime assets are
shareable, reusable packages that make it easier to deploy Sensu plugins.

Collect metrics by several means, including 20-year-old Nagios plugins with perfdata, and store
them in Prometheus.

Use default Prometheus metric type, job name, and instance name or specify custom values
for Sensu event metric points via metric tags.

Sensu Prometheus Collector plugin

Sensu Prometheus Pushgateway Handler

https://bonsai.sensu.io/assets/sensu/sensu-prometheus-collector
https://bonsai.sensu.io/assets/portertech/sensu-prometheus-pushgateway-handler

Puppet integration

The Sensu Puppet Keepalive Handler plugin is a Sensu handler that deletes a Sensu entity with a
failing keepalive check when the entity’s corresponding Puppet node no longer exists or is
deregistered.

Features

Get the plugin

Add the Sensu Puppet Keepalive Handler plugin with a dynamic runtime asset from Bonsai, the Sensu
asset hub, to build your own workfow or integrate Sensu with your existing Puppet workfows.
Dynamic
runtime assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

Confguration management

Use the partner-supported Sensu Puppet module for confguration management for your Sensu
instance.

NOTE: The Sensu Puppet Keepalive Handler plugin is an example of Sensu’s deregistration
integrations.
To fnd more integrations, search Bonsai, the Sensu asset hub.

Use Sensu annotations to override Sensu entity names with corresponding Puppet node
names.

Keep sensitive API authentication information secure with Sensu environment variables and
secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-puppet-handler
https://bonsai.sensu.io/assets/sensu/sensu-puppet-handler
https://forge.puppet.com/modules/sensu/sensu
https://bonsai.sensu.io/

Rundeck integration

The Sensu Rundeck Handler plugin is a Sensu handler that initiates Rundeck jobs for automated
remediation based on Sensu event data.

Features

The Sensu Rundeck Handler plugin supports both Rundeck Enterprise and Rundeck Open Source and
standard job invocation or webhook invocation.

Get the plugin

For a turnkey experience with the Sensu Rundeck Handler plugin, use one of our curated, confgurable
quick-start templates:

COMMERCIAL FEATURE : Access the Sensu Rundeck Handler integration in the packaged
Sensu Go distribution.
For more information, read Get started with commercial features.

NOTE: The Sensu Rundeck Handler plugin is an example of Sensu’s auto-remediation
integrations.
To fnd more integrations, search Bonsai, the Sensu asset hub.

Specify Rundeck jobs and webhooks along with trigger parameters for remediation actions for
a check with Sensu annotations.

Use event-based templating to make use of event data to specify the node to target for
rememdiation.

Keep your Rundeck auth token and webhook secure with Sensu environment variables and
secrets management.

Rundeck job

Rundeck webhook

https://bonsai.sensu.io/assets/sensu/sensu-rundeck-handler
https://bonsai.sensu.io/assets/sensu/sensu-rundeck-handler
https://bonsai.sensu.io/
https://github.com/sensu/catalog/blob/docs-archive/integrations/rundeck/rundeck.yaml
https://github.com/sensu/catalog/blob/docs-archive/integrations/rundeck/rundeck-webhook.yaml

You can also add the Sensu Rundeck Handler plugin with a dynamic runtime asset from Bonsai, the
Sensu asset hub, to build your own workfow or integrate Sensu with your existing Rundeck workfows.
Dynamic runtime assets are shareable, reusable packages that make it easier to deploy Sensu
plugins.

https://bonsai.sensu.io/assets/sensu/sensu-rundeck-handler

SaltStack integration

The Sensu SaltStack Handler plugin is a Sensu handler that launches SaltStack functions for
automated remediation based on Sensu event data.

Features

The Sensu SaltStack Handler plugin supports both SaltStack Enterprise and SaltStack Open Source
as well as SaltStack functions such as service , state , saltutil , and grains (including arg
and kwarg arguments).

Get the plugin

For a turnkey experience with the Sensu SaltStack Handler plugin, use our curated, confgurable
quick-start template to integrate Sensu with your existing SaltStack workfows.

You can also add the Sensu SaltStack Handler plugin with a dynamic runtime asset from Bonsai, the
Sensu asset hub, to build your own workfow or integrate Sensu with your existing SaltStack workfows.

COMMERCIAL FEATURE : Access the Sensu SaltStack Handler integration in the packaged
Sensu Go distribution.
For more information, read Get started with commercial features.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Specify SaltStack functions and trigger parameters for remediation actions for a check with
Sensu annotations.

Use event-based templating to specify the minion to target for rememdiation based on event
data.

Keep your SaltStack username and password secure with Sensu environment variables and
secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-saltstack-handler
https://bonsai.sensu.io/assets/sensu/sensu-saltstack-handler
https://github.com/sensu/catalog/blob/docs-archive/integrations/saltstack/saltstack-handler.yaml
https://bonsai.sensu.io/assets/sensu/sensu-saltstack-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Dynamic runtime assets are shareable, reusable packages that make it easier to deploy Sensu
plugins.

ServiceNow integration

The Sensu ServiceNow Handler plugin is a Sensu handler that creates and updates ServiceNow
incidents and events based on observation data from Sensu events.

Features

Get the plugin

For a turnkey experience with the Sensu ServiceNow Handler plugin, use one of our curated,
confgurable quick-start templates:

COMMERCIAL FEATURE : Access the Sensu ServiceNow Handler integration in the packaged
Sensu Go distribution.
For more information, read Get started with commercial features.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Automatically create a ServiceNow Confguration Item if none currently exists for a particular
Sensu entity.

Tunable arguments: use Sensu annotations to set custom incident notes, event information,
Confguration Item descriptions, and more in ServiceNow.

Use event-based templating to include observation data from event attributes to add
meaningful, actionable context to ServiceNow incidents, events, and Confguration Items.

Keep your ServiceNow username and password secure with Sensu environment variables and
secrets management.

ServiceNow Incident Management: send Sensu observability alerts to ServiceNow Incident
Management.

ServiceNow Event Management: send Sensu observability data to ServiceNow Event

https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/blob/docs-archive/integrations/servicenow/servicenow-incident.yaml
https://github.com/sensu/catalog/blob/docs-archive/integrations/servicenow/servicenow-events.yaml

You can also add the Sensu ServiceNow Handler plugin with a dynamic runtime asset from Bonsai,
the Sensu asset hub, to build your own workfow or integrate Sensu with your existing ServiceNow
workfows.
Dynamic runtime assets are shareable, reusable packages that make it easier to deploy
Sensu plugins.

Management.

ServiceNow Confguration Management Database (CMDB): register Sensu entities as
confguration items in ServiceNow CMDB.

https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://github.com/sensu/catalog/blob/docs-archive/integrations/servicenow/servicenow-cmdb.yaml

Slack integration

The Sensu Slack Handler plugin is a Sensu handler that sends alerts based on your event data.
With
this handler, Sensu can trigger alerts to the Slack channels you specify based on event data generated
by your Sensu checks.

Features

Get the plugin

For a turnkey experience with the Sensu Slack Handler plugin, use the Sensu Catalog in the web UI to
confgure and install it.
Or, use our curated, confgurable quick-start template to integrate Sensu with
your existing workfows and send alerts to Slack channels.

To build your own workfow or integrate Sensu with existing workfows, add the Sensu Slack Handler
plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub.
Dynamic runtime assets are
shareable, reusable packages that make it easier to deploy Sensu plugins.

More resources

Read Send Slack alerts with handlers to learn how to add and confgure the Sensu Slack Handler
plugin.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Use event-based templating to include observation data from event attributes in your alerts to
add meaningful, actionable context.

Keep your Slack webhook secure with Sensu environment variables and secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/blob/docs-archive/integrations/slack/slack.yaml
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Sumo Logic integration

The Sensu Sumo Logic Handler plugin is a Sensu handler that sends Sensu observability events and
metrics to a Sumo Logic HTTP Logs and Metrics Source.
This handler sends Sensu events as log
entries, a set of metrics, or both, depending on the mode of operation you specify.

Features

Get the plugin

For a turnkey experience with the Sensu Sumo Logic Handler plugin, use the Sensu Catalog in the
web UI to confgure and install it.
Or, use our curated, confgurable quick-start templates for event
storage and metric storage to integrate Sensu with your existing workfows and send observation data
to an HTTP Logs and Metrics Source.

To build your own workfow or integrate Sensu with existing workfows, add the Sensu Sumo Logic
Handler plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub.
Dynamic runtime
assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Query events and metrics points within Sumo Logic: the handler automatically mutates metrics
data by creating a top-level object with metric point names and their associated values.

Tunable arguments: use Sensu annotations to set Sumo Logic source name, host, and
category; metric dimensions; log felds; and more.

Use event-based templating to include observation data from event attributes to add
meaningful, actionable context.

Keep your Sumo Logic HTTP Logs and Metrics Source URL secure with Sensu environment
variables and secrets management.

https://bonsai.sensu.io/assets/sensu/sensu-sumologic-handler
https://help.sumologic.com/03Send-Data/Sources/02Sources-for-Hosted-Collectors/HTTP-Source
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/blob/docs-archive/integrations/sumologic/sumologic-events.yaml
https://github.com/sensu/catalog/blob/docs-archive/integrations/sumologic/sumologic-events.yaml
https://github.com/sensu/catalog/blob/docs-archive/integrations/sumologic/sumologic-metrics-handler.yaml
https://bonsai.sensu.io/assets/sensu/sensu-sumologic-handler
https://bonsai.sensu.io/assets/sensu/sensu-sumologic-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

More resources

Read Send data to Sumo Logic with Sensu to learn how to add and confgure a handler that uses the
Sensu Sumo Logic Handler plugin.

TimescaleDB integration

The Sensu TimescaleDB Handler plugin is a Sensu handler that sends Sensu metrics to the time-
series database TimescaleDB so you can store, instrument, and visualize Sensu metrics data.

Features

Get the plugin

For a turnkey experience with the Sensu TimescaleDB Handler plugin, use the Sensu Catalog in the
web UI to confgure and install it.

To build your own workfow or integrate Sensu with existing workfows, you can also add the Sensu
TimescaleDB Handler plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub.
Dynamic
runtime assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Transform metrics to TimescaleDB format: extract and transform the metrics you collect from
different sources in formats like Graphite, OpenTSDB, Nagios, and Infux and populate them
into TimescaleDB.

Specify custom values for Sensu event metric points via metric tags.

https://github.com/sensu/catalog/blob/docs-archive/integrations/timescaledb/timescaledb.yaml
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/blob/docs-archive/integrations/timescaledb/timescaledb.yaml
https://github.com/sensu/catalog/blob/docs-archive/integrations/timescaledb/timescaledb.yaml
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Wavefront integration

The Sensu Wavefront Handler plugin is a Sensu handler that sends Sensu metrics to Wavefront via a
proxy, which allows you to store, instrument, and visualize Sensu metrics data in an Wavefront
database.

Features

Get the plugin

For a turnkey experience with the Sensu Wavefront Handler plugin, use the Sensu Catalog in the web
UI to confgure and install it.
Or, use our curated, confgurable quick-start template to integrate Sensu
with your existing workfows and store Sensu metrics in Wavefront.

To build your own workfow or integrate Sensu with existing workfows, add the Sensu Wavefront
Handler plugin with a dynamic runtime asset from Bonsai, the Sensu asset hub.
Dynamic runtime
assets are shareable, reusable packages that make it easier to deploy Sensu plugins.

PRO TIP: Use the Sensu Catalog to enable this integration directly from your browser.
Follow the
Catalog prompts to confgure the Sensu resources you need and start processing your
observability data with a few clicks.

Transform metrics to Wavefront format: extract and transform the metrics you collect from
different sources in formats like Graphite, OpenTSDB, Nagios, and Infux and populate them
into Wavefront.

Specify additional tags to include when processing metrics with the Wavefront plugin’s tags

fag or metric tags.

Keep your Graphite host and port secure with Sensu environment variables and secrets
management.

https://bonsai.sensu.io/assets/sensu/sensu-wavefront-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/
https://github.com/sensu/catalog/blob/docs-archive/integrations/wavefront/wavefront.yaml
https://bonsai.sensu.io/assets/sensu/sensu-wavefront-handler
https://bonsai.sensu.io/assets/sensu/sensu-wavefront-handler
http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Learn Sensu

The Learn Sensu category includes tools to help you understand and start using Sensu, the industry-
leading observability pipeline for multi-cloud monitoring, consolidating monitoring tools, and flling
observability gaps at scale.

Concepts and terminology

If you’re new to Sensu, start with a basic review of Sensu concepts and terminology, which includes
defnitions and links to relevant reference documentation for more in-depth information.

To visualize how Sensu concepts work together in the observability pipeline, take the tour — follow the
Next buttons on each page.

Sensu Go workshop

The Sensu Go workshop is a collection of resources designed to help you learn Sensu:

Additional workshop materials are available for advanced use cases, including instructor-led
workshops with a multi-tenant sandbox environment and alternative sandbox environments based on
popular Sensu reference architectures like InfuxDB, TimescaleDB, Elasticsearch, and Prometheus.

Follow the workshop lessons to build your frst observability workfow with Sensu.

Live demo

Explore a live demo of the Sensu web UI: view the Entities page to learn what Sensu is monitoring, the
Events page for the latest observability events, and the Checks page for active service and metric
checks.
The live demo also gives you a chance to try commands with sensuctl, the Sensu command

Interactive lessons designed for self-guided learning.

Detailed instructions for Linux, macOS, and Windows workstations.

A local sandbox environment for use with the workshop (via Docker Compose or Vagrant)

https://github.com/sensu/sensu-go-workshop#overview
https://github.com/sensu/sensu-go-workshop#overview

line tool.

Monitor containers and applications

Follow the instructions for Getting Started with Sensu Go on Kubernetes to deploy a Sensu cluster and
an example application (NGINX) into Kubernetes with a Sensu agent sidecar.
You’ll also learn to use
sensuctl to confgure Nagios-style monitoring checks to monitor the example application with a Sensu
sidecar.

https://github.com/sensu/sensu-k8s-quick-start

Glossary of Sensu concepts and
terminology

Agent

A lightweight client that runs on the infrastructure components you want to monitor.
Agents self-register
with the backend, send keepalive messages, and execute monitoring checks.
Each agent belongs to
one or more subscriptions that determine which checks the agent runs.
An agent can run checks on the
entity it’s installed on or connect to a remote proxy entity.
Read more about the Sensu agent.

Asset

An executable that a check, handler, or mutator can specify as a dependency.
Dynamic runtime assets
must be a tar archive (optionally gzipped) with scripts or executables within a bin folder.
At runtime, the
backend or agent installs required assets using the specifed URL.
Dynamic runtime assets let you
manage runtime dependencies without using confguration management tools.
Read more about
dynamic runtime assets.

Backend

A fexible, scalable observability pipeline.
The Sensu backend processes observation data (events)
using flters, mutators, and handlers.
It maintains confguration fles, stores recent observation data, and
schedules monitoring checks.
You can interact with the backend using the API, command line, and web
UI interfaces.
Read more about the Sensu backend.

Business service monitoring (BSM)

A feature that provides high-level visibility into the current health of your business services.
An example
business service is a company website, which might require several individual elements to have OK
status for the website to function (e.g. webservers, an inventory database, and a shopping cart).
With
business service monitoring (BSM), you could create a current status page for the company website

that displays the website’s overall status at a glance.

BSM requires two resources that work together to achieve top-down monitoring: service components
and rule templates.
Service components are the elements that make up your business services.
Rule
templates defne the monitoring rules that produce events for service components based on
customized evaluation expressions.

Read more about BSM, rule templates, and service components.

Catalog

The Sensu Catalog is an element of the Sensu web UI where you can fnd and install monitoring and
observability integrations.
An integration combines a Sensu plugin with a dynamic runtime asset and the
Sensu resource defnitions that use the plugin.
The Sensu Catalog includes integrations for standard
system checks and metrics collection as well as pipelines for sending Sensu data to third-party
logging, remediation, and incident management services.
Read more about the Sensu Catalog.

Check

A recurring check the agent runs to determine the state of a system component or collect metrics.
The
backend is responsible for storing check defnitions, scheduling checks, and processing observation
data (events).
Check defnitions specify the command to be executed, an interval for execution, one or
more subscriptions, and one or more handlers to process the resulting event data.
Read more about
checks.

Entity

Infrastructure components that you want to monitor.
Each entity runs an agent that executes checks and
creates events.
Events can be tied to the entity where the agent runs or a proxy entity that the agent
checks remotely.
Read more about entities.

Event

A representation of the state of an infrastructure component at a point in time.
The Sensu backend uses
events to power the observability pipeline.
Observation data in events include the result of a check or
metric (or both), the executing agent, and a timestamp.
Read more about events.

http://localhost:1313/sensu-go/6.8/web-ui/sensu-catalog/

Event flter

Logical expressions that handlers evaluate before processing observability events.
Event flters can
instruct handlers to allow or deny matching events based on day, time, namespace, or any attribute in
the observation data (event).
Read more about event flters.

Handler

A component of the observability pipeline that acts on events.
Handlers can send observability data to
an executable (or handler plugin), a TCP socket, or a UDP socket.
Read more about handlers.

Hook

A command the agent executes in response to a check result before creating an observability event.
Hooks create context-rich events by gathering relevant information based on check status.
Read more
about hooks.

Mutator

An executable the backend runs prior to a handler to transform observation data (events).
Read more
about mutators.

Pipeline

Resources composed of observation event processing workfows made up of flters, mutators, and
handlers.
Instead of specifying flters and mutators in handler defnitions, you can specify all three in a
single pipeline workfow.
Read more about pipelines.

Plugin

Executables designed to work with Sensu observation data (events) either as a check, mutator, or

handler plugin.
You can write your own check executables in Go, Ruby, Python, and more, or use one
of more than 200 plugins shared by the Sensu community.
Read more about plugins.

Proxy entities

Components of your infrastructure that can’t run the agent locally (like a network switch or a website)
but still need to be monitored.
Agents create events with information about the proxy entity in place of
the local entity when running checks with a specifed proxy entity ID.
Read more about proxy entities.

Role-based access control (RBAC)

Sensu’s local user management system.
RBAC lets you manage users and permissions with
namespaces, users, roles, and role bindings.
Read more about RBAC.

Resources

Objects within Sensu that you can use to specify access permissions in Sensu roles and cluster roles.
Resources can be specifc to a namespace (like checks and handlers) or cluster-wide (like users and
cluster roles).
Read more about resources.

Sensuctl

The Sensu command line tool that lets you interact with the backend.
You can use sensuctl to create
checks, view events, create users, manage clusters, and more.
Read more about sensuctl.

Silencing

Entries that allow you to suppress execution of event handlers on an ad-hoc basis.
Use silencing to
schedule maintenance without being overloaded with alerts.
Read more about silencing.

Subscriptions

Attributes used to indicate which entities will execute which checks.
For Sensu to execute a check, the
check defnition must include a subscription that matches the subscription of at least one Sensu entity.
Subscriptions allow you to confgure check requests in a one-to-many model for entire groups or
subgroups of entities rather than a traditional one-to-one mapping of confgured hosts or observability
checks.
Read more about subscriptions.

Token

A placeholder in a check defnition that the agent replaces with local information before executing the
check.
Tokens let you fne-tune check attributes (like thresholds) on a per-entity level while reusing the
check defnition.
Read more about tokens.

Live demonstration of Sensu

Try a live demo of the Sensu web UI.
Log in with username guest and password i<3sensu .

Explore the Entities page to learn what Sensu is monitoring, the Events page for the latest
observability events, and the Checks page for active service and metric checks.

You can also use the demo to try out sensuctl, the Sensu command line tool.
First, install sensuctl on
your workstation.
Then, confgure sensuctl to connect to the demo.

Run sensuctl confgure and enter the following information:

With sensuctl confgured, to view the latest observability events, run:

Read the sensuctl documentation to get started using sensuctl.

About the demo

The Caviar project shown in the demo monitors the Sensu docs site using a licensed Sensu cluster of
three backends.

Authentication method: username/password

Sensu Backend API URL: https://caviar.tf.sensu.io:8080

Namespace: default

Preferred output format: tabular

Username: guest

Password: i<3sensu

sensuctl event list

https://caviar.tf.sensu.io:3000/
https://caviar.tf.sensu.io:3000/default/entities
https://caviar.tf.sensu.io:3000/default/events
https://caviar.tf.sensu.io:3000/default/checks
https://docs.sensu.io/

	localhost
	Sensu Go
	Sensu Go release notes
	Get started with Sensu
	Supported platforms and distributions
	Get started with commercial features
	Sensu Plus
	Sensu Observability Pipeline
	Entities
	Entities reference
	Automatically register and deregister entities
	Monitor external resources with proxy entities
	Events
	Events reference
	Schedule observability data collection
	Agent reference
	Backend reference
	Checks reference
	Hooks reference
	Metrics reference
	Rule templates reference
	Service components reference
	Subscriptions reference
	Tokens reference
	Business service monitoring SDK
	Augment event data with check hooks
	Collect Prometheus metrics with Sensu
	Collect service metrics with Sensu checks
	Monitor Business Services
	Monitor server resources with checks
	Filter your observation data
	Event filters reference
	Sensu query expressions reference
	Reduce alert fatigue with event filters
	Route alerts with event filters
	Transform your observation data
	Mutators reference
	Process your observation data
	Handlers reference
	Pipelines reference
	Silencing reference
	Sumo Logic metrics handlers reference
	TCP stream handlers reference
	Aggregate metrics with the Sensu StatsD listener
	Create handler templates
	Plan maintenance windows with silencing
	Populate metrics in InfluxDB with handlers
	Send data to Sumo Logic with Sensu
	Send email alerts with a pipeline
	Send PagerDuty alerts with Sensu
	Send Slack alerts with a pipeline
	Operations
	Monitoring as code with Sensu
	Deploy Sensu
	Hardware requirements
	Install Sensu
	Deployment architecture for Sensu
	Configuration management
	Generate certificates for your Sensu installation
	Secure Sensu
	Secure PostgreSQL
	Run a Sensu cluster
	Multi-cluster visibility with federation
	Scale Sensu Go with Enterprise datastore
	Datastore reference
	Etcd replicators reference
	Control Access
	Configure single sign-on (SSO) authentication
	Use API keys to authenticate to Sensu
	Create a read-only user with role-based access control
	Create limited service accounts
	Active Directory (AD) reference
	Lightweight Directory Access Protocol (LDAP) reference
	OpenID Connect 1.0 protocol (OIDC) reference
	API keys reference
	Namespaces reference
	Role-based access control (RBAC) reference
	Maintain Sensu
	Upgrade Sensu
	Migrate from Sensu Core and Sensu Enterprise to Sensu Go
	Tune Sensu
	Troubleshoot Sensu
	License reference
	Monitor Sensu
	Log Sensu services with systemd
	Monitor Sensu with Sensu
	Health reference
	Ready reference
	Tessen reference
	Manage Secrets
	Use secrets management in Sensu
	Secrets reference
	Secrets providers reference
	Guides Index
	Sensuctl CLI
	Create and manage resources with sensuctl
	Back up and recover resources with sensuctl
	Filter responses with sensuctl
	Set environment variables with sensuctl
	Use sensuctl with Bonsai
	Web UI
	View and manage resources in the web UI
	Search in the web UI
	Configure the web UI
	Build business service monitoring
	Searches reference
	Web UI configuration reference
	Sensu Catalog
	Configure integrations in the Sensu Catalog
	Build a private catalog of Sensu integrations
	Catalog integrations reference
	Catalog API
	API
	Core API
	core/v2/apikeys
	core/v2/assets
	core/v2/checks
	core/v2/cluster
	core/v2/clusterrolebindings
	core/v2/clusterroles
	core/v2/entities
	core/v2/events
	core/v2/filters
	core/v2/handlers
	core/v2/hooks
	core/v2/mutators
	core/v2/namespaces
	core/v2/pipelines
	core/v2/rolebindings
	core/v2/roles
	core/v2/silenced
	core/v2/tessen
	core/v2/users
	Enterprise APIs
	enterprise/authentication/v2
	enterprise/bsm/v1
	enterprise/federation/v1
	enterprise/pipeline/v1
	enterprise/prune/v1alpha
	enterprise/searches/v1
	enterprise/secrets/v1
	enterprise/store/v1
	enterprise/web/v1
	Other APIs
	/auth
	/health
	/license
	/metrics
	/ready
	/version
	Reference Index
	Plugins
	Assets reference
	Plugins reference
	Install Sensu plugins
	Use dynamic runtime assets to install plugins
	Featured Integrations
	Ansible integration
	Chef integration
	EC2 integration
	Elasticsearch integration
	Email integration
	Graphite integration
	InfluxDB integration
	Jira integration
	OpenTSDB integration
	PagerDuty integration
	Prometheus integrations
	Puppet integration
	Rundeck integration
	SaltStack integration
	ServiceNow integration
	Slack integration
	Sumo Logic integration
	TimescaleDB integration
	Wavefront integration
	Learn Sensu
	Glossary of Sensu concepts and terminology
	Live demonstration of Sensu

	9zdDoxMzEzL3NlbnN1LWdvLzYuOC8A:
	button0:

	NlcnZhYmlsaXR5LXBpcGVsaW5lLwA=:
	button0:

	5lL29ic2VydmUtZW50aXRpZXMvAA==:
	button0:

	VsaW5lL29ic2VydmUtZXZlbnRzLwA=:
	button0:

	5lL29ic2VydmUtc2NoZWR1bGUvAA==:
	button0:

	VsaW5lL29ic2VydmUtZmlsdGVyLwA=:
	button0:

	5lL29ic2VydmUtdHJhbnNmb3JtLwA=:
	button0:

	VsaW5lL29ic2VydmUtcHJvY2Vzcy8A:
	button0:

