Sensu Go

Contents

Release Notes
Get Started with Sensu
Platforms and Distributions

Commercial Features

Observability Pipeline
Entities
Entities Reference
Auto-reqister and Deregister Entities
Monitor External Resources
Events
Events Reference
Schedule
Agent Reference
Backend Reference
Checks Reference
Hooks Reference
Metrics Reference

Rule Templates Reference
Service Components Reference

Subscriptions Reference
Tokens Reference

Busin ervice Monitoring SDK
Augment Event Data
Collect Prometheus Metrics
Collect Service Metrics
Monitor Busine ervices
Monitor Server Resources

Filter
Event Filters Reference

ensu Query Expressions Reference

Reduce Alert Fatigue
Route Alerts

Transform

Mutators Reference
Process

Handlers Reference

Send Slack Alerts

Silencing Reference
Aggregate StatsD Metrics
Create Handler Templates
Plan Maintenance Windows
Populate Metrics in InfluxDB
Send Data to Sumo Logic
Send Email Alerts

Send PagerDuty Alerts

Operations
Monitoring as Code
Deploy Sensu
Hardware Requirements
Install Sensu
Deployment Architecture

Configuration Management
Generate Cetrtificates

Secure Sensu
Run a Sensu Cluster

Reach Multi-cluster Visibility
Scale with Enterprise Datastore
Datastore Reference

Etcd Replicators Reference
Control Access

Configure SSO Authentication

Use API Keys

Create a Read-only User
Create Limited Service Accounts

AD Reference
LDAP Reference
OIDC Reference

APl Keys Reference

Namespaces Reference
RBAC Reference

Maintain Sensu

Upgrade Sensu

Migrate from Sensu Core and Sensu Enterprise
Tune Sensu

Troubleshoot
License Reference

Monitor Sensu
Log Sensu Services
Monitor Sensu with Sensu
Health Reference
Tessen Reference

Manage Secrets

Use Secrets Management
Secrets Reference

Secrets Providers Reference
Guides Index

Sensuctl CLI

Create and Manage Resources
Back Up and Recover Resources

Filter Responses
Set Environment Variables

Use sensuctl with Bonsai

Web Ul

View and Manage Resources
Build Business Service Monitoring
Search in the Web Ul

Configure the Web Ul
Searches Reference

Web Ul Configuration Reference
Pl

Core API
core/v2/apikeys
core/v2/assets
core/v2/checks
core/v2/cluster
core/v2/clusterrolebindings
core/v2/clusterroles
core/v2/entities
core/v2/events
core/v2/filters
core/v2/handlers
core/v2/hooks
core/v2/mutators

core/v2/namespaces

core/v2/rolebindings
core/v2/roles

core/v2/silenced
core/v2/tessen

core/v2/users

Enterprise APIs
enterprise/authentication/v2
enterprise/bsm/v1
enterprise/federation/v1
enterprise/prune/vialpha
enterprise/searches/v1
enterprise/secrets/v1
enterprise/store/v1

enterprise/web/v1
Other APls

[auth
[health
llicense
/metrics
/version

Reference Index

Plugins
Assets Reference
Plugins Reference
Install Plugins
Use Assets to Install Plugins

Featured Integrations
Ansible

Chef

EC2
Elasticsearch
Email
Graphite
InfluxDB

Jira
OpenTSDB
PagerDuty
Prometheus
Puppet
Rundeck
SaltStack
ServiceNow
Slack

Sumo Logic
TimescaleDB
Wavefront

Learn Sensu

Concepts and Terminology
Live Demo

Learn about licensing

Sensu is a complete solution for monitoring and observability at scale.Sensu Go is designed to give you
visibility into everything you care about: traditional server closets, containers, applications, the cloud,
and more.

ST or click any element in the Sensu observability pipeline to jump to it.

Sensu is an agent-based observability tool that you install on your organization’s infrastructure.The
Sensu backend gives you a flexible, automated pipeline to filter, transform, and process alerts and
metrics.

Sensu Go is operator-focused and developer-friendly and integrates with popular monitoring and
observability tools.Deploy Sensu Go for on-premises and public cloud infrastructures, containers, bare
metal, or any other environment.

Get started now and feel the #monitoringlove.

Filtered, context-rich alerts that improve incident response

Get meaningful alerts when and where you need them so you can reduce alert fatigue and speed up
incident response.Sensu gives you full control over your alerts with flexible event filters, check hooks
for context-rich notifications, reporting, observation data handling, and auto-remediation.

Plugins that extend functionality and integrate with existing
workflows

Sensu’s open architecture integrates with the tools and services you already use, like Ansible, EC2,
InfluxDB, PagerDuty, Puppet, Rundeck, Saltstack, Slack, and Sumo Logic.

Check out our featured integrations, search for more plugins in Bonsai, the Sensu asset hub, or write
your own Sensu plugins in any language.

Automate with agent registration-deregistration and check

https://docs.sensu.io/sensu-go/latest/commercial/
https://bonsai.sensu.io/

subscriptions

Sensu agents automatically register and dereqister themselves with the Sensu backend so you can
collect observation data about ephemeral infrastructure without getting overloaded with alerts.

Instead of setting up traditional one-to-one entity-to-check mapping, use Sensu’s subscriptions to
make sure your entities automatically run the appropriate checks for their functionality.

Built-in support for industry-standard tools

Know what’s going on everywhere in your system.Sensu supports industry-standard metric formats like
Nagios performance data, Graphite plaintext protocol, InfluxDB line protocol, OpenTSDB data
specification, Prometheus Exposition Text Format, and StatsD metrics.Use the Sensu agent to collect
metrics alongside check results, then use the Sensu observability pipeline to route observation data to
a time-series database like InfluxDB.

Intuitive APl with command line and web interfaces

The Sensu APl and the sensuctl _command-line tool allow you (and your internal customers) to
create checks, register entities, manage configuration, and more.The Sensu web Ul provides a unified
view of your entities, checks, and events, as well as a user-friendly silencing tool.

Commercial software based on open core

Sensu Go is a commercial product, based on an open source core that is freely available under a
permissive MIT License and publicly available on GitHub.Learn about our commercial support

packages and features designed for observability at scale.

Sensu Go is the latest version of Sensu, designed to be portable, straightforward to deploy, and
friendly to containerized and ephemeral environments.Sensu Inc. released Sensu Go OSS as open
source in 2017, and it is now a part of Sumo Logic Inc. (SUMO).

Sensu is a comprehensive monitoring and observability solution for enterprises, providing complete
visibility across every system, every protocol, every time — from Kubernetes to bare metal.

https://www.github.com/sensu/sensu-go/blob/main/LICENSE/
https://www.github.com/sensu/sensu-go/
https://sensu.io/support
https://sensu.io/support

Sensu Go release notes

7 6.4.3 release notes
71 6.4.2 release notes
7 6.4.1 release notes
71 6.4.0 release notes
7 6.3.0 release notes
7 6.2.7 release notes
7 6.2.6 release notes
1 6.2.5 release notes
7 6.2.4 release notes
71 6.2.3 release notes
1 6.2.2 release notes
1 6.2.1 release notes
7 6.2.0 release notes
7 6.1.4 release notes
71 6.1.3 release notes
1 6.1.2 release notes
7 6.1.1 release notes
7 6.1.0 release notes
71 6.0.0 release notes
71 5.21.5 release notes
71 5.21.4 release notes
71 5.21.3 release notes
1 5.21.2 release notes
71 5.21.1 release notes

7 5.21.0 release notes

]|

]

-

]|

]

-

|

]|

]

-

|

]|

]

-

|

]|

]

-

|

]|

]

-

]|

]

-

|

]|

5.20.2 release notes
5.20.1 release notes
5.20.0 release notes
5.19.3 release notes
5.19.2 release notes
5.19.1 release notes
5.19.0 release notes
5.18.1 release notes
5.18.0 release notes
5.17.2 release notes
5.17.1 release notes
5.17.0 release notes
5.16.1 release notes
5.16.0 release notes
5.15.0 release notes
5.14.2 release notes
5.14.1 release notes
5.14.0 release notes
5.13.2 release notes
5.13.1 release notes
5.13.0 release notes
5.12.0 release notes
5.11.1 release notes

.11.0 release notes
5.10.2 release notes
5.10.1 release notes
5.10.0 release notes

9.0 rele note

5.8.0 release notes

71 5.7.0 release notes
7 5.6.0 release notes
71 5.5.1 release notes
7 5.5.0 release notes
7 5.4.0 release notes
7 5.3.0 release notes
1 5.2.1 release notes
71 5.2.0 release notes
71 5.1.1 release notes
7 5.1.0 release notes
71 5.0.1 release notes

7 5.0.0 release notes

Versioning

Sensu Go adheres to semantic versioning using MAJOR.MINOR.PATCH release numbers, starting at
5.0.0.MAJOR version changes indicate incompatible APl changes.MINOR versions add backward-
compatible functionality.PATCH versions include backward-compatible bug fixes.

Upgrading

Read the upgrade guide for information about upgrading to the latest version of Sensu Go.

6.4.3 release notes
September 1, 2021 — The latest release of Sensu Go, version 6.4.3, is now available for download.
This patch fixes a deadlock in the event log writer.

Read the upgrade guide to upgrade Sensu to version 6.4.3.

https://semver.org/spec/v2.0.0.html
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

FIXES:

71 (Commercial feature) Fixed a bug that caused a deadlock in the event log writer.

6.4.2 release notes

August 31, 2021 — The latest release of Sensu Go, version 6.4.2, is now available for download.

This patch adds a backend configuration attribute that allows parallel event log encoding, as well as
two summary metrics for the /metrics APl endpoint.

Read the upgrade guide to upgrade Sensu to version 6.4.2.

FIXES:

71 (Commercial feature) Added the event-log-parallel-en rs backend configuration
attribute, which allows you to indicate whether Sensu should use parallel JSON encoders for
event logging instead of the default (a single JSON encoding worker). This fixes a bottleneck in
the event logging feature.

IMPROVEMENTS:

7 Added sensu_go_agentd_event_bytes and sensu_go_store_event_bytes summary metrics to
the /metrics API endpoint. sensu_go_agentd_event_bytes tracks the sizes of events, in bytes,
received by agentd on the backend. sensu_go_store_event_bytes tracks event sizes, in bytes,
received by the etcd store on the backend.

6.4.1 release notes
August 25, 2021 — The latest release of Sensu Go, version 6.4.1, is now available for download.

This patch includes fixes that improve forward- and backward-compatibility for backends and prevent
sensuctl cluster member-list crashes, as well as changes to the default log levels for webd, the
API, and the sensu-agent.

Read the upgrade guide to upgrade Sensu to version 6.4.1.

FIXES:

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

7 (Commercial feature) For LDAP configurations, the allowed groups attribute is omitted if not
populated.This change improves backend reliability with older versions of federation and
sensuctl.

7 Fixed a bug to prevent sensuctl cluster member-list crashes when the etcd response
header is nil.

71 Fixed a sensu-backend init regression that returned exit status O if the store was already
initialized.

71 Sensu Go OSS can now be built on darwin/arm64.

IMPROVEMENTS:

71 (Commercial feature) The default webd log level is now warn .
71 The default log level for the Sensu APl and sensu-agent iSnNow warn (instead of info).
71 The sensu-backend now reports when it is ready to process events at the warn level.

71 You can now create resources with fields that are unknown to Sensu.This change improves
forward-compatibility with newer Sensu backends.

6.4.0 release notes

June 28, 2021 — The latest release of Sensu Go, version 6.4.0, is now available for download.

The latest release of Sensu Go, version 6.4.0, is now available for download. This release includes a
number of feature improvements and important bug fixes. We upgraded the embedded etcd from
version 3.3 to 3.5 for improved stability and security. The sensu-backend init command now
supports a wait flag, which indicates that the backend should repeatedly try to establish a
connection to etcd until it is successful — fantastic news for Kubernetes users who want to bootstrap
new Sensu Go clusters with external etcd! Check timeout also now works properly on Windows hosts:
the Sensu Go agent can terminate check sub-processes on check execution timeout. This release
fixes a bug that prevented deregistration events from working. There’s something for everyone in this
release!

Read the upgrade guide to upgrade Sensu to version 6.4.0.
NEW FEATURES:

71 (Commercial feature) In the web Ul, the system information modal now includes license
expiration information, accessed via the cTrL . keyboard shortcut, for users with the
appropriate permissions.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

71 (Commercial feature) Added page-specific configuration options and a custom sign-in message
attribute for the web UI.

71 Added binary-only distribution for macOS arm64.

IMPROVEMENTS:

71 Added etcd-log-level backend configuration option for setting the log level for the embedded
etcd server.

7 Added wait flag forthe sensu-backend init command, which indicates the backend
should repeatedly try to establish a connection to etcd until it is successful.

7 The timeout flagfor sensu-backend init is now treated as a duration instead of seconds
(example duration formatis 10s for 10 seconds or s5m for 5 minutes).Values less than 1
second and integer values will be interpreted as seconds.

7 Added sensu go_keepalives Prometheus metric to count keepalive statuses over time and
help identify instability due to keepalive failure.

71 Upgraded Go version from 1.13.15 to 1.16.5 .

71 Upgraded etcd version from 3.3.22 to 3.5.0 .As aresult, 6.4.0 is not backward-
compatible with previous Sensu versions.Read the upgrade instructions for details about
creating a full etcd database backup before you upgrade to Sensu Go 6.4.0.Also, in etcd 3.5,
some Prometheus metric names changed.Read the etcd documentation for details.

FIXES:
71 (Commercial feature) Selector statements that begin with quotes no longer cause an error if
they follow the &s operator.

71 (Commercial feature) Fixed a bug that allowed PostgresConfig resources to include a
namespace attribute.Also, invalid PostgresConfig resources can no longer be created.

71 Fixed a bug that resulted in OK keepalive status after shutting down the agent.

71 Fixed a bug in role-based access control (RBAC) that caused incorrect HTTP API statuses and
web Ul crashes when role bindings referred to missing roles.The API| now returns status 403
with a message to explain that the referenced role is missing.

71 Fixed a bug that prevented deregistration events from validating due to empty

event.check.subscriptions arrays.

71 Fixed a bug that caused Windows agents to handle command timeouts improperly.

https://etcd.io/docs/v3.5/metrics/etcd-metrics-latest.txt

6.3.0 release notes
May 26, 2021 — The latest release of Sensu Go, version 6.3.0, is now available for download.

This release includes several new features, enhancements, bug fixes, and usability improvements.
Construct a top-level business service-centric view for distributed infrastructure and applications with a
preview of Business Service Monitoring! Rate-limit Sensu Go agent transport connections without
using a separate load balancer. Use an API key to authenticate sensuctl, which is handy when
automating Sensu Go configuration (for example CI pipelines) and other actions (like ad hoc check
execution requests). The 6.3.0 release also improves the PostgreSQL store batching capabilities,
raising the event processing throughput ceiling for most deployments. Check out the release notes
below for more details — there’s so much to love about this release!

Read the upgrade guide to upgrade Sensu to version 6.3.0.
NEW FEATURES:

71 (Commercial feature) Added business service monitoring (BSM) to provide high-level visibility
into the current health of any number of business services, with a built-in aggregate check rule

template.

71 (Commercial feature) Added support for agent transport rate limiting via agent-burst-limit
and agent-rate-limit backend configuration options.

71 (Commercial feature) Added the event-log-buffer-wait backend configuration option,
which allows you to specify how long the event logger will wait for the writer to consume events
from the buffer when the buffer is full.

71 Added the entity class service, which represents a business service for the business service
monitoring (BSM) feature.

IMPROVEMENTS:
71 (Commercial feature) The agent transport health API endpoint repsonse now includes
PostgreSQL health information.

71 (Commercial feature) Added the poll interval default preferences attribute to the
GlobalConfig resource so administrators can adjust how often the web Ul pages poll for new
data.

71 (Commercial feature) In the web Ul, some form fields now include examples of valid values.

7 Added the --api-key global flag for sensuctl commands. Use this flag with sensucil
commands to bypass username/password authentication.

71 Logs for JavaScript filter evaluation errors now include more context.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/business-service-monitoring/
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/rule-templates/#built-in-rule-template-aggregate
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/rule-templates/#built-in-rule-template-aggregate
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/backend/#agent-burst-limit
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-schedule/backend/#agent-rate-limit
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/observability-pipeline/observe-entities/#service-entities
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/api/other/health/#get-health-data-for-your-agent-transport
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/web-ui/webconfig-reference/#default_preferences-attributes
http://localhost:1313/sensu-go/6.3/web-ui/webconfig-reference/#default_preferences-attributes
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/sensuctl/#global-flags

71 Concatenated YAML files now support carriage return and line feed (CRLF).

71 Removed extraneous shell auto-completion suggestions for sensuctl.

FIXES:

71 (Commercial feature) Migrated the PostgreSQL event store from github.com/lib/pg to
github.com/jackc/pgx so that PostgreSQL batching works properly.

71 (Commercial feature) In the web Ul, error messages are now visible in dark mode.

|

Fixed a bug that could cause the scheduler to crash when using round robin checks.

]|

Fixed a bug that calculated build information for every keepalive in OSS builds.

]|

SIGHUP no longer triggers an internal restart.

6.2.7 release notes

April 1, 2021 — The latest release of Sensu Go, version 6.2.7, is now available for download.

This patch includes fixes for potential deadlocks in metricsd and agentd and crashes in the scheduler
and tessend as well as for a bug that calculated build information for every keepalive.

Read the upgrade guide to upgrade Sensu to version 6.2.7.
FIXES:
71 (Commercial feature) Fixed a potential deadlock in metricsd that could occur when performing
aninternal restart.
71 Fixed a potential deadlock in agentd due to the unit test timing out in the build pipeline.
71 Fixed a bug that could cause the scheduler to crash when using round robin checks.

71 Fixed a bug that calculated build information for every keepalive in OSS builds.

71 Fixed a potential crash in tessend that could occur if the ringv2.Event.value has a zero
length.

71 Fixed a bug that allowed some etcd watchers to try to process watch events that contain invalid
pointers.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.3/commercial/
http://localhost:1313/sensu-go/6.2/commercial/

6.2.6 release notes

March 25, 2021 — The latest release of Sensu Go, version 6.2.6, is now available for download.

This patch fixes a bug that allowed PostgreSQL round robin scheduling to use a separate PostgreSQL
connection for each subscription and improves the validation for POST/PUT requests for enterprise
APl endpoints.

Read the upgrade guide to upgrade Sensu to version 6.2.6.
FIXES:

71 (Commercial feature) Fixed a bug that allowed PostgreSQL round robin scheduling to use a
separate PostgreSQL connection for each subscription. PostgreSQL round robin scheduling
now uses exactly one extra PostgreSQL connection.

71 (Commercial feature) Improved the validation for POST/PUT requests for enterprise API
endpoints. Sensu now checks the type and namespace in the request body against the type
and namespace in the request URL.

6.2.5 release notes

February 2, 2021 — The latest release of Sensu Go, version 6.2.5, is now available for download.

This patch fixes a bug regarding the event occurrences_watermark property.This bug interfered with
the property’s expected behavior when using event filters like the popular fatigue check filter.

Read the upgrade guide to upgrade Sensu to version 6.2.5.
FIXES:

71 (Commercial feature) Fixed a bug that prevented occurrences_watermark from incrementing
for non-zero events when using the PostgreSQL datastore.

6.2.4 release notes

January 28, 2021 — The latest release of Sensu Go, version 6.2.4, is now available for download.

This patch fixes a bug that prevented federation/vl.Cluster from appearing in the response for

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/

sensuctl describe-type all and resolves a web Ul performance issue for PostgreSQL users.
Read the upgrade guide to upgrade Sensu to version 6.2.4.

FIXES:

71 (Commercial feature) federation/vl.Cluster nOw appears inthe sensuctl describe-
type all response.

71 (Commercial feature) Fixed a performance issue that affected the web Ul when using the
PostgreSQL datastore.

6.2.3 release notes

January 21, 2021 — The latest release of Sensu Go, version 6.2.3, is now available for download.

This patch fixes two bugs: one that could prevent the --agent-managed-entity configuration from
working properly and one that caused sensuctl dump output to include events from all namepaces
rather than the specified namespace.

Read the upgrade guide to upgrade Sensu to version 6.2.3.

FIXES:

71 Fixed a bug that prevented the agent-managed-entity configuration attribute from working
properly when no labels are defined.

71 Fixed a bug where sensuctl dump output included events from all namespaces the user had
access permissions for rather than events from only the specified namespace.

6.2.2 release notes

January 14, 2021 — The latest release of Sensu Go, version 6.2.2, is now available for download.
This patch fixes bugs that prevented PostgreSQL round robin scheduling from working properly.
Read the upgrade guide to upgrade Sensu to version 6.2.2.

FIXES:

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/agent/#agent-managed-entity

71 (Commercial feature) Fixed a bug that could improperly enable PostgreSQL round robin
scheduling after creating a PostgreSQL configuration.

71 (Commercial feature) Fixed a bug that prevented PostgreSQL round robin scheduling if the
namespace and check names were more than 63 characters long, combined.

6.2.1 release notes

January 11, 2021 — The latest release of Sensu Go, version 6.2.1, is now available for download.

This patch fixes bugs that could prevent users from enabling PostgreSQL after upgrading from 5.x or
configuring agent labels and annotations with flags. In addition, sensuctl prune hook and

sensuctl prune check now work as expected and users can no longer edit agent-managed entities
in the web UI.

Read the upgrade guide to upgrade Sensu to version 6.2.1.
FIXES:
71 (Commercial feature) Fixed a bug that prevented users from enabling PostgreSQL as the event

store after upgrading from 5.x.

71 (Commercial feature) The sensuctl prune hook and sensuctl prune check
subcommands now work as expected.

71 (Commercial feature) In the web Ul, fixed a bug that allowed users to edit Sensu agent-
managed entities.

71 Fixed a bug that generated a small amount of extra etcd or PostgreSQL traffic upon keepalive
failure.

71 In silenced entries, the expire field now represents the configured number of seconds until
the entry should be deleted rather than the entry’s remaining duration.

71 Labels and annotations are now configuration options for sensu-agent.

6.2.0 release notes

December 17, 2020 — The latest release of Sensu Go, version 6.2.0, is now available for download.

The latest release of Sensu Go, version 6.2.0, is now available for download! Sensu Go 5.x and
configuration management users rejoice: this release adds support for agent local configuration (that

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-entities/entities/#manage-agent-entities-via-the-agent
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-entities/entities/#manage-agent-entities-via-the-agent
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/agent/#agent-configuration-options

is, agent.yml) managed entities! Agent entities may now be managed exclusively by their agents when

sensu-agent is started with the new agent-managed-entity configuration option. This makes it
more straightforward to migrate from Sensu Go 5.x to 6.x, as existing agent entity management
workflows like Puppet will just work with the new option enabled! Note that you will not be able to edit
agent-managed entities via the backend REST API or web UlI.

Sensu Go 6.2.0 includes significant feature enhancements such as PostgreSQL backend round robin
check scheduling for increased reliability and consistency, an updated format for silenced entry dates
and durations in sensuctl tabular-format output, and a /health APl endpoint for agent WebSocket
transport status. This release delivers important bug fixes like consistently using event id in logs
and eliminating the sensuctl error when Vault provider SSL certificates do not exist on the local
system. Also, enterprise/prune/v1alpha no longer requires cluster-wide permissions; users with limited
permissions can put it to use in their namespaces!

Read the upgrade guide to upgrade Sensu to version 6.2.0.
NEW FEATURES:

71 (Commercial feature) Added support for the memberof attribute for the LDAP authentication

provider.

71 (Commercial feature) Added the ability to exclude resource types when using sensuctl prune
with the —omit flag.

71 (Commercial feature) Added support for round robin scheduling on PostgreSQL instead of
etcd.

71 (Commercial feature) Added support for OIDC authentication via sensuctl configure.

71 Entities may now be managed exclusively by their agents when sensu-agent is started with the
agent-managed-entity configuration attribute.

71 The /metrics API endpoint now exposes build information as a Prometheus metric.
71 Added /health APl endpoint to agent WebSocket transport.

71 Checks now include the scheduler _attribute, which Sensu automatically populates with the
type of scheduler that schedules the check.

71 Events now include the sequence _attribute, which the Sensu agent automatically sets at
startup and increments by 1 at every successive check execution or keepalive event.

71 Added support for using environment variables to define the configuration file paths for the
Sensu agent (SENSU_CONFIG FILE) and backend (SENSU BACKEND CONFIG FILE).

IMPROVEMENTS:

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/operations/control-access/ldap-auth/
http://localhost:1313/sensu-go/6.2/operations/control-access/ldap-auth/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/sensuctl/create-manage-resources/#sensuctl-prune-flags
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/operations/deploy-sensu/datastore/#round-robin-postgresql
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/sensuctl/#first-time-setup-and-authentication
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-entities/entities/#manage-agent-entities-via-the-agent
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/agent/#agent-managed-entity
http://localhost:1313/sensu-go/6.2/api/other/metrics/
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/checks/#scheduler-attribute
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-schedule/checks/#scheduler-attribute
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-events/events/#sequence-attribute
http://localhost:1313/sensu-go/6.2/observability-pipeline/observe-events/events/#sequence-attribute

71 (Commercial feature) Refactored entity limiter to ensure that warning messages about
approaching a license’s entity or entity class limit are now only displayed for users with
create Or update permissions for the license.

71 (Commercial feature) The [enterprise/prune/vialpha API] endpoints 194 and the sensuctl
interface now require less-broad permissions.

71 Adjusted the format for silenced entry dates and durations in sensuctl tabular-format output.
For all silenced entries, the begin date is now listed in RFC 3339 format. For silenced entries
that have not begun, the list displays the expiration date in RFC 3339 format. For silenced
entires with no expiration date, the list displays -1 . For silenced entries that have begun, the
list displays the duration (for example, 1m30s).

71 Sensuctl and sensu-backend now ask users to retype their passwords when creating a new
password in interactive mode.

FIXES:

71 (Commercial feature) Sensuctl no longer produces an error when SSL certificates for the Vault
provider do not exist on the local system.

7 Logs now consistently use event id rather than event uuid .

71 Sensuctl commands that only contain subcommands now exit with status code 46 when no
arguments or incorrect arguments are given.

71 The sensuctl dump command now includes a description.
71 Sensuctl command descriptions now have consistent capitalization.

71 Use of the config-file flag is no longer order-dependent.

6.1.4 release notes

December 16, 2020 — The latest release of Sensu Go, version 6.1.4, is now available for download.

This patch fixes a bug that could cause a crash in the backend API, addresses a case where agents
do not honor HTTP proxy environment variables, and improves the error message reported by the
agent when asset checksums do not match expectations.

Read the upgrade guide to upgrade Sensu to version 6.1.4.
FIXES:

71 Fixed a bug that could cause a panic in the backend core/v2/entities API.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/commercial/
http://localhost:1313/sensu-go/6.2/api/enterprise/prune/
http://localhost:1313/sensu-go/6.2/sensuctl/create-manage-resources/#prune-resources
http://localhost:1313/sensu-go/6.2/sensuctl/create-manage-resources/#prune-resources
http://localhost:1313/sensu-go/6.2/commercial/

71 The agent asset fetching mechanism now respects HTTP proxy environment variables when
trusted-ca-file is configured.

71 When an asset artifact retrieved by the agent does not match the expected checksum, the
logged error now includes the size of the retrieved artifact and more clearly identifies the
expected and actual checksums.

6.1.3 release notes

November 9, 2020 — The latest release of Sensu Go, version 6.1.3, is now available for download.

This patch fixes a bug that caused event updates to fail with an error about a null value in the
occurrences column.This bug only affects Sensu instances that use PostgreSQL as the event store.

Read the upgrade guide to upgrade Sensu to version 6.1.3.
FIXES:

71 (Commercial feature) For instances that use PostgreSQL as the event store, fixed a bug that
caused event updates to fail with an error message about a null value in the occurrences
column.

6.1.2 release notes

October 28, 2020 — The latest release of Sensu Go, version 6.1.2, is now available for download.
This patch release resolves a backend and agent crash related to JavaScript execution.

Read the upgrade guide to upgrade Sensu to version 6.1.2.

FIXES:

71 Fixed a bug related to JavaScript execution that could cause a crash in the backend and agent.

6.1.1 release notes

October 22, 2020 — The latest release of Sensu Go, version 6.1.1, is now available for download.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.1/commercial/

This patch release includes a number of bug fixes that affect proper hook handling with sensuct1
prune and sensuctl dump , entity creation via sensuctl create , form validation for subscription
names in the web Ul, and permissions for PATCH requests, among other fixes.

Read the upgrade guide to upgrade Sensu to version 6.1.1.
FIXES:

71 (Commercial feature) sensuctl prune now properly handles hooks when pruning resources.

71 (Commercial feature) Fixed a bug that returned incorrect '= results for label selectors when
no labels were defined.

71 (Commercial feature) In the web Ul, fixed a bug that could cause a GraphQL no claims error
when a user’s access token was no longer valid instead of displaying the sign-out dialog
window.

71 (Commercial feature) In the web Ul, form validation for subscription names now matches
allowed values.

71 Fixed a bug that prevented sensu-agent from shutting down correctly.
71 Entities are now properly created using sensuctl create .
71 Per-entity subscriptions now persist with PATCH requests.

7 Any user with update _permissions for a resource can now make PATCH requests for that
resource.

71 HookConfig can now be exported via sensuctl dump .AlSO, sensuctl dump Now properly
logs API errors.

71 eventd errors now include additional context for debugging.

6.1.0 release notes

October 5, 2020 — The latest release of Sensu Go, version 6.1.0, is now available for download.

This release delivers significant performance and stability gains, feature enhancements, and several
bug fixes. The web Ul is now much snappier, and its search is redesigned with an improved syntax
and suggestions! Monitor even more services and infrastructure when using the PostgreSQL store:
batched Sensu event writes and improved indexing allows a single Sensu Go deployment to process
and query more data than ever before. If you’re using Prometheus client libraries to instrument your
applications, the Sensu Go agent can now scrape and enrich those metrics! And if you're collecting
metrics in other formats like Nagios PerfData, you can use the new output metric tags feature to enrich

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/sensuctl/create-manage-resources/#prune-resources
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/control-access/rbac/#rule-attributes
http://localhost:1313/sensu-go/6.1/operations/control-access/rbac/#rule-attributes
http://localhost:1313/sensu-go/6.1/sensuctl/back-up-recover/

those metrics too! The sensuctl prune command also received some love, and it now loads and prunes
configuration resources from multiple files!

Read the upgrade guide to upgrade Sensu to version 6.1.0.

NEW FEATURES:

71 (Commercial feature) Added support for custom secrets engine paths in Vault secrets.

71 (Commercial feature) In the web Ul, added new search functionality, with improved syntax and
suggestions.

71 (Commercial feature) Added strict _attribute to the PostgresConfig type to help debug
incorrect configurations and database permissions.

7 (Commercial feature) Added batch buffer , batch size ,and batch workers attributes
to the PostgresConfig type so operators can optimize PostgreSQL latency and throughput.

71 (Commercial feature) Added TLS configuration to the cluster resource so you can specify
additional CA certificates and insecure mode.

71 (Commercial feature) Added a types query parameter for listing authentication providers and
secrets providers via the API.

71 (Commercial feature) Added the Sen altStack Enterprise Handler for launchingSaltStack
Enterprise Jobs for automated remediation.

71 (Commercial feature) The Alpine-based Docker image now has multi-architecture support with
support for the linux/386, linux/amd64, linux/arm64, linux/arm/v6, linux/arm/v7, linux/ppc64le,
and linux/s390x platforms.

71 The backend configuration option api-reguest-1imit iS now available to configure the
maximum API request body size (in bytes).

71 In the REST API, most configuration resources now support the PATCH method for making
updates.

71 Added new handler and check plugins: Sensu Go Elasticsearch Handler, Sensu Rundeck
Handler, and Sensu Kubernetes Events Check.

IMPROVEMENTS:

71 (Commercial feature) Improved logging for OIDC authentication providers. Also added
disable offline access _OIDC spec attribute, which provides a workaround for authorization
servers that do not support the offline access Sscope.

71 (Commercial feature) Added indexed field and label selectors to the PostgreSQL event store to
improve performance for PostgreSQL event store queries with field and label selectors.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/manage-secrets/secrets-management/#use-hashicorp-vault-for-secrets-management
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/web-ui/search/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#strict-attribute
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#strict-attribute
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/operations/deploy-sensu/datastore/#spec-attributes
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/api/enterprise/authproviders/#authproviders-get-specification
http://localhost:1313/sensu-go/6.1/api/enterprise/secrets/#providers-get-specification
http://localhost:1313/sensu-go/6.1/commercial/
https://bonsai.sensu.io/assets/sensu/sensu-saltstack-handler
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/observability-pipeline/observe-schedule/backend/#api-request-limit
http://localhost:1313/sensu-go/6.1/api/
https://bonsai.sensu.io/assets/sensu/sensu-elasticsearch-handler
https://bonsai.sensu.io/assets/sensu/sensu-rundeck-handler
https://bonsai.sensu.io/assets/sensu/sensu-rundeck-handler
https://bonsai.sensu.io/assets/sensu/sensu-kubernetes-events
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/operations/control-access/oidc-auth/#oidc-spec-attributes
http://localhost:1313/sensu-go/6.1/operations/control-access/oidc-auth/#oidc-spec-attributes
http://localhost:1313/sensu-go/6.1/commercial/

FIXES:

Added Prometheus transformer for extracting metrics from check output using the Prometheus
Exposition Text Format.

Added the output metric tags _attribute for checks so you can apply custom tags to enrich
metric points produced by check output metric extraction.

A warning is now logged when you request a dynamic runtime asset that does not exist.
The trusted CA file is now used for agent, backend, and sensuctl asset retrieval.

Per-entity subscriptions (such as entity:entityName) are always available for agent entities,
even you remove subscriptions via the core/v2/entities APl endpoints.

Updated the Sensu TimescaleDB Handler to write tags as a JSON object instead of an array of
objects, which facilitates tags queries.

Updated the Sensu Go Data Source for Grafana plugin to support using API keys, fetching
resources from all namespaces, using Sensu’s built-in resposne filtering, grouping aggregation
results by attribute, and number of other improvements.

(Commercial feature) Fixed a bug in sensuctl dump that allowed polymorphic resources
(e.g., secrets providers and authentication providers) to dump other providers of the same type.

(Commercial feature) Check output is no longer truncated in the event log file when the max
output size is set and the PostgreSQL event store is enabled.

(Commercial feature) Sensuctl prune now handles multi-file/multi-url input correctly.
(Commercial feature) Fixed a bug where PostgreSQL errors could cause the backend to panic.

(Commercial feature) Fixed a bug where PostgreSQL would refuse to store event with a
negative check status.

The backend will no longer start if the web Ul TLS configuration is not fully specified.
The agent entity is now included in data passed to the stdin for the command process.

Improved check scheduling to prevent stale proxy entity data when using cron or round robin
schedulers.

Fixed a bug that resulted in incorrect entity listings for agent entities created via the APl instead
of sensu-agent.

When downloading assets, Sensu now closes the response body after reading from it.

Fixed a crash in the backend and agent related to JavaScript execution.

http://localhost:1313/sensu-go/6.1/observability-pipeline/observe-schedule/checks#output-metric-tags
http://localhost:1313/sensu-go/6.1/observability-pipeline/observe-schedule/checks#output-metric-tags
https://bonsai.sensu.io/assets/sensu/sensu-timescaledb-handler
https://github.com/sensu/grafana-sensu-go-datasource
https://github.com/sensu/grafana-sensu-go-datasource/releases/tag/1.1.0
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/
http://localhost:1313/sensu-go/6.1/commercial/

6.0.0 release notes

August 10, 2020 — The latest release of Sensu Go, version 6.0.0, is now available for download.

With Sensu Go 6.0.0, you can control everything through the API. You can still use configuration
management tools to bootstrap agent entities, but you don’t need to! Our new agent entity
management feature via the backend configuration API nearly eliminates the need for external (or out-
of-band) configuration management for Sensu, which allows you to manage agent entity subscriptions
and automate the discovery of system facts without updating agent local configuration files. Run a
sensuctl command, click a button in the web Ul, or execute a custom check plugin!

Read the upgrade guide to upgrade Sensu to version 6.0.0.
BREAKING CHANGES FOR SENSU 6.0:

71 The database schema for entities has changed.As a result, after you complete the steps to
upgrade to Sensu 6.0 (including running the sensu-backend upgrade command), you will not
be able to use your database with older versions of Sensu.

71 For Sensu Go instances built from source, the web Ul is now a standalone product — it is no
longer included with the Sensu backend.Visit the Sensu Go Web repository for more
information.

71 After initial creation, you cannot change your sensu-agent _entity configuration by modifying
the agent’s configuration file.

NEW FEATURES:

71 (Commercial feature) Sensu now logs a warning when secrets cannot be sent to an agent
because mTLS is not enabled.

71 (Commercial feature) Added JavaScript functions sensu.EventStatus , sensu.FetchEvent ,
and sensu.ListEvents to the filter execution environment so you can now query the Sensu
event store for other events within the filter namespace.

71 (Commercial feature) Docker-only Sensu now binds to the hostname of containers instead of
localhost . Docker images now set their own default values for environment variables
SENSU AGENT API URL , SENSU BACKEND API URL ,
SENSU_BACKEND ETCD INITIAL CLUSTER , SENSU BACKEND ETCD ADVERTISE CLUSTER ,
SENSU BACKEND ETCD INITIAL ADVERTISE PEER URLS ,

SENSU BACKEND ETCD LISTEN CLIENT URLS , and ETCD LISTEN PEER URLS .

71 (Commercial feature) Added Linux packages for 386; armv5, armv6, and armv7; MIPS hard
float, MIPS LE hard float, and MIPS 64 LE hard float; ppc64le; and s390x architectures.Review
the supported platforms page for a complete list of Sensu’s supported platforms.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.0/operations/maintain-sensu/upgrade/#upgrade-to-sensu-go-60-from-a-5x-deployment
http://localhost:1313/sensu-go/6.0/platforms/#build-from-source
https://github.com/sensu/web
https://github.com/sensu/web
http://localhost:1313/sensu-go/6.0/observability-pipeline/observe-entities/entities/#create-and-manage-agent-entities
http://localhost:1313/sensu-go/6.0/observability-pipeline/observe-entities/entities/#create-and-manage-agent-entities
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/observability-pipeline/observe-filter/filters/#build-event-filter-expressions-with-javascript-execution-functions
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/platforms/

71 Added Sensu query expression sensu.CheckDependencies .

71 Added binary-only distributions for FreeBSD armv5 , armvé ,and armv7 and Linux
ppc64le and s390x .

7 Added the is silenced Boolean attribute to the event.Check object to indicate whether the
event was silenced at the time it was processed.

IMPROVEMENTS:

71 (Commercial feature) Added support for the memberof attribute in Active Directory (AD).
71 (Commercial feature) Added more descriptive information for errors in the federated web UI.

7 The dead and handleUpdate methods in keepalived now use EntityConfig and
EntityState respectively.

7 The dead() and createProxyEntity() methods in eventd now use corev3.EntityConfig
and corev3.EntityState .

71 Agent entity updates now ignore state-related fields.
7 You can now manage Sensu agent configuration via the HTTP API.

71 For sysvinit services, Sensu now passes users’ secondary groups (that is, groups other than
the Sensu user group) to chroot , which gives the Sensu agent and backend access to the
file access writes that are granted to the secondary groups.

7 Output of sensuctl asset add now includes help for using the runtime asset.

71 For role bindings and cluster role bindings, subjects.name values can now include unicode
characters, and roleRef.type and subjects.type Vvalues are now automatically
capitalized.

71 Improved logging for the agent WebSocket connection.

7 Improved the wording of the secret provider error message.

71 Fewer keys in etcd are now stored for agents.

71 Keepalive and round robin scheduling leases are now dealt with more efficiently.
71 Upgraded Go version from 1.13.7 to 1.13.15.

71 Upgraded etcd version from 3.3.17 to 3.3.22.

FIXES:

71 (Commercial feature) Label selectors now work as expected with multiple requirements for
events.

http://localhost:1313/sensu-go/6.0/observability-pipeline/observe-filter/sensu-query-expressions/#sensucheckdependencies
http://localhost:1313/sensu-go/6.0/platforms/#build-from-source
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/operations/control-access/rbac/#subjects-specification
http://localhost:1313/sensu-go/6.0/operations/control-access/rbac/#roleref-specification
http://localhost:1313/sensu-go/6.0/operations/control-access/rbac/#subjects-specification
http://localhost:1313/sensu-go/6.0/commercial/

(Commercial feature) Fixed an issue that prevented broken secrets providers from surfacing
their errors.

(Commercial feature) Fixed a bug for PostgreSQL datastores that could prevent GraphQL from
retrieving all pages when fetching events in a namespace with more than 1000 total events,
resulting in an unexpected error.

(Commercial feature) Fixed a bug that could cause the backend to panic in case of
PostgreSQL errors.

Sensu now logs and returns and error if it cannot find a mutator.

Errors produced in the agent by assets, check validation, token substitution, and event
unmarshaling are logged once again.

The User-Agent header is now set only upon on new client creation rather than upon each
request.

When the Sensu agent cannot parse the proper CA certificate path, Sensu logs this in the error
message.

Fixed a bug where highly concurrent event filtering could result in a panic.

Fixed a bug where nil labels or annotations in an event filtering context would require you to
explicitly check whether the annotations or labels are undefined.With this fix, labels and
annotations are always defined (although they may be empty).

Fixed the log entry field for the check’s name in schedulerd.

5.21.5 release notes

March 25, 2021 — The latest release of Sensu Go, version 5.21.5, is now available for download.

The Sensu 5.21.5 patch release improves the validation for POST/PUT requests for enterprise API
endpoints.

Read the upgrade guide to upgrade Sensu to version 5.21.5.

71 (Commercial feature) Improved the validation for POST/PUT requests for enterprise API

endpoints. Sensu now checks the type and namespace in the request body against the type
and namespace in the request URL.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/6.0/commercial/
http://localhost:1313/sensu-go/5.21/commercial/

5.21.4 release notes

March 9, 2021 — The latest release of Sensu Go, version 5.21.4, is now available for download.
This patch release fixes a bug that caused the SIGHUP signal to restart the sensu-backend.
Read the upgrade guide to upgrade Sensu to version 5.21.4.

FIXES:

71 Fixed a bug that caused the SIGHUP signal used for log rotation to restart the sensu-backend.

5.21.3 release notes

October 14, 2020 — The latest release of Sensu Go 5, version 5.21.3, is now available for download.
This patch release includes a few fixes to improve stability and correctness.

Read the upgrade guide to upgrade Sensu to version 5.21.3.

FIXES:

71 Fixed a bug where HTTP connections could be left open after downloading assets.
71 Fixed a bug where event filter or asset filter execution could cause a crash.

71 (Commercial feature) Fixed a bug where PostgreSQL would refuse to store event with a
negative check status.

5.21.2 release notes
August 31, 2020 — The latest release of Sensu Go, version 5.21.2, is now available for download.

This patch release includes two fixes: one for PostgreSQL errors that could cause the backend to
panic and one to ensure that failed check events are written to the event log file.

Read the upgrade guide to upgrade Sensu to version 5.21.2.

FIXES:

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/backend/#log-rotation
http://localhost:1313/sensu-go/5.21/commercial/

71 (Commercial feature) Fixed a bug where PostgreSQL errors could cause the backend to panic.

71 Failed check events are now written to the event log file.

5.21.1 release notes
August 5, 2020 — The latest release of Sensu Go, version 5.21.1, is now available for download.

This patch release includes fixes for a web Ul crash when interacting with namespaces that contain
1000 or more events and regressions in logging various agent errors as well as an enhancement that
provides additional context to WebSocket connection errors logged by the backend.

Read the upgrade guide to upgrade Sensu to version 5.21.1.
IMPROVEMENTS:

71 Backend log messages related to connection errors on the agent WebSocket APl now provide
more context about the error.

FIXES:

71 Fixed a potential web Ul crash when fetching events in namespace with 1000 or more events.

71 Fixed a regression that prevented errors produced in the agent by assets, check validation,
token substitution, or event unmarshaling from being logged.

5.21.0 release notes
June 15, 2020 — The latest release of Sensu Go, version 5.21.0, is now available for download.

The latest release of Sensu Go, version 5.21.0, is now available for download! This release delivers
several enhancements and fixes. The most significant enhancements involve user management: you
can now generate a password hash, specify the resulting hash in your user definitions without having
to store cleartext passwords, and create and update these users using sensuctl create . YOU can
also reset user passwords via the backend API. We also tuned Sensu Go agent logging and changed
the default log level from warning to info. Plus, we crushed a number of nasty bugs: checks configured
with missing hooks can no longer crash the agent, proxy check request errors do not block scheduling
for other entities, and more!

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.21/commercial/

Read the upgrade guide to upgrade Sensu to version 5.21.0.
NEW FEATURES:
71 (Commercial feature) Added entity count and limit for each entity class in the tabular title in the

response for sensuctl license info (in addition to the total entity count and limit).

71 (Commercial feature) Added Linux amd64 OpenSSL-linked binaries for the Sensu agent and
backend, with accompanying require-fips and require-openssl configuration options for
the agent and backend.

7 Added sensuctl user hash-password command to generate password hashes.
7 Added the ability to reset passwords via the backend APl and sensuctl user reset-
password .
IMPROVEMENTS:
71 Changed the default log level for sensu-agent t0 info (instead of warn).
FIXES:
71 The password verification logic when running sensuctl user change-password IS NOW
included in the backend API rather than sensuctl.
71 Errors in publishing proxy check requests no longer block scheduling for other entities.
71 Using the --chunk-size flag when listing namespaces in sensuctl now works properly.
71 The agent no longer immediately exits in certain scenarios when components are disabled.

71 Fixed a bug that could cause a GraphQL query to fail when querying a namespace that
contained event data in excess of 2 GB.

5.20.2 release notes
May 26, 2020 — The latest release of Sensu Go, version 5.20.2, is now available for download.

This patch release adds username to the API request log to help operators with troubleshooting and
user activity reporting, as well as validation for subjects in role-based access control (RBAC) role
binding and cluster role binding.Release 5.20.2 also temporarily disables process discovery so we can
investigate and resolve its performance impact on the backend (increased CPU and memory usage).

Read the upgrade guide to upgrade Sensu to version 5.20.2.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.21/commercial/
http://localhost:1313/sensu-go/5.21/operations/maintain-sensu/license/#view-entity-count-and-entity-limit
http://localhost:1313/sensu-go/5.21/commercial/
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/agent/#fips-openssl
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/backend/#fips-openssl
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/agent/#log-level
http://localhost:1313/sensu-go/5.21/observability-pipeline/observe-schedule/agent/#log-level

NEW FEATURES:

71 The API request log now includes the username.

FIXES:

-

(Commercial feature) Process discovery in the agent is temporarily disabled.

|

The system’s libc_type attribute is now properly populated for Ubuntu entities.

]|

Single-letter subscriptions are now allowed.

]

Subjects are now validated in RBAC role binding and cluster role binding.

-

Sensuctl command assets can now be retrieved and installed from Bonsai.

5.20.1 release notes
May 15, 2020 — The latest release of Sensu Go, version 5.20.1, is now available for download.

This patch release includes a bug fix that affects the web Ul federated homepage gauges when using
the PostgreSQL datastore and several fixes for the data displayed in the web Ul entity details.

Read the upgrade guide to upgrade Sensu to version 5.20.1.
FIXES:

71 (Commercial feature) Fixes a bug that prevented the federated homepage in the web Ul from
retrieving the keepalive and event gauges when PostgreSQL was configured as the event
datastore.

71 (Commercial feature) The memory_percent and cpu_percent processes attributes are now
properly displayed in the web UI.

71 In the web Ul, the entity details page no longer displays float type (which applies only for MIPS
architectures). Also on entity details pages, the system’s libc type is now listed and process
names are no longer capitalized.

5.20.0 release notes

May 12, 2020 — The latest release of Sensu Go, version 5.20.0, is now available for download.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/agent/#discover-processes
http://localhost:1313/sensu-go/5.20/sensuctl/sensuctl-bonsai/#extend-sensuctl-with-commands
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-entities/entities/#processes-attributes
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/web-ui/

This release delivers several new features, substantial improvements, and important fixes. One
exciting new feature is agent local process discovery to further enrich entities and their events with
valuable context. Other additions include a web Ul federation view that provides a single pane of glass
for all of your Sensu Go clusters and token substitution for assets. And Windows users rejoice! This
release includes many Windows agent fixes, as well as agent log rotation capabilities!

Read the upgrade guide to upgrade Sensu to version 5.20.0.

NEW FEATURES:

71 (Commercial feature) Added a processes field to the system type to store agent local
processes for entities and events and a discover-processes option to the agent
configuration options to populate the processes field in entity.system if enabled.

71 (Commercial feature) Added a new resource, GlobalConfig , that you can use to customize
your web Ul configuration.

71 (Commercial feature) Added metricsd to collect metrics for the web Ul and the metrics-
refresh-interval backend configuration option for setting the interval at which Sensu should
refresh metrics.

71 (Commercial feature) Added process and additional system information to the entity details
view in the web Ul.

71 (Commercial feature) Added a PostgreSQL metrics suite so metricsd can collect metrics about
events stored in PostgreSQL.

71 (Commercial feature) Added entity class limits to the license.

71 Added check hook output to event details page in the web UlI.

7 Added the sensuctl describe-type command to list all resource types.The sensuctl describe
type command deprecates sensuctl dump --types .

7 Added annotations and labels as backend configuration options.
71 Added token substitution for assets.
7 Added event.is silenced and event.check.is silenced field selectors.

7 Added Edition and Goversion fields to version information. In commercial distributions,
the Edition version attribute is setto enterprise

71 Added ability to configure the Resty HTTP timeout. Also, sensuctl now suppresses messages
from the Resty library.

IMPROVEMENTS:

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-entities/entities/#processes-attributes
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-entities/entities/#processes-attributes
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/agent/#agent-configuration-options
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/agent/#agent-configuration-options
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/webconfig-reference/
http://localhost:1313/sensu-go/5.20/web-ui/webconfig-reference/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/backend/#metrics-refresh-interval
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/backend/#metrics-refresh-interval
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/operations/maintain-sensu/license/#entity-limit
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/sensuctl/create-manage-resources/#supported-resource-types
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/backend/#configuration-summary
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/tokens/#manage-assets
http://localhost:1313/sensu-go/5.20/api#field-selector

FIXES:

(Commercial feature) The web Ul homepage is now a federated view.

You can now increment the log level by sending SIGUSR1 to the sensu-backend or sensu-
agent process.

License metadata now includes the current entity count and license entity limit.

In the web Ul, users will receive a notification when they try to delete an event without
appropriate authorization.

The Windows agent now has log rotation capabilities.

Notepad is now the default editor on Windows rather than vi.

(Commercial feature) Database connections no longer leak after queries to the cluster /health
API.

In the web Ul, any leading and trailing whitespace is now trimmed from the username when
authenticating.

The web Ul preferences dialog now displays only the first five groups a user belongs to, which
makes the sign-out button more accessible.

In the web Ul, the deregistration handler no longer appears as undefined on the entity details
page.

You can now escape quotes to express quoted strings in token substitution templates.

The Windows agent now accepts and remembers arguments passed t0 service run and

service install .

The Windows agent now synchronizes writes to its log file, so the file size will update with every
log line written.

The Windows agent now logs to both console and log file when you use service run .

5.19.3 release notes

May 4,

2020 — The latest release of Sensu Go, version 5.19.3, is now available for download.This is a

patch release with many improvements and bug fixes, including a fix to close the event store when the
backend restarts, a global rate limit for fetching assets, and fixes for goroutine leaks. Sensu Go 5.19.3
also includes several web Ul updates, from fixes to prevent crashes to new color-blindness modes.

Read the upgrade guide to upgrade Sensu to version 5.19.3.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/operations/maintain-sensu/troubleshoot/#increment-log-level-verbosity
http://localhost:1313/sensu-go/5.20/api/other/license/#get-the-active-license-configuration
http://localhost:1313/sensu-go/5.20/operations/maintain-sensu/license/#view-entity-count-and-entity-limit
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/backend/#log-rotation
http://localhost:1313/sensu-go/5.20/commercial/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/web-ui/
http://localhost:1313/sensu-go/5.20/observability-pipeline/observe-schedule/tokens/#token-substitution-with-quoted-strings

FIXES:

The event store now closes when the backend restarts, which fixes a bug that allowed
Postgres connections to linger after the backend restarted interally.

The etcd event store now returns exact matches when retrieving events by entity (rather than
prefixed matches).

sensu-backend init now logs any TLS failures encountered during initialization.
sensuctl logout now resets the TLS configuration.
env_vars Values can now include the equal sign.

Error logs now include underlying errors encountered when fetching an asset.

The log level is now WARNING when an asset is not installed because none of the filters
match.

Fixes a bug in the web Ul that could cause labels with links to result in a crash.

Fixes a bug in the web Ul that could cause the web Ul to crash when using an unregistered
theme.

Fixes a bug that could cause the backend to crash.
Fixes a bug in multi-line metric extraction that appeared in Windows agents.
Fixes an authentication bug that restarted the sensu-backend when agents disconnected.

Fixes a bug that meant check state and last ok were not computed until the second
instance of the event.

Fixes a bug that caused messages like “unary invoker failed” to appear in the logs.
Fixes several goroutine leaks.

Fixes a bug that caused the backend to crash when the etcd client received the error
“etcdserver: too many requests.”

IMPROVEMENTS:

In the web UlI, color-blindness modes are now available.

In the web Ul, labels and annotations with links to images will now be displayed inline.

Adds a global rate limit for fetching assets to prevent abusive asset retries, which you can
configure with the assets-burst-1limit and assets-rate-limit configuration options for
the agent and backend.

Adds support for restarting the backend via SIGHUP.

http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/observability-pipeline/observe-schedule/agent/#assets-burst-limit
http://localhost:1313/sensu-go/5.19/observability-pipeline/observe-schedule/backend/#backend-configuration-options

7 Adds a timeout flag to sensu-backend init .

71 Deprecated flags for sensuctl silenced update subcommand have been removed.

5.19.2 release notes

April 27, 2020 — The latest release of Sensu Go, version 5.19.2, is now available for download.This
patch release adds two database connection pool parameters for PostgreSQL so you can configure
the maximum time a connection can persist before being destroyed and the maximum number of idle
connections to retain.The release also includes packages for Ubuntu 19.10 and 20.04.

Read the upgrade guide to upgrade Sensu to version 5.19.2.
FIXES:

71 (Commercial feature) Adds SQL database connection pool parameters max conn lifetime
and max _idle conns to store/v1.PostgresConfig132.

IMPROVEMENTS:

71 Sensu packages are now available for Ubuntu 19.10 (Eoan Ermine) and 20.04 (Focal Fossa).
Review the supported platforms page for a complete list of Sensu’s supported platforms and
the installation guide to install Sensu packages for Ubuntu.

5.19.1 release notes

April 13, 2020 — The latest release of Sensu Go, version 5.19.1, is now available for download.This is
a patch release with a number of bug fixes, including several that affect keepalive events, as well as an
addition to the help response for sensu-backend start and sensu-agent start :the default path
for the configuration file.

Read the upgrade guide to upgrade Sensu to version 5.19.1.
FIXES:

71 (Commercial feature) Fixed a bug that caused the PostgreSQL store to be enabled too late
upon startup, which caused keepalive bugs and possibly other undiscovered bugs.

71 Keepalives now fire correctly when using the PostgreSQL event store.

9

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/platforms/
http://localhost:1313/sensu-go/5.19/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.19/commercial/

71 Keepalives can now be published via the HTTP API.

7 sensu-agent Nno longer allows configuring keepalive timeouts that are shorter than the
keepalive interval.

71 Eventd no longer mistakes keepalive events for checks with TTL.

71 Keepalives now generate a new event universally unique identifier (UUID) for each keepalive
failure event.

71 Agents now correctly reset keepalive switches on reconnect, which fixes a bug that allowed
older keepalive timeout settings to persist.

71 Token substitution templates can now express escape-quoted strings.
71 The REST API now uses a default timeout of 3 seconds when querying etcd health.
71 Pipe handlers now must include a command.

7 The response for sensu-backend start --help and sensu-agent start --help NOW
includes the configuration file default path.

7 The system’s 1libc type attribute is now populated on Alpine containers.

5.19.0 release notes

March 30, 2020 — The latest release of Sensu Go, version 5.19.0, is now available for download.This
release is packed with new features, improvements, and fixes, including our first alpha feature:
declarative configuration pruning to help keep your Sensu instance in sync with Infrastructure as Code
workflows.Other exciting additions include the ability to save and share your filtered searches in the
web Ul, plus a new matches substring match operator that you can use to refine your filtering results!
Improvements include a new created by field in resource metadata and a float type field that
stores whether your system uses hard float or soft float.We've also added agent and sensuctl builds for
MIPS architectures, moved Bonsai logs to the debug level, and added PostgreSQL health

information to the /health API payload.

Read the upgrade guide to upgrade Sensu to version 5.19.0.
NEW FEATURES:

71 (Commercial feature) In the web Ul, you can now save, recall, and delete filtered searches.

71 (Commercial feature) Added the matches substring matching operator for API response,
sensuctl, and web Ul filtering selectors.

71 (Commercial feature) Added agent and sensuctl builds for Linux architectures: mips ,
mipsle , mips64 ,and mipsé4le (hard float and soft float).

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.19/observability-pipeline/observe-process/handlers/#pipe-handler-command
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/search/#save-a-filtered-search
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/api/#response-filtering
http://localhost:1313/sensu-go/5.19/sensuctl/filter-responses
http://localhost:1313/sensu-go/5.19/web-ui/search/
http://localhost:1313/sensu-go/5.19/commercial/

9

(Commercial feature) Sensu now automatically applies the sensu.io/managed by label to
resources created via sensuctl create foruseinthe sensuctl prune _alpha feature.

IMPROVEMENTS:

FIXES:

(Commercial feature) The health endpoint now includes PostgreSQL health information.

Resource metadata now includes the created by field, which Sensu automatically populates
with the name of the user who created or last updated each resource.

The agent now discovers entity libc type, VM system, VM role, and cloud provider.

System type now includes the float type field, which stores the float type the system is using
(hard float or soft float).

The Bonsai client now logs at the debug level rather than the info level.
The store can now create wrapped resources.

Tessen now collects the type of store used for events (etcd or postgres) and logs
numbers of authentication providers, secrets, and secrets providers. Tessen data helps us
understand how we can improve Sensu, and all Tessen transmissions are logged locally for
complete transparency.

Fixed a bug where event.Check.State was not set for events passing through the pipeline
or written to the event log.

Fixed a bug that allowed the agent to connect to a backend using a nonexistent namespace.
Fixed a bug that allowed subscriptions to be empty strings.

Corrected the HTTP status codes for unauthenticated and permission denied errors in the
REST API.

Fixed a bug where check history was incorrectly formed when using the PostgreSQL event
store.

5.18.1 release notes

March 10, 2020 — The latest release of Sensu Go, version 5.18.1, is now available for download.This

release fixes bugs that caused SQL migration failure on PostgreSQL 12, nil pointer panic due to OICD

login, and sensu-backend restart upon agent disconnection.It also includes a reliability improvement —
a change to use the gRPC client rather than the embedded etcd client.

http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/sensuctl/create-manage-resources#prune-resources
http://localhost:1313/sensu-go/5.19/sensuctl/create-manage-resources#prune-resources
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/operations/monitor-sensu/health/
http://localhost:1313/sensu-go/5.19/operations/monitor-sensu/tessen/

Read the upgrade guide to upgrade Sensu to version 5.18.1.

FIXES:

(Commercial feature) Fixed a bug that caused SQL migrations to fail on PostgreSQL 12.
(Commercial feature) Fixed a bug where OIDC login could result in a nil pointer panic.

Changed to using the gRPC client (rather than the embedded etcd client) to improve reliability
and avoid nil pointer panics triggered by shutting down the embedded etcd client.

The Sensu backend no longer hangs indefinitely if a file lock for the asset manager cannot be
obtained. Instead, the backend returns an error after 60 seconds.

Fixed a bug that caused sensu-backend to restart when agents disconnected.

Fixed a bug where the backend would panic on some 32-bit systems.

5.18.0 release notes

February 25, 2020 — The latest release of Sensu Go, version 5.18.0, is now available for download.
This release delivers a number of improvements to the overall Sensu Go experience.From automatic
proxy entity creation to unique Sensu event IDs, it's now much easier to use and troubleshoot your
monitoring event pipelines!If you're working behind an HTTP proxy, you can now manage remote
Sensu Go clusters, as sensuctl now honors proxy environment variables (for example,
HTTPS_PROXY).This release also includes a number of fixes for usability bugs, making for the most
polished release of Sensu Go yet, so go ahead and give it a download!

Read the upgrade guide to upgrade Sensu to version 5.18.0.

IMPROVEMENTS:

The event.entity.entity class value now defaultsto proxy for POST /events
requests.

If you use the core/v2/events API to create a new event with an entity that does not already
exist, the sensu-backend will automatically create a proxy entity when the event is published.

Sensuctl now accepts Bonsai asset versions that include a prefix with the letter v+ (for
example, v1.2.0).

The /version APl now retrieves the Sensu agent version for the Sensu instance.

Log messages now indicate which filter dropped an event.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.18/commercial/
http://localhost:1313/sensu-go/5.18/commercial/
http://localhost:1313/sensu-go/5.18/api/events#create-a-new-event
http://localhost:1313/sensu-go/5.18/api/core/events/

FIXES:

Sensu now reads and writes initializationKey to and from EtcdRoot, with legacy support
(read-only) as a fallback.

Sensu will now check for an HTTP response other than 200 ok response when fetching
assets.

Updated Go version from 1.13.5to 1.13.7.

(Commercial feature) Label selectors and field selectors now accept single and double quotes
to identify strings.

Fixed a bug that prevented wrapped resources from having their namespaces set by the
default sensuctl configuration.

Fixed a bug that prevented API response filtering from working properly for core/v2/silenced
APl endpoints.

Improved event payload validation for the core/v2/events API so that events that do not match
the URL parameters on the /events/:entity/:check endpoint are rejected.

Sensuctl now supports the http proxy , https proxy , and no proxy environment
variables.

The auth/test _endpoint now returns the correct error messages.

5.17.2 release notes

February 19, 2020 — The latest release of Sensu Go, version 5.17.2, is now available for download.
This release fixes a bug that could prevent commercial features from working after internal restart.

Read the upgrade guide to upgrade Sensu to version 5.17.2.

FIXES:

A

Fixed a bug that could cause commercial HTTP routes to fail to initialize after an internal
restart, preventing commercial features from working.

5.17.1 release notes

January 31, 2020 — The latest release of Sensu Go, version 5.17.1, is now available for download.
This release fixes a web Ul issue that cleared selected filters when sorting an event list and a bug that

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.18/commercial/
http://localhost:1313/sensu-go/5.18/api#label-selector
http://localhost:1313/sensu-go/5.18/api#field-selector
http://localhost:1313/sensu-go/5.18/api/#response-filtering
http://localhost:1313/sensu-go/5.18/api/core/events/
http://localhost:1313/sensu-go/5.18/api/other/auth/#authtest-get
http://localhost:1313/sensu-go/5.18/api/other/auth/#authtest-get

prevented certain .tar assets from extracting.lt also includes sensuctl configuration improvements.
Read the upgrade guide to upgrade Sensu to version 5.17.1.
IMPROVEMENTS:

71 Asset names may now include capital letters.
7 Running the sensuctl configure command now resets the sensuctl cluster configuration.

7 When you use --trusted-ca-file to configure sensuctl, it now detects and saves the
absolute file path in the cluster configuration.

FIXES:

71 (Commercial feature) When a silencing entry expires or is removed, it is also removed from the
silences view in the web UlI.

71 Fixed a bug that prevented .tar assets from extracting if they contain hardlinked files.

71 In the web Ul, sorting an event list view no longer clears the selected filters.

5.17.0 release notes

January 28, 2020 — The latest release of Sensu Go, version 5.17.0, is now available for download.
This is a significant release, with new features, improvements, and fixes!We’re ecstatic to announce the
release of secrets management, which eliminates the need to expose sensitive information in your
Sensu configuration.When a Sensu component such as a check or handler requires a secret (like a
username or password), Sensu will be able to fetch that information from one or more external secrets
providers (for example, HashiCorp Vault) and provide it to the Sensu component via temporary
environment variables.Secrets management allows you to move secrets out of your Sensu
configuration, giving you the ability to safely and confidently share your Sensu configurations with your
fellow Sensu users!This release also includes per-entity keepalive event handler configuration, a
sought-after feature for users who have migrated from Sensu 1.x to Sensu Go.

Read the upgrade guide to upgrade Sensu to version 5.17.0.
NEW FEATURES:

71 (Commercial feature) Added HTTP API for secrets management, with Sensu’s Env secrets
provider and support for HashiCorp Vault secrets management. The secrets provider resource
is implemented for checks, mutators, and handlers.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/api/enterprise/secrets/

71 Added the keepalive-handlers agent configuration option to specify the keepalive handlers
to use for an entity’s events.

IMPROVEMENTS:

71 (Commercial feature) Upgraded the size of the events auto-incremented ID in the PostgreSQL
store to a 64-bit variant, which allows you to store many more events and avoids exhausting
the sequence.

71 (Commercial feature) Initialization via sensu-backend init is now implemented for Docker.

71 (Commercial feature) UPN binding support has been re-introduced via the
default upn domain configuration attribute.

7 |In the web Ul, labels that contain URLs are now clickable links.

7 Added event.entity.name as a supported field for the fieldSelector query parameter.

71 In the web Ul, users with implicit permissions to a namespace can now display resources within
that namespace.

71 Explicit access to namespaces can only be granted via cluster-wide RBAC resources.
7 You can now omit the namespace from an eventin HTTP POST /events requests.

71 Added support for the --format flag in the sensuctl command list subcommand.
FIXES:
71 (Commercial feature) Fixed a bug where the event check state was not present when using the
PostgreSQL event store.
71 (Commercial feature) Agent TLS authentication does not require a license.

71 Fixed a memory leak in the entity cache.

71 Fixed a bug that prevented sensuctl entity delete from returning an error when
attempting to delete a non-existent entity.

71 In the web Ul, fixed a bug that duplicated event history in the event timeline chart.

7 sensuctl command assets installed via Bonsai now use the sensuctl namespace.

71 Fixed a bug where failing check TTL events could occur if keepalive failures had already
occurred.

5.16.1 release notes

http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/observability-pipeline/observe-schedule/backend/#docker-initialization
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui
http://localhost:1313/sensu-go/5.17/api/#field-selector
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui
http://localhost:1313/sensu-go/5.17/operations/control-access/rbac/#cluster-wide-resource-types
http://localhost:1313/sensu-go/5.17/api/core/events/#events-post
http://localhost:1313/sensu-go/5.17/sensuctl/sensuctl-bonsai/#list-commands
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/web-ui/#sign-in-to-the-web-ui

December 18, 2019 — The latest release of Sensu Go, version 5.16.1, is now available for download.
This release fixes a performance regression that caused API latency to scale linearly as the number of
connected agents increased and includes a change to display the sensu go events processed
Prometheus counter by default.

Read the upgrade guide to upgrade Sensu to version 5.16.1.
IMPROVEMENTS

7 The sensu go_events processed Prometheus counter now initializes with the success
label so the count is always displayed.

FIXES:

71 The performance regression introduced in 5.15.0 that caused API latency to scale linearly as
the number of connected agents increased is fixed.

5.16.0 release notes

December 16, 2019 — The latest release of Sensu Go, version 5.16.0, is now available for download.
This is another important release, with many new features, improvements, and fixes.We introduced an
initialization subcommand for new installations that allows you to specify an admin username and
password instead of using a pre-defined default.We also added new backend configuration options to
help you take advantage of etcd auto-discovery features and agent configuration options you can use
to define a timeout period for critical and warning keepalive events.

New web Ul features include a switcher that makes it easier to switch between namespaces in the
dashboard, breadcrumbs on every page, OIDC authentication in the dashboard, a drawer that replaces
the app bar to make more room for content, and more.

We also fixed issues with sensuctl dump and sensuctl cluster health , installing sensuctl
commands via Bonsai, and missing namespaces in keepalive events and events created through the
agent socket interface.
Read the upgrade guide to upgrade Sensu to version 5.16.0.
IMPORTANT:

71 For Ubuntu/Debian and RHEL/CentOS installations, the backend is no longer seeded with a

default admin username and password.Users will need to run ‘sensu-backend init’ on every new
installation and specify an admin username and password.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#initialization

NEW FEATURES:

(Commercial feature) Users can now authenticate with OIDC in the dashboard.
(Commercial feature) Label selectors now match the event’s check and entity labels.

Added a new configuration option, etcd-client-urls , to use with sensu-backend when it is
not operating as an etcd member.The configuration option is also used by the new sensu-
backend init Subcommand.

Added the ‘sensu-backend init’ subcommand.

Added the etcd-discovery and etcd-discovery-srv configuration options to sensu-
backend, which allow users to take advantage of the embedded etcd’s auto-discovery features.

Added the keepalive-critical-timeout configuration option to define the time after which
a critical keepalive event should be created for an agent and the keepalive-warning-
timeout configuration option, which is an alias of keepalive-timeout for backward
compatibility.

IMPROVEMENTS:

FIXES:

(Commercial feature) The entity limit warning message is now displayed less aggressively and
the warning threshold is proportional to the entity limit.

A new switcher in the web Ul makes it easier to switch namespaces in the dashboard.Access
the new component from the drawer or with the shortcut ctrl+k.For users who have many
namespaces, the switcher now includes fuzzy search and improved keyboard navigation.

In the web Ul, replaced the app bar with an omnipresent drawer to increase the available
space for content. Each page also now includes breadcrumbs.

In the Sensu documentation, links now point to the version of the product being run instead of
the latest, which may be helpful when running an older version of Sensu.

sensuctl dump help now shows the correct default value for the format flag.

Installing sensuctl commands via Bonsai will now check for correct labels before checking if the
asset has 1 or more builds.

Listing assets with no results now returns an empty array.
Fixed a panic that could occur when creating resources in a namespace that does not exist.

Fixed an issue where keepalive events and events created through the agent’s socket interface
could be missing a namespace.

http://localhost:1313/sensu-go/5.16/commercial/
http://localhost:1313/sensu-go/5.16/commercial/
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#initialization
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/backend/#etcd-discovery-srv
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/agent/#keepalive-configuration
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/agent/#keepalive-configuration
http://localhost:1313/sensu-go/5.16/observability-pipeline/observe-schedule/agent/#keepalive-configuration
http://localhost:1313/sensu-go/5.16/commercial/
http://localhost:1313/sensu-go/5.16/web-ui/
http://localhost:1313/sensu-go/5.16/web-ui/
http://localhost:1313/sensu-go/5.16/

71 Fixed an issue that could cause ‘sensuctl cluster health’ to hang indefinitely.

71 (Commercial feature) The agent.yml.example file shipped with Sensu Agent for Windows
packages now uses DOS-style line endings.

5.15.0 release notes

November 19, 2019 — The latest release of Sensu Go, version 5.15.0, is now available for download.
This is a significant release for a number of reasons.The changes to licensing make 100% of Sensu
Go’s commercial features available for free to all users, up to your first 100 entities!This release also
includes the long-awaited cluster federation features, supporting multi-cluster authentication, RBAC
policy replication, and a single pane of glass for your Sensu monitoring data!We added support for API
keys, making it easy to integrate with the Sensu API (you no longer need to manage JWTs).In addition,
the 5.15.0 release includes support for sensu-backend environment variables and bug fixes that
improve error logging for mutator execution and flap detection weighting for checks.

Read the upgrade guide to upgrade Sensu to version 5.15.0.

IMPORTANT: Sensu’s free entity limit is now 100 entities.All commercial features are available for free
in the packaged Sensu Go distribution for up to 100 entities.You will receive a warning when you
approach the 100-entity limit (at 75%).

If your Sensu instance includes more than 100 entities, contact us to learn how to upgrade your
installation and increase your limit.Read the blog announcement for more information about our usage

policy.
NEW FEATURES:

71 (Commercial feature) Added support for federation replicators and the federation cluster
registration APl and the ability to view resources across clusters in the federation in the web UlI.

71 (Commercial feature) Added MSI and NuGet builds for sensuctl. Also, MSI and NuGet
installations now add the bin directory to the system PATH on Windows.

71 (Commercial feature) Added HTTP DELETE access for the license management API.

71 Added the APIKey resource, with HTTP API support for POST, GET, and DELETE and
sensuctl commands to manage the APIKey resource.

71 Added support for using API keys for API authentication.

71 Added support for sensuctl commands to install, execute, list, and delete commands from
Bonsai or a URL.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.15/commercial/
https://sensu.io/contact/
https://sensu.io/blog/one-year-of-sensu-go/
http://localhost:1313/sensu-go/5.16/commercial/
http://localhost:1313/sensu-go/5.15/commercial/
http://localhost:1313/sensu-go/5.15/api/enterprise/federation/
http://localhost:1313/sensu-go/5.15/api/enterprise/federation/
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.15/commercial/
http://localhost:1313/sensu-go/5.15/sensuctl/
http://localhost:1313/sensu-go/5.15/commercial/
http://localhost:1313/sensu-go/5.15/api/other/license/
http://localhost:1313/sensu-go/5.15/operations/control-access/apikeys/
http://localhost:1313/sensu-go/5.15/operations/control-access/use-apikeys/#sensuctl-management-commands
http://localhost:1313/sensu-go/5.15/api/#authenticate-with-an-api-key
http://localhost:1313/sensu-go/5.15/sensuctl/sensuctl-bonsai#extend-sensuctl-with-commands

71 Added support for sensu-backend service environment variables.

71 Added support for timezones in check cron _strings.
SECURITY:

71 (Commercial feature) Removed support for UPN binding without a binding account or
anonymous binding, which allows Sensu to effectively refresh claims during access token
renewal.

IMPROVEMENTS:
7 You can now use colons and periods in all resource names (except users).
FIXES:

71 Added better error logging for mutator execution.
71 Fixed the order of flap detection weighting for checks.
71 Fixed the pprof server so it only binds to localhost.

7 Moved corev2.BonsaiAsset tO bonsai.Asset and moved
corev2.0utdatedBonsaiAsset tO bonsai.OutdatedAsset .

5.14.2 release notes

November 4, 2019 — The latest release of Sensu Go, version 5.14.2, is now available for download.
This release includes an etcd upgrade, fixes that improve stability and performance, and a Sensu Go
package for CentOS 8.

Read the upgrade guide to upgrade Sensu to version 5.14.2.
IMPROVEMENTS:

71 Upgraded etcd to 3.3.17.
71 Added build package for CentOS 8 (e1/8).

71 Sensu Go now uses serializable event reads, which helps improve performance.

FIXES:

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.15/observability-pipeline/observe-schedule/checks
http://localhost:1313/sensu-go/5.15/observability-pipeline/observe-schedule/checks
http://localhost:1313/sensu-go/5.15/observability-pipeline/observe-schedule/checks
http://localhost:1313/sensu-go/5.15/commercial/

71 As a result of upgrading etcd, TLS etcd clients that lose their connection will successfully
reconnect when using --no-embed-etcd .

71 Check TTL and keepalive switches are now correctly buried when associated events and
entities are deleted.As a result, Sensu now uses far fewer leases for check TTLs and
keepalives, which improves stability for most deployments.

a1 Corrected a minor UX issue in interactive filter commands in sensuctl.

5.14 .1 release notes

October 16, 2019 — The latest release of Sensu Go, version 5.14.1, is now available for download.
This release adds Prometheus gauges for check schedulers and fixes several bugs, including a bug
discovered in 5.14.0 that prevented OIDC authentication providers from properly loading on start-up.

Read the upgrade guide to upgrade Sensu to version 5.14.1.
NEW FEATURES:

71 Added Prometheus gauges for check schedulers.

FIXES:

71 (Commercial feature) Sensuctl will not incorrectly warn of entity limits for unlimited licenses.
71 (Commercial feature) oidc authentication providers will now properly load on start-up.
71 When opening a Bolt database that is already open, sensu-agent will not hang indefinitely.

7 Running sensuctl dump for multiple resource types with the output format as YAML will not
result in separators being printed to stdout instead of the specified file.

71 Fixed a crash in sensu-backend (panic: send on closed channel).

5.14.0 release notes

October 8, 2019 — The latest release of Sensu Go, version 5.14.0, is now available for download.This
release includes feature additions like two new configuration options for backends using embedded
etcd and a new SemVer field in entity resources.In addition, this release includes enhanced TLS
authentication support and bug fixes that restore check execution after a network error and enable
round robin schedule recovery after quorum loss.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/sensuctl/back-up-recover/

Read the upgrade guide to upgrade Sensu to version 5.14.0.

NEW FEATURES:

The web Ul now includes an error dialog option that allows users to wipe the application’s
persisted state (rather than having to manually wipe their local/session storage).This can help ir
the rare case that something in the persisted state is leading to an uncaught exception.

The web Ul now respects the system preference for operating systems with support for
selecting a preferred light or dark theme.

sensuctl dump can now list the types of supported resources with sensuctl dump --
types .

The entity resource now includes the sensu agent version field, which reflects the Sensu
Semantic Versioning (SemVer) version of the agent entity.

There are two new advanced configuration options for sensu-backend using embedded etcd:

etcd-heartbeat-interval and etcd-election-timeout .

IMPROVEMENTS:

FIXES:

(Commercial feature) Added support for mutual TLS authentication between agents and
backends.

(Commercial feature) Added support for CRL URLs for mTLS authentication.
(Commercial feature) Support agent TLS authentication is usable with the sensu-backend.

In the web Ul, feedback is directed to Discourse rather than the GitHub repository’s Issues
page to facilitate discussion about feature requests.

In the web Ul, when a user lands on a page inside a namespace that no longer exists or they
do not have access to, the drawer opens to that namespace switcher to help clarify next steps.

Updated Go version from 1.12.3 to 1.13.1.

(Commercial feature) sensuctl on Windows can now create Postgres resources.

(Commercial feature) Fixed a bug that resulted in event metrics being ignored when using the
Postgres store.

Fixed a bug that caused checks to stop executing after a network error.
Fixed a bug that prevented sensuctl create with stdin from working.

Splayed proxy checks are executed every interval (instead of every interval + interval *

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.13/observability-pipeline/observe-entities/entities/
http://localhost:1313/sensu-go/5.14/observability-pipeline/observe-schedule/backend/#advanced-configuration-options
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/operations/deploy-sensu/secure-sensu/#optional-configure-sensu-agent-mtls-authentication
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.14/commercial/
http://localhost:1313/sensu-go/5.14/commercial/

splay_coverage).
71 Proxy entity labels and annotations are now redacted in the web Ul as expected.

71 Fixed a bug in the ring that prevented round robin schedules from recovering after quorum
loss.

71 Updated web Ul so that unauthorized errors emitted while creating silences or resolving events
are caught and a notification is presented to communicate what occurred.

1 Web Ul does not report internal errors when a user attempts to queue an ad hoc check for a
keepalive.

71 Fixed a bug in the web Ul that may have prevented users with appropriate roles from resolving
events, queuing checks, and creating silenced entries.

71 Asset builds are not separated into several assets unless the the tabular format is used in

sensuctl asset list .

71 The ‘flag accessed but not defined’ error is corrected in sensuctl asset outdated .

5.13.2 release notes

September 19, 2019 — The latest release of Sensu Go, version 5.13.2, is now available for download.
This is a stability release that fixes a bug for users who have the PostgreSQL event store enabled.

Read the upgrade guide to upgrade Sensu to version 5.13.2.
FIXES:

71 Metrics handlers now correctly receive metric points when the postgresql event store is
enabled.

5.13.1 release notes

September 10, 2019 — The latest release of Sensu Go, version 5.13.1, is now available for download.
This is a stability release with bug fixes for multi-build asset definitions causing a panic when no
matching filters are found.

Read the upgrade guide to upgrade Sensu to version 5.13.1.

FIXES:

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.14/web-ui/
http://localhost:1313/sensu-go/5.14/web-ui/

71 Multi-build asset definitions with no matching filters will no longer cause a panic.

71 Fixed the oidc authentication provider resource.

5.13.0 release notes

September 9, 2019 — The latest release of Sensu Go, version 5.13.0, is now available for download.
This is one of the most user-friendly releases yet!Sensuctl now integrates with Bonsai, the Sensu asset
hub, making it easier than ever to fetch and use countless Sensu monitoring plugins and integrations.
Additionally, sensuctl now supports loading resource configuration files (for example, checks) from
directories and URLs.But that’s not all!'Sensuctl now provides a subcommand for exporting its
configuration and API tokens to your shell environment.Use sensuctl to provide cURL and custom
scripts with fresh API access information!

Read the upgrade guide to upgrade Sensu to version 5.13.0.

NEW FEATURES:

71 Sensuctl now integrates with Bonsai, the Sensu asset hub.Run a single sensuctl command to
add an asset to your Sensu cluster (for example, sensuctl asset add sensu/sensu-
pagerduty-handler:1.1.0).Check for outdated assets (new releases available) with the

outdated subcommand (for example, sensuctl asset outdated).

71 Sensuctl now supports the env subcommand for exporting sensuctl configuration and API
tokens to your shell environment (for example, eval $(sensuctl env)).

71 Sensuctl now supports loading multiple resource configuration files (for example, checks and
handlers) from directories!Sensuctl can also load a file using a URL (for example, sensuctl
create -r -f ./checks and sensuctl create -f https://my.blog.ca/sensu-
go/check.yaml).

FIXES:

71 Sensuctl interactive check create and update modes now have none for the metric output
format as the first highlighted option instead of nagios-perfdata .

71 Fixed a bug where silences would not expire on event resolution.

5.12.0 release notes

August 26, 2019 — The latest release of Sensu Go, version 5.12.0, is now available for download.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

There are some exciting feature additions in this release, including the ability to output resources to a
file from sensuctl and more granular control of check and check hook execution with an agent allow list.
Additionally, this release includes the ability to delete assets and more stability fixes around watcher
functionality.

Read the upgrade guide to upgrade Sensu to version 5.12.0.
IMPORTANT:

Due to changes in the release process, Sensu binary-only archives are now named following the
pattern sensu-go 5.12.0_$0S_S$SARCH.tar.gz , Where sos is the operating system name and

sarcH is the CPU architecture.These archives include all files in the top level directory.Read the
installation guide for the latest download links.

NEW FEATURES:

71 Operators can now authenticate to Sensu via OpenlD Direct Connect (OIDC) using sensuctl.
Read the authentication documentation for details.

71 Added sensu-agent and sensuctl binary builds for FreeBSD.

71 Added sensuctl dump command to output resources to a file or stdout, making it easier to back
up your Sensu backends.

71 Agents can now be configured with a list of executables that are allowed to run as check and
hook commands.Read the agent reference for more information.
IMPROVEMENTS:
71 Assets now support defining multiple builds, reducing the number of individual assets needed
to cover disparate platforms in your infrastructure.

71 (Commercial feature) Namespaces listed in both the web Ul and sensuctl are now limited to the
namespace to which the user has access.

71 Hooks now support the use of assets.
71 The event.check.name field has been added as a supported field selector.
71 Both the APl and sensuctl can now be used to delete assets.

71 The use of ProtoBuf serialization/deserialization over WebSocket can now be negotiated
between agent and backend.

1 Web Ul performance has been improved for deployments with many events and entities.

7 The resource caches can now rebuild themselves in case of failures.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.2/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.2/sensuctl/#global-flags
http://localhost:1313/sensu-go/5.12/observability-pipeline/observe-schedule/agent/#allow-list
http://localhost:1313/sensu-go/5.9/commercial/

A

A

Event and entity resources can now be created via the API without an explicit namespace.The
system will refer to the namespace in the request URL.

Event and entity resources can now be created via the API using the POST verb.

SECURITY:

FIXES:

To prevent writing sensitive data to logs, the backend no longer logs decoded check result and
keepalive payloads.

Tabular display of filters via sensuctl now displays s& or || as appropriate for inclusive and
exclusive filters, respectively.

Requesting events from the GET /events/:entity API endpoint now returns events only for
the specified entity.

Running sensuctl config view without configuration no longer causes a crash.

Creating an entity via sensuctl with the --interactive flag now prompts for the entity name
when it is not provided on the command line.

Check hooks with stdin: true now receive actual event data on stdin instead of an empty
event.

Some issues with check scheduling and updating have been fixed by refactoring the backend’s
watcher implementation.

KNOWN ISSUES:

5.11

Authentication via OIDC is not yet supported in the web Ul.

Deleting an asset will not remove references to said asset.ltis the operator’s responsibility to
remove the asset from the runtime_assets field of the check, hook, filter, mutator, or handler.

Deleting an asset will not remove the tarball or downloaded files from disk.lt/is the operator’s
responsibility to clear the asset cache if necessary.

.1 release notes

July 18, 2019 — The latest release of Sensu Go, version 5.11.1, is now available for download.This is
a stability release with bug fixes for UPN format binding token renewal and addition of agent
heartbeats and configurable WebSocket connection negotiation.

Read the upgrade guide to upgrade Sensu to version 5.11.1.
FIXES:

71 Fixed access token renewal when UPN format binding was enabled.

71 The agent now sends heartbeats to the backend to detect network failures and reconnect more
quickly.

71 The default handshake timeout for the WebSocket connection negotiation was lowered from 45
to 15 seconds and is now configurable.

5.11.0 release notes

July 10, 2019 — The latest release of Sensu Go, version 5.11.0, is now available for download.There
are some exciting feature additions in this release, including the ability to delete resources from
sensuctl and manage filter and mutator resources in the web Ul.Additionally, this release includes bug
fixes for proxy checks and enhanced performance tuning for the PostgreSQL event store.

Read the upgrade guide to upgrade Sensu to version 5.11.0.
NEW FEATURES:

71 The Sensu web Ul now includes a filters page that displays available event filters and filter
configuration.

71 (Commercial feature) Manage your Sensu event filters from your browser: Sensu’s web Ul now
supports creating, editing, and deleting filters.

71 The Sensu web Ul now includes a mutators page that displays available mutators and mutator
configuration.

71 (Commercial feature) Manage your Sensu mutators from your browser: Sensu’s web Ul now
supports creating, editing, and deleting mutators.

71 Sensuctl now includes the sensuctl delete command, letting you use resource definitions
to delete resources from Sensu in the same way as sensuctl create .Read the sensuctl
reference for more information.

7 Assets now include a headers attribute to include HTTP headers in requests to retrieve
assets, allowing you to access secured assets.Read the asset reference for examples.

7 Sensu agents now support the disable-assets configuration option, allowing you to disable
asset retrieval for individual agents.Read the agent reference for examples.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.11/web-ui/
http://localhost:1313/sensu-go/5.11/commercial/
http://localhost:1313/sensu-go/5.11/web-ui/
http://localhost:1313/sensu-go/5.11/web-ui/
http://localhost:1313/sensu-go/5.11/commercial/
http://localhost:1313/sensu-go/5.11/web-ui/
http://localhost:1313/sensu-go/5.11/sensuctl/create-manage-resources/#delete-resources
http://localhost:1313/sensu-go/5.11/sensuctl/create-manage-resources/#delete-resources
http://localhost:1313/sensu-go/5.11/plugins/assets#asset-example-minimum-required-attributes
http://localhost:1313/sensu-go/5.11/observability-pipeline/observe-schedule/agent/#disable-assets

A

Sensu binary-only distributions are now available as zip files.

IMPROVEMENTS:

FIXES:

(Commercial feature) The Active Directory authentication provider now supports the
default upn domain attribute, letting you appended a domain to a username when a domain
is not specified during login.

(Commercial feature) The Active Directory authentication provider now supports the
include nested groups attribute, letting you search nested groups instead of just the top-
level groups of which a user is a member.

The sensuctl config view command now returns the currently configured username.Read
the sensuctl reference for examples.

The Sensu API now returns the 201 created response code for POST and PUT requests
instead of 204 No Content .

The Sensu backend now provides advanced configuration options for buffer size and worker
count of keepalives, events, and pipelines.

Sensu Go now supports Debian 10.For a complete list of supported platforms, visit the
platforms page.

The web Ul now returns an error when attempting to create a duplicate check or handler.

Silenced entries are now retrieved from the cache when determining whether an event is
silenced.

The Sensu API now returns an error when trying to delete an entity that does not exist.
The agent WebSocket connection now performs basic authorization.

The core/v2/events APl now correctly applies the current timestamp by default, fixing a
regression in 5.10.0.

Multiple nested set handlers are now flagged correctly, fixing an issue in which they were
flagged as deeply nested.

Round robin proxy checks now execute as expected in the event of updated entities.

The Sensu backend now avoids situations of high CPU usage in the event that watchers enter
a tight loop.

Due to incompatibility with the Go programming language, Sensu is incompatible with
CentOS/RHEL 5.As a result, CentOS/RHEL 5 has been removed as a supported platform for all
versions of Sensu Go.

http://localhost:1313/sensu-go/5.11/versions/
http://localhost:1313/sensu-go/5.11/commercial/
http://localhost:1313/sensu-go/5.11/operations/control-access/ad-auth/
http://localhost:1313/sensu-go/5.11/commercial/
http://localhost:1313/sensu-go/5.11/operations/control-access/ad-auth/
http://localhost:1313/sensu-go/5.11/sensuctl/#view-sensuctl-config
http://localhost:1313/sensu-go/5.11/api/
http://localhost:1313/sensu-go/5.11/observability-pipeline/observe-schedule/backend/#advanced-configuration-options
http://localhost:1313/sensu-go/5.11/platforms/
http://localhost:1313/sensu-go/5.11/platforms/

5.10.2 release notes

June 27, 2019 — The latest release of Sensu Go, version 5.10.2, is now available for download.This is
a stability release with a bug fix for expired licenses.

Read the upgrade guide to upgrade Sensu to version 5.10.2.
FIXES:

71 Sensu now handles expired licenses as expected.

5.10.1 release notes

June 25, 2019 — The latest release of Sensu Go, version 5.10.1, is now available for download.This is
a stability release with key bug fixes for proxy checks and entity deletion.

Read the upgrade guide to upgrade Sensu to version 5.10.1.
FIXES:

71 The proxy_requests entity_attributes are now all considered when matching entities.

71 Events are now removed when their corresponding entity is deleted.

5.10.0 release notes

June 19, 2019 — The latest release of Sensu Go, version 5.10.0, is now available for download.There
are some exciting feature additions in this release, including the ability to perform advanced filtering in
the web Ul and use PostgreSQL as a scalable event store.This release also includes key bug fixes,
most notably for high CPU usage.

Read the upgrade guide to upgrade Sensu to version 5.10.0.
NEW FEATURES:

71 (Commercial feature) The Sensu web Ul now includes fast, predictive filtering for viewing
checks, entities, events, handlers, and silences, including the ability to filter based on custom

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/commercial/

labels.Select the filter bar and start building custom views using suggested attributes and
values.For more information, read the web Ul docs.

Free Sensu instances can now delete entities in the web Ul entities page.Read the web Ul doc:
to get started using the Sensu web UlI.

(Commercial feature) Sensu now supports using an external PostgreSQL instance for event
storage in place of etcd.PostgreSQL can handle significantly higher volumes of Sensu events,
letting you scale Sensu beyond etcd’s storage limits.Read the datastore reference for more
information.

Sensu now includes a cluster ID APl endpoint and sensuctl cluster id command to return
the unique Sensu cluster ID.Read the core/v2/cluster API endpoint docs for more information.

IMPROVEMENTS:

FIXES:

The sensuctl create command now supports specifying the namespace for a group of
resources at the time of creation, allowing you to replicate resources across namespaces
without manual editing.Read the sensuctl reference for more information and usage examples.

Sensu cluster roles can now include permissions to manage your Sensu license using the
license resource type.Read the RBAC reference to create a cluster role.

The web Ul now displays up to 100,000 events and entities on the homepage.

Sensu now optimizes scheduling for proxy checks, solving an issue with high CPU usage when
evaluating proxy entity attributes.

The Sensu API now validates resource namespaces and types in request bodies to ensure
RBAC permissions are enforced.

Check state and total state change attributes now update as expected based on check
history.

Incident and entity links in the web Ul homepage now navigate to the correct views.

The web Ul now displays non-standard cron statements correctly (for example, eweekly).
On sign-in, the web Ul now ensures that users are directed to a valid namespace.

In the web Ul, code block scrollbars now display only when necessary.

The web Ul now displays the handler timeout attribute correctly.

When editing resources, the web Ul now fetches the latest resource prior to editing.

The web Ul now handles array values correctly when creating and editing resources.

http://localhost:1313/sensu-go/5.10/web-ui/search/
http://localhost:1313/sensu-go/5.10/web-ui/
http://localhost:1313/sensu-go/latest/commercial/
http://localhost:1313/sensu-go/5.10/operations/deploy-sensu/datastore/
http://localhost:1313/sensu-go/5.10/api/core/cluster/#the-clusterid-API-endpoint
http://localhost:1313/sensu-go/5.10/sensuctl/create-manage-resources/#create-resources-across-namespaces
http://localhost:1313/sensu-go/5.10/operations/control-access/rbac/#assigning-group-permissions-across-all-namespaces

5.9.0 release notes

May 28, 2019 — The latest release of Sensu Go, version 5.9.0, is now available for download.There
are some exciting feature additions in this release, including the ability to log raw events to a file
(commercial feature) and view event handlers in the web UI.

Read the upgrade guide to upgrade Sensu to version 5.9.0.If you're upgrading a Sensu cluster from
5.7.0 or earlier, read the instructions for upgradin ensu cluster from 5.7.0 or earlier to 5.8.
later.

NEW FEATURES:
71 The Sensu web Ul now includes a handlers page that displays available event handlers and

handler configuration.Read the web Ul docs to get started using the Sensu web UlI.

71 (Commercial feature) Manage your Sensu event handlers from your browser: Sensu’s web Ul
now supports creating, editing, and deleting handlers.Read the web Ul docs to get started using
the Sensu web Ul.

71 (Commercial feature) Sensu now supports event logging to a file using the event-log-file
and event-log-buffer-size configuration options.You can use this event log file as an input
source for your favorite data lake solution.Read the backend reference for more information.

IMPROVEMENTS:
71 The Sensu web Ul now includes simpler, more efficient filtering in place of filtering using Sensu

query expressions.

71 Sensu packages are now available for Ubuntu 19.04 (Disco Dingo). Review the supported
platforms page for a complete list of Sensu’s supported platforms and the installation guide to
install Sensu packages for Ubuntu.

FIXES:

7 The occurrences and occurrences watermark event attributes now increment as
expected, giving you useful information about recent events.Read the events reference for an
in-depth discussion of these attributes.

1 The /silenced/subscriptions/:subscription and /silenced/checks/:check API
endpoints now return silences by check or subscription.

71 Sensu now handles errors when seeding initial data, avoiding a panic state.

http://localhost:1313/sensu-go/5.9/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.9/operations/maintain-sensu/upgrade/#upgrade-sensu-clusters-from-570-or-earlier-to-580-or-later
http://localhost:1313/sensu-go/5.9/operations/maintain-sensu/upgrade/#upgrade-sensu-clusters-from-570-or-earlier-to-580-or-later
http://localhost:1313/sensu-go/5.9/web-ui/
http://localhost:1313/sensu-go/5.9/commercial/
http://localhost:1313/sensu-go/5.9/web-ui/
http://localhost:1313/sensu-go/5.9/commercial/
http://localhost:1313/sensu-go/5.9/observability-pipeline/observe-schedule/backend/#event-logging
http://localhost:1313/sensu-go/5.9/platforms/
http://localhost:1313/sensu-go/5.9/platforms/
http://localhost:1313/sensu-go/5.9/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.9/observability-pipeline/observe-events/events/#occurrences-and-occurrences-watermark

5.8.0 release notes

May 22, 2019 — The latest release of Sensu Go, version 5.8.0, is now available for download.This is
mainly a stability release with bug fixes and performance improvements.Additionally, we have added
support for configurable etcd cipher suites.

Read the upgrade guide to upgrade Sensu to version 5.8.0.
IMPORTANT:

71 To upgrade to Sensu Go 5.8.0, Sensu clusters with multiple backend nodes must be shut down
during the upgrade process.Read the upgrade guide for more information.

IMPROVEMENTS:
71 The sensuctl command line tool now supports the --chunk-size flagto help you handle

large datasets.Read the sensuctl reference for more information.

71 Sensu backends now support the etcd-cipher-suites configuration option, letting you
specify the cipher suites that can be used with etcd TLS configuration.Read the backend
reference for more information.

71 The Sensu API now includes the /version API, returning version information for your Sensu
instance.Review the APl docs for more information.

71 Tessen now collects the numbers of events processed and resources created, giving us better
insight into how we can improve Sensu.As always, all Tessen transmissions are logged for
complete transparency.Read the Tessen reference for more information.

71 Sensu licenses now include the entity limit attached to your Sensu licensing package.Read the
license management docs to learn more about entity limits.

71 Sensu backends now perform better at scale using increased worker pool sizes for events and
keepalives.

71 The maximum size of the etcd database and etcd requests is now configurable using the
etcd-quota-backend-bytes and etcd-max-request-bytes backend configuration options.
These are advanced configuration options requiring familiarly with etcd.Use with caution.Read
the backend reference for more information.

71 Most Sensu resources now use ProtoBuf serialization in etcd.
FIXES:

71 Events produced by checks now execute the correct number of write operations to etcd.

http://localhost:1313/sensu-go/5.8/operations/maintain-sensu/upgrade/#upgrade-sensu-clusters-from-570-or-earlier-to-580-or-later
http://localhost:1313/sensu-go/5.8/operations/maintain-sensu/upgrade/#upgrade-sensu-clusters-from-570-or-earlier-to-580-or-later
http://localhost:1313/sensu-go/5.8/sensuctl/create-manage-resources/#handle-large-datasets
http://localhost:1313/sensu-go/5.8/observability-pipeline/observe-schedule/backend/#etcd-cipher-suites
http://localhost:1313/sensu-go/5.8/observability-pipeline/observe-schedule/backend/#etcd-cipher-suites
http://localhost:1313/sensu-go/5.8/api/other/version/
http://localhost:1313/sensu-go/5.8/operations/monitor-sensu/tessen/
http://localhost:1313/sensu-go/5.8/operations/maintain-sensu/license/
http://localhost:1313/sensu-go/5.8/observability-pipeline/observe-schedule/backend/#advanced-configuration-options

71 API pagination tokens for the core/v2/users and core/v2/namespaces API endpoints now work
as expected.

71 Keepalive events for deleted and deregistered entities are now cleaned up as expected.
KNOWN ISSUES:

71 Auth tokens may not be purged from etcd, resulting in a possible impact to performance.

5.7.0 release notes

May 9, 2019 — The latest release of Sensu Go, version 5.7.0, is now available for download.This is
mainly a stability release with bug fixes.Additionally, we have added support for Windows packages

and updated our usage policy.
Read the upgrade guide to upgrade Sensu to version 5.7.0.
IMPROVEMENTS:

71 The Sensu agent for Windows is now available as an MSI package, making it easier to install
and operate.Read the installation guide and the agent reference to get started.

FIXES:

71 Sensu now enforces resource separation between namespaces sharing a similar prefix.

7 The sensuctl cluster commands now output correctly in JSON and wrapped JSON
formats.

71 The API now returns an error message if label and field selectors are used without a license.

5.6.0 release notes

April 30, 2019 — The latest release of Sensu Go, version 5.6.0, is now available for download.We
have added some exciting new features in this release, including API filtering and the ability to create
and manage checks through the web Ul with the presence of a valid license key.

Read the upgrade guide to upgrade Sensu to version 5.6.0.

NEW FEATURES:

https://discourse.sensu.io/t/introducing-usage-limits-in-the-sensu-go-free-tier/1156/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.7/operations/deploy-sensu/install-sensu/#install-sensu-agents
http://localhost:1313/sensu-go/5.7/observability-pipeline/observe-schedule/agent/
http://localhost:1313/sensu-go/5.7/api/#response-filtering

71 (Commercial feature) Manage your Sensu checks from your browser: Sensu’s web user
interface now supports creating, editing, and deleting checks.Read the web Ul docs to get
started using the Sensu web UI.

71 (Commercial feature) The Sensu web Ul now includes an option to delete entities.

71 (Commercial feature) Sensu now supports resource filtering in the Sensu API and sensuctl
command line tool.Filter events using custom labels and resource attributes, such as event
status and check subscriptions.Review the AP| docs and sensuctl reference for usage
examples.

IMPROVEMENTS:

71 (Commercial feature) Sensu’s LDAP and Active Directory integrations now support mutual
authentication using the trusted ca file , client cert file ,and client key file

attributes.Read the guide to configuring an authentication provider for more information.

71 (Commercial feature) Sensu’s LDAP and Active Directory integrations now support connecting
to an authentication provider using anonymous binding.Read the LDAP and Active Directory
binding configuration docs to learn more.

71 the /health API response now includes the cluster ID.
7 The sensuctl cluster health and sensuctl cluster member-list commands now
include the cluster ID in tabular format.

FIXES:

71 You can now configure labels and annotations for Sensu agents using command line flags.For
example: sensu-agent start --label example key="example value" .Read the agent
reference for more examples.

71 The Sensu web Ul now displays the correct checkbox state when no resources are present.

5.5.1 release notes

April 17, 2019 — The latest release of Sensu Go, version 5.5.1, is now available for download.This is a
stability release with key bug fixes, including addressing an issue with backend CPU utilization.
Additionally, we have added support for honoring the source attribute for events received via agent
socket.

Read the upgrade guide to upgrade Sensu to version 5.5.1.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.6/commercial/
http://localhost:1313/sensu-go/5.6/web-ui/
http://localhost:1313/sensu-go/5.6/commercial/
http://localhost:1313/sensu-go/5.6/commercial/
http://localhost:1313/sensu-go/5.6/api/#response-filtering
http://localhost:1313/sensu-go/5.6/sensuctl/#filter-responses
http://localhost:1313/sensu-go/5.6/commercial/
http://localhost:1313/sensu-go/5.6/operations/control-access/
http://localhost:1313/sensu-go/5.6/commercial/
http://localhost:1313/sensu-go/5.6/operations/control-access/ldap-auth/#ldap-binding-attributes
http://localhost:1313/sensu-go/5.6/operations/control-access/ad-auth/#ad-binding-attributes
http://localhost:1313/sensu-go/5.6/api/other/health/
http://localhost:1313/sensu-go/5.6/observability-pipeline/observe-schedule/agent/#general-configuration
http://localhost:1313/sensu-go/5.6/observability-pipeline/observe-schedule/agent/#general-configuration

IMPROVEMENTS:
71 Sensu agents now support annotations (non-identifying metadata) that help people or external

tools interacting with Sensu.Read the agent reference to add annotations in the agent
configuration file.

71 The agent socket event format now supports the source attribute to create a proxy entity.

1 Sensu 5.5.1 is built with Go version 1.12.3.

FIXES:

71 Backends now reinstate etcd watchers in the event of a watcher failure, fixing an issue causing
high CPU usage in some components.

5.5.0 release notes

April 4, 2019 — The latest release of Sensu Go, version 5.5.0, is now available for download.This
release has some key bug fixes and additions, including the introduction of Tessen into Sensu Go.For
more information, read Sean Porter’s blog post on Tessen.

Read the upgrade guide to upgrade Sensu to version 5.5.0.
NEW FEATURES:

71 Tessen, the Sensu call-home service, is now enabled by default in Sensu backends.Read the
Tessen docs to learn about the data that Tessen collects.

IMPROVEMENTS:

71 Sensu now includes more verbose check logging to indicate when a proxy request matches an
entity according to its entity attributes.

FIXES:

71 The Sensu web Ul now displays silences created by LDAP users.

71 The web Ul now uses a secondary text color for quick-navigation buttons.

5.4.0 release notes

https://sensu.io/blog/announcing-tessen-the-sensu-call-home-service/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.5/observability-pipeline/observe-schedule/agent/#general-configuration
http://localhost:1313/sensu-go/5.5/observability-pipeline/observe-schedule/agent/#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets
http://localhost:1313/sensu-go/5.5/operations/monitor-sensu/tessen/

March 27, 2019 — The latest release of Sensu Go, version 5.4.0, is now available for download.This
release has some very exciting feature additions, including the introduction of our new homepage.lIt
also includes support for API pagination to handle large datasets more efficiently and agent buffering
for robustness in lower-connectivity situations, along with key bug fixes.

Read the upgrade guide to upgrade Sensu to version 5.4.0.

NEW FEATURES:

A

A

9

The Sensu dashboard now includes a homepage designed to highlight the most important
monitoring data, giving you instant insight into the state of your infrastructure.réad the web Ul
docs for a preview.

The Sensu API now supports pagination usingthe 1imit and continue query parameters,
letting you limit your API responses to a maximum number of objects and making it easier to
handle large datasets.Read the API overview for more information.

Sensu now surfaces internal metrics using the /metrics APl.Read the /metrics API
documentation for more information.

IMPROVEMENTS:

FIXES:

Sensu now lets you specify a separate TLS certificate and key to secure the dashboard.Read
the backend reference to configure the dashboard-cert-file and dashboard-key-file
options, and check out the guide to securing Sensu for the complete guide to making your
Sensu instance production-ready.

The Sensu agent events APl now queues events before sending them to the backend, making
the agent events APl more robust and preventing data loss in the event of a loss of connection
with the backend or agent shutdown.Read the agent reference for more information.

The backend now processes events without persisting metrics to etcd.

The core/v2/events API POST and PUT endpoints now add the current timestamp to new
events by default.

The core/v2/users API endpoints now return a 404 response code if a username cannot be
found.

The sensuctl command line tool now correctly accepts global flags when passed after a
subcommand flag (fOI' example, --format yaml --namespace development)

The sensuctl handler delete and sensuctl filter delete commands now correctly
delete resources from the currently configured namespace.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.4/web-ui/
http://localhost:1313/sensu-go/5.4/web-ui/
http://localhost:1313/sensu-go/5.4/api/#pagination
http://localhost:1313/sensu-go/5.4/api/other/metrics/
http://localhost:1313/sensu-go/5.4/api/other/metrics/
http://localhost:1313/sensu-go/5.4/observability-pipeline/observe-schedule/backend/#web-ui-configuration
http://localhost:1313/sensu-go/5.4/operations/deploy-sensu/secure-sensu/
http://localhost:1313/sensu-go/5.4/observability-pipeline/observe-schedule/agent/#events-post

71 The agent now terminates consistently on SIGTERM and SIGINT.

71 In the event of a loss of connection with the backend, the agent now attempts to reconnect to
any backends specified in its configuration.

1 The dashboard now handles cases in which the creator of a silence is inaccessible.

“ N

71 The dashboard event details page now displays “-” in the command field if no command is
associated with the event.

5.3.0 release notes

March 11, 2019 — The latest release of Sensu Go, version 5.3.0, is now available for download. This
release has some very exciting feature additions and key bug fixes.Active Directory can be configured
as an authentication provider (commercial feature).Additionally, round robin scheduling has been fully
re-implemented and is available for use.

Read the upgrade guide to upgrade Sensu to version 5.3.0.
NEW FEATURES:

71 Round robin check scheduling lets you distribute check executions evenly over a group of
Sensu agents.To enable round robin scheduling, setthe round robin check attribute to
true .Read the checks reference for more information.

7 Sensu now provides commercial support for using Microsoft Active Directory as an external
authentication provider.Read the authentication guide to configure Active Directory, and check
out the getting started guide for more information about commercial features.

71 The dashboard now features offline state detection and displays an alert banner if the
dashboard loses connection to the backend.

IMPROVEMENTS:

71 The agent socket event format now supports the handlers attribute, giving you the ability to
send socket events to a Sensu pipeline.Read the agent reference to learn more about creating
and handling monitoring events using the agent socket.

71 Assets now feature improved download performance using buffered I/O.

71 The sensuctl CLI now uses a 15-second timeout period when connecting to the Sensu
backend.

71 The dashboard now includes expandable configuration details sections on the check and entity

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.3/observability-pipeline/observe-schedule/checks#spec-attributes
http://localhost:1313/sensu-go/5.3/commercial/
http://localhost:1313/sensu-go/5.3/operations/control-access/
http://localhost:1313/sensu-go/5.3/commercial/
http://localhost:1313/sensu-go/5.3/observability-pipeline/observe-schedule/agent/#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets

pages.You can now use the dashboard to review check details like command, subscriptions,
and scheduling as well as entity details like platform, IP address, and hostname.

SECURITY:

FIXES:

Sensu Go 5.3.0 fixes all known TLS vulnerabilities affecting the backend, including increasing
the minimum supported TLS version to 1.2 and removing all ciphers except those with perfect
forward secrecy.

Sensu now enforces uniform TLS configuration for all three backend components: apid ,
agentd , and dashboardd .

The backend no longer requires the trusted-ca-file configuration option when using TLS.

The backend no longer loads server TLS configuration for the HTTP client.

Sensu can now download assets with download times of more than 30 seconds without timing
out.

The agent now communicates entity subscriptions to the backend in the correct format.
Sensu no longer includes the edition configuration attribute or header.

DNS resolution in Alpine Linux containers now uses the built-in Go resolver instead of the glibc
resolver.

The sensuctl user list command can now output yaml and wrapped-json formats
when used with the --format flag.

The dashboard check details page now displays long commands correctly.

The dashboard check details page now displays the timeout attribute correcily.

5.2.1 release notes

February 11, 2019 — The latest release of Sensu Go, version 5.2.1, is now available for download.
This is a stability release with a key bug fix for proxy check functionality.

Read the upgrade guide to upgrade Sensu to version 5.2.1.

FIXES:

1

Sensu agents now execute checks for proxy entities at the expected interval.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

5.2.0 release notes

February 7, 2019 — The latest release of Sensu Go, version 5.2.0, is now available for download.This
release has a ton of exciting content, including the availability of our first enterprise-only features.For
more details on these features, read the blog post about Sensu Go 5.2.0.Release 5.2.0 also has some
key improvements and fixes: we added support for self-signed CA certificates for sensuctl, check
output truncation, and the ability to manage silencing from the event details page in our web UlI, to
name a few.

Read the upgrade guide to upgrade Sensu to version 5.2.0.
IMPORTANT:

71 Due to changes in the release process, Sensu binary-only archives are now named following
the pattern sensu-enterprise-go 5.2.0 $0S_$ARCH.tar.gz , Where $os is the operating
system name and $arca is the CPU architecture.These archives include all files in the top-
level directory.Read the installation guide for the latest download links.

NEW FEATURES:

71 Our first enterprise-only features for Sensu Go: LDAP authentication, the Sensu ServiceNow
handler, and the Sensu JIRA handler.Read the getting started guide.

71 Sensu now provides the option to limit check output size or to drop check outputs following
metric extraction.Read the checks reference for more information.

IMPROVEMENTS:

71 Sensu now includes support for Debian 8 and 9.Read the installation guide to install Sensu for
Debian.

71 Sensu’s binary-only distribution for Linux is now available for armé4 , armv5 , armvé ,
armv7 ,and 386 in additionto amdé64 .Read the installation guide for download links.

71 The Sensu dashboard now provides the ability to silence and unsilence events from the Events
page.

71 The Sensu dashboard Entity page now displays the platform version and deregistration
configuration.

71 Sensuctl now supports TLS configuration options, allowing you to use a self-signed certificate
without adding it to the operating system’s CA store, either by explicitly trusting the signer or by
disabling TLS hostname verification.Read the sensuctl reference for more information.

https://sensu.io/blog/enterprise-features-in-sensu-go/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.2/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.2/operations/control-access/
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler/
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler/
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler/
http://localhost:1313/sensu-go/5.2/commercial/
https://docs.sensu.io/sensu-go/5.2/observability-pipeline/observe-schedule/checks/#check-output-truncation-attributes
http://localhost:1313/sensu-go/5.2/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.2/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.2/sensuctl/#global-flags

71 sensuctl now provides action-specific confirmation messages, like Created , Deleted , and
Updated .

FIXES:

-

Check TTL failure events now persist through cluster member failures and cluster restarts.

|

The Sensu backend now correctly handles errors for missing keepalive events.

]|

Token-substituted values are now omitted from event data to protect sensitive information.

]

Sensu now correctly processes keepalive and check TTL states after entity deletion.

-

Sensuctl can now run sensuctl version without being configured.

|

When disabling users, sensuctl now provides the correct prompt for the action.

5.1.1 release notes

January 24, 2019 — The latest patch release of Sensu Go, version 5.1.1, is now available for
download.This release includes some key fixes and improvements, including refactored keepalive
functionality with increased reliability. Additionally, based on community feedback, we have added
support for the Sensu agent and sensuctl for 32-bit Windows systems.

Read the upgrade guide to upgrade Sensu to version 5.1.1.
NEW FEATURES:

71 Sensu now includes a sensuctl command and API endpoint to test user credentials.Read the
access control reference and APl docs for more information.

IMPROVEMENTS:

71 The Sensu agent and sensuctl tool are now available for 32-bit Windows.Read the installation
guide for instructions.

71 Keepalive events now include an output attribute specifying the entity name and time last sent.

71 The Sensu backend includes refactored authentication and licensing to support future
enterprise features.

SECURITY:

71 Sensu 5.1.1 is built with Go version 1.11.5.Go 1.11.5 addresses a security vulnerability that

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.1/operations/control-access/rbac/#test-and-change-user-passwords
http://localhost:1313/sensu-go/5.1/api/other/auth/
http://localhost:1313/sensu-go/5.1/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.1/operations/deploy-sensu/install-sensu/

affects TLS handshakes and JWT tokens.Read the CVE for more information.
FIXES:

71 Keepalive events now continue to execute after a Sensu cluster restarts.

71 When requested, on-demand check executions now correctly retrieve asset dependencies.
71 Checks now maintain a consistent execution schedule after updates to the check definition.
71 Proxy check request errors now include the check name and namespace.

71 When encountering an invalid line during metric extraction, Sensu now logs an error and
continues extraction.

71 Sensuctl now returns an error when attempting to delete a non-existent entity.

71 Sensuctl now removes the temporary file it creates when executing the sensuctl edit
command.

71 The Sensu dashboard now recovers from errors correctly when shutting down.

71 The Sensu dashboard includes better visibility for buttons and menus in the dark theme.

5.1.0 release notes

December 19, 2018 — The latest release of Sensu Go, version 5.1.0, is now available for download.
This release includes an important change to the Sensu backend state directory as well as support for
Ubuntu 14.04 and some key bug fixes.

Read the upgrade guide to upgrade Sensu to version 5.1.0.

IMPORTANT:

NOTE: This applies only to Sensu backend binaries downloaded from s3-us-west-
2.amazonaws.com/sensu.io/sensu-go , hot to Sensu RPM or DEB packages.

71 For Sensu backend binaries, the default state-dir iSnow /var/lib/sensu/sensu-
backend instead of /var/lib/sensu .To upgrade your Sensu backend binary to 5.1.0, make
sure your /etc/sensu/backend.yml configuration file specifies a state-dir .Read the
upgrade guide for more information.

NEW FEATURES:

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
https://nvd.nist.gov/vuln/detail/CVE-2019-6486/
http://localhost:1313/sensu-go/5.1/operations/maintain-sensu/upgrade/#upgrade-sensu-backend-binaries-to-510

1 Sensu agents now include trusted-ca-file and insecure-skip-tls-verify configuration
options, giving you more flexibility with certificates when connecting agents to the backend over
TLS.

IMPROVEMENTS:
7 Sensu now includes support for Ubuntu 14.04.
FIXES:

71 The Sensu backend now successfully connects to an external etcd cluster.
71 SysVinit scripts for the Sensu agent and backend now include correct run and log paths.

71 Once created, keepalive alerts and check TTL failure events now continue to occur until a
successful event is observed.

71 When querying for an empty list of assets, sensuctl and the Sensu API now return an empty
array instead of null.

71 The sensuctl create command now successfully creates hooks when provided with the
correct definition.

71 The Sensu dashboard now renders status icons correctly in Firefox.

5.0.1 release notes

December 12, 2018 — Sensu Go 5.0.1 includes our top bug fixes following last week’s general
availability release.

Read the upgrade guide to upgrade Sensu to version 5.0.1.
FIXED:

71 The Sensu backend can now successfully connect to an external etcd cluster.

71 The Sensu dashboard now sorts silences in ascending order, correctly displays status values,
and reduces shuffling in the event list.

71 Sensu agents on Windows now execute command arguments correctly.
71 Sensu agents now correctly include environment variables when executing checks.

1 Command arguments are no longer escaped on Windows.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.1/observability-pipeline/observe-schedule/agent/

71 Sensu backend environments now include handler and mutator execution requests.

5.0.0 release notes

December 5, 2018 — We're excited to announce the general availability release of Sensu Go!Sensu
Go is the flexible monitoring event pipeline written in Go and designed for container-based and hybrid-
cloud infrastructures.Check out the Sensu blog for more information about Sensu Go and version 5.0.

For a complete list of changes from Beta 8-1, review the Sensu Go changelog.This page will be the
official home for the Sensu Go changelog and release notes.

To get started with Sensu Go:

7 |Install Sensu Go.

71 Get started monitoring server resources.

https://sensu.io/blog/sensu-go-is-here/
https://www.github.com/sensu/sensu-go/blob/main/CHANGELOG.md#500---2018-11-30
http://localhost:1313/sensu-go/5.0/operations/deploy-sensu/install-sensu/
http://localhost:1313/sensu-go/5.0/observability-pipeline/observe-schedule/monitor-server-resources/

Get started with Sensu

Sensu Go is the flexible observability pipeline designed for container-based and multi-cloud
infrastructures.

Sensu is available as packages, Docker images, and binary-only distributions.You can install the
commercial distribution or build Sensu from source.

Install the commercial distribution of Sensu Go

Sensu’s supported platforms include CentOS/RHEL, Debian, Ubuntu, and Windows.

71 Install Sensu Go with a commercial package and get started for free

7 Learn about Sensu’s commercial features — all commercial features are available for free in
the packaged Sensu Go distribution up to an entity limit of 100

71 Find the Sensu architecture that best meets your needs

71 Discover Sensu dynamic runtime assets for deploying plugins on Bonsai, the Sensu asset hub

7 Migrate from Sensu Core and Sensu Enterprise to Sensu Go

Learn Sensu

Watch this video for an 8-minute Sensu Go overview and demo:

https://bonsai.sensu.io/

We recommend these resources for learning more about Sensu:

-

Follow the self-guided Sensu Go Workshop and create your first observability pipeline

|

Try a live demo of the Sensu web Ul

]|

Sign up for our step-by-step Learn Sensu email course

.

Join the Sensu Community Forum on Discourse

Explore monitoring at scale with Sensu Go

Sensu offers support packages for Sensu Go as well as commercial licenses designed for monitoring
at scale.

71 Contact the sales team for a personalized demo and free trial of commercial features at scale

71 Activate your Sensu commercial license

Build Sensu from source (OSS)

Sensu Go’s core is open source software, freely available under an MIT License.

71 Get the Sensu Go binary distribution for your platform

7 Visit Sensu Go on GitHub

1 Compare OSS and commercial features

7 Build from source

https://github.com/sensu/sensu-go-workshop
https://sensu.io/learn
https://discourse.sensu.io/
https://sensu.io/contact?subject=contact-sales
https://github.com/sensu/sensu-go/
https://sensu.io/features/compare
https://www.github.com/sensu/sensu-go/blob/main/README.md#building-from-source

Supported platforms and distributions

Sensu is available as packages, Docker images, and binary-only distributions.We recommend installine
Sensu with one of our supported packages, Docker images, or configuration management integrations.
Sensu downloads are provided under the Sensu commercial license.

Supported packages

This page lists supported packages for the most common platforms.Supported packages for common
platforms are available from sensu/stable on packagecloud and the Sensu downloads page.

NOTE: The sensu/stable repository on packagecloud includes packages for every platform Sensu
supports, in addition to packages for the common platforms listed on this page.

Sensu backend

RHEL/CentOS Debian 8, 9, 10 Ubuntu 14.04
6,7,8 16.04, 18.04

18.10, 19.04
19.10, 20.04

amd 64

Sensu agent

Ubuntu Windows 7 Windows
14.04 and later Server
16.04 2008 R2

18.04 and later
18.10
19.04

https://sensu.io/licenses
https://packagecloud.io/sensu/stable/
https://sensu.io/downloads
https://packagecloud.io/sensu/stable/

386
armv5

armvo

armv’/

ppc64dle

$390x

Sensuctl command line tool

Ubuntu Windows 7 Windows
14.04 and later Server
16.04 2008 R2
18.04 and later
18.10
19.04
19.10
20.04

amd64

386

armvs

armvo

armv’/

ppc64dle

s390x

Docker images

Docker images that contain the Sensu backend and Sensu agent are available for Linux-based
containers.

Image Name Base

sensu/sensu Alpine Linux

sensu/sensu-rhel Red Hat Enterprise Linux

Binary-only distributions

Sensu binary-only distributions are available in .zip and .tar.gz formats.

The Sensu web Ul is a standalone product — it is not distributed inside the Sensu backend binary.Visit
the Sensu Go Web GitHub repository for more information.

Platform Architectures

Linux 386 amd64 arm64 armv5 armvé armv’

MIPS MIPS LE MIPS 64 MIPS 64 LE ppc6dle s390x

Windows 386 amdé64

macOS amd64 amd64 CGO armé64
FreeBSD 386 amd64 armvb armvé armv’
Solaris amd64

Linux

Sensu binary-only distributions for Linux are available for the architectures listed in the table below.
For binary distributions, we support the following Linux kernels:

1 3.1.x and later for armvs

1 4.8 and later for MIPS 64 LE hard float and MIPS 64 LE soft float

https://hub.docker.com/r/sensu/sensu/
https://hub.docker.com/r/sensu/sensu-rhel/
https://github.com/sensu/web

1 2.6.23 and later for all other architectures

NOTE: The Linux amdé4 , armé4 , and ppcé4le binary distributions include the agent,
backend, and sensuctl CLI.Binaries for all other Linux architectures include only the Sensu agent
and sensuctl CLI.

Architecture Formats Architecture Formats

386 .tar.gz | .zip MIPS LE hard float .tar.gz .zip
amd o4 .tar.gz | .zip MIPS LE soft float .tar.gz .zip
armo64 .tar.gz | .zip MIPS 64 hard float .tar.gz .zip
armv5 .tar.gz | .zip MIPS 64 soft float .tar.gz | .zip
armvé .tar.gz | .zip MIPS 64 LE hard float .tar.gz | .zip
armv’ .tar.gz | .zip MIPS 64 LE soft float .tar.gz | .zip
MIPS hard float .tar.gz | .zip s390x .tar.gz .zip
MIPS soft float .tar.gz | .zip ppcb6dle .tar.gz .zip

For example, to download Sensu for Linux amdé64 in tar.gz format:

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-

go 6.4.3 linux amdé64.tar.gz

Generate a SHA-256 checksum for the downloaded artifact:

sha256sum sensu-go_6.4.3 linux amd64.tar.gz

The result should match the checksum for your platform:

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_386.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mipsle-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mipsle-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mipsle-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mipsle-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_arm64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_arm64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips64-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips64-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_armv5.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_armv5.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips64-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips64-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_armv6.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_armv6.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips64le-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips64le-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_armv7.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_armv7.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips64le-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips64le-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_s390x.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_s390x.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_mips-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_ppc64le.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_linux_ppc64le.zip

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-

go_6.4.3 checksums.txt && cat sensu-go 6.4.3 checksums.txt

Federal Information Processing Standard (FIPS) Compliance

Builds that support the Federal Information Processing Standard (FIPS) for Federal Risk and
Authorization Management Program (FedRAMP) compliance are available for Linux amdé4 .

Sensu FIPS builds with FIPS-mode configuration options are linked with the FIPS 140-2 validated
cryptographic library.You can run Red Hat Enterprise Linux (RHEL) with the FIPS-mode kernel option
to enforce FIPS systemwide — Sensu FIPS builds comply with this mode.

Contact Sensu to request builds with FIPS support.

Windows
Sensu binary-only distributions for Windows are available for the architectures listed in the table below.

We support Windows 7 and later and Windows Server 2008R2 and later for binary distributions.

NOTE: The Windows binary distributions include only the Sensu agent and sensuct! CLI.

Architecture Formats

386 .tar.gz | .zip
amd64 .tar.gz | .zip

For example, to download Sensu for Windows amdé64 in zip format:

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-
go 6.4.3 windows amd64.zip -OutFile "Senv:userprofile\sensu-

go _6.4.3 windows amd64.zip"

Generate a SHA-256 checksum for the downloaded artifact:

https://sensu.io/contact
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_windows_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_windows_386.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_windows_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_windows_amd64.zip

Get-FileHash "Senv:userprofile\sensu-go 6.4.3 windows amdé64.zip" -Algorithm SHA256 |

Format-List

The result should match (with the exception of capitalization) the checksum for your platform:

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-

go 6.4.3 checksums.txt -OutFile "S$env:userprofile\sensu-go 6.4.3 checksums.txt"

Get-Content "Senv:userprofile\sensu-go 6.4.3 checksums.txt" | Select-String -Pattern

windows amd64

macOS

Sensu binary-only distributions for macOS are available for the architectures listed in the table below.

We support macOS 10.11 and later for binary distributions.

NOTE: The macQOS binary distributions include only the Sensu agent and sensuctl CLI.

Architecture Formats

amd64 .tar.gz | .zip
amd64 CGO .tar.gz | .zip
armoé4 .tar.gz | .zip

For example, to download Sensu for macOS amdé4 in tar.gz format:

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-

go 6.4.3 darwin amd64.tar.gz

Generate a SHA-256 checksum for the downloaded artifact:

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_darwin_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_darwin_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/cgo/sensu-go-cgo_6.4.3_darwin_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/cgo/sensu-go-cgo_6.4.3_darwin_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_darwin_arm64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_darwin_arm64.zip

shasum -a 256 sensu-go 6.4.3 darwin amd64.tar.gz

The result should match the checksum for your platform:

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-

go_6.4.3 checksums.txt && cat sensu-go 6.4.3 checksums.txt

Extract the archive:

tar -xvf sensu-go 6.4.3 darwin amdé64.tar.gz

Copy the executable into your PATH:

sudo cp sensuctl /usr/local/bin/

FreeBSD

Sensu binary-only distributions for FreeBSD are available for the architectures listed in the table below.

We support FreeBSD 11.2 and later for binary distributions.

NOTE: The FreeBSD binary distributions include only the Sensu agent and sensuctl CLI.

Architecture Formats

386 .tar.gz | .zip
amd64 .tar.gz | .zip

armvb .tar.gz | .zip

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_386.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_armv5.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_armv5.zip

armvé .tar.gz | .zip

armv’/ .tar.gz | .zip

For example, to download Sensu for FreeBSD amdé64 in tar.gz format:

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-

go 6.4.3 freebsd amdé64.tar.gz
Generate a SHA-256 checksum for the downloaded artifact:
sha256sum sensu-go_6.4.3 freebsd amd64.tar.gz

The result should match the checksum for your platform:

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-

go_6.4.3 checksums.txt && cat sensu-go 6.4.3 checksums.txt

Solaris

Sensu binary-only distributions for Solaris are available for the architectures listed in the table below.

We support Solaris 11 and later (not SPARC) for binary distributions.

NOTE: The Solaris binary distributions include only the Sensu agent.

Architecture Formats

amd64 .tar.gz | .zip

For example, to download Sensu for Solaris amd64 in tar.gz format:

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_armv6.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_armv6.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_armv7.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_freebsd_armv7.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_solaris_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-go_6.4.3_solaris_amd64.zip

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-

go _6.4.3 solaris amdé64.tar.gz

Generate a SHA-256 checksum for the downloaded artifact.

sha256sum sensu-go 6.4.3 solaris amd64.tar.gz

The result should match the checksum for your platform.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/6.4.3/sensu-

go 6.4.3 checksums.txt && cat sensu-go 6.4.3 checksums.txt

Legacy systems and other platforms

The Sensu Push utility allows you to execute Sensu checks on legacy systems and other platforms
that cannot run the Sensu agent, such as AlIX and SPARC Solaris.

You can also use cron to run Sensu checks locally on these systems and forward the results to an
upstream Sensu backend or agent via the Sensu API.

Build from source

Sensu Go’s core is open source software, freely available under an MIT License.Sensu Go instances
built from source do not include commercial features such as the web Ul, single sign-on (SSO)
authentication, and secrets management.Review the feature comparison matrix to learn more.To build
Sensu Go from source, read the Sensu Go installation instructions on GitHub.

Mirror packages

To mirror Sensu Go, follow the packagecloud instructions for YUM and APT repository mirroring.The
sensu/stable packagecloud repository hosts packages for every Sensu Go version.

https://github.com/sensu/sensu-push
https://sensu.io/features/compare
https://github.com/sensu/sensu-go#installation
https://packagecloud.io/sensu/stable/mirror#yum
https://packagecloud.io/sensu/stable/mirror#apt
https://packagecloud.io/sensu/stable/

Get started with commercial features

Sensu Go offers commercial features designed for monitoring and observability at scale.All commercial
features are available in the official Sensu Go distribution, and you can use them for free up to an
entity limit of 100.Iflyou have more than 100 entities, contact the Sensu sales team for a free trial.

In addition to the summary on this page, we describe commercial features in detail throughout the
documentation.Watch for this notice to identify commercial features:

COMMERCIAL FEATURE: Access <feature_name> in the packaged Sensu Go distribution.For
more information, read Get started with commercial features.

Commercial features in Sensu Go

71 Integrate your Sensu observability pipeline with industry-standard tools like EC2, Jira,

ServiceNow, and Sumo Logic with featured integrations and enterprise-tier dynamic runtime
assets.

71 Manage resources from your browser: Use the Sensu web Ul to manage events and entities
and create, edit, and delete checks, handlers, mutators, silences, and event filters, with a
single pane of glass view.Create customized global default settings for page size and theme,

page-specific settings for page size, order, and selector, and sign-in messages.

71 Control access with single sign-on (SSO) authentication using Lightweight Directory
Access Protocol (LDAP), Active Directory (AD), or OpenlD Connect 1.0 protocol (OIDC).

71 Maintain high-level visibility into the current health of your business services.Use

business service monitoring (BSM) to monitor your system with a top-down approach that
produces meaningful alerts, prevents alert fatigue, and helps you focus on your core business

services.

71 Use mutual transport layer security (mTLS) authentication to provide two-way verification
of your Sensu agents and backend connections.

71 Protect your sensitive information with secrets management.Avoid exposing usernames,
passwords, and access keys in your Sensu configuration by integrating with HashiCorp Vault
or using Sensu’s Env secrets provider.

7 Manage your monitoring resources across multiple data centers, cloud regions, or
providers and mirror changes to follower clusters with federation.Federation affords visibility

https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/contact?subject=contact-sales/
https://bonsai.sensu.io/assets?tiers%5B%5D=4/
https://bonsai.sensu.io/assets?tiers%5B%5D=4/

into the health of your infrastructure and services across multiple distinct Sensu instances
within a single web UI.

71 Use powerful search capabilities designed for large installations to search Sensu AP
responses, sensuctl outputs, and Sensu web Ul views using custom labels and a wide range of
resource attributes.Build event filter expressions with JavaScript execution functions./lLog
observation data to a file you can use as an input to your favorite data lake solution.

71 Achieve enterprise-scale event handling for your Sensu instance with a PostgreSQL event
store.Access the PostgreSQL event datastore with the same Sensu web Ul, API, and sensuctl
processes as etcd-stored events.

71 Get enterprise-class support: Rest assured that with Sensu support, help is available if you
need it.Our expert in-house team offers best-in-class support to get you up and running
smoothly.

Review a complete comparison of OSS and commercial features.

Contact us for a free trial

Sensu’s commercial features are free for your first 100 entities.If your Sensu installation includes more
than 100 entities, contact the Sensu sales team for a free trial of commercial features at scale in Sensu
Go.

Manage your Sensu account and contact support through account.sensu.io.

Get started with commercial features in Sensu Go

If you haven’t already, install the Sensu Go backend, agent, and sensuctl tool and configure sensuctl.

You will need a commercial license if your Sensu installation includes more than 100 entities.To
download your commercial license file:

1. Log in to your Sensu account at account.sensu.io.
2. Click Download license.

NOTE: In some cases, you may need to click Generate license before you can download your
license.

https://sensu.io/features/compare
https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/contact?subject=contact-sales/
https://account.sensu.io/
https://account.sensu.io/
https://sensu.io/support/

Sensu Go License

View and download your Sensu Go license key.

Account ID

44

Billing Email
—“i*i-—w--ﬁ- -
Issued

February 19, 2019
Expires

February 19, 2020

Download license

With the license file downloaded, you can use sensuctl to activate your commercial license:

sensuctl create --file sensu license.json

NOTE: For clustered configurations, you only need to activate your license for one of the backends
within the cluster.

Use sensuctl to view your license details at any time:

sensuctl license info

http://localhost:1313/images/go/commercial/license_download.png

Users with permission to create or update licenses can also view license information in the Sensu web
Ul by pressing cTrL . to open the system information modal.

These resources will help you use commercial features in Sensu Go:

9

9

Configure mTLS authentication for the Sensu agent.

Federate multiple Sensu instances to gain single-pane-of-glass visibility into your infrastructure
and services.

Install plugins with dynamic runtime assets and use our complete catalog of integrations.

Keep sensitive information like passwords and access tokens private with secrets
management.

Set up and manage single sign-on (SSO) authentication providers: Active Directory (AD),
Lightweight Directory Access Protocol (LDAP), and OpenlD Connect 1.0 protocol (OIDC).

Use the web Ul for a unified view of your events, entities, and configuration resources along
with user-friendly tools, and create customized page views.

Monitor business services and get high-level visibility into every component in your system.

Search in the web Ul or use powerful response filtering in API requests and sensuctl
commands.

Scale your monitoring and observability with Sensu’s enterprise datastore.
Manage your Sensu commercial license
Log in to your Sensu account

Contact Sensu support

https://account.sensu.io/
https://account.sensu.io/support/

Sensu Observability Pipeline

Sensu’s observability pipeline is a flexible, automated tool that gives you visibility into every part of
your organization’s infrastructure.

The Sensu agent is a lightweight process that runs on the infrastructure components you want to
observe.Each agent is represented in Sensu as an entity.The Sensu backend schedules checks for
agents to run on your infrastructure.Agents receive check execution requests based on the agent
subscriptions you specify.

The agent runs these checks on your infrastructure to gather observation data about your networking,
compute resources, applications, and more.Events contain the observation data that your checks
gather, which might include entity status, metrics, or both, depending on your needs and configuration.

The agent sends events to the backend, which filters, transforms, and processes the data in your
events with event filters, mutators, and handlers.

Sensu’s observability pipeline delivers contextualized information and deeper insights so you can take
targeted actions.For example, Sensu can send entity status data in an email, Slack, or PagerDuty alert
and transport metrics to storage in your Graphite, InfluxDB, or Prometheus databases.

28 or click any element in the pipeline to jump to it.

Entities

28 or click any element in the pipeline to jump to it.

An entity represents anything that needs to be observed or monitored, such as a server, container, or
network switch, including the full range of infrastructure, runtime, and application types that compose a
complete monitoring environment (from server hardware to serverless functions).Sensu calls parts of
an infrastructure “entities.”

An entity provides the context for observation data in events — what and where the event is from.The
check and entity names associated with an event determine the event’s uniqueness.Entities can also
contain system information like the hostname, operating system, platform, and version.

There are three types of Sensu entities: agent, proxy, and service entities.

Agent entities

Agent entities are monitoring agents that are installed and run on every system that needs to be
observed or monitored.The agent entity registers the system with the Sensu backend service, sends
keepalive messages (the Sensu heartbeat mechanism), and executes observability checks.

Each entity is a member of one or more subscriptions : a list of roles and responsibilities assigned
to the agent entity (for example, a webserver or a database).Sensu entities “subscribe” to (or watch for)
check requests published by the Sensu backend (via the Sensu transport), execute the corresponding
requests locally, and publish the results of the check back to the transport (to be processed by a Sensu
backend).

This example shows an agent entity resource definition:

YML

type: Entity
api_version: core/v2
metadata:

name: 1-424242

spec:

deregister: false
deregistration: {}
entity class: agent
last_seen: 0
sensu_agent version: 1.0.0
subscriptions:
- web
system:
cloud provider: ""
libc_type: ""
network:
interfaces: null
processes: null
vm_role: ""

vm_system: ""

JSON

"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "i-424242"
b
"spec": {
"deregister": false,
"deregistration": {
by
"entity class": "agent",
"last seen": O,
"sensu agent version": "1.0.0",
"subscriptions": [
"web"
1y
"system": {
"cloud provider": "",
"libc type": "",
"network": {
"interfaces": null
}o
"processes": null,

"vm role":

nmn
4

"vm system":

Proxy entities

Proxy entities [formerly known as proxy clients or just-in-time (JIT) clients] allow Sensu to monitor
external resources on systems where you cannot install a Sensu agent, like a network switch or
website.

Proxy entities are dynamically created when an entity does not already exist for a check result.In this
case, Sensu uses the proxy entity name defined in the check to create proxy entities for external
resources.

This example shows a proxy entity resource definition:

YML

type: Entity
api_version: core/v2
metadata:
labels:
proxy_ type: website
sensu.io/managed by: sensuctl
url: https://docs.sensu.io
name: sensu-docs
namespace: default
spec:
deregister: false
deregistration: {}
entity class: proxy
last _seen: 0
sensu_agent version: ""
subscriptions: null
system:
cloud provider: ""
libc_type: ""

network:

interfaces: null
processes: null
vm_role: ""

vm_system: ""

JSON

"type": "Entity",
"api version": "core/v2",
"metadata": {

"labels™: {

"proxy type": "website",

"sensu.io/managed by": "sensuctl",

"url": "https://docs.sensu.io"

b
"name": "sensu-docs",
"namespace": "default"

bo

"spec": {
"deregister": false,
"deregistration": {
by
"entity class": "proxy",
"last seen": O,
"sensu_agent version": "",
"subscriptions": null,
"system": {

"cloud provider": "",
"libc type": "",
"network": {

"interfaces": null
by
"processes": null,
"vm role": "",

"vm system": ""

Service entities

COMMERCIAL FEATURE: Access business service monitoring (BSM), including service entities,
in the packaged Sensu Go distribution.For more information, read Get started with commercial
features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

A service entity represents a business service in business service monitoring (BSM).Sensu processes
service entity events just like events generated for agent and proxy entities.You can also use service
entities for proxy check requests and events.

This example shows a service entity resource definition:

YML

type: Entity
api_version: core/v2
metadata:

name: postgresqgl
spec:

entity class: service

JSON

"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "postgresqgl"
y
"spec": {

"entity class": "service"

Usage limits
Sensu’s usage limits are based on entities.

The free limit is 100 entities.All commercial features are available for free in the packaged Sensu Go
distribution for up to 100 entities.If your Sensu instance includes more than 100 entities, contact us to
learn how to upgrade your installation and increase your limit. Read the announcement on our blog for
more information about our usage policy.

Commercial licenses may include an entity limit and entity class limits:

71 Entity limit: the maximum number of entities of all classes your license includes.Agent, proxy,
and service entities count toward the overall entity limit.

71 Entity class limits: the maximum number of a specific class of entities (agent, proxy, or service)
that your license includes.

For example, if your license has an entity limit of 10,000 and an agent entity class limit of 3,000, you
cannot run more than 10,000 entities (agent and proxy) total.At the same time, you cannot run more
than 3,000 agents.If you use only 1,500 agent entities, you can have 8,500 proxy entities before you
reach the overall entity limit of 10,000.

If you have permission to create or update licenses, you will see messages in sensuctl and the web Ul
when you approach your licensed entity or entity class limit, as well as when you exceed these limits.
You can also use sensuctl or the /license API to view your overall entity count and limit.

https://sensu.io/contact
https://sensu.io/blog/one-year-of-sensu-go

Entities reference

An entity represents anything that needs to be monitored, such as a server, container, or network
switch, including the full range of infrastructure, runtime, and application types that compose a
complete monitoring environment.Sensu uses agent entities, proxy entities, and service entities.

Sensu’s free entity limit is 100 entities.All commercial features are available for free in the packaged
Sensu Go distribution for up to 100 entities.If your Sensu instance includes more than 100 entities,
contact us to learn how to upgrade your installation and increase your limit.

Learn more about entity limits in the license reference.Read the announcement on our blog for more
information about our usage policy.

Create and manage agent entities

When an agent connects to a backend, the agent entity definition is created from the information in the
agent.yml configuration file.The default agent.yml file location depends on your operating system

Agent entity example

This example shows the resource definition for an agent entity:

YML

type: Entity
api_version: core/v2
metadata:
name: webserver(Ol
spec:
deregister: false
deregistration: {}
entity class: agent
last _seen: 1542667231
redact:

- password

https://sensu.io/contact
https://sensu.io/blog/one-year-of-sensu-go

passwd

pass

api_ key
api_ token
access key
secret key
private key

secret

subscriptions:

entity:webserver0l

system:

arch: amdé64
libc_type: glibc
vm_system: kvm
vm_role: host
cloud provider: null
processes:
- name: Slack
pid: 1349
ppid: O
status: Ss
background: true
running: true
created: 1582137786
memory percent: 1.09932518
cpu_percent: 0.3263987595984941
- name: Slack Helper
pid: 1360
ppid: 1349
status: Ss
background: true
running: true
created: 1582137786
memory percent: 0.146866455
cpu_percent: (0.30897618146109257
hostname: sensu2-centos
network:
interfaces:
- addresses:
- 127.0.0.1/8
= ggl/128

name: lo

- addresses:
- 10.0.2.15/24
- fe80::26a5:54ec:cf0d:9704/64
mac: 08:00:27:11:ad:d2
name: enp0s3
- addresses:
- 172.28.128.3/24
- fe80::a00:27ff:febc:be60/64
mac: 08:00:27:bc:be:60
name: enp0s8
os: linux
platform: centos
platform family: rhel
platform version: 7.4.1708
sensu_agent version: 1.0.0

user: agent

JSON
{
"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "webserver(Ol"
by
"spec": {
"entity class": "agent",

"system": {
"hostname": "sensuZ2-centos",
"os": "linux",
"platform": "centos",
"platform family": "rhel",
"platform version": "7.4.1708",
"network": {
"interfaces": |
{
"name": "lo",
"addresses": [
"127.0.0.1/8",
"::1/128"

by

"name": "enpOs3",
"mac": "08:00:27:11:ad:d2",
"addresses": |

"10.0.2.15/24",
"fe80::26a5:54ec:cf0d:9704/64"

"name": "enpOs8",

"mac": "08:00:27:bc:be:60",

"addresses": |
"172.28.128.3/24",
"feB80::a00:27ff:febc:be60/64"

bo
"arch": "amdo4",
"libc type": "glibc",
"vm system": "kvm",
"vm role": "host",
"cloud provider": "",
"processes": [
{
"name": "Slack",
"pid": 1349,
"ppid": O,
"status": "Ss",
"background": true,
"running": true,
"created": 1582137786,
"memory percent": 1.09932518,
"cpu percent": 0.3263987595984941

"name": "Slack Helper",
"pid": 1360,

"ppid": 1349,

"status": "Ss'",
"background": true,

"running": true,

"created": 1582137786,
"memory percent": 0.146866455,
"cpu percent”: 0.308976181461092553

]
by

"sensu _agent version": "1.0.0",

"subscriptions": [
"entity:webserverQl"

1,

"last seen": 1542667231,

"deregister": false,

"deregistration": {},
"user": "agent",
"redact": [

"password",
"passwd",
"pass",

"api key",
"api token",
"access key",
"secret key",
"private key",

"secret"

Manage agent entities via the backend

You can manage agent entities via the backend with sensuctl, the core/v2/entities APl endpoints, and
the web Ul, just like any other Sensu resource.This means you do not need to update the agent.yml
configuration file to add, update, or delete agent entity attributes like subscriptions and labels.

Management via the backend is the default configuration for agent entities.

NOTE: If you manage an agent entity via the backend, you cannot modify the agent entity with the
agent.yml configuration file unless you delete the entity.In this case, the entity attributes in
agent.yml are used only for initial entity creation unless you delete the entity.

If you delete an agent entity that you modified with sensuctl, the core/v2/entities APl endpoints, or the
web Ul, it will revert to the original configuration from agent.ym1 .If you change an agent entity’s class
to proxy , the backend will revert the change to agent .

Manage agent entities via the agent

If you prefer, you can manage agent entities via the agent rather than the backend.To do this, add the
agent-managed-entity configuration option when you start the Sensu agent or set agent-
managed-entity: true inyour agent.yml file.

When you start an agent with the agent-managed-entity configuration option setto true , the
agent becomes responsible for managing its entity configuration.An entity managed by this agent will
include the label sensu.io/managed by: sensu-agent .You cannot update these agent-managed
entities via the Sensu backend REST API.To change an agent’s configuration, restart the agent.

You can also maintain agent entities based on agent.yml by creating ephemeral agent entities with
the deregister attribute setto true .With this setting, the agent entity will deregister every time the
agent process stops and its keepalive expires.When it restarts, it will revert to the original configuration
from agent.yml You must set deregister: true in agent.yml before the agent entity is created.

Create and manage proxy entities

Proxy entities allow Sensu to monitor external resources on systems where you cannot install a Sensu
agent, like a network switch or website.

You can create proxy entities the same way you would create agent entities, but Sensu can also
dynamically create them when an entity does not already exist for a check result and add them to the
entity store.In this case, Sensu will use the proxy entity name defined in the check to register proxy
entities for your external resources.

Proxy entity registration differs from keepalive-based registration because the registration event
happens while processing a check result instead of a keepalive message.

Modify proxy entities as needed via the backend with sensuctl, the core/v2/entities API endpoints, and
the web UI.

NOTE: If you start an agent with the same name as an existing proxy entity, Sensu will change the
proxy entity’s class to agent and update its system field with information from the agent

configuration.

Proxy entity example

This example shows the resource definition for a proxy entity:

YML

type: Entity
api_version: core/v2
metadata:
name: sensu-docs
spec:
deregister: false
deregistration: {}
entity class: proxy
last_seen: 0
sensu_agent version: 1.0.0
subscriptions: null
system:
cloud provider: ""
libc_type: ""
network:
interfaces: null
processes: null
vm_role: ""

vm_system: ""

JSON

"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "sensu-docs"
bo
"spec": {
"deregister": false,

"deregistration": {

}y
"entity class": "proxy",
"last seen": O,
"sensu agent version": "1.0.0",
"subscriptions": null,
"system": {
"cloud provider": "",
"libc type": "",
"network": {
"interfaces": null
}o
"processes": null,
"vm role": "",

mn

"vm system":

Checks for proxy entities

Proxy entities allow Sensu to monitor external resources on systems or devices where a Sensu agent
cannot be installed, like a network switch, website, or APl endpoint.

You can configure a proxy check that includes a proxy entity name to associate the check results
with a specific proxy entity.On the first check result, if the named proxy entity does not exist, Sensu will
create it.You can also use proxy checks to monitor multiple proxy entities based on entity attributes
specified in the check definition’s proxy requests attribute.

When you create a proxy check, make sure the check definition includes a subscription that matches
the subscription of at least one agent entity to define which agents will run the check.Proxy entities do
not use subscriptions.

Read Monitor external resources with proxy entities for details about creating proxy checks for one or
more proxy entities.

Proxy entities and round robin scheduling

Proxy entities make round robin check scheduling more useful because they allow you to combine all
round robin events into a single event.Instead of having a separate event for each agent entity, you

have a single event for the entire round robin.

If you don’t use a proxy entity for round robin scheduling, you could have several failures in a row, but
each event will only be aware of one of the failures.

If you use a proxy entity without round robin scheduling, and several agents share the same
subscription, they will all execute the check for the proxy entity and you’ll get duplicate results.When
you enable round robin, you'll get one agent per interval executing the proxy check, but the event will
always be listed under the proxy entity.

Use proxy entity filters to establish a many-to-many relationship between agent entities and proxy
entities if you want even more power over the grouping.

Create and manage service entities

COMMERCIAL FEATURE : Access business service monitoring (BSM), including service entities,
in the packaged Sensu Go distribution.For more information, read Get started with commercial

features.

NOTE: Business service monitoring (BSM) is in public preview and is subject to change.

Service entities are dynamically created entities that Sensu adds to the entity store when a service
component generates an event.Service entities allow Sensu to monitor business services.

Create and modify service entities via the backend with sensuctl, the core/v2/entities API endpoints,
and the web UI.

Service entity example

This example shows the resource definition for a service entity:

YML

type: Entity
api_version: core/v2
metadata:

name: postgresqgl

spec:

entity class: service

JSON
{
"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "postgresqgl"
bo
"spec": {
"entity class": "service"

Manage entity labels

Labels are custom attributes that Sensu includes with observation event data that you can use for
response and web Ul view searches.In contrast to annotations, you can use labels to filter AP

responses, sensuctl responses, and web Ul search views.
Limit labels to metadata you need to use for response filtering and searches.For complex, non-

identifying metadata that you will not need to use in response filtering and searches, use annotations
rather than labels.

Agent entity labels

For new entities with class agent , you can define entity attributes in the /etc/sensu/agent.yml
configuration file.For example, to add a ur1l label, open /etc/sensu/agent.yml and add
configuration for 1labels :

labels:

url: sensu.docs.io

Or, use sensu-agent start configuration flags:

sensu-agent start --labels url=sensu.docs.io

NOTE: The entity attributes in agent.yml are used only for initial entity creation.Modify existing
agent entities via the backend with sensuctl, the core/v2/entities APl endpoints, and the web Ul.

Proxy entity labels

For entities with class proxy , you can create and manage labels with sensuctl.

For example, suppose you have a proxy entity like this one:

YML

type: Entity
api_version: core/v2
metadata:

labels:

url: docs.sensu.io

name: sensu-docs
spec:

deregister: false

entity class: proxy

sensu_agent_version: 1.0.0

JSON
{

"type": "Entity",

"api version": "core/v2",

"metadata": {
"labels™: {

"url": "docs.sensu.io"

by
"name": "sensu-docs"

|

"spec": {

"deregister": false,
"entity class": "proxy",

"sensu agent version": "1.0.0"

Toadd a proxy type labelto this existing entity, run the following command to open the entity
definition:

sensuctl edit entity sensu-docs

Then, update the metadata scope in the entity definition to add the proxy type label as shown
below:

YML

type: Entity
api_version: core/v2
metadata:
labels:
url: docs.sensu.io
proxy_ type: website
name: sensu-docs

spec:

1 . 1 '
e e e . o o

JSON

"type": "Entity",
"api version": "core/v2",
"metadata": {
"labels": {
"url": "docs.sensu.io",
"proxy type": "website"
by

"name": "sensu-docs"

Save your changes to update the proxy entity definition with the proxy type label.

Service entity labels

For entities with class service , you can create and manage labels with sensuctl.To create a service
entity with a service type label using sensuctl create , create a file called service-
entity.json With an entity definition that includes 1abels :

YML

type: Entity
api_version: core/v2
metadata:
name: postgresqgl
labels:
service_type: datastore
spec:

entity class: service

JSON
{

"type": "Entity",

"api version": "core/v2",

"metadata": {
"name": "postgresql",
"labels™: {

"service type": "datastore"

}

by

"spec": {

"entity class": "service"

Then run sensuctl create to create the entity based on the definition:

SHELL

sensuctl create --file service-entity.yml

SHELL

sensuctl create --file service-entity.json

To add a label to an existing service entity, use sensuctl edit.For example, to add a
postgresgl entity:

sensuctl edit entity postgresqgl

And update the metadata scope to include the region label:

YML

type: Entity
api_version: core/v2
metadata:
labels:
service_type: datastore
region: us-west-1
name: postgresqgl

spec:

JSON

"type": "Entity",

region

label to a

"api version": "core/v2",
"metadata": {
"labels": {
"service type": "datastore",
"region": "us-west-1"
}
"name": "postgresqgl"

by

Entities specification

Top-level attributes

api_version

description Top-level attribute that specifies the Sensu API group and version. For
entities in this version of Sensu, this attribute should always be

core/v2 .

required Required for entity definitions in wrapped-json or yaml format for use

with sensuctl create .

type String
YML

example

api_version: core/v2

JSON

"api version": "core/v2"

metadata

description Top-level collection of metadata about the entity, including name ,
namespace , and created by as well as custom 1labels and
annotations . The metadata map is always at the top level of the

entity definition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. Read metadata
attributes for details.

required Required for entity definitions in wrapped-json or yaml format for use

with sensuctl create .

type Map of key-value pairs
YML
example
metadata:

name: webserver(l
namespace: default
created by: admin
labels:

region: us-west-1
annotations:

slack-channel: "#monitoring"

JSON
{

"metadata": {
"name": "webserverO0l",
"namespace": "default",
"created by": "admin",
"labels": {

"region": "us-west-1"

bo
"annotations": {

"slack-channel”: "#monitoring"

spec

description Top-level map that includes the entity spec attributes.
required Required for entity definitions in wrapped-json or yaml format for use

with sensuctl create .

type Map of key-value pairs
YML
example
spec:

entity class: agent
system:
hostname: sensuZ-centos
os: linux
platform: centos
platform family: rhel
platform version: 7.4.1708
network:
interfaces:
- name: lo
addresses:
- 127.0.0.1/8
- "::1/128"
- name: enp0s3
mac: '08:00:27:11:ad:d2'
addresses:
- 10.0.2.15/24
- fe80::26a5:54ec:cf0d:9704/64
- name: enp0s8
mac: '08:00:27:bc:be:60"'
addresses:
- 172.28.128.3/24
- fe80::a00:27ff:febc:be60/64
arch: amd64
libc_type: glibc
vm_system: kvm

vm_role: host

cloud provider: ''
processes:
- name: Slack
pid: 1349
ppid: O
status: Ss
background: true
running: true

created: 1582137786

memory percent: 1.09932518

cpu_percent: (0.3263987595984941

- name: Slack Helper
pid: 1360
ppid: 1349
status: Ss
background: true
running: true

created: 1582137786

memory percent: 0.146866455
cpu_percent: 0.30897618146109257

sensu_agent version: 1.0.0
subscriptions:

- entity:webserver0l
last seen: 1542667231
deregister: false
deregistration: {}
user: agent

redact:

- password

- passwd

- pass

- api_ key

- api_token

- access_key

- secret key

- private key

- Secret

JSON

"spec": {

"entity class": "agent",
"system": {
"hostname": "sensu2-centos",
"os": "linux",
"platform": "centos",
"platform family": "rhel",
"platform version": "7.4.1708",
"network": {
"interfaces": [
{
"name": "l1o",
"addresses": [
"127.0.0.1/8",
"::1/128"

"name": "enpOs3",
"mac": "08:00:27:11:ad:d2",
"addresses": [
"10.0.2.15/24",
"feB80::26a5:54ec:cf0d:9704/64"

"name": "enpOs8",

"mac": "08:00:27:bc:be:60",

"addresses": [
"172.28.128.3/24",
"feB80::a00:27ff:febc:be60/64"

by

"arch": "amde4",
"libc type": "glibc",
"vm_system": "kvm",

"vm_role": "host",

"cloud provider": "",
"processes": [
{

"name": "Slack",

"pid": 1349,

"ppid": O,

"status": "Ss",

"background":

"running":

"created":

true,
true,

1582137786,

"memory percent": 1.09932518,

"cpu percent":

0.3263987595984941

"name": "Slack Helper",
"pid": 1360,
"ppid": 1349,

"status": "Ss",

"background":

"running":

"created":

true,
true,
1582137786,

"memory percent": 0.146866455,

"cpu percent":

by

0.30897618146109257

"sensu agent version": "1.0.0",

"subscriptions":

[

"entity:webserver01"

i

"last seen": 1542667231,

"deregister": false,

"deregistration":
"user": "agent",
"redact": [

"password",
"passwd",
"pass",

"api key",
"api token",
"access key",
"secret key",
"private key",

"secret"

{t,

description Top-level attribute that specifies the sensuctl create resource type.
Entities should always be type Entity .

required Required for entity definitions in wrapped-json or yaml format for use
with sensuctl create .

type String
YML

example

Metadata attributes

type: Entity

JSON

"type": "Entity"

annotations

description

Non-identifying metadata to include with observation event data that you
can access with event filters. You can use annotations to add data that’s
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in APl response
filtering, sensuctl response filtering, or web Ul views.

NOTE: For annotations defined in agent.yml or backend.yml, the

keys are automatically modified to use all lower-case letters. For

example, if you define the annotation webhookURL: "https://my-

webhook.com" In agent.yml or backend.yml, it will be listed as
webhookurl: "https://my-webhook.com"” in entity definitions.

Key cases are not modified for annotations you define with a
command line flag or an environment variable.

required false
type Map of key-value pairs. Keys and values can be any valid UTF-8 string.
default null
YML
example
annotations:

managed-by: ops

playbook: www.example.url

JSON

"annotations": {
"managed-by": "ops",
"playbook": "www.example.url"

created by

description Username of the Sensu user who created the entity or last updated the
entity. Sensu automatically populates the created by field when the
entity is created or updated.

required false

type String

YML

example

created by: admin

JSON

"created by": "admin"

labels

Custom attributes to include with observation event data that you can
use for response and web Ul view filtering.

description

If you include labels in your event data, you can filter API responses,
sensuctl responses, and web Ul views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response filtering. For
complex, non-identifying metadata that you will not need to use in
response filtering, use annotations rather than labels.

NOTE: For labels that you define in agent.yml or backend.yml, the
keys are automatically modified to use all lower-case letters. For
example, ifyou define the label proxyType: "website in
agent.yml or backend.yml, it will be listed as proxytype:
"website" in entity definitions.

Key cases are not modified for labels you define with a command
line flag or an environment variable.

required

false

type

Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

YML
example
labels:
environment: development
region: us-west-2
JSON

"labels": {
"environment": "development",
"region": "us-west-2"

description Unique name of the entity, validated with Go regex \a[\w\.\-]1+\z .
required true
type String
YML
example

name: example-hostname

JSON

"name": "example-hostname"

namespace

https://regex101.com/r/zo9mQU/2

description Sensu RBAC namespace that this entity belongs to.

required false
type String
default default

YML
example

namespace: production

JSON

"namespace": "production"

Spec attributes

description If the entity should be removed when it stops sending keepalive
messages, true . Otherwise, false .

required false
type Boolean
default false

YML
example

deregister: false

JSON

"deregister": false

deregistration

description Map that contains a handler name to use when an agent entity is
deregistered. Read dereqistration attributes for more information.
required false
type Map
YML
example
deregistration:

handler: email-handler

JSON

"deregistration": {

"handler": "email-handler"

entity_class

description

Entity type, validated with Go regex \a[\w\.\-1+\z . Class names have
special meaning. An entity that runs an agent is class agent andis
reserved. Setting the value of entity class to proxy createsa
proxy entity. An entity that represents a business service is class
service . For other types of entities, the entity class attribute isn’t
required, and you can use it to indicate an arbitrary type of entity (like
lambda OF switch).

required

true

https://regex101.com/r/zo9mQU/2

type String
YML

example
entity class: agent

JSON

"entity class": "agent"

}
last_seen

description Time at which the entity was last seen. In seconds since the Unix epoch.
required false
type Integer
YML
example

last _seen: 1522798317

JSON

"last seen": 1522798317

}
IIH%%HHHIII

description List of items to redact from log messages. If a value is provided, it
overwrites the default list of items to be redacted.

required false

type Array
default [“password”, “passwd”, “pass”, “api_key”, “api_token”, “access_key”,
“secret_key”, “private_key”, “secret’]
YML
example
redact:

- extra secret tokens

JSON

"redact": [

"extra secret tokens"

sensu_agent_version

description Sensu Semantic Versioning (SemVer) version of the agent entity.
required true
type String
YML
example

sensu_agent version: 1.0.0

JSON

"sensu_agent version": "1.0.0"

description List of subscription names for the entity. The entity by default has an
entity-specific subscription, in the format of entity:<name> where
name IS the entity’s hostname.

required false
type Array
default The entity-specific subscription.
YML
example
subscriptions:
- web
- prod

- entity:example-entity

JSON

"subscriptions": [
"web" 0
"prod" p

"entity:example-entity"

description System information about the entity, such as operating system and
platform. Read system attributes for more information.

NOTE: Process discovery is disabled in this version of Sensu. New
events will not include data in the processes attributes. Instead,
the field will be empty: "processes": null .

required false

type Map
YML
example
system:

arch: amdé64
libc_type: glibc
vm_system: kvm
vm_role: host
cloud provider: null
processes:
- name: Slack
pid: 1349
ppid: O
status: Ss
background: true
running: true
created: 1582137786
memory percent: 1.09932518
cpu _percent: 0.3263987595984941
- name: Slack Helper
pid: 1360
ppid: 1349
status: Ss
background: true
running: true
created: 1582137786
memory percent: 0.146866455
cpu_percent: 0.30897618146109257
hostname: example-hostname
network:
interfaces:
- addresses:
- 127.0.0.1/8
- ::1/128
name: lo
- addresses:
- 93.184.216.34/24
- 2606:2800:220:1:248:1893:25¢c8:1946/10
mac: 52:54:00:20:1b:3c

name: ethoO

os: linux
platform: ubuntu
platform family: debian

platform version: "16.04"

JSON

"system": {
"hostname": "example-hostname",
"os": "linux",
"olatform": "ubuntu",
"platform family": "debian",
"platform version": "16.04",
"network": {
"interfaces": [
{
"name": "l1o",
"addresses": |
"127.0.0.1/8",
"::1/128"

"name": "ethO",

"mac": "52:54:00:20:1b:3c",

"addresses": |
"93.184.216.34/24",
"2606:2800:220:1:248:1893:25¢c8:1946/10"

by

"arch": "amde4",
"libc type": "glibc",
"vm system": "kvm",
"vm role": "host",

"cloud provider": "",

"processes": [

{

"name": "Slack",

"pid": 1349,

user

description

"ppid": O,

"status": "Ss",

"background": true,

"running": true,

"created": 1582137786,

"memory percent": 1.09932518,
"cpu percent": 0.3263987595984941

"name": "Slack Helper",

"pid": 1360,

"ppid": 1349,

"status": "Ss",

"background": true,

"running": true,

"created": 1582137786,

"memory percent": 0.146866455,

"cpu percent”": 0.308976181461092553

Sensu RBAC username used by the entity. Agent entities require get,
list, create, update, and delete permissions for events across all
namespaces.

type

default

example

agent

"user": "agent"

Deregistration attributes

description Name of the handler to call when an agent entity is deregistered.
required false
type String
YML
example

handler: email-handler

JSON

"handler": "email-handler"

System attributes

arch

description Entity’s system architecture. This value is determined by the Go binary
architecture as a function of runtime.GOARCH. An amd system running
a 386 binary will reportthe arch as 386 .

required false

type String
YML

example
arch: amdo4

JSON

"arch": "amdo4"

arm_version

description Entity’s ARM version. Automatically populated upon agent startup for
entities with ARM system architecture. For entities that do not use ARM
system architecture, the arm version attribute is omitted from the
entity definition.

required false
type Integer

YML
example

arm version: 7

JSON

"arm version": 7

cloud_provider

description Entity’s cloud provider environment. Automatically populated upon agent

startup if the detect-cloud-provider configuration option is set.
Returned empty unless the agent runs on Amazon Elastic Compute
Cloud (EC2), Google Cloud Platform (GCP), or Microsoft Azure.

NOTE: This feature can result in several HTTP requests or DNS
lookups being performed, so it may not be appropriate for all
environments.

required false
type String
YML
example
"cloud_provider": ""
JSON

"cloud provider": ""

float_type

description Type of float the entity’s system architecture uses: hardfloat or
softfloat . Automatically populated upon agent startup for entities with

MIPS, MIPS LE, MIPS 64, or MIPS 64 LE system architecture. For
entities that do not use a MIPS system architecture, the float type
attribute is omitted from the entity definition.

required false

type String
YML

example

float_type: hardfloat

JSON

"float type": "hardfloat"

}
IIH%iHHHEiII

description Hostname of the entity.
required false
type String
YML
example

hostname: example-hostname

JSON

"hostname": "example-hostname"

}
libc_type

description Entity’s libc type.
required false
type String
YML
example

libc_type: glibc

JSON

"libc type": "glibc"

network
description Entity’s network interface list. Read network attributes for more
information.
required false
type Map
YML
example
network:
interfaces:
- addresses:
- 127.0.0.1/8
- ::1/128
name: lo
- addresses:

- 93.184.216.34/24
- 2606:2800:220:1:248:1893:25¢c8:1946/10
mac: 52:54:00:20:1b:3c

name: ethO

JSON
{
"network": {
"interfaces": [
{
"name": "lo",
"addresses": [

"127.0.0.1/8",
".:1/128"

I

"name": "ethO",

"mac": "52:54:00:20:1b:3c",

"addresses": [
"93.184.216.34/24",
"2606:2800:220:1:248:1893:25¢c8:1946/10"

]
}
]
}
}

description Entity’s operating system.
required false
type String
YML
example

os: linux

JSON

"os": "linux"

}
platform

description Entity’s operating system distribution.

required false

type String
YML

example
platform: ubuntu

JSON

"platform": "ubuntu"

}
platform_family

description Entity’s operating system family.
required false
type String
YML
example

platform family: debian

JSON

"platform family": "debian"

}
platform_version

description Entity’s operating system version.

required false

type String
YML

example

platform version: 16.04

JSON

"platform version": "16.04"

processes

description List of processes on the local agent. Read processes attributes for more
information.

NOTE: Process discovery is disabled in this version of Sensu. New
events will not include data in the processes attributes. Instead,
the field will be empty: "processes": null .

required false
type Map
YML
example
processes:

- name: Slack

pid: 1349

ppid: O

status: Ss

background: true

running: true

created: 1582137786

memory percent: 1.09932518

cpu_percent: 0.3263987595984941
- name: Slack Helper

pid: 1360

ppid: 1349

status: Ss

background: true

running: true

created: 1582137786

memory percent: 0.146866455
cpu_percent: 0.30897618146109257

JSON
{
"processes": [

{
"name": "Slack",
"pid": 1349,
"ppid": O,
"status": "Ss",
"background": true,
"running": true,
"created": 1582137786,
"memory percent": 1.09932518,
"cpu percent": 0.3263987595984941

bo

{
"name": "Slack Helper",
"pid": 1360,
"ppid": 1349,
"status": "Ss",
"background": true,
"running": true,
"created": 1582137786,
"memory percent": 0.146866455,
"cpu percent”: 0.308976181461092553

}

]
}

vm_role

description Entity’s virtual machine role. Automatically populated upon agent startup.
required false
type String
YML
example

vm_role: host

JSON

"vm_role": "host"

vm_system

description Entity’s virtual machine system. Automatically populated upon agent
startup.

required false

type String
YML

example

vm_system: kvm

JSON

"vm_system": "kvm"

Network attributes

interfaces
description List of network interfaces available on the entity, with their associated
MAC and IP addresses. Read interfaces attributes for more information.
required false
type Array
YML
example
interfaces:
- addresses:
- 127.0.0.1/8
- ::1/128
name: 1o
- addresses:
- 93.184.216.34/24
- 2606:2800:220:1:248:1893:25¢8:1946/10
mac: 52:54:00:20:1b:3c
name: eth0
JSON

"interfaces": [
{
"name": "lo",
"addresses": [
"127.0.0.1/8",
"::1/128"

"name": "ethO",

"mac": "52:54:00:20:1b:3c",

"addresses": [
"93.184.216.34/24",
"2606:2800:220:1:248:1893:25¢c8:1946/10"

Interfaces attributes

addresses

description List of IP addresses for the network interface.
required false
type Array
YMIL,
example
addresses:

- 93.184.216.34/24
- 2606:2800:220:1:248:1893:25c8:1946/10

JSON

"addresses": [
"93.184.216.34/24",
"2606:2800:220:1:248:1893:25¢c8:1946/10"

mac

description Network interface’s MAC address.

required false

type string
YML

example
mac: 52:54:00:20:1b:3c

JSON

"mac": "52:54:00:20:1b:3c"

name

description Network interface name.
required false
type String
YML
example

name: ethO

JSON

"name": "ethO"

Processes attributes

COMMERCIAL FEATURE : Access processes attributes with the discover-processes
configuration option in the packaged Sensu Go distribution.Eor more information, read Get started

with commercial features.

NOTE: Process discovery is disabled in this version of Sensu.New events will not include data in
the processes attributes.lnstead, the field will be empty: "processes”: null .

background

description If true , the process is a background process. Otherwise, false .
required false
type Boolean
YML
example

background: true

JSON

"background": true

cpu_percent

|

description Percent of CPU the process is using. The value is returned as a floating-
point number where 0.0 = 0% and 1.0 = 100%. For example, the
cpu_percent value 0.12639 equals 12.639%.

NOTE: The cpu percent attribute is supported on Linux and
macOS.It is not supported on Windows.

required false
type float
YML

example

cpu_percent: 0.12639

JSON

"cpu percent": 0.12639

}
‘IIHH%HH%HiII

description Time at which the process was created. In seconds since the Unix
epoch.

required false

type Integer
YML

example

created: 1586138786

JSON

"created": 1586138786

}
memory_percent

description Percent of memory the process is using. The value is returned as a
floating-point number where 0.0 = 0% and 1.0 = 100%. For example, the
memory_percent value 0.19932 equals 19.932%.

NOTE: The memory percent attribute is supported on Linux and
macOS.It is not supported on Windows.

required false

type float
YML

example
memory percent: 0.19932

JSON

"memory percent": 0.19932

}
name

description Name of the process.
required false
type String
YML
example

name: Slack

JSON

"name": "Slack"

}

description Process ID of the process.

required false
type Integer
YML
example
pid: 1349
JSON
{
"pid": 1349

}

description Parent process ID of the process.
required false
type Integer
YML
example
ppid: O
JSON
{
"ppid": O

}
running

description If true , the process is running. Otherwise, false .

required false
type Boolean

YML
example

running: true

JSON

"running": true

description Status of the process. Read the Linux top _manual page for examples.
required false
type String
YML
example

status: Ss

JSON

"status": "Ss"

https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html

Automatically register and deregister
entities

Sensu uses the publish/subscribe pattern of communication, which allows automated registration and
deregistration of ephemeral systems.Sensu agents automatically discover and register infrastructure
components and the services running on them.At the same time, when an agent process stops, the
Sensu backend can automatically create and process a deregistration event.

Automatic registration and deregistration keeps your Sensu instance up-to-date and avoids
unnecessary process load, especially in containerized environments where containers routinely come
online and offline.You’ll see observability event data soon after an agent entity comes online, and you
won’t receive stale events or alerts for entities that no longer exist.

You can also configure handlers that take specific actions based on agent registration and

deregistration, such as updating external configuration management databases (CMDBS).

Discovery and registration

Sensu agents automatically discover and register infrastructure components and the services running
on them.

NOTE: Automatic discovery is not supported for proxy entities because they cannot run a Sensu
agent.Use the core/v2/events API to send manual keepalive events for proxy entities.

Registration events

When an agent comes online, it sends its first keepalive event.WWhen a Sensu backend processes a
keepalive event for an agent whose name is not already listed in the Sensu agent registry, Sensu
automatically registers the agent.The Sensu backend stores the entity registry, which you can view by
running sensuctl entity list .

If you configure a handler named registration , the Sensu backend will create and process a
registration event for that handler to process.The registration handler must reference the name of
a handler or handler set that you want to execute for every registration event.

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Configuration_management_database

WARNING: Registration events are not stored in the event registry, so they are not accessible via
the Sensu APIl.However, all reqgistration events are logged in the Sensu backend log.

Registration handler example

You can use registration event handlers to execute one-time handlers for new Sensu agents based on
registration events.

For example, suppose you want to update the ServiceNow CMDB table that contains your Sensu entity
inventory upon every registration event.First, configure a handler that uses the sensu/sensu-
servicenow-handler dynamic runtime asset and the --cmdb-registration argument:

YML

type: Handler
api_version: core/v2
metadata:

name: servicenow cmdb

spec:
type: pipe
command: sensu-servicenow-handler --cmdb-registration

runtime assets:
- sensu/sensu-servicenow-handler:3.0.0
env_vars:
- SERVICENOW URL=https://example.servicenow.com
secrets:
- name: SERVICENOW USERNAME
secret: servicenow username
- name: SERVICENOW PASSWORD
secret: servicenow password

timeout: 10

JSON

"type": "Handler",
"api version": "core/v2",

"metadata": {

https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler

"name": "servicenow cmdb"

by

"spec": {
lltype": llpipe",
"command": "sensu-servicenow-handler --cmdb-registration",

"runtime assets": |

"sensu/sensu-servicenow-handler:3.0.0"

1,

"env vars": [

"SERVICENOW URL=https://example.servicenow.com"

1,

"secrets": |

{
"name": "SERVICENOW USERNAME",
"secret": "servicenow username"

b

{
"name": "SERVICENOW PASSWORD",
"secret": "servicenow password"

1,

"timeout": 10

Then, create a registration

YML

type: Handler
api_version: core/v2
metadata:

name: registration
spec:

handlers:

- servicenow cmdb

type: pipe

JSON

handler that references the servicenow cmdb

handler:

"type": "Handler",

"api version": "core/v2",
"metadata": {

"name": "registration"
}I
"spec": {

"handlers": [

"servicenow cmdb"
1,
lltype": "pipe"

Now the Sensu backend will execute the referenced servicenow-cmdb handler for every registration
event.The referenced handler can send registration event alerts to any service, such as Sumo Logic or
PagerDuty, as long as it is listed within a handler named registration .

PRO TIP: Use a handler set to execute multiple handlers in response to registration events.

Deregistration

Just like Sensu can automatically register new agent entities when they send their first keepalive,
Sensu can automatically deregister agent entities when they shut down and the agent process stops.

To enable automatic deregistration, set the agent deregister attribute to true .When the Sensu
agent process stops and the agent stops sending keepalive messages, the Sensu backend can
deregister the corresponding entity without any further action.

NOTE: Deregistration is supported for agent entities that have sent at least one keepalive.
Deregistration is not supported for proxy entities, which do not send keepalives, and the backend
does not automatically create and process deregistration events for proxy entities.

Deregistration events

As with registration events, the Sensu backend can create and process a deregistration event when a
Sensu agent process stops.

When an agent exceeds its keepalive timeout setting, the backends will generate a keepalive failure for
that agent and create an event on its behalf.lf you set the agent deregister attribute to true , when
keepalive failure occurs, Sensu will delete the agent entity from the entity registry and send a
deregistration event through the event pipeline.

To take action based on deregistration events, you must also specify a handler to use for
deregistration events in the agent or backend configuration:

71 To use a deregistration handler for a specific agent, set the agent deregistration-handler
attribute.

71 To use a deregistration handler to process all deregistration events for all agents, set the
backend deregistration-handler attribute.

The agent deregistration-handler attribute overrides the backend deregistration-handler
attribute.In other words, if you specify both an agent and backend deregistration handler, Sensu will
use only the handler specified in the agent configuration.

NOTE: If you set the agent deregister attribute to true , when a Sensu agent process stops,
the Sensu backend will deregister the corresponding entity.

Deregistration prevents and clears alerts for failing keepalives for agent entities — the backend
does not distinguish between intentional shutdown and failure.As a result, if you set the deregister
flag to true and an agent process stops for any reason, you will not receive alerts for keepalive
events in the web Ul.

If you want to receive alerts for failing keepalives, set the agent deregister attribute to false .

Deregistration handler example

Just like registration events, deregistration events can trigger a one-time handler that performs an
action like updating an external CMDB or ephemeral infrastructures.In fact, you can use the

servicenow cmdb _handler to update the ServiceNow CMDB table that contains your Sensu entity
inventory, this time based on every deregistration event.

To specify servicenow cmdb as the agent deregistration handler:

SHELL

sensu-agent start --deregistration-handler servicenow cmdb

SHELL

deregistration-handler: servicenow cmdb

Next steps

Use the Sensu Platform Discovery dynamic runtime asset to detect the agent operating system and
platform information and update the agent’s subscriptions accordingly.This allows you to deploy agents
with a single subscription and use the auto-discovery check to add system-based subscriptions
automatically.

Follow Create limited service accounts to automatically remove AWS EC2 instances that are not in a
pending or running state.

https://bonsai.sensu.io/assets/sensu/sensu-platform-discovery

Monitor external resources with proxy
entities

Proxy entities allow Sensu to monitor external resources on systems and devices where a Sensu
agent cannot be installed, like a network switch or a website.You can create proxy entities with
sensuctl, the Sensu AP|, and the proxy entity name _check attribute.WWhen executing checks that
include a proxy entity name Or proxy requests attribute, Sensu agents report the resulting
event under the proxy entity instead of the agent entity.

This guide explains how to use a proxy entity to monitor website status, as well as how to use the
proxy checks to monitor a group of websites.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and configure sensuctl.

Use a proxy entity to monitor a website

In this section, you’ll monitor the status of sensu.io by configuring a check with a proxy entity name
so that Sensu creates an entity that represents the site and reports the status of the site under this
entity.

Configure a Sensu entity

To run the check, you'll need a Sensu agent entity with the subscription run proxies .Use sensuctl to
add the run proxies subscription to the entity the Sensu agent is observing.

NOTE: To find your entity name, run sensuctl entity list .The 1D isthe name of your entity.

Before you run the following code, replace <enTiTY NaME> with the name of the entity on your
system.

sensuctl entity update <ENTITY NAME>

https://sensu.io/

7 For Entity Class , press enter.

7 For Subscriptions , type run_proxies and press enter.

Before you continue, confirm both Sensu services are running:

systemctl status sensu-backend && systemctl status sensu-agent

The response should indicate active (running) for both the Sensu backend and agent.

Register dynamic runtime asset

To power the check, you’ll use the sensu/http-checks dynamic runtime asset.This community-tier asset
includes the http status check command that your check will rely on.

Use sensuctl asset add to register the dynamic runtime asset:

sensuctl asset add sensu/http-checks:0.4.0 -r http-checks

The response will indicate that the asset was added:

fetching bonsai asset: sensu/http-checks:0.4.0

added asset: sensu/http-checks:0.4.0

You have successfully added the Sensu asset resource, but the asset will not get
downloaded until

it's invoked by another Sensu resource (ex. check). To add this runtime asset to the
appropriate

resource, populate the "runtime assets" field with ["http-checks"].
This example uses the -r (rename) flag to specify a shorter name for the dynamic runtime asset:
http-checks .

You can also download the dynamic runtime asset definition from Bonsai and register the asset with

sensuctl create --file filename.yml O sensuctl create --file filename.json .

https://bonsai.sensu.io/assets/sensu/http-checks
https://bonsai.sensu.io/assets/sensu/http-checks

Use sensuctl to confirm that the dynamic runtime asset is ready to use:

sensuctl asset list

The response should list the sensu/http-checks dynamic runtime asset (renamed to http-checks):

Name

URL

Hash

http-checks
http-checks
http-checks
http-checks
http-checks
http-checks

//assets.bonsai.sensu.io/.
//assets.bonsai.sensu.io/.
//assets.bonsai.sensu.io/.
//assets.bonsai.sensu.io/...
//assets.bonsai.sensu.io/...

//assets.bonsai.sensu.io/...

./http-checks 0.4.0 windows_amd64.tar.gz 52ae075
./http-checks 0.4.0_darwin_amd64.tar.gz 72d0f15
./http-checks 0.4.0 linux armv7.tar.gz ef18587

/http-checks 0.4.0 linux_armé64.tar.gz 3504ddf
/http-checks 0.4.0 linux 386.tar.gz 60b8883
/http-checks 0.4.0 linux amd64.tar.gz 1db73a8

NOTE: Sensu does not download and install dynamic runtime asset builds onto the system until
they are needed for command execution.Read the asset reference for more information about
dynamic runtime asset builds.

Create the check

Now that the dynamic runtime asset is registered, you can create a check named check-sensu-site
to run the command http-check --url https://sensu.io With the sensu/http-checks dynamic
runtime asset, at an interval of 15 seconds, for all agents subscribed to the run proxies
subscription, using the sensu-site proxy entity name.

The check includes the round robin _attribute setto true to distribute the check execution across
all agents subscribed to the run proxies subscription and avoid duplicate events.

To create the check-sensu-site check, run:

SHELL

cat << EOF | sensuctl create

https://bonsai.sensu.io/assets/sensu/http-checks

type: CheckConfig
apl version: core/v2
metadata:
name: check-sensu-site
spec:
command: http-check --url https://sensu.io
interval: 15
proxy entity name: sensu-site
publish: true
round robin: true
runtime assets:
- http-checks
subscriptions:
- run proxies

EOF

SHELL

cat << EOF | sensuctl create
{
"type": "CheckConfig",
"api version": "core/v2",
"metadata": {
"name": "check-sensu-site"
bo

"spec": {

"command": "http-check --url https://sensu.i

"interval": 15,
"proxy entity name": "sensu-site",
"publish": true,
"round robin": true,
"runtime assets": |
"http-checks"
1y
"subscriptions": [

"run proxies"

EOF

Use sensuctl to confirm that Sensu added the check:

sensuctl check list

The response should list check-sensu-site :

Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets Hooks
Publish? Stdin? Metric Format Metric Handlers

check-sensu-site http-check --url https://sensu.io 15 0 0 proxy http-checks true

false

Validate the check

Use sensuctl to confirm that Sensu created sensu-site .l might take a few moments for Sensu to
execute the check and create the proxy entity.

sensuctl entity list

The response should list the sensu-site proxy entity:

ID Class OS Subscriptions Last Seen

sensu-centos agent linux proxy,entity:sensu-centos 2021-10-21 19:20:04 +0000 UTC

sensu-site proxy entity:sensu-site N/A

Then, use sensuctl to confirm that Sensu is monitoring sensu-site with the check-sensu-site
check:

sensuctl event info sensu-site check-sensu-site

The response should list check-sensu-site status and history data for the sensu-site proxy
entity:

=== gensu-site - check-sensu-site

Entity: sensu-site

Check: check-sensu-site

Output: http-check OK: HTTP Status 200 for https://sensu.io
Status: 0

History: 0

Silenced: false
Timestamp: 2021-10-21 19:20:06 +0000 UTC

UUID: HXXXXXKXX—XXXX—KXXKXKX—XXKXX—KXXXXXXXKXXXKX

You can also view the new proxy entity in your Sensu web UlI.

Use proxy requests to monitor a group of websites

Suppose that instead of monitoring just sensu.io, you want to monitor multiple sites, like docs.sensu.io,
packagecloud.io, and github.com.In this section, you'll use the proxy requests _check attribute along
with entity labels and token substitution to monitor three sites with the same check.

Before you start, register the http-checks dynamic runtime asset if you haven'’t already.

Create proxy entities

Instead of creating a proxy entity using the proxy entity name check attribute, use sensuctl to
create proxy entities to represent the three sites you want to monitor.Your proxy entities need the
entity class attribute setto proxy to mark them as proxy entities as well as a few custom

labels to identify them as a group and pass in individual URLs.

To add the proxy entity definitions, run:

SHELL

cat << EOF | sensuctl create

type: Entity
api version: core/v2
metadata:
name: sensu-docs
labels:
proxy type: website
url: https://docs.sensu.io
spec:
entity class: proxy
type: Entity
api version: core/v2
metadata:
name: packagecloud-site
labels:
proxy type: website
url: https://packagecloud.io
spec:
entity class: proxy
type: Entity
api version: core/v2
metadata:
name: github-site
labels:
proxy type: website
url: https://github.com
spec:

entity class: proxy

EOF
SHELL
cat << EOF | sensuctl create
{
"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "sensu-docs",
"labels": {

"proxy type": "website",

"url": "https://docs.sensu.io"

by

"spec": {
"entity class": "proxy"
}
}
{
"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "packagecloud-site",
"labels": {
"proxy type": "website",
"url": "https://packagecloud.io"
}
b
"spec": {
"entity class": "proxy"
}
}
{
"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "github-site",
"labels™: {
"proxy type": "website",
"url": "https://github.com"
}
}y
"spec": {
"entity class": "proxy"
}
}
EOF

PRO TIP: When you create proxy entities, you can add any custom labels that make sense for
your environment.For example, when monitoring a group of routers, you may want to add
ip address labels.

Use sensuctl to confirm that the entities were added:

sensuctl entity list

The response should list the new sensu-docs , packagecloud-site ,and github-site pProxy
entities:

ID Class OS Subscriptions Last Seen
github-site proxy N/A
packagecloud-site proxy N/A
sensu-centos agent linux proxy,entity:sensu-centos 2021-10-21 19:23:04 +0000 UTC
sensu-docs proxy N/A
sensu-site proxy entity:sensu-site N/A

Create a reusable HTTP check

Now that you have three proxy entities set up, each with a proxy type and url label, you can use
proxy requests and token substitution to create a single check that monitors all three sites.

The check includes the round robin attribute setto true to distribute the check execution across
all agents subscribed to the run proxies subscription and avoid duplicate events.

To create the following check definition, run:

SHELL

cat << EOF | sensuctl create
type: CheckConfig
apl version: core/v2
metadata:

name: check-http
spec:

command: 'http-check --url {{ .labels.url }}'

interval: 15
proxy requests:
entity attributes:
- entity.entity class == 'proxy'
- entity.labels.proxy type == 'website'
publish: true
round robin: true
runtime assets:
- http-checks
subscriptions:

- run proxies

EOF
SHELL
cat << EOF | sensuctl create
{
"type": "CheckConfig",
"api version": "core/v2",
"metadata": {
"name": "check-http"
bo
"spec": {
"command": "http-check --url {{ .labels.url
"interval": 15,
"proxy requests": {

"entity attributes": [
"entity.entity class == 'proxy'",

"entity.labels.proxy type == 'website'"

}y

"publish": true,

"runtime assets": |
"http-checks"

1,

"round robin": true,

"subscriptions": [

"run proxies"

EOF

FEY

Your check-http check usesthe proxy requests attribute to specify the applicable entities.In this
case, you want to run the check-http check on all entities of entity class proxy and proxy type
website .Because you're using this check to monitor multiple sites, the check command uses token
substitution to apply the correct uri .

Use sensuctl to confirm that Sensu created the check:

sensuctl check list

The response should include the check-http check:

Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets Hooks
Publish? Stdin? Metric Format Metric Handlers

check-http http-check --url {{ .labels.url }} 15 0 0 proxy http-checks true false
check-sensu-site http-check --url https://sensu.io 15 0 O proxy http-checks true
false

Validate the check

Before you validate the check, make sure that you've registered the sensu/http-checks dynamic
runtime asset and added the run proxies _subscription to a Sensu agent.

Use sensuctl to confirm that Sensu is monitoring docs.sensu.io, packagecloud.io, and github.com with
the check-http check, returning a status of o (OK):

sensuctl event list

The response should list check status data for the sensu-docs , packagecloud-site ,and github-
site proxy entities:

Entity Check Output Status Silenced Timestamp
UUID

github-site check-http http-check OK: HTTP Status 200 for https://github.com 0 false 2021-10-

21 19:27:04 +0000 UTC XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

packagecloud-site check-http http-check OK: HTTP Status 200 for https://packagecloud.io 0 false

2021-10-21 19:27:04 +0000 UTC XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

sensu-centos keepalive Keepalive last sent from sensu-centos at 2021-10-21 19:27:44 +0000 UTC 0 false
2021-10-21 19:27:44 +0000 UTC XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
sensu-docs check-http http-check OK: HTTP Status 200 for https://docs.sensu.io 0 false 2021-

10-21 19:27:03 +0000 UTC XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

sensu-site check-sensu-site http-check OK: HTTP Status 200 for https://sensu.io 0 false 2021-10-

21 19:27:05 +0000 UTC XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

Next steps

The files you created with check and entity definitions can become part of your monitoring as code
repository.Storing your Sensu configurations the same way you would store code means they are
portable and repeatable.Monitoring as code makes it possible to move to a more robust deployment
without losing what you've started here and reproduce one environment’s configuration in another.

Now that you know how to run a proxy check to verify the status of a website and use proxy requests
to run a check on two different proxy entities based on label evaluation, read these recommended

resources:

71 Proxy checks

1 Assets reference

1 Send Slack alerts with handlers

Events

28 or click any element in the pipeline to jump to it.

Events are generic containers that Sensu uses to provide context to status and metrics check results.
The context, called observation data, is information about the originating entity and the corresponding
status or metric check result.

These generic containers allow Sensu to handle different types of events in the pipeline for
comprehensive system and service monitoring and observability.Events can contain CPU, memory,
and disk usage data; custom application metrics; log data you can send to an external database; and
more.

Events require a timestamp, entity, and check.Each event must contain a check result, whether status
or metrics.In certain cases, an event can contain both.Because events are polymorphic in nature, it is
important to never assume their content (or lack of content).

Here’s an example event that includes both status and metrics data:

YML

type: Event
api_version: core/v2
metadata:
namespace: default
spec:
check:
check hooks: null
command: metrics-curl -u "http://localhost"
duration: 0.060790838
env_vars: null
executed: 1552506033
handlers: []
high flap threshold: 0
history:
- executed: 1552505833
status: 0

- executed: 1552505843

status: 0
interval: 10
is_silenced: false
issued: 1552506033
last ok: 1552506033
low_flap threshold: O
metadata:
name: curl timings
namespace: default
occurrences: 1
occurrences_watermark: 1
output: |-
sensu-go.curl timings.time total 0.005 1552506033
sensu—-go.curl timings.time namelookup 0.004
output metric_ format: graphite plaintext
output _metric_handlers:
- influx-db
proxy_entity name: ""
publish: true
round robin: false
runtime assets: []
state: passing
status: 0
stdin: false
subdue: null
subscriptions:
- entity:sensu-go-testing
timeout: O
total_state_change: 0
ttl: 0O
entity:
deregister: false
deregistration: {}
entity class: agent
last _seen: 1552495139
metadata:
name: sensu-go-testing
namespace: default
redact:
- password
- passwd

- pass

- api_ key
- api_token
- access_key
- secret key
- private key
- secret
subscriptions:
- entity:sensu-go-testing
system:
arch: amdo64
hostname: sensu-go-testing
network:
interfaces:
- addresses:
- 127.0.0.1/8
- ::1/128
name: lo
- addresses:
- 10.0.2.15/24
- fe80::5a94:f67a:1bfc:a579/64
mac: 08:00:27:8b:c9:3f
name: ethO
os: linux
platform: centos
platform family: rhel
platform version: 7.5.1804
processes: null
user: agent
metrics:
handlers:
- influx-db
points:
- name: sensu-go.curl timings.time total
tags: []
timestamp: 1552506033
value: 0.005
- name: sensu-go.curl timings.time namelookup
tags: []
timestamp: 1552506033
value: 0.004
timestamp: 1552506033
id: 431a0085-96da-4521-863f-c38b480701e9

sequence: 1

JSON

"type": "Event",

"api version": "core/v2",

"metadata": {

by

"namespace": "default"

"spec": {

"check": {

"check hooks": null,
"command": "metrics-curl -u \"http://localhost\"",
"duration": 0.060790838,
"env vars": null,
"executed": 1552506033,
"handlers": [],
"high flap threshold": O,
"history": [

{

"executed": 1552505833,

"status": O

"executed": 1552505843,

"status": O

I
"interval": 10,
"is silenced": false,
"issued": 1552506033,
"last ok": 1552506033,
"low flap threshold": O,
"metadata": {
"name": "curl timings",
"namespace": "default"
by
"occurrences": 1,
"occurrences watermark": 1,

"output”: "sensu-go.curl timings.time total 0.005

go.curl timings.time namelookup 0.004",

1552506033\nsensu-

"output metric format": "graphite plaintext",
"output metric handlers": [
"influx-db"
I
"proxy entity name": "",

"publish": true,

"round robin": false,

"runtime assets": [],
"state": "passing",
"status": O,

"stdin": false,
"subdue": null,
"subscriptions": [
"entity:sensu-go-testing"

1y
"timeout": O,
"total state change": 0,
"ttl": O

bo

"entity": {
"deregister": false,
"deregistration": {},
"entity class": "agent",

"last seen": 1552495139,

"metadata": {
"name": "sensu-go-testing",
"namespace": "default"

b

"redact": [

"password",
"passwd",
"pass",
"api key",
"api token",
"access key",
"secret key",
"private key",
"secret"
] 4
"subscriptions": [
"entity:sensu-go-testing"

1,

"system": {
"arch": "amde64",
"hostname": "sensu-go-testing",
"network": {
"interfaces": [
{
"addresses": [
"127.0.0.1/8",
"::1/128"
i

"name": "lO"

"addresses": [
"10.0.2.15/24",
"feB80::5a94:f67a:1bfc:a579/64"
i
"mac": "08:00:27:8b:c9:3f",

"name": "ethO"

by
"os": "linux",
"platform": "centos",
"platform family": "rhel",
"platform version": "7.5.1804",
"processes": null
by
"user": "agent"
by
"metrics": {
"handlers": [
"influx-db"
i
"points": [
{
"name": "sensu-go.curl timings.time total",
"tags": [,
"timestamp": 1552506033,
"value": 0.005

"name": "sensu-go.curl timings.time namelookup",
"tags": [],

"timestamp": 1552506033,

"value": 0.004

]
by
"timestamp": 1552506033,
"id": "431a0085-96da-4521-863f-c38b480701e9",

"sequence": 1

Checks

Checks work with the Sensu agent to produce events automatically. You can use checks to monitor
server resources, services, and application health as well as collect and analyze metrics.Checks define
how Sensu will process events, as well as when and where events are generated via subscriptions and

scheduling.

Read Monitor server resources to learn more about using checks to generate events.

Status-only events

A Sensu event is created every time a check result is processed by the Sensu server, regardless of the
status the result indicates.The agent creates an event upon receipt of the check execution result and
executes any configured hooks the check might have.From there, the status result is forwarded to the
Sensu backend, where it is filtered, transformed, and processed.Potentially noteworthy events may be
processed by one or more event handlers, for example to send an email or invoke an automated
action.

Metrics-only events

Sensu events can be created when the agent receives metrics through the StatsD listener.The agent
will translate the StatsD metrics to Sensu metric format and place them inside an event.Because these
events do not contain checks, they bypass the store and are sent to the event pipeline and
corresponding event handlers.

Status and metrics events

Events that contain both a check and metrics most likely originated from check output metric extraction.
If a check is configured for metric extraction, the agent will parse the check output and transform it to
Sensu metric format.Both the check results and resulting (extracted) metrics are stored inside the eveni
Event handlers from event.Check.Handlers and event.Metrics.Handlers Will be invoked.

Proxy entities and events

You can create events with proxy entities, which are dynamically created entities that Sensu adds to
the entity store if an entity does not already exist for a check result.Proxy entities allow Sensu to
monitor external resources on systems where you cannot install a Sensu agent, like a network switch
or website.Read Monitor external resources to learn how to use a proxy entity to monitor a website.

core/v2/events API endpoints

Sensu’s core/v2/events AP| endpoints provide HTTP access to create, retrieve, update, and delete
events.lflyou create a new event that references an entity that does not already exist, the Sensu
backend will automatically create a proxy entity when the event is published.

Events reference

An event is a generic container used by Sensu to provide context to checks and metrics.The context,
called observation data or event data, contains information about the originating entity and the
corresponding check or metric result.An event must contain a status or metrics.In certain cases, an
event can contain both a status and metrics.These generic containers allow Sensu to handle different
types of events in the pipeline.Because events are polymorphic in nature, it is important to never
assume their contents (or lack of content).

Event format

Sensu events contain:

7 entity scope (required)

71 Information about the source of the event, including any attributes defined in the entity
specification

7 check scope (optional if the metrics scope is present)

71 Information about how the event was created, including any attributes defined in the
check specification

71 Information about the event and its history, including any check attributes defined in the
event specification on this page

7 metrics scope (optional if the check scope is present)
71 Metric points in Sensu metric format

7 timestamp

71 Time that the event occurred in seconds since the Unix epoch

7 Universally unique identifier (UUID) for the event (logged as event id)

Example status-only event

The following example shows the complete resource definition for a status-only event:

YML

type: Event
api_version: core/v2
metadata:
namespace: default
spec:
check:
check hooks: null
command: check-cpu-usage -w 75 -c 90
duration: 5.058211427
env_vars: null
executed: 1617050501
handlers: []
high flap threshold: 0
history:
- executed: 1617050261
status: 0
- executed: 1617050321
status: O
- executed: 1617050381
status: O
- executed: 1617050441
status: 0
- executed: 1617050501
status: 0
interval: 60
is_silenced: false
issued: 1617050501
last_ok: 1617050501
low_flap threshold: 0
metadata:
name: check cpu
namespace: default
occurrences: 5
occurrences_watermark: 5
output: |
CheckCPU TOTAL OK: total=0.41 user=0.2 nice=0.0 system=0.2 idle=99.59
iowait=0.0 irg=0.0 softirg=0.0 steal=0.0 guest=0.0 guest nice=0.0

output metric_ format: ""
output metric_handlers: null
proxy_entity name: ""
publish: true
round robin: false
runtime assets:
- check-cpu-usage
scheduler: memory
secrets: null
state: passing
status: 0
stdin: false
subdue: null
subscriptions:
- system
timeout: 0
total state_change: 0
ttl: O
entity:
deregister: false
deregistration: {}
entity class: agent
last seen: 1617050501
metadata:
name: sensu-centos
namespace: default
redact:
- password
- passwd
- pass
- api_ key
- api_ token
- access_key
- secret key
- private key
- secret
sensu_agent version: 6.2.6
subscriptions:
- linux
- entity:sensu-centos
system:

arch: amdo4

cloud provider: ""
hostname: sensu-centos
libc_type: glibc
network:
interfaces:
- addresses:
- 127.0.0.1/8
- ::1/128
name: lo
- addresses:
- 10.0.2.15/24
- fe80::a268:dcce:3be:1c73/64
mac: 08:00:27:8b:c9:3f
name: ethO
- addresses:
- 172.28.128.45/24
- fe80::a00:27ff:feb2:dcd6/64
mac: 08:00:27:b2:dc:46
name: ethl
os: linux
platform: centos
platform family: rhel
platform version: 7.5.1804
processes: null
vm_role: guest
vm_system: vbox
user: agent
id: 3c3e68f6-6db7-40d3-9b84-4d61817ae559
sequence: 5

timestamp: 1617050507

JSON

"type": "Event",
"api version": "core/v2",
"metadata": {
"namespace": "default"
bo
"spec": {
"check": {

"check hooks": null,

"command": "check-cpu-usage -w 75 -c 90",
"duration": 5.058211427,
"env _vars": null,
"executed": 1617050501,
"handlers": [],
"high flap threshold": 0,
"history": [

{

"executed": 1617050261,

"status": O

"executed": 1617050321,

"status": O

"executed": 1617050381,

"status": O

"executed": 1617050441,

"status": O

"executed": 1617050501,

"status": O

i
"interval": 60,
"is silenced": false,
"issued": 1617050501,
"last ok": 1617050501,
"low flap threshold": O,
"metadata": {
"name": "check cpu",
"namespace": "default"
by
"occurrences": 5,
"occurrences watermark": 5,
"output": "CheckCPU TOTAL OK: total=0.41 user=0.2 nice=0.0 system=0.2
1id1le=99.59 iowait=0.0 irg=0.0 softirg=0.0 steal=0.0 guest=0.0 guest nice=0.0\n",

"output metric format": "",

"output metric handlers": null,

"proxy entity name": ""

"publish": true,

"round robin": false,

"runtime assets": [
"check-cpu-usage"

i

"scheduler": "memory",

"secrets": null,

"state": "passing",

"status": O,

"stdin": false,

"subdue": null,

"subscriptions": [
"system"

1,

"timeout": O,

"total state change": 0,
"ttl": O

b

"entity": {
"deregister": false,
"deregistration": {1},
"entity class": "agent",

"last seen": 1617050501,

"metadata": {
"name": "sensu-centos",
"namespace": "default"
}y
"redact": [

"password",
"passwd",
"pass",
"api key",
"api token",
"access key",
"secret key",
"private key",
"secret"

1,

"sensu_agent version": "6.2.6",

"subscriptions": [

"linux",

"entity:sensu-centos"

i

"system": {

"arch": "amdo4d",

"cloud provider": "",

"hostname": "sensu-centos",

"libc type": "glibc",

"network": {

"interfaces": [

{
by
{
by
{
}
]
by
"OSII:

"addresses": [
"127.0.0.1/8",
":1/128"

i

"name": "lo"

"addresses": [
"10.0.2.15/24",
"fe80::a268:dcce:3be

i

"mac": "08:00:27:8b:c9

"name": "ethO"

"addresses": [
"172.28.128.45/24",
"fe80::200:27ff:feb2

i

"mac": "08:00:27:b2:dc

"name": "ethl"

"linux",

"platform": "centos",

"platform family": "rhel",

"platform version":

"processes": null,

"vm role": "guest",

"vm system": "vbox"

:1c73/64"

:3f",

:dcd6/64"

:46",

"7.5.1804",

}y

"user": "agent"
by
"id": "3c3e68f6-6db7-40d3-9084-4d61817ae559",
"sequence": 5,

"timestamp”": 1617050507

Example status-only event from the Sensu API

Sensu sends events to the backend in json format, without the outer-level spec wrapper or type
and api version attributes that are included in the wrapped-json format.This is the format that
events are in when Sensu sends them to handlers:

"check": {
"command": "check-cpu-usage -w 75 -c 90",
"handlers": [],

"high flap threshold": 0,

"interval": 60,

"low flap threshold": O,

"publish": true,

"runtime assets": |
"check-cpu-usage"

1,

"subscriptions": [
"system"

1,

"proxy entity name":

"check hooks": null,

nmn
4

"stdin": false,

"subdue": null,

"ttl": O,
"timeout": O,
"round robin": false,

"duration": 5.058211427,
"executed": 1617050501,

"history": [

"status": O,

"executed": 1617050261

"status": O,

"executed": 1617050321

"status": O,

"executed": 1617050381

"status": O,

"executed": 1617050441

"status": O,

"executed": 1617050501

1y
"issued": 1617050501,
"output": "CheckCPU TOTAL OK: total=0.4 user=0.2 nice=0.0 system=0.2 idle=99.6
iowait=0.0 irg=0.0 softirg=0.0 steal=0.0 guest=0.0 guest nice=0.0\n",
"state": "passing",
"status": O,
"total state change": 0,
"last ok": 1617050501,
"occurrences": 5,
"occurrences watermark": 5,
"output metric format": "",
"output metric handlers": null,
"env_vars": null,
"metadata": {
"name": "check cpu",
"namespace": "default"
},
"secrets": null,
"is silenced": false,
"scheduler": "memory"
by
"entity": |

"entity class": "agent",
"system": {
"hostname": "sensu-centos",
"os": "linux",
"platform": "centos",
"platform family": "rhel",
"platform version": "7.5.1804",
"network": {
"interfaces": [
{
"name": "1o0",
"addresses": [
"127.0.0.1/8",
"::1/128"

"name": "ethO",

"mac": "08:00:27:8b:c9:3f",

"addresses": [
"10.0.2.15/24",

"fe80::a268:dcce:3be:1c73/64"

"name": "ethl",

"mac": "08:00:27:b2:dc:46",

"addresses": [
"172.28.128.45/24",

"fe80::a200:27ff:feb2:dcd6/64"

b
"arch": "amdoe4d",
"libc type": "glibc",
"vm_system": "vbox",
"vmm_role": "guest",
"cloud provider": "",
"processes": null

b

"subscriptions": [

"linux",
"entity:sensu-centos"
1,
"last seen": 1617049781,

"deregister": false,

"deregistration": {},
"user": "agent",
"redact": [

"password",
"passwd",
"pass",
"api key",
"api token",
"access_ key",
"secret key",
"private key",
"secret"
] 14
"metadata": {
"name": "sensu-centos",
"namespace": "default"

|

"sensu agent version": "6.2.6"

by
"id": "3c3e68f6-6db7-40d3-9084-4d61817ae559",

"metadata": {
"namespace": "default"

bo

"sequence": 5,

"timestamp": 1617050507

Example metrics-only event

This example shows the complete resource definition for a metrics-only event:

YML

type: Event

api_version: core/v2
metadata:
namespace: default
spec:
entity:
deregister: false
deregistration: {}
entity class: agent
last seen: 1552495139
metadata:
name: sensu-go-testing
namespace: default
redact:
- password
- passwd
- pass
- api key
- api_token
- access_key
- secret key
- private key
- secret
subscriptions:
- entity:sensu-go-testing
system:
arch: amdé64
hostname: sensu-go-testing
network:
interfaces:
- addresses:
- 127.0.0.1/8
= 3gil/128
name: lo
- addresses:
- 10.0.2.15/24
- fe80::5a94:f67a:1bfc:a579/64
mac: 08:00:27:8b:c9:3f
name: ethO
os: linux
platform: centos
platform family: rhel

platform version: 7.5.1804

processes: null
user: agent
metrics:
handlers:
- influx-db
points:
- name: sensu-go.curl timings.time total
tags: []
timestamp: 1552506033
value: 0.005
- name: sensu-go.curl timings.time namelookup
tags: []
timestamp: 1552506033
value: 0.004
timestamp: 1552506033
id: 47ea07cd-1e50-4897-9e6d-09cd39ec5180

sequence: 1

JSON

"type": "Event",
"api version": "core/v2",
"metadata": {
"namespace": "default"
bo
"spec": {
"entity": {
"deregister": false,
"deregistration": {},
"entity class": "agent",

"last seen": 1552495139,

"metadata": {
"name": "sensu-go-testing",
"namespace": "default"

}I

"redact": [

"password",
"passwd",
"pass",
"api key",

"api token",

"access key",
"secret key",
"private key",
"secret"
I
"subscriptions": [
"entity:sensu-go-testing"
I
"system": {
"arch": "amdo4",
"hostname": "sensu-go-testing",
"network": {
"interfaces": [
{
"addresses": [
"127.0.0.1/8",
"::1/128"
1y

"name": "lO"

"addresses": [
"10.0.2.15/24",
"feB80::5a94:f67a:1bfc:a579/64"
1y
"mac": "08:00:27:8b:c9:3f",

"name": "ethO"

by
"os": "linux",
"platform": "centos",
"platform family": "rhel",
"platform version": "7.5.1804",
"processes": null
by
"user": "agent"
by
"metrics": {
"handlers": [
"influx-db"
1y

"points": [
{
"name": "sensu-go.curl timings.time total",
"tags": [],
"timestamp": 1552506033,
"value": 0.005

"name": "sensu-go.curl timings.time namelookup",
"tags": [],

"timestamp": 1552506033,

"value": 0.004

s
"timestamp": 1552506033,
"id": "47ea07cd-1e50-4897-9e6d-09cd39ec5180",

"sequence": 1

Example status and metrics event

The following example resource definition for a status and metrics event contains both a check and
metrics:

YML

type: Event
api_version: core/v2
metadata:
namespace: default
spec:
check:
check hooks: null
command: metrics-curl -u "http://localhost"
duration: 0.060790838
env_vars: null

executed: 1552506033

handlers: []
high flap threshold: 0
history:
- executed: 1552505833
status: 0O
- executed: 1552505843
status: O
interval: 10
is silenced: false
issued: 1552506033
last ok: 1552506033
low_flap threshold: O
metadata:
name: curl timings
namespace: default
occurrences: 1
occurrences_watermark: 1
output: |-
sensu-go.curl timings.time total 0.005 1552506033
sensu-go.curl timings.time namelookup 0.004
output metric_format: graphite plaintext
output _metric_handlers:
- influx-db
proxy entity name: ""
publish: true
round robin: false
runtime assets: []
state: passing
status: 0
stdin: false
subdue: null
subscriptions:
- entity:sensu-go-testing
timeout: 0
total_ state_change: 0
ttl: O
entity:
deregister: false
deregistration: {}
entity class: agent
last seen: 1552495139

metadata:

name: sensu-go-testing
namespace: default
redact:
- password
- passwd
- pass
- api key
- api_ token
- access_key
- secret key
- private key
- secret
subscriptions:
- entity:sensu-go-testing
system:
arch: amdé64
hostname: sensu-go-testing
network:
interfaces:
- addresses:
- 127.0.0.1/8
- ::1/128
name: lo
- addresses:
- 10.0.2.15/24
- fe80::5a94:f67a:1bfc:a579/64
mac: 08:00:27:8b:c9:3f
name: ethO
os: linux
platform: centos
platform family: rhel
platform version: 7.5.1804
processes: null
user: agent
metrics:
handlers:
- influx-db
points:
- name: sensu-go.curl timings.time total
tags: []
timestamp: 1552506033
value: 0.005

- name: sensu-go.curl timings.time namelookup
tags: []
timestamp: 1552506033
value: 0.004
timestamp: 1552506033
id: 431a0085-96da-4521-863f-c38b480701e9

sequence: 1

JSON

"type": "Event",
"api version": "core/v2",
"metadata": {
"namespace": "default"
bo
"spec": {
"check": {
"check hooks": null,
"command": "metrics-curl -u \"http://localhost\"",
"duration": 0.060790838,
"env_vars": null,
"executed": 1552506033,
"handlers": [],
"high flap threshold": 0,
"history": [
{
"executed": 1552505833,

"status": O

"executed": 1552505843,

"status": 0

1,

"interval": 10,

"is silenced": false,
"issued": 1552506033,
"last ok": 1552506033,
"low flap threshold": O,
"metadata": {

"name": "curl timings",

go.

"namespace": "default"

by

"occurrences": 1,
"occurrences watermark": 1,
"output”: "sensu-go.curl timings.time total 0.005 1552506033\nsensu-

curl timings.time namelookup 0.004",

"output metric format": "graphite plaintext",
"output metric handlers": [
"influx-db"

1y

"proxy entity name": ""
"publish": true,
"round robin": false,
"runtime assets": [],
"state": "passing",
"status": O,
"stdin": false,
"subdue": null,
"subscriptions": [

"entity:sensu-go-testing”

1,
"timeout": O,
"total state change": 0,
"ttl": 0O

bo

"entity": {
"deregister": false,
"deregistration": {},
"entity class": "agent",

"last seen": 1552495139,

"metadata": {
"name": "sensu-go-testing",
"namespace": "default"

}y

"redact": [

"password",
"passwd",
"pass",

"api key",
"api token",
"access key",

"secret key",

"private key",
"secret"
1y
"subscriptions™: |
"entity:sensu-go-testing"
I
"system": {
"arch": "amdo4d",
"hostname": "sensu-go-testing",
"network": {
"interfaces": [
{
"addresses": [
"127.0.0.1/8",
"::1/128"
1y

"name": "lO"

"addresses": [
"10.0.2.15/24",
"feB80::5a94:f67a:1bfc:a579/64"
i
"mac": "08:00:27:8b:c9:3f",

"name": "ethO"

br
"os": "linux",
"platform": "centos",
"platform family": "rhel",
"platform version": "7.5.1804",
"processes": null
by
"user": "agent"
by
"metrics": {
"handlers": |
"influx-db"
i
"points": [

{

"name": "sensu-go.curl timings.time total",
"tags": [],

"timestamp": 1552506033,

"value": 0.005

"name": "sensu-go.curl timings.time namelookup",
"tags": [,

"timestamp": 1552506033,

"value": 0.004

]
br
"timestamp": 1552506033,
"id": "431a0085-96da-4521-863f-c38b480701e9",

"sequence": 1

Create events using the Sensu agent

The Sensu agent is a powerful event producer and monitoring automation tool.You can use Sensu
agents to produce events automatically using service checks and metric checks.Sensu agents can also
act as a collector for metrics throughout your infrastructure.

]

Create events using service checks

-

Create events using metric checks

|

Create events using the agent API

]|

Create events using the agent TCP and UDP sockets

]

Create events using the StatsD listener

Create events with the core/v2/events API endpoints

You can send events directly to the Sensu pipeline using the core/v2/events AP| endpoints.To create
an event, send a JSON event definition to the core/v2/events APl PUT endpoint.

http://localhost:1313/sensu-go/6.4/api/events#eventsentitycheck-put

If you use the core/v2/events API to create a new event referencing an entity that does not already
exist, the sensu-backend will automatically create a proxy entity in the same namespace when the
event is published.

NOTE: An agent cannot belong to, execute checks in, or create events in more than one
namespace.

Manage events

You can manage events using the Sensu web Ul, core/v2/events AP| endpoints, and sensuctl
command line tool.

View events

To list all events:

sensuctl event list

To show event details in the default output format (tabular):

sensuctl event info <entity-name> <check-name>

NOTE: Metrics data points are not included in events retrieved with sensuctl event info —
these events include check output text rather than a set of metrics points.

With both the 1ist and info commands, you can specify an output format using the --format
flag:

71 yaml Or wrapped-json formats for use with sensuctl create

sgELl, Json format for use with core/v2/events API endpoints

sensuctl event info entity-name check-name --format yaml

SHELL

sensuctl event info entity-name check-name --format wrapped-json
SHELL
sensuctl event info entity-name check-name --format json

Delete events

To delete an event:

sensuctl event delete entity-name check-name

You can use the --skip-confirm flag to skip the confirmation step:

sensuctl event delete entity-name check-name --skip-confirm

You should receive a confirmation message upon success:

Deleted

Resolve events

You can use sensuctl to change the status of an eventto 0 (OK).Events resolved by sensuctl include

the output message Resolved manually by sensuctl .

sensuctl event resolve entity-name check-name

You should receive a confirmation message upon success:

Resolved

Use event data

Observability data in events is a powerful tool for automating monitoring workflows.For example, the
state _attribute provides handlers with a high-level description of check status.Filtering events based
on this attribute can help reduce alert fatigue.

State attribute
The state event attribute adds meaning to the check status:

7 passing means the check statusis 0o (OK).
7 failing means the check status is non-zero (WARNING or CRITICAL).

7 flapping indicates an unsteady state in which the check result status (determined based on
per-check high flap threshold and low flap threshold attributes) is not settling on passing or
failing according to the flap detection algorithm.

Flapping typically indicates intermittent problems with an entity, provided your low and high flap
threshold settings are properly configured.Although some teams choose to filter out flapping events to
reduce unactionable alerts, we suggest sending flapping events to a designated handler for later
review.If you repeatedly observe events in flapping state, Sensu’s per-check flap threshold
configuration allows you to adjust the sensitivity of the flap detection algorithm.

Flap detection algorithm

Sensu uses the same flap detection algorithm as Nagios.Every time you run a check, Sensu records
whether the status value changed since the previous check.Sensu stores the last 21 status
values and uses them to calculate the percent state change for the entity/check pair.Then, Sensu’s
algorithm applies a weight to these status changes: more recent changes have more value than older
changes.

After calculating the weighted total percent state change, Sensu compares it with the high flap
threshold and low flap threshold set in the check attributes.

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html

71 If the entity was not already flapping and the weighted total percent state change for the
entity/check pair is greater than or equal to the high flap threshold setting, the entity has
started flapping.

71 If the entity was already flapping and the weighted total percent state change for the
entity/check pair is less than the 1low flap threshold setting, the entity has stopped flapping.

Depending on the result of this comparison, Sensu will trigger the appropriate event filters based on
check attributes like event.check.high flap threshold and event.check.low flap threshold .

Occurrences and occurrences watermark

The occurrences and occurrences watermark event attributes give you context about recent
events for a given entity and check.You can use these attributes within event filters to fine-tune incident
notifications and reduce alert fatigue.

Starting at 1 ,the occurrences attribute increments for events with the same status as the
preceding event (OK, WARNING, CRITICAL, or UNKNOWN) and resets whenever the status changes.
You can use the occurrences attribute to create a state-change-only filter or an interval filter.

The occurrences watermark attribute gives you useful information when looking at events that

change status between non-OK (WARNING, CRITICAL, or UNKNOWN) and OK.For these resolution

events, the occurrences watermark attribute tells you the number of preceding events with a non-

OK status.Sensu resets occurrences watermark to 1 on the first non-OK event.Within a sequence

of only OK or only non-OK events, Sensu increments occurrences watermark when the
occurrences attribute is greater than the preceding occurrences watermark .

The following table shows the occurrences attributes for a series of example events:

event sequence

1. OK event occurrences: 1 occurrences watermark: 1
2. OK event occurrences: 2 occurrences watermark: 2
3. WARNING event occurrences: 1 occurrences watermark: 1
4. WARNING event occurrences: 2 occurrences watermark: 2
5. WARNING event occurrences: 3 occurrences watermark: 3

6. CRITICAL event occurrences: 1 occurrences watermark: 3

7. CRITICAL event occurrences: 2 occurrences watermark: 3

8. CRITICAL event occurrences: 3 occurrences watermark: 3
9. CRITICAL event occurrences: 4 occurrences watermark: 4
10. OK event occurrences: 1 occurrences watermark: 4
11. CRITICAL event occurrences: 1 occurrences watermark: 1

Event specification

Top-level attributes

api_version

description Top-level attribute that specifies the Sensu API group and version. For
events in this version of Sensu, api version should always be

core/v2 .

required Required for events in wrapped-json or yaml format for use with

sensuctl create .

type String
YML

example

api_version: core/v2

JSON

"api version": "core/v2"

description Top-level scope that contains the event namespace and created by
field. The metadata map is always at the top level of the check
definition. This means that in wrapped-json and yaml formats, the
metadata Scope occurs outside the spec scope. Review the
metadata attributes for details.

required Required for events in wrapped-json or yaml format for use with

sensuctl create

type Map of key-value pairs
YML
example
metadata:

namespace: default

created by: admin

JSON
{
"metadata": {
"namespace": "default",
"created by": "admin"
}
}
spec
description Top-level map that includes the event spec attributes.
required Required for events in wrapped-json or yaml format for use with
sensuctl create
type Map of key-value pairs
YML
example
spec:

check:

check_hooks:

command: metrics-curl -u "http://localhost"
duration: 0.060790838
env_vars:
executed: 1552506033
handlers: []
high flap threshold: 0
history:
- executed: 1552505833
status: 0
- executed: 1552505843
status: 0
interval: 10
is_silenced: true
issued: 1552506033
last _ok: 1552506033
low_flap threshold: 0
metadata:
name: curl timings
namespace: default
occurrences: 1
occurrences_watermark: 1
silenced:
- webserver:*
output: |-
sensu-go.curl timings.time total 0.005 1552506033
sensu-go.curl timings.time namelookup 0.004
output_metric_format: graphite plaintext
output_metric_handlers:
- influx-db
proxy_entity name: ''
publish: true
round robin: false
runtime assets: []
state: passing
status: 0
stdin: false
subdue:
subscriptions:
- entity:sensu-go-testing
timeout: 0
total state_change: 0
ttl: O

entity:
deregister: false
deregistration: {}
entity class: agent
last_seen: 1552495139
metadata:
name: sensu-go-testing
namespace: default
redact:
- password
- passwd
- pass
- api_ key
- api_ token
- access_key
- secret key
- private key
- secret
subscriptions:
- entity:sensu-go-testing
system:
arch: amdé64
hostname: sensu-go-testing
network:
interfaces:
- addresses:
- 127.0.0.1/8
- "::1/128"
name: lo
- addresses:

- 10.0.2.15/24

- fe80::5a94:f67a:1bfc:a579/64

mac: '08:00:27:8b:c9:3f"
name: ethO

os: linux

platform: centos

platform family: rhel

platform version: 7.5.1804

processes:

user: agent
metrics:

handlers:

- influx-db
points:
- name: sensu-go.curl timings.time total
tags: []
timestamp: 1552506033
value: 0.005
- name: sensu-go.curl timings.time namelookup
tags: []
timestamp: 1552506033
value: 0.004
timestamp: 1552506033
id: 431a0085-96da-4521-863f-c38b480701e9

sequence: 1

JSON

"spec": {
"check": {
"check hooks": null,
"command": "metrics-curl -u \"http://localhost\"",
"duration": 0.060790838,
"env_vars": null,
"executed": 1552506033,
"handlers": [],
"high flap threshold": 0,
"history": [
{
"executed": 1552505833,

"status": 0O

"executed": 1552505843,

"status": 0

1,

"interval”: 10,

"is silenced": true,
"issued": 1552506033,
"last ok": 1552506033,
"low flap threshold": O,

"metadata": {

"name": "curl timings",

"namespace": "default"
}I
"occurrences": 1,
"occurrences watermark": 1,
"silenced": [

"webserver:*"
1,

"output": "sensu-go.curl timings.time total 0.005
1552506033\nsensu-go.curl timings.time namelookup 0.004",
"output metric format": "graphite plaintext",
"output metric handlers": |

"influx-db"
1,
"proxy entity name": "",
"publish": true,

"round robin": false,

"runtime assets": [],
"state": "passing",
"status": O,

"stdin": false,
"subdue": null,
"subscriptions": [
"entity:sensu-go-testing"

1y
"timeout": O,
"total state change": 0,
"ttl": 0

1y

"entity": {
"deregister": false,
"deregistration": {},
"entity class": "agent",

"last seen": 1552495139,

"metadata": {
"name": "sensu-go-testing",
"namespace": "default"

by

"redact": [

"password",
"passwd",

llpassll,

"api key",
"api token",
"access key",
"secret key",
"private key",
"secret"
1,
"subscriptions": [
"entity:sensu-go-testing"
1,
"system": {
"arch": "amdo4",
"hostname": "sensu-go-testing",
"network": {
"interfaces": |

{

"addresses": [
"127.0.0.1/8",
".:1/128"

1,

"name": "lO"

"addresses": [
"10.0.2.15/24",
"feB80::5a94:f67a:1bfc:a579/64"
1,
"mac": "08:00:27:8b:c9:3f",

"name": "ethO"

by

"os": "linux",
"platform": "centos",
"platform family": "rhel",
"platform version": "7.5.1804",
"processes": null
by
"user": "agent"
by

"metrics": {

"handlers": [

"influx—-db"
1,

"points": [

{
"name": "sensu-go.curl timings.time total",
"tags": [,
"timestamp": 1552506033,
"value": 0.005

}y

{
"name": "sensu-go.curl timings.time namelookup",
"tags": [],
"timestamp": 1552506033,

"value": 0.004

by
"timestamp": 1552506033,
"id": "431a0085-96da-4521

"sequence": 1

-863f-c38b480701e9",

type

description Top-level attribute that specifies the sensuctl create resource type.
Events should always be type Event .

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type String
YML

example

type: Event

JSON

"type": "Event"

Metadata attributes

created by

description Username of the Sensu user who created the event or last updated the
event. Sensu automatically populates the created by field when the
event is created or updated.

required false
type String

YML
example

created by: "admin"

JSON

"created by": "admin"

namespace

description Sensu RBAC namespace that the event belongs to.
required false
type String

default default

example

namespace: production

JSON
{
"namespace": "production"
}
Spec attributes
check
description Check definition used to create the event and information about the
status and history of the event. The check scope includes attributes
described in the event specification and the check specification.
type Map
required true
YML
example
check:

check hooks:

command: metrics-curl -u "http://localhost"

duration: 0.060790838

env_vars:

executed: 1552506033

handlers: []

high flap threshold: 0

history:

- executed: 1552505833
status: 0

- executed: 1552505843
status: 0O

interval: 10

is silenced: true
issued: 1552506033
last _ok: 1552506033
low_flap threshold: O
metadata:
name: curl timings
namespace: default
occurrences: 1
occurrences_watermark: 1
silenced:
- webserver:*
output: sensu-go.curl timings.time total 0.005
output metric_format: graphite plaintext
output metric_handlers:
- influx-db
proxy entity name: ''
publish: true
round robin: false
runtime assets: []
state: passing
status: 0
stdin: false
subdue:
subscriptions:
- entity:sensu-go-testing
timeout: 0
total_ state_change: 0
ttl: O

JSON

"check": {
"check hooks": null,
"command": "metrics-curl -u \"http://localhost\"",
"duration": 0.060790838,
"env_vars": null,
"executed": 1552506033,
"handlers": [],
"high flap threshold": 0,
"history": [
{

"executed": 1552505833,

"status": 0

"executed": 1552505843,

"status": O

1,

"interval": 10,

"is silenced": true,
"issued": 1552506033,
"last ok": 1552506033,
"low flap threshold": O,

"metadata": {
"name": "curl timings",
"namespace": "default"
}I
"occurrences": 1,
"occurrences watermark": 1,
"silenced": |

"webserver:*"

I

"output”": "sensu-go.curl timings.time total 0.005",
"output metric format": "graphite plaintext",
"output metric handlers": [

"influx-db"

i

"proxy entity name": "",

"publish": true,

"round robin": false,

"runtime assets": [],
"state": "passing",
"status": O,

"stdin": false,

"subdue": null,

"subscriptions": [
"entity:sensu-go-testing"

i

"timeout": O,

"total state change": O,

"ttl": 0

entity
description Entity attributes from the originating entity (agent or proxy).
For events created with the core/v2/events AP, if the event’s entity does

not already exist, the sensu-backend automatically creates a proxy entity
when the event is published.

type Map
required true
YMIL,
example
entity:

deregister: false
deregistration: {}
entity class: agent
last_seen: 1552495139
metadata:
name: sensu-go-testing
namespace: default
redact:
- password
- passwd
- pass
- api_key
- api_ token
- access_key
- secret key
- private key
- secret
subscriptions:
- entity:sensu-go-testing
system:
arch: amdé64
hostname: sensu-go-testing

network:

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

interfaces:
- addresses:
- 127.0.0.1/8
- "::1/128"
name: lo
- addresses:
- 10.0.2.15/24
- feB80::5a94:f67a:1bfc:a579/64
mac: '08:00:27:8b:c9:3f"'
name: ethO
os: linux
platform: centos
platform family: rhel
platform version: 7.5.1804

user: agent

JSON

"entity": {
"deregister": false,
"deregistration": {},
"entity class": "agent",

"last seen": 1552495139,

"metadata": {
"name": "sensu-go-testing",
"namespace": "default"

by

"redact": [

"password",
"passwd",
"pass",
"api key",
"api token",
"access key",
"secret key",
"private key",
"secret"
Iy
"subscriptions": [
"entity:sensu-go-testing"

i

"system": {

"arch": "amdo4",
"hostname": "sensu-go-testing",
"network": {
"interfaces": [
{

"addresses": [
"127.0.0.1/8",
"::1/128"

i

"name": "lo"

}
{
"addresses": [

"10.0.2.15/24",
"fe80::5a94:f67a:1bfc:a579/64"
1,
"mac": "08:00:27:8b:c9:3f",

"name": "ethO"

by

"os": "linux",

"platform": "centos",

"platform family": "rhel",

"platform version": "7.5.1804"
s

"user": "agent"

description Universally unique identifier (UUID) for the event. Logged as event id .

Sensu automatically populates the id value for the event.

required false

type String

YML
example
id: 431a0085-96da-4521-863f-c38b480701e9
JSON
{
"id": "431a0085-96da-4521-863f-c38b480701e9"
}
metrics
description Metrics collected by the entity in Sensu metric format. Review the metrics
attributes.
type Map
required false
YML
example
metrics:
handlers:
- influx-db
points:

- name: sensu-go.curl timings.time total
tags: []
timestamp: 1552506033
value: 0.005

- name: sensu-go.curl timings.time namelookup
tags: []
timestamp: 1552506033
value: 0.004

JSON

"metrics": {

"handlers": [

"influx-db"
i
"points": [
{
"name": "sensu-go.curl timings.time total",
"tags": [],

"timestamp": 1552506033,
"value": 0.005

"name": "sensu-go.curl timings.time namelookup",
"tags": [,

"timestamp": 1552506033,

"value": 0.004

sequence

description Event sequence number. The Sensu agent sets the sequence to 1 at
startup, then increments the sequence by 1 for every successive check
execution or keepalive event. If the agent restarts or reconnects to
another backend, the sequence value resets to 1.

A sequence value of 0 indicates that an outdated or non-conforming
agent generated the event.

Sensu only increments the sequence for agent-executed events. Sensu
does not update the sequence for events created with the core/v2/events

API.
required false
type Integer

YML

example

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event
http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

sequence: 1

JSON

"sequence": 1

description Time that the event occurred. In seconds since the Unix epoch.
Sensu automatically populates the timestamp value for the event. For
events created with the core/v2/events API, you can specify a
timestamp Value in the request body.
required false
type Integer
default Time that the event occurred
YML
example
timestamp: 1522099512
JSON
{
"timestamp": 1522099512
}
Check attributes

Sensu events include a check scope that contains information about how the event was created,

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

including any attributes defined in the check specification, and information about the event and its
history, including the attributes defined below.

description Command execution time. In seconds.
required false
type Float
YML
example

duration: 1.903135228

JSON

"duration": 1.903135228

}
IIHHHHHH%H|III

description Time at which the check request was executed. In seconds since the
Unix epoch.
The difference between a request’s issued and executed valuesis
the request latency.
For agent-executed checks, Sensu automatically populates the

executed Vvalue. For events created with the core/v2/events API, the

default executed valueis 0 unless you specify a value in the request
body.

required false

type Integer
YML

example

executed: 1522100915

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

JSON

"executed": 1522100915

description Check status history for the last 21 check executions. Read history
attributes.

Sensu automatically populates the history attributes with check execution
data.

To store more than the last 21 check executions, use one of our long-
term event storage integrations.

required false
type Array
YML
example
history:

- executed: 1552505983
status: 0
- executed: 1552505993

status: 0

JSON

"history": [
{
"executed": 1552505983,
"status": 0
}y
{

"executed": 1552505993,

"status": 0

is_silenced

description If true , the event was silenced at the time of processing. Otherwise,
false . If true , the event. Check definitions also list the silenced
entries that match the eventin the silenced array.
required false
type Boolean
YML
example

is _silenced: true

JSON

"is silenced": "true"

issued

description

Time that the check request was issued. In seconds since the Unix
epoch.

The difference between a request’s issued and executed values is
the request latency.

For agent-executed checks, Sensu automatically populates the issued
value. For events created with the core/v2/events API, the default

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

issued valueis 0 unless you specify a value in the request body.

required false
type Integer

YML
example

issued: 1552506033

JSON

"issued": 1552506033

description

Last time that the check returned an OK status (0). In seconds since
the Unix epoch.

For agent-executed checks, Sensu automatically populates the
last ok value. For events created with the core/v2/events API, the
last ok attribute will defaultto 0 even if you specify OK status in the
request body.

required

false

type

Integer
YML

example

last _ok: 1552506033

JSON

"last_ok": 1552506033

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

occurrences

description

Number of preceding events with the same status as the current event
(OK, WARNING, CRITICAL, or UNKNOWN). Starting at 1 , the

occurrences attribute increments for events with the same status as
the preceding event and resets whenever the status changes. Read Use
event data for more information.

Sensu automatically populates the occurrences value. For events
created with the core/v2/events API, Sensu overwrites any occurences
value you specify in the request body with the correct value.

required

false

type

Integer greater than O
YML

example

occurrences: |

JSON

"occurrences": 1

occurrences_watermark

description

For incident and resolution events, the number of preceding events
with an OK status (for incident events) or non-OK status (for
resolution events). The occurrences watermark attribute gives
you useful information when looking at events that change status
between OK (0)and non-OK (1 -WARNING, 2 -CRITICAL, or
UNKNOWN).

Sensu resets occurrences watermark to 1 whenever an event
for a given entity and check transitions between OK and non-OK.

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

Within a sequence of only OK or only non-OK events, Sensu
increments occurrences watermark onIy when the
occurrences attribute is greater than the preceding
occurrences watermark . Read Use event data for more
information.

Sensu automatically populates the occurrences watermark
value. For events created with the core/v2/events API, Sensu
overwrites any occurences watermark Vvalue you specify in the
request body with the correct value.

required false

type Integer greater than O
YML

example

occurrences_watermark: 1

JSON

"occurrences watermark": 1

output
description Output from the execution of the check command.
required false
type String
YML
example

output: "sensu-go.curl timings.time total 0.005

JSON

"output": "sensu-go.curl timings.time total 0.005"

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

silenced

description Array of silencing entries that match the event. The silenced attribute
is only present for events if one or more silencing entries matched the
event at time of processing. Ifthe silenced attribute is not presentin
an event, the event was not silenced at the time of processing.

required false

type Array
YML

example

silenced:

- webserver:*

JSON

"silenced": [

"webserver:*"

description

State of the check: passing (status 0), failing (status other than
0),or flapping . Usethe low flap threshold and

high flap threshold check attributes to configure flapping state
detection.

Sensu automatically populates the state based onthe status .

required

false

type

String
YML

example

state: passing

JSON

"state": "passing"

description

Exit status code produced by the check.

1 0 indicates OK
1 1 indicates WARNING
1 2 indicates CRITICAL

Exit status codes otherthan o0, 1 ,or 2 indicate an UNKNOWN or
custom status.

For agent-executed checks, Sensu automatically populates the status
value based on the check result. For events created with the
core/v2/events API, Sensu assumes the statusis 0 (OK) unless you
specify a non-zero value in the request body.

required

false

type

Integer
YML

example

status: 0

JSON

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

"status": 0

total_state change

description Total state change percentage for the check’s history.

For agent-executed checks, Sensu automatically populates the

total state change value. For events created with the
core/v2/events API, the total state change attribute will default to

0 even if you specify a different value or change the status value in
the request body.

required false
type Integer

YML
example

total state_change: 0

JSON

"total state change": 0

History attributes
description Time at which the check request was executed. In seconds since the
Unix epoch.

Sensu automatically populates the executed value with check

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

execution data. For events created with the core/v2/events API, the
executed default valueis o .

required false
type Integer

YML
example

executed: 1522100915

JSON

"executed": 1522100915

description Exit status code produced by the check.

1 0 indicates OK
1 1 indicates WARNING

1 2 indicates CRITICAL

Exit status codes otherthan o0, 1 ,or 2 indicate an UNKNOWN or
custom status.

Sensu automatically populates the status value with check execution

data.
required false
type Integer

YML

example
status: 0O

JSON

http://localhost:1313/sensu-go/6.4/api/events#create-a-new-event

"status": 0

Metrics attributes

description Array of Sensu handlers to use for events created by the check. Each
array item must be a string.

required false
type Array
YML
example
handlers:
- influx-db
JSON
{
"handlers": [

"influx—-db"

description Metrics data points, including a name, timestamp, value, and tags. Read
points attributes.

required false

type Array
YML

example
points:
- name: sensu-go.curl timings.time total
tags:
- name: response time in ms
value: '101'
timestamp: 1552506033
value: 0.005
- name: sensu-go.curl timings.time namelookup
tags:
- name: namelookup time in ms
value: '57'
timestamp: 1552506033
value: 0.004

JSON

"points": [

{

"name": "sensu-go.curl timings.time total",
"tags": [
{
"name": "response time in ms",
"value": "101"

I
"timestamp": 1552506033,
"value": 0.005

"name": "sensu-go.curl timings.time namelookup",
"tags": [
{
"name": "namelookup time in ms",
"value": "57"

1,
"timestamp": 1552506033,

"value": 0.004

Points attributes

name

description Metric name in the format $entity.Scheck.$metric where S$entity
is the entity name, $check is the check name, and $metric is the
metric name.

required false

type String
YML

example

name: sensu-go.curl timings.time total

JSON

"name": "sensu-go.curl timings.time total"

description Optional tags to include with the metric. Each element of the array must
be a hash that contains two key-value pairs: the name of the tag and
the value . Both values of the pairs must be strings.

required false

type Array
YML

example
tags:
- name: response time in ms

value: '101'

JSON

"tags": [
{
"name": "response time in ms",

"value": "101"

description Time at which the metric was collected. In seconds since the Unix epoch.
Sensu automatically populates the timestamp values for metrics data
points.

required false

type Integer
YML

example

timestamp: 1552506033

JSON

"timestamp": 1552506033

value

description Metric value.
required false
type Float

YML
example

value: 0.005

JSON

"value": 0.005

Schedule observability data collection

28 or click any element in the pipeline to jump to it.

Sensu’s schedule function is based on subscriptions: transport topics to which the Sensu backend
publishes check requests.The subscriptions you specify in your Sensu agent definition determine which
checks the agent will execute.The Sensu backend schedules checks, publishes check execution
requests to entities, and processes the observation data (events) it receives from the agent.

Agent and backend

The Sensu agent is a lightweight process that runs on the infrastructure components you want to
monitor and observe.The agent registers with the Sensu backend as an entity with type: "agent" .
Agent entities are responsible for creating status and metrics events to send to the backend event

pipeline.

The Sensu backend includes an integrated structure for scheduling checks using subscriptions and an
event pipeline that applies event filters, mutators, and handlers, an embedded etcd datastore for
storing configuration and state, and the Sensu API, Sensu web Ul, and sensuctl command line tool.

The Sensu agent is available for Linux, macOS, and Windows.The Sensu backend is available for
Ubuntu/Debian and RHEL/CentOS distributions of Linux.Learn more in the agent and backend
references.

Follow the installation guide to install the agent and backend.

Subscriptions

Subscriptions are at the core of Sensu’s publish/subscribe pattern of communication: subscriptions are
transport topics to which the Sensu backend publishes check requests.Sensu entities become

subscribers to these topics via their individual subscriptions attribute.

Each Sensu agent’s defined set of subscriptions determine which checks the agent will execute.Agent
subscriptions allow Sensu to request check executions on a group of systems at a time instead of a
traditional 1:1 mapping of configured hosts to monitoring checks.

https://etcd.io/docs
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

In each check’s definition, you can specify which subscriptions should run the check.At the same time,
your entities are “subscribed” to these subscriptions.Subscriptions make sure your entities
automatically run the appropriate checks for their functionality.

The following example shows the resource definition for a check with the system and 1inux
subscriptions.This check would run on any entities whose definitions also specify the system or
linux Ssubscriptions.

YML

type: CheckConfig
api_version: core/v2
metadata:
name: check-cpu
spec:
check hooks: null
command: check-cpu-usage -w 75 -c 90
env_vars: null
handlers:
- slack
high flap threshold: 0
interval: 60
low_flap threshold: 0
output_metric_format: ""
output_metric_handlers: null
proxy entity name: ""
publish: true
round robin: false
runtime assets:
- check-cpu-usage
secrets: null
stdin: false
subdue: null
subscriptions:
- system
- linux
timeout: 0

ttl: O

JSON

"type": "CheckConfig",

"api version": "core/v2",
"metadata": {
"name": "check-cpu"
}I
"spec": {

"check hooks": null,
"command": "check-cpu-usage -w 75 -c 90",
"env _vars": null,
"handlers": [
"slack"
1,
"high flap threshold": 0,
"interval": 60,
"low flap threshold": O,
"output metric format": ""
"output metric handlers": null,
"proxy entity name": ""
"publish": true,
"round robin": false,
"runtime assets": |
"check-cpu-usage"
1,
"secrets": null,
"stdin": false,

"subdue": null,

"subscriptions": [
"system"

1,

"timeout": 0,

"ttl": O

Subscriptions typically correspond to a specific role or responsibility.For example, you might add all the
checks you want to run on your database entities to a database subscription.Rather than specifying
these checks individually for every database you are monitoring, you add the database subscription
to your database entities and they run the desired checks automatically.

Read the subscriptions reference to learn more.

Communication between the agent and backend

The Sensu agent uses WebSocket (ws) protocol to send and receive JSON messages with the Sensu
backend.For optimal network throughput, agents will attempt to negotiate the use of Protobuf
serialization when communicating with a Sensu backend that supports it.This communication is via
clear text by default.

Follow Secure Sensu to configure the backend and agent for WebSocket Secure (wss) encrypted
communication.

https://en.m.wikipedia.org/wiki/WebSocket
https://en.m.wikipedia.org/wiki/Protocol_Buffers

Agent reference

Example Sensu agent configuration file (download)

The Sensu agent is a lightweight client that runs on the infrastructure components you want to monitor.
Agents register with the Sensu backend as monitoring entities with type: "agent" .Agent entities are
responsible for creating check and metrics events to send to the backend event pipeline.

The Sensu agent is available for Linux, macOS, and Windows.For Windows operating systems, the
Sensu agent uses cmd.exe for the execution environment.For all other operating systems, the Sensu
agent uses the Bourne shell (sh).

Read the installation guide to install the agent.

Agent authentication

The Sensu agent authenticates to the Sensu backend via WebSocket transport by either built-in basic
authentication (username and password) or mutual transport layer security (mTLS) authentication.

Username and password authentication

The default mechanism for agent authentication is built-in basic authentication with username and
password.The Sensu agent uses username and password authentication unless mTLS authentication
has been explicitly configured.

For username and password authentication, sensu-agent joins the username and password with a
colon and encodes them as a Base64 value.Sensu provides the encoded string as the value of the

Authorization HTTP header — for example, Authorization: Basic YWd1bnQ6UEBzc3cwcmQh —
to authenticate to the Sensu backend.

When using username and password authentication, sensu-agent also sends the following HTTP
headers in requests to the backend:

7 Sensu-User :the username in plaintext

7 Sensu-AgentName : the agent’s configured name in plaintext

http://localhost:1313/sensu-go/6.4/files/agent.yml
https://en.m.wikipedia.org/wiki/WebSocket

7 Sensu-Subscriptions :the agent’s subscriptions in a comma-separated plaintext list

7 Sensu-Namespace : the agent’s configured namespace in plaintext

mTLS authentication

When mTLS is configured for both the Sensu agent and backend, the agent uses mTLS authentication
instead of the default username and password authentication.

Sensu backends that are configured for mTLS authentication will no longer accept agent authentication
via username and password.Agents that are configured to use mTLS authentication cannot
authenticate with the backend unless the backend is configured for mTLS.

To configure the agent and backend for mTLS authentication:

71 In the backend configuration, specify valid certificate and key files as values for the agent-
auth-cert-file and agent-auth-key-file parameters (€.g. backend-1.pem and
backend-1-key.pem , respectively).

71 In the agent configuration, specify valid certificate and key files as values for the cert-file
and key-file parameters (e.g. agent.pem and agent-key.pem , respectively).

NOTE: For detailed information about the certificates and keys required for mTLS authentication,
read Generate cetrtificates for your Sensu installation.For information about using the certificates
and keys to secure your configuration, read Secure Sensu.

The agent and backend will compare the provided certificates with the trusted CA certificate either in
the system trust store or specified explicitly as the agent-auth-trusted-ca-file in the backend
configuration and trusted-ca-file in the agent configuration.

When using mTLS authentication, sensu-agent sends the following HTTP headers in requests to the
backend:

7 Sensu-AgentName : the agent’s configured name in plaintext

7 Sensu-Subscriptions :the agent’s subscriptions in a comma-separated, plaintext list

7 Sensu-Namespace : the agent’s configured namespace in plaintext

If the Sensu agent is configured for mTLS authentication, it will not send the aAuthorization HTTP
header.

Certificate bundles or chains

The Sensu agent supports all types of certificate bundles (or chains) as long as the agent (or leaf)
certificate is the first certificate in the bundle.This is because the Go standard library assumes that the
first certificate listed in the PEM file is the leaf certificate — the certificate that the program will use to
show its own identity.

If you send the leaf certificate alone instead of sending the whole bundle with the leaf certificate first,
you will receive a certificate not signed by trusted authority error.You must present the
whole chain to the remote so it can determine whether it trusts the presented certificate through the
chain.

Certificate revocation check

The Sensu backend checks certificate revocation list (CRL) and Online Certificate Status Protocol
(OCSP) endpoints for agent mTLS, etcd client, and etcd peer connections whose remote sides present
X.509 certificates that provide CRL and OCSP revocation information.

Communication between the agent and backend

The Sensu agent uses WebSocket (ws) protocol to send and receive JSON messages with the Sensu
backend.For optimal network throughput, agents will attempt to negotiate the use of Protobuf
serialization when communicating with a Sensu backend that supports it.This communication is via
clear text by default.

Follow Secure Sensu to configure the backend and agent for WebSocket Secure (wss) encrypted
communication.

NOTE: For information about your agent transport status, use the /health API.

Create observability events using service checks

Sensu uses the publish/subscribe pattern of communication, which allows automated registration and
deregistration of ephemeral systems.At the core of this model are Sensu subscriptions: a list of roles
and responsibilities assigned to the system (for example, a webserver or database).These
subscriptions determine which monitoring checks the agent will execute.For an agent to execute a
service check, you must specify the same subscription in the agent configuration and the check

https://en.m.wikipedia.org/wiki/WebSocket
https://en.m.wikipedia.org/wiki/Protocol_Buffers
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

definition.

After receiving a check request from the Sensu backend, the agent:

1. Applies any tokens that match attribute values in the check definition.

2. Fetches dynamic runtime assets and stores them in its local cache.By default, agents cache
dynamic runtime asset data at /var/cache/sensu/sensu-agent
(c:\ProgrambData\sensu\cache\sensu-agent on Windows systems) or as specified by the
the cache-dir flag.

3. Executes the check command.

Executes any hooks specified by the check based on the exit status.

5. Creates an event that contains information about the applicable entity, check, and metric.

&

Read the subscriptions reference for more information.

Proxy entities

Sensu proxy entities allow Sensu to monitor external resources on systems or devices where a Sensu
agent cannot be installed (such a network switch).The Sensu backend stores proxy entity definitions
(unlike agent entities, which the agent stores).When the backend requests a check that includes a
proxy entity name , the agentincludes the provided entity information in the observation data in
events in place of the agent entity data.read the entities reference and Monitor external resources for
more information about monitoring proxy entities.

Create observability events using the agent API

The Sensu agent API allows external sources to send monitoring data to Sensu without requiring the
external sources to know anything about Sensu’s internal implementation.The agent API listens on the
address and port specified with the agent API configuration options.Only unsecured HTTP (no HTTPS)
is supported at this time.Any requests for unknown endpoints result in an HTTP 404 Not Found
response.

/events (POST)

The agent API provides HTTP POST access to publish observability events to the Sensu backend
pipeline via the /events endpoint.The agent places events created via the agent APl /events
endpoint into a queue stored on disk.In case of a loss of connection with the backend or agent
shutdown, the agent preserves queued event data.\When the connection is reestablished, the agent
sends the queued events to the backend.

The agent APl /events endpoint uses a configurable burst limit and rate limit for relaying events to
the backend.Read API configuration to configure the events-burst-1imit and events-rate-limit
options.

Example POST request to events endpoint

The following example submits an HTTP POST request to the agent APl /events endpoint.The
request creates an event for a check named check-mysql-status Wwith the output could not
connect to mysql and a status of 1 (warning).The agent responds with an HTTP 202 Accepted
response to indicate that the event has been added to the queue to be sent to the backend.

The event will be handled according to an email handler definition.

NOTE: For HTTP posT requests to the agent APl /events endpoint, check spec attributes are
not required.When doing so, the spec attributes are listed as individual top-level attributes in the
check definition instead.

curl -X POST \

-H 'Content-Type: application/json' \

-d '{
"check": {
"metadata": {
"name": "check-mysgl-status"
},
"handlers": ["email"],
"status": 1,
"output": "could not connect to mysgl"
}
FUOA

http://127.0.0.1:3031/events

PRO TIP: To use the agent APl /events endpoint to create proxy entities, include a
proxy entity name attribute within the check Sscope.

Detect silent failures

You can use the Sensu agent APl in combination with the check time-to-live (TTL) attribute to detect
silent failures.This creates what's commonly referred to as a “‘dead man’s switch”.

With check TTLs, Sensu can set an expectation that a Sensu agent will publish additional events for a
check within the period of time specified by the TTL attribute.lfa Sensu agent fails to publish an event
before the check TTL expires, the Sensu backend creates an event with a status of 1 (warning) to
indicate the expected event was not received.For more information about check TTLs, read the checks

reference.

You can use the Sensu agent API to enable tasks that run outside of Sensu’s check scheduling to emit
events.Using the check TTL attribute, these events create a dead man’s switch: if the task fails for any
reason, the lack of an “all clear” event from the task will notify operators of a silent failure (which might
otherwise be missed).If an external source sends a Sensu event with a check TTL to the Sensu agent
API, Sensu expects another event from the same external source before the TTL expires.

In this example, external event input via the Sensu agent API uses a check TTL to create a dead
man’s switch for MySQL backups.Assume that a MySQL backup script runs periodically, and you
expect the job to take a little less than 7 hours to complete.

71 If the job completes successfully, you want a record of it, but you don’t need to receive an alert.
71 If the job fails or continues running longer than the expected 7 hours, you do need to receive

an alert.

This script sends an event that tells the Sensu backend to expect an additional event with the same
name within 7 hours of the first event:

curl -X POST \
-H 'Content-Type: application/json' \

-d '{
"check": {
"metadata": {
"name": "mysgl-backup-job"
by
"status": O,
"output": "mysqgl backup initiated",

"ttl": 25200
}
PN
http://127.0.0.1:3031/events

https://en.wikipedia.org/wiki/Dead_man%27s_switch

With this initial event submitted to the agent API, you recorded in the Sensu backend that your script
started.You also configured the dead man’s switch so that you'll receive an alert if the job fails or runs
for too long.Although it is possible for your script to handle errors gracefully and emit additional
observability events, this approach allows you to worry less about handling every possible error case.A
lack of additional events before the 7-hour period elapses results in an alert.

If your backup script runs successfully, you can send an additional event without the TTL attribute,
which removes the dead man’s switch:

curl -X POST \

-H 'Content-Type: application/json' \

-d '{
"check": {
"metadata": {
"name": "mysgl-backup-job"
y
"status": O,
"output": "mysqgl backup ran successfully!"
}
PO

http://127.0.0.1:3031/events

When you omit the TTL attribute from this event, you also remove the dead man’s switch being
monitored by the Sensu backend.This effectively sounds the “all clear” for this iteration of the task.

API specification

levents (POST)

description Accepts JSON event data and passes the event to the Sensu backend
event pipeline for processing.

example url http://hosthname:3031/events

payload example

"check": {
"metadata": {

"name": "check-mysgl-status"

}o
"status": 1,

"output": "could not connect to mysgl"

payload attributes
Required:

7 check : All check data must be within the check scope

7 metadata : The check scope mustcontain a metadata
scope

7 name : The metadata scope must contain the name attribute
with a string that represents the name of the monitoring check

Optional:

7 Any other attributes supported by the Sensu check specification

response codes
71 Success: 202 (Accepted)

71 Malformed: 400 (Bad Request)

7 Error: 500 (Internal Server Error)

/healthz (G ET)

The agent APl /nhealthz endpoint provides HTTP GET access to the status of the Sensu agent via
the agent API.

Example

In the following example, an HTTP GET request is submitted to the agent APl /healthz endpoint:

curl http://127.0.0.1:3031/healthz

The request results in a healthy response:

ok

API specification

/healthz (GET)

description Returns the agent status:
- ok ifthe agentis active and connected to a Sensu backend.
- sensu backend unavailable if the agent cannot connect to a
backend.

example url http://hosthname:3031/healthz

Create observability events using the StatsD listener

Sensu agents include a listener to send StatsD metrics to the event pipeline.By default, Sensu agents
listen on UDP socket 8125 for messages that follow the StatsD line protocol and send metric events for
handling by the Sensu backend.

For example, you can use the Netcat utility to send metrics to the StatsD listener:

echo 'abc.def.g:10|c' | nc -wl -u localhost 8125

Sensu does not store metrics received through the StatsD listener, so it's important to configure event
handlers.

StatsD line protocol

The Sensu StatsD listener accepts messages formatted according to the StatsD line protocol:

<metricname>:<value>|<type>

https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://sourceforge.net/projects/netcat/

For more information, read the StatsD documentation.

Configure the StatsD listener

To configure the StatsD listener, specify the statsd-event-handlers configuration option in the
agent configuration, and start the agent.For example, to start an agent that sends StatsD metrics to
InfluxDB, run:

sensu-agent --statsd-event-handlers influx-db

Use the StatsD configuration options to change the default settings for the StatsD listener address,
port, and flush interval.For example, to start an agent with a customized address and flush interval, run:

sensu-agent --statsd-event-handlers influx-db --statsd-flush-interval 1 --statsd-

metrics-host 123.4.5.11 --statsd-metrics-port 8125

Create observability events using the agent TCP and UDP
sockets

NOTE: The agent TCP and UDP sockets are deprecated in favor of the agent API.

Sensu agents listen for external monitoring data using TCP and UDP sockets.The agent sockets accep
JSON event data and pass events to the Sensu backend event pipeline for processing.The TCP and
UDP sockets listen on the address and port specified by the socket configuration options.

Use the TCP socket

This example demonstrates external monitoring data input via the Sensu agent TCP socket.The
example uses Bash’s built-in /dev/tcp file to communicate with the Sensu agent socket:

echo '{"name": "check-mysgl-status", "status": 1, "output": "error!"}' >

https://github.com/etsy/statsd
https://github.com/statsd/statsd#key-concepts

/dev/tcp/localhost/3030

You can also use the Netcat utility to send monitoring data to the agent socket:

echo '{"name": "check-mysgl-status", "status": 1, "output": "error!"}' | nc

localhost 3030

Use the UDP socket

This example demonstrates external monitoring data input via the Sensu agent UDP socket.The
example uses Bash'’s built-in /dev/udp file to communicate with the Sensu agent socket:

echo '{"name": "check-mysgl-status", "status": 1, "output": "error!"}' >

/dev/udp/127.0.0.1/3030

You can also use the Netcat utility to send monitoring data to the agent socket:

echo '"{"name": "check-mysgl-status", "status": 1, "output": "error!"}' | nc -u -v

127.0.0.1 3030

Socket event format

The agent TCP and UDP sockets use a special event data format designed for backward compatibility
with Sensu Core 1.x check results.Attributes specified in socket events appear in the resulting event
data passed to the Sensu backend.

Example socket input: Minimum required attributes

"name": "check-mysgl-status",
"status": 1,

"output": "error!"

https://sourceforge.net/projects/netcat/
https://sourceforge.net/projects/netcat/

Example socket input: All attributes

"name": "check-http",
"status": 1,

"output": "404",

"source": "sensu-docs-site",

"executed": 1550013435,
"duration": 1.903135228,

"handlers": ["slack", "influxdb"]

Socket event specification

NOTE: The Sensu agent socket ignores any attributes that are not included in this specification.

name

description Check name.
required true
type String
example
{
"name": "check-mysgl-status"

}
IEiHHHiIII

description Check execution exit status code. An exit status code of 0 (zero)
indicates ok , 1 indicates wWaARNING , and 2 indicates CRITICAL .

Exit status codes otherthan 0, 1 ,and 2 indicate an UNKNOWN oOr
custom status.

required true
type Integer
example

"status": 0

}

description Output produced by the check command .
required true

type String

example

"output": "CheckHttp OK: 200, 78572 bytes"

}
source

description Name of the Sensu entity associated with the event. Use this attribute to
tie the event to a proxy entity. If no matching entity exists, Sensu creates
a proxy entity with the name provided by the source attribute.

required false

default The agent entity that receives the event data.

type String

example

"source": "sensu-docs-site"

client

description Name of the Sensu entity associated with the event. Use this attribute to
tie the event to a proxy entity. If no matching entity exists, Sensu creates
a proxy entity with the name provided by the client attribute.
NOTE: The client attribute is deprecated in favor of the source
attribute.
required false
default The agent entity that receives the event data.
type String
example
{
"client": "sensu-docs-site"

executed

description Time at which the check was executed. In seconds since the Unix epoch.
required false

default The time the event was received by the agent.

type Integer

example

"executed": 1458934742

description Amount of time it took to execute the check. In seconds.
required false

type Float

example

"duration": 1.903135228

command

description Command executed to produce the event. Use the command attribute to
add context to the event data. Sensu does not execute the command
included in this attribute.

required false
type String
example
{
"command": "http-check --url https://sensu.io"

interval

|

description Interval used to produce the event. Use the interval attribute to add
context to the event data. Sensu does not act on the value provided in
this attribute.

required false

default 1

type Integer

example

"interval": 60

description Array of Sensu handler names to use for handling the event. Each
handler name in the array must be a string.

required false
type Array
example
{
"handlers": ["slack", "influxdb"]

Keepalive monitoring

Sensu keepalives are the heartbeat mechanism used to ensure that all registered agents are
operational and able to reach the Sensu backend.Sensu agents publish keepalive events containing
entity configuration data to the Sensu backend according to the interval specified by the keepalive-
interval configuration option.All Sensu agent data provided in keepalive events is stored in the agent
registry and used to add context to Sensu events and detect Sensu agents in an unhealthy state.

If a Sensu agent fails to send keepalive events over the period specified by the keepalive-critical-
timeout configuration option, the Sensu backend creates a keepalive critical alert in the Sensu web
Ul.The keepalive-critical-timeout issetto 0 (disabled) by defaultto help ensure that it will not
interfere with your keepalive-warning-timeout setting.

If a Sensu agent fails to send keepalive events over the period specified by the keepalive-warning-

timeout configuration option, the Sensu backend creates a keepalive warning alert in the Sensu web
Ul.The value you specify for keepalive-warning-timeout must be lower than the value you specify

for keepalive-critical-timeout .

NOTE: If you set the deregister _configuration option to true , when a Sensu agent process
stops, the Sensu backend will deregister the corresponding entity.

Deregistration prevents and clears alerts for failing keepalives for agent entities — the backend
does not distinguish between intentional shutdown and failure.As a result, if you set deregister
to true and an agent process stops for any reason, you will not receive alerts for keepalive
events in the web Ul.

If you want to receive alerts for failing keepalives, set the deregister configuration option to

false .

You can use keepalives to identify unhealthy systems and network partitions, send notifications, trigger

auto-remediation, and automatically register and deregister agent entities, among other useful actions.

The agent maps keepalive-critical-timeout and keepalive-warning-timeout Values to
certain event check attributes, so you can also create time-based event filters to reduce alert fatigue

for agent keepalive events.

NOTE: Automatic keepalive monitoring is not supported for proxy entities because they cannot run
a Sensu agent.Use the core/v2/events APl to send manual keepalive events for proxy entities.

Handle keepalive events

You can use a keepalive handler to connect keepalive events to your monitoring workflows.Sensu looks
for an event handler named keepalive and automatically uses it to process keepalive events.

Suppose you want to receive Slack notifications for keepalive alerts, and you already have a Slack

handler set up to process events.To process keepalive events using the Slack pipeline, create a

handler set named keepalive and addthe slack handlertothe handlers array.The resulting
keepalive handler set configuration looks like this:

YML

type: Handler
api_version: core/v2

metadata:

name: keepalive
spec:

handlers:

- slack

type: set

JSON

"type": "Handler",
"api version": "core/v2",
"metadata" : {
"name": "keepalive"
bo
"spec": {
"type": "set",
"handlers": [

"slack"

You can also use the keepalive-handlers configuration option to send keepalive events to any
handler you have configured.If you do not specify a keepalive handler with the keepalive-handlers
option, the Sensu backend will use the default keepalive handler and create an event in sensuctl
and the Sensu web UI.

Connection failure

Although connection failure may be due to different kinds of socket errors (such as unexpectedly
closed connections and TLS handshake failures), the Sensu agent generally keeps retrying
connections to each URL in the backend-url list until it is successfully connected to a backend URL
or you stop the process.

When you start up a Sensu agent configured with multiple backend-url values, the agent shuffles
the backend-url list and attempts to connect to the first URL in the shuffled list.

If the agent cannot establish a WebSocket connection with the first URL within the number of seconds

specified for the backend-handshake-timeout , the agent abandons the connection attempt and tries
the next URL in the shuffled list.

When the agent establishes a WebSocket connection with a backend URL within the backend-
handshake-timeout period, the agent sends a heartbeat message to the backend at the specified
backend-heartbeat-interval .For every heartbeat the agent sends, the agent expects the
connected backend to send a heartbeat response within the number of seconds specified for the
backend-heartbeat-timeout .lfithe connected backend does not respond within the backend-
heartbeat-timeout period, the agent closes the connection and attempts to connect to the next
backend URL in the shuffled list.

The agent iterates through the shuffled backend-url list until it successfully establishes a

WebSocket connection with a backend, returning to the first URL if it fails to connect with the last URL
in the list.

NOTE: Sensu’s WebSocket connection heartbeat message and keepalive monitoring mechanism
are different, although they have similar purposes.

The WebSocket backend-heartbeat-interval and backend-heartbeat-timeout are
specifically configured for the WebSocket connection heartbeat message the agent sends when it
connects to a backend URL.

Keepalive monitoring is more fluid — it permits agents to reconnect any number of times within the
configured timeout.As long as the agent can successfully send one event to any backend within the
timeout, the keepalive logic is satisfied.

Service management

NOTE: Service management commands may require administrative privileges.

Start the service
Use the sensu-agent tool to start the agent and apply configuration flags.
Linux

To start the agent with configuration flags:

sensu-agent start --subscriptions disk-checks --log-level debug

To view available configuration flags and defaults:

sensu-agent start --help

To start the agent using a service manager:

sudo systemctl start sensu-agent

If you do not provide any configuration flags, the agent loads configuration from the location specified
by the config-file attribute (defaultis /etc/sensu/agent.yml).

Windows

Run the following command as an admin to install and start the agent:

sensu-agent service install

By default, the agent loads configuration from $ALLUSERSPROFILES$\sensu\config\agent.yml (for
example, c:\ProgramData\sensu\config\agent.yml)and stores service logs to
$ALLUSERSPROFILE%\sensu\log\sensu-agent.log (for example,

C:\ProgramData\sensu\log\sensu-agent.log)

Configure the configuration file and log file locations using the config-file and 1log-file flags:

sensu-agent service install --config-file 'C:\\ProgramData\\sensu\\config\\agent.yml'

-log-file 'C:\\ProgramData\\sensu\\log\\sensu-agent.log'

Stop the service

To stop the agent service using a service manager:

SHELL

sudo systemctl stop sensu-agent

SHELL

sc.exe stop SensuAgent

Restart the service
You must restart the agent to implement any configuration updates.

To restart the agent using a service manager:

SHELL

sudo systemctl restart sensu-agent

SHELL

sc.exe start SensuAgent

Enable on boot

To enable the agent to start on system boot:

SHELL

sudo systemctl enable sensu-agent

SHELL

The service is configured to start automatically on boot by default.

NOTE: On older distributions of Linux, useé sudo chkconfig sensu-agent on to enable the
agent.

To disable the agent from starting on system boot:

SHELL

sudo systemctl disable sensu-agent

SHELL

The service 1s configured to start automatically on boot by default.

NOTE: On older distributions of Linux, usé sudo chkconfig sensu-agent off to disable the
agent.

Get service status

To view the status of the agent service using a service manager:

SHELL

sudo systemctl status sensu-agent

SHELL

sc.exe query SensuAgent

Get service version

There are two ways to get the current agent version: the sensu-agent tool and the agent version
API.

To get the version of the current sensu-agent tool:

sensu-agent version

To get the version of the running sensu-agent service:

curl http://127.0.0.1:3031/version

Uninstall the service

To uninstall the sensu-agent service, run:

SHELL

sudo systemctl stop sensu-agent

SHELL

sensu-agent service uninstall

Get help

The sensu-agent tool provides general and command-specific help flags.

To view sensu-agent commands, run:

sensu-agent help

To list options for a specific command (in this case, sensu-agent start), run:

sensu-agent start --help

Registration, endpoint management, and service discovery

Sensu agents automatically discover and register infrastructure components and the services running
on them.When an agent process stops, the Sensu backend can automatically create and process a
deregistration event for the agent entities.

Read Automatically register and deregister entities for more information.

Cluster

Agents can connect to a Sensu cluster by specifying any Sensu backend URL in the cluster in the
backend-url configuration option.For more information about clustering, read Backend datastore
configuration and Run a Sensu cluster.

Synchronize time

System clocks between agents and the backend should be synchronized to a central NTP server.If
system time is out of sync, it may cause issues with keepalive, metric, and check alerts.

Agent configuration options

Agent configuration is customizable.This section describes each configuration option in more detail,
including examples for each [configuration method][70].

You can customize agent configuration with the agent configuration file (Linux and Windows),
command line flag arguments (Linux), or environment variables (Linux and Windows).

NOTE: The agent loads configuration upon startup, so you must restart the agent for any
configuration updates to take effect.

To view available configuration options for the sensu-agent start command, run:
sensu-agent start --help

The response will list configuration options as command line flags for sensu-agent start :

start the sensu agent

Usage:

sensu-agent start [flags]

Flags:
-—-agent-managed-entity
--allow-1list string

configuration file
—-—annotations stringToString
-—api-host string

API to (default "127.0.0.1")
-—api-port int

on (default 3031)
--assets-burst-limit int
--assets-rate-limit float

second

--backend-handshake-timeout int

when negotiating a new WebSocket connection

--backend-heartbeat-interval int
heartbeats to the backend (default 30)

--backend-heartbeat-timeout int

for a response to a hearbeat (default 45)

--backend-url strings

Sensu backend servers. This flag can also be

[ws://127.0.0.1:80811)
—--cache-dir string
"/var/cache/sensu/sensu-agent")
--cert-file string
-c, --config-file string
"/etc/sensu/agent.yml")
--deregister
--deregistration-handler string
process the entity deregistration event
—-—detect-cloud-provider
—-—-disable-api
--disable-assets
--disable-sockets
sockets
--discover-processes

should be enabled

manage this entity via the agent

path to agent execution allow list

entity annotations map (default [])

address to bind the Sensu client HTTP

port the Sensu client HTTP API listens

asset fetch burst limit (default 100)

maximum number of assets fetched per
number of seconds the agent should wait
(default 15)
interval at which the agent should send

number of seconds the agent should wait

comma-delimited list of ws/wss URLs of

invoked multiple times (default

path to store cached data (default

certificate for TLS authentication

path to sensu-agent config file (default

ephemeral agent

deregistration handler that should

enable cloud provider detection
disable the Agent HTTP API
disable check assets on this agent

disable the Agent TCP and UDP event

indicates whether process discovery

--events-burst-limit int /events api burst limit (default 10)
-—events-rate-limit float maximum number of events transmitted to

the backend through the /events api

-h, --help help for start
—--insecure-skip-tls-verify skip TLS verification (not recommended!)
—--keepalive-critical-timeout uint32 number of seconds until agent is

considered dead by backend to create a critical event

—--keepalive-handlers strings comma-delimited list of keepalive
handlers for this entity. This flag can also be invoked multiple times

--keepalive-interval int number of seconds to send between
keepalive events (default 20)

—--keepalive-warning-timeout uint32 number of seconds until agent is

considered dead by backend to create a warning event (default 120)

--key-file string key for TLS authentication
--labels stringToString entity labels map (default [])
--log-level string logging level [panic, fatal, error,

warn, info, debug] (default "info")
--name string agent name (defaults to hostname)

(default "my hostname")

—--namespace string agent namespace (default "default")
--password string agent password (default "P@sswOrd!")
--redact strings comma-delimited list of fields to redact,

overwrites the default fields. This flag can also be invoked multiple times (default
[password, passwd, pass,api key,api token,access key,secret key,private key,secret])

--require-fips indicates whether fips support should be
required in openssl

--require-openssl indicates whether openssl should be
required instead of go's built-in crypto

--socket-host string address to bind the Sensu client socket
to (default "127.0.0.1")

--socket-port int port the Sensu client socket listens on
(default 3030)

--statsd-disable disables the statsd listener and metrics
server

--statsd-event-handlers strings comma-delimited list of event handlers

for statsd metrics. This flag can also be invoked multiple times

--statsd-flush-interval int number of seconds between statsd flush
(default 10)
--statsd-metrics-host string address used for the statsd metrics

server (default "127.0.0.1")
--statsd-metrics-port int port used for the statsd metrics server

(default 8125)

—--subscriptions strings comma-delimited list of agent
subscriptions. This flag can also be invoked multiple times
--trusted-ca-file string TLS CA certificate bundle in PEM format

--user string agent user (default "agent")

NOTE: Process discovery is disabled in this version of Sensu.The --discover-processes
configuration option is not available, and new events will not include data in the processes
attributes.Instead, the field will be empty: "processes": null .

General configuration

agent-managed-entity

description Indicates whether the agent’s entity solely managed by the agent
rather than the backend API. Agent-managed entity definitions will
include the label sensu.io/managed by: sensu-agent , and you
cannot update these agent-managed entities via the Sensu backend

REST API.
required false
type Boolean
default false
environment variable SENSU_AGENT_ MANAGED ENTITY
command line example
sensu-agent start --agent-managed-entity

agent.yml config file
example agent-managed-entity: true

allow-list

description Path to yaml or json file that contains the allow list of check or hook

commands the agent can execute. Read Allow list configuration and the
example allow list configuration for information about building a
configuration file.

type

String

default

mmn

environment variable

SENSU ALLOW LIST

command line
example

sensu-agent start --allow-list /etc/sensu/check-allow-

list.yaml

agent.yml config file
example

allow-1list: /etc/sensu/check-allow-list.yaml

annotations

description

Non-identifying metadata to include with event data that you can access
with event filters and tokens. You can use annotations to add data that is
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in APl response
filtering, sensuctl response filtering, or web Ul view filtering.

NOTE: For annotations that you define in agent.yml, the keys are
automatically modified to use all lower-case letters. For example, if
you define the annotation webhookURL: "https://my-
webhook.com" in agent.yml, it will be listed as webhookurl:
"https://my-webhook.com" in entity definitions.

Key cases are not modified for annotations you define with the --
annotations command line flag or the SENSU ANNOTATIONS
environment variable.

required

false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

environment variable SENSU_ANNOTATIONS

command line

exanuﬂe sensu-agent start --annotations
sensu.io/plugins/slack/config/webhook-
url=https://hooks.slack.com/services/T00000000/B00000000/XX
):0:9:9:9:0:9.:90:9:0:9.:9:9:0:0:9:0:0:0.0:0.0:¢
sensu-agent start --annotations example-key="example value"

——annotations example-key2="example value"

agent.yml config file
example annotations:

sensu.io/plugins/slack/config/webhook-url:
"https://hooks.slack.com/services/T00000000/B00000000/XXXXX
):9:9:9:0.9.0:0:0.9:9.9:9.90.0.0.0.0.0.:4

assets-burst-limit

description Maximum amount of burst allowed in a rate interval when fetching
dynamic runtime assets.

type Integer
default 100
environment variable SENSU_ASSETS_BURST LIMIT

command line
exanuﬂe sensu-agent start --assets-burst-limit 100

agent.yml config file
example assets-burst-limit: 100

assets-rate-limit

description Maximum number of dynamic runtime assets to fetch per second. The
default value 1.39 is equivalent to approximately 5000 user-to-server
requests per hour.

type Float

default 1.39

environment variable

SENSU_ASSETS RATE LIMIT

command line
example

sensu-agent start --assets-rate-limit 1.39

agent.yml config file
example

assets-rate-limit: 1.39

backend-handshake-timeout

description Number of seconds the Sensu agent should wait when
negotiating a new WebSocket connection.

type Integer

default 15

environment variable

SENSU BACKEND HANDSHAKE TIMEOUT

command line example

sensu-agent start --backend-handshake-timeout 20

agent.yml config file example

backend-handshake-timeout: 20

backend-heartbeat-interval

description Interval at which the agent should send heartbeats to the Sensu
backend. In seconds.

type Integer
default 30
environment variable SENSU_BACKEND HEARTBEAT INTERVAL

command line example
sensu-agent start --backend-heartbeat-interval 45

agent.yml config file example
backend-heartbeat-interval: 45

backend-heartbeat-timeout

description Number of seconds the agent should wait for a response to a
hearbeat from the Sensu backend.

type Integer
default 45
environment variable SENSU_BACKEND HEARTBEAT TIMEOUT

command line example
sensu-agent start --backend-heartbeat-timeout 60

agent.yml config file example
backend-heartbeat-timeout: 60

backend-url

ws or wss URL of the Sensu backend server. To specify multiple

description
backends with sensu-agent start , use this flag multiple times.
NOTE: If you do not specify a port for your backend-url values, the
agent will automatically append the default backend port (8081).
type List
default ws://127.0.0.1:8081 (CentOS/RHEL, Debian, and Ubuntu)

$SENSU_HOSTNAME:8080 (Docker)

NOTE: Docker-only Sensu binds to the hostnames of containers,
represented here as sensu HosTNAME in Docker default values.

SENSU_BACKEND URL

environment variable
SHELL

command line
example

ws://127.0.0.1:8081
ws://127.0.0.1:8081 --

sensu-agent start --backend-url

sensu-agent start --backend-url

backend-url ws://127.0.0.1:8082

SHELL

wss://127.0.0.1:8081
wss://127.0.0.1:8081 --

sensu-agent start --backend-url

start --backend-url

wss://127.0.0.1:8082

sensu-agent

backend-url

SHELL

agent.yml config file

example backend-url:

- "ws://127.0.0.1:8081"
- "ws://127.0.0.1:8082"

SHELL

cache-dir

backend-url:
- "wss://127.0.0.1:8081"
- "wss://127.0.0.1:8082"

description Path to store cached data.
type String
default

7 Linux: /var/cache/sensu/sensu-agent

7 Windows: c:\ProgramData\sensu\cache\sensu-agent

environment variable

SENSU CACHE DIR

command line

example sensu-agent start --cache-dir /cache/sensu-agent
agent.yml config file
example cache-dir: "/cache/sensu-agent"

config-file

description Path to Sensu agent configuration file.
type String

default

7 Linux: /etc/sensu/agent.yml
71 FreeBSD: /usr/local/etc/sensu/agent.yml

1 Windows: C:\ProgramData\sensu\config\agent.yml

environment variable

SENSU CONFIG FILE

command line
example

sensu-agent start --config-file /sensu/agent.yml

sensu-agent start -c /sensu/agent.yml

disable-assets

description When setto true , disables dynamic runtime assets for the agent. If an
agent attempts to execute a check that requires a dynamic runtime
asset, the agent will respond with a status of 3 and a message that
indicates the agent could not execute the check because assets are
disabled.

type Boolean

default false

environment variable

SENSU_DISABLE ASSETS

command line
example

sensu-agent start --disable-assets

agent.yml config file
example

disable-assets: true

discover-processes

description

When setto true , the agent populates the processes field in
entity.system and updates every 20 seconds.

COMMERCIAL FEATURE : Access the discover-processes
configuration option in the packaged Sensu Go distribution. For
more information, read Get started with commercial features.

NOTE: Process discovery is disabled in this version of Sensu. The

discover-processes flag is not available, and new events will not
include data in the processes attributes. Instead, the field will be
empty: "processes": null .

type

Boolean

default

false

environment variable

SENSU DISCOVER PROCESSES

command line
example

sensu-agent start --discover-processes

agent.yml config file
example

discover-processes: true

labels

description

Custom attributes to include with event data that you can use for
response and web Ul view filtering.

If you include labels in your event data, you can filter API responses,
sensuctl responses, and web Ul views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response filtering. For
complex, non-identifying metadata that you will not need to use in
response filtering, use annotations rather than labels.

NOTE: For labels that you define in agent.yml, the keys are
automatically modified to use all lower-case letters. For example, if
you define the label proxyType: "website"” in agent.ymli, it will be
listed as proxytype: "website" in entity definitions.

Key cases are not modified for labels you define with the --1abels
command line flag or the seEnsu LABELS environment variable.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

environment variable

SENSU LABELS

command line
example

sensu-agent start --labels proxy type=website
sensu-agent start --labels example keyl="example value"

example key2="example value"

agent.yml config file
example

log-level

labels:
proxy type: website

description Logging level: panic , fatal , error , warn , info , OF debug
type String
default info in Sensu Go 6.4.0

warn in Sensu Go 6.4.1

environment variable

SENSU_LOG_LEVEL

command line
example

sensu-agent start --log-level debug

agent.yml config file
example

log-level: debug

name

description Entity name assigned to the agent entity.
type String
default Defaults to hostname (for example, sensu-centos).

environment variable

SENSU_NAME

command line
example

sensu-agent start --name agent-01

agent.yml config file
example

subscriptions

name: "agent-01"

description Array of agent subscriptions that determine which monitoring checks the
agent will execute. The subscriptions array items must be strings.
type List

environment variable

SENSU SUBSCRIPTIONS

command line
example

sensu-agent start --subscriptions disk-checks,process-
checks
sensu-agent start --subscriptions disk-checks --

subscriptions process-checks

agent.yml config file
example

subscriptions:
- disk-checks

- process-checks

API configuration

api-host

description Bind address for the Sensu agent HTTP API.
type String

default 127.0.0.1

environment variable SENSU API HOST

command line
example sensu-agent start --api-host 127.0.0.1

agent.yml config file
example api-host: "127.0.0.1"

api-port

description Listening port for the Sensu agent HTTP API.
type Integer

default 3031

environment variable SENSU API PORT

command line
example sensu-agent start --api-port 3031

agent.yml config file
example api-port: 3031

disable-api

description true to disable the agent HTTP API. Otherwise, false .

type Boolean
default false
environment variable SENSU DISABLE API

command line
example sensu-agent start --disable-api

agent.yml config file

example disable-api: true

description Maximum amount of burst allowed in a rate interval for the agent events
API.

type Integer

default 10

environment variable SENSU_EVENTS_ BURST LIMIT

command line
example sensu-agent start --events-burst-limit 20

agent.yml config file

example events-burst-limit: 20
events-rate-limit
description Maximum number of events per second that can be transmitted to the

backend with the agent events API.

type Float

default 10.0

environment variable SENSU_EVENTS RATE LIMIT

command line
example sensu-agent start --events-rate-limit 20.0

agent.yml config file
example events-rate-limit: 20.0

Ephemeral agent configuration

description true if a deregistration event should be created upon Sensu agent
process stop. Otherwise, false .

NOTE: To receive alerts for failing keepalives, setto false .

type Boolean
default false
environment variable SENSU_DEREGISTER

command line
example sensu-agent start --deregister

agent.yml config file
example deregister: true

deregistration-handler

description Name of the event handler to use when processing the agent’s
deregistration events. This configuration option overrides any
handlers applied by the deregistration-handler backend
configuration option.

type String

environment variable

SENSU DEREGISTRATION HANDLER

command line example

sensu-agent start --deregistration-handler deregister

agent.yml config file
example

detect-cloud-provider

deregistration-handler: deregister

description true to enable cloud provider detection mechanisms. Otherwise,
false . When this option is enabled, the agent will attempt to read
files, resolve hostnames, and make HTTP requests to determine what
cloud environment it is running in.
type Boolean
default false

environment variable

SENSU DETECT CLOUD PROVIDER

command line example

sensu-agent start --detect-cloud-provider false

agent.yml config file
example

detect-cloud-provider: false

Keepalive configuration

keepalive-critical-timeout

description Number of seconds after a missing keepalive event until the agent
is considered unresponsive by the Sensu backend to create a
critical event. Set to disabled (0) by default. If the value is not
0 , it must be greater than orequalto 5 .

NOTE: The agent maps the keepalive-critical-timeout
value to the event.check.ttl _attribute when keepalive
events are generated for the Sensu backend to process. The
event.check.ttl alttribute is useful for creating time-based
event filters to reduce alert fatigue for agent keepalive events.

type Integer
default 0
environment variable SENSU_KEEPALIVE CRITICAL TIMEOUT

command line example

sensu-agent start --keepalive-critical-timeout 300

agent.yml config file
example keepalive-critical-timeout: 300

keepalive-handlers

description Keepalive event handlers to use for the entity, specified in a comma-
delimited list. You can specify any configured handler and invoke the
keepalive-handlers configuration option multiple times. If keepalive
handlers are not specified, the Sensu backend will use the default

keepalive handler and create an event in sensuctl and the Sensu web
Ul.

type List

default

keepalive

environment variable

SENSU KEEPALIVE HANDLERS

command line
example

sensu-agent start --keepalive-handlers slack,email

agent.yml config file
example

keepalive-interval

keepalive-handlers:
- slack

- email

description Number of seconds between keepalive events.
type Integer
default 20

environment variable

SENSU KEEPALIVE INTERNAL

command line
example

sensu-agent start --keepalive-interval 30

agent.yml config file
example

keepalive-interval: 30

keepalive-warning-timeout

description

Number of seconds after a missing keepalive event until the

agent is considered unresponsive by the Sensu backend to

create a warning event. Value must be lower than the
keepalive-critical-timeout Value. Minimum valueis 5 .

NOTE: The agent maps the keepalive-warning-timeout
value to the event.check.timeout _attribute when
keepalive events are generated for the Sensu backend to
process. The event.check.timeout attribute is useful for
creating time-based event filters to reduce alert fatigue for
agent keepalive events.

type Integer
default 120
environment variable SENSU_KEEPALIVE WARNING TIMEOUT

command line example
sensu-agent start --keepalive-warning-timeout 300

agent.yml config file example
keepalive-warning-timeout: 300

Security configuration

description Path to the agent certificate file used in mTLS authentication. Sensu
supports certificate bundles (or chains) as long as the agent (or leaf)
certificate is the first certificate in the bundle.

type String
default "
environment variable SENSU_CERT_FILE

command line
example sensu-agent start --cert-file /path/to/tls/agent.pem

agent.yml config file
example

cert-file: "/path/to/tls/agent.pem"

insecure-skip-tls-verify

description Skip SSL verification.
WARNING: This configuration option is intended for use in
development systems only. Do not use this configuration option
in production.

type Boolean

default false

environment variable

SENSU INSECURE SKIP TLS VERIFY

command line example

sensu-agent start --insecure-skip-tls-verify

agent.yml config file
example

insecure-skip-tls-verify: true

key-file

description Path to the agent key file used in mTLS authentication.
type String
default m

environment variable

SENSU_KEY FILE

command line
example

sensu-agent start --key-file /path/to/tls/agent-key.pem

agent.yml config file
example

key-file: "/path/to/tls/agent-key.pem"

namespace

description Agent namespace.
NOTE: Agents are represented in the backend as a class of entity.
Entities can only belong to a single namespace.

type String

default default

environment variable

SENSU NAMESPACE

command line
example

sensu-agent start --namespace o0ps

agent.yml config file
example

namespace: O0psS

password

description Sensu RBAC password used by the agent.
type String
default PRssw0rd!

environment variable

SENSU PASSWORD

command line
example

sensu—agent start --password secure-password

agent.yml config file

exanuﬂe password: secure-password
description List of fields to redact when displaying the entity.

NOTE: Redacted secrets are sent via the WebSocket connection
and stored in etcd.They are not logged or displayed via the Sensu

APl
type List
default By default, Sensu redacts the following fields: password , passwd ,

pass , api key , api token , access key , secret key ,

private key , secret

environment variable SENSU_REDACT

command line

exanuﬂe sensu-agent start --redact secret,ec2_access_key

agent.yml config file
example redact:

- Secret

- ec2 access_key

description Require Federal Information Processing Standard (FIPS) support in
OpenSSL. Logs an error at Sensu agent startup if true but OpenSSL
is not running in FIPS mode.

NOTE: The require-fips configuration option is only available
within the Linux amd64 OpenSSL-linked binary.Contact Sensu to
request the builds for OpenSSL with FIPS support.

type Boolean
default false
environment variable SENSU_REQUIRE FIPS

command line
example sensu-agent start --require-fips

agent.yml config file

example require-fips: true
description Use OpenSSL instead of Go’s standard cryptography library. Logs an

error at Sensu agent startup if true but Go’s standard cryptography
library is loaded.

NOTE: The --require-openssl configuration option is only
available within the Linux amd64 OpenSSL-linked binary.Contact
Sensu to request the builds for OpenSSL with FIPS support.

type Boolean
default false
environment variable SENSU_REQUIRE OPENSSL

command line

example sensu-agent start --require-openssl

https://sensu.io/contact
https://sensu.io/contact
https://sensu.io/contact

agent.yml config file
example

trusted-ca-file

require-openssl: true

description SSL/TLS certificate authority.
type String
default m

environment variable

SENSU TRUSTED CA FILE

command line
example

sensu-agent start --trusted-ca-file /path/to/tls/ca.pem

agent.yml config file
example

trusted-ca-file: "/path/to/tls/ca.pem"

user

description Sensu RBAC username used by the agent. Agents require get, list,
create, update, and delete permissions for events across all
namespaces.

type String

default agent

environment variable SENSU_ USER

command line
example

sensu-agent start --user agent-01

agent.yml config file
example

user: "agent-01"

Socket configuration

disable-sockets

description true to disable the agent TCP and UDP event sockets. Othewise,
false .

type Boolean

default false

environment variable SENSU_DISABLE SOCKETS

command line
example sensu-agent start --disable-sockets

agent.yml config file
example disable-sockets: true

description Address to bind the Sensu agent socket to.
type String

default 127.0.0.1

environment variable SENSU_SOCKET HOST

command line
example sensu-agent start --socket-host 127.0.0.1

agent.yml config file
example socket-host: "127.0.0.1"

socket-port

description Port the Sensu agent socket listens on.
type Integer

default 3030

environment variable SENSU_SOCKET PORT

command line
example sensu-agent start --socket-port 3030

agent.yml config file
example socket-port: 3030

StatsD configuration

statsd-disable

description true to disable the StatsD listener and metrics server. Otherwise,
false .

type Boolean

default false

environment variable SENSU_STATSD DISABLE

command line
example sensu-agent start --statsd-disable

agent.yml config file
example statsd-disable: true

https://github.com/etsy/statsd

statsd-event-handlers

description List of event handlers for StatsD metrics.
type List
environment variable SENSU_STATSD EVENT HANDLERS

command line example
sensu-agent start --statsd-event-handlers

influxdb, opentsdb
sensu-agent start --statsd-event-handlers influxdb --

statsd-event-handlers opentsdb

agent.yml config file
example statsd-event-handlers:

- influxdb
- opentsdb

statsd-flush-interval

description Number of seconds between StatsD flushes.
type Integer

default 10

environment variable SENSU_STATSD FLUSH INTERVAL

command line
exanuﬂe sensu-agent start --statsd-flush-interval 30

agent.yml config file
example statsd-flush-interval: 30

https://github.com/statsd/statsd#key-concepts

statsd-metrics-host

description Address used for the StatsD metrics server.
type String

default 127.0.0.1

environment variable SENSU_STATSD METRICS HOST

command line
example sensu-agent start --statsd-metrics-host 127.0.0.1

agent.yml config file

example statsd-metrics-host: "127.0.0.1"
description Port used for the StatsD metrics server.
type Integer

default 8125

environment variable SENSU_STATSD METRICS PORT

command line
example sensu-agent start --statsd-metrics-port 8125

agent.yml config file
example statsd-metrics-port: 8125

Allow list configuration

The allow list includes check and hook commands the agent can execute.Use the allow-1ist

configuration option to specify the path to the yaml or json file that contains your allow list.

Use these commands to build your allow list configuration file.

args

description Arguments for the exec command.
required true
type Array
YML
example
args:
- foo
JSON
{
"argS": [llfooll]

}
enable_env

description true to enable environment variables. Otherwise, false .
required false
type Boolean
YML
example

enable_env: true

JSON

"enable env": true

exec

description Command to allow the Sensu agent to run as a check or a hook.
required true
type String
YML
example
exec: "/usr/local/bin/check memory.sh"
JSON
{
"exec": "/usr/local/bin/check memory.sh"

}
shab512

description Checksum of the check or hook executable.
required false
type String
YML
example

sha512: 4f926bf4328...

JSON

"shab512": "4£926bf4328..."

Example allow list configuration
YML

- exec: /usr/local/bin/check memory.sh

args:

shab512:
736acl20323772543£d3a08ee54afdd54d214e58c280707b63ce652424313e£9084cabb247d226aa09%be
8£831034££f4991bfb95553291c8b3dc32cad034b4706

enable env: true

foo: bar
- exec: /usr/local/bin/show process table.sh

args:

shab512:
28d61£303136b16d20742268a896bdel94cc99342e02cdffclc2186£81c5adc53£8550635156bebeed7d
87a0cl9%9a7d4b7a690£f1a337cc4737e240b62b827£78a
- exec: echo-asset.sh

args:

- "foo"

sha512:
cce3dl6e5881ba829£271df778£9014£7c3659917f7acfd7a60a91lbfcabb472eea72£9781194d310388b
a046c21790364ad0308a5a897cde50022195ba%90924b

JSON

"exec": "/usr/local/bin/check memory.sh",
"args": [

nmn

1,

"shabl2":
"736acl20323772543£fd3a08ee54afdd54d214e58c280707b63ce652424313e£9084cabb247d226aa0%b
e8£831034££f4991bfb95553291c8b3dc32cad034b4706",

"enable env": true,

llfooll: "bar"

"exec": "/usr/local/bin/show process table.sh",

"args": [

1,

"shabl2":
"28d61£303136b16d20742268a896bdel94cc99342e02cdffclc2186£81c5adc53£8550635156bebeed?
d87a0cl19a7d4b7a690£1a337cc4737€240b62b827£78a"

Hy
{
"exec": "echo-asset.sh",
"args": [
"foo"

1,

"shabl2":
"cce3d16e5881ba829f271df778£9014£7c3659917f7acfd7a60a91bfcabb472eea72£9781194d310388
ba046c21790364ad0308a5a897cde50022195ba90924b"

}

Agent configuration methods

Agent configuration file

For Linux and Windows agents, you can customize the agent configurationina .ym1 configuration

file.

The default agent configuration file path for Linux is /etc/sensu/agent.yml .The default agent
configuration file path for Windows is c:\ProgramData\sensu\config\agent.yml.example .

To use the agent.yml file to configure the agent, list the desired configuration attributes and values.
Review the example Sensu agent configuration file for a complete example.

NOTE: The agent loads configuration upon startup.If you make changes in the agent.yml
configuration file after startup, you must restart the agent for the changes to take effect.

http://localhost:1313/sensu-go/6.4/files/windows/agent.yml

Configuration via command line flags or environment variables overrides any configuration specified in
the agent configuration file.Read [Create overrides][68] to learn more.
Command line flags

For Linux agents, you can customize the agent configuration with sensu-agent start command line
flags.

To use command line flags, specify the desired configuration options and values along with the
sensu-agent start command.For example:

sensu-agent start --name webserver 05 --keepalive-warning-timeout 60 --keepalive-

critical-timeout 120

Configuration via command line flags overrides attributes specified in a configuration file or with
environment variables.Read [Create overrides][68] to learn more.

Environment variables

Instead of using the agent configuration file or command line flags, you can use environment variables
to configure your Sensu agent.Each agent configuration option has an associated environment variable
You can also create your own environment variables, as long as you name them correctly and save
them in the correct place.Here’s how.

1. Create the files from which the sensu-agent service configured by our supported packages
will read environment variables:

SHELL

sudo touch /etc/default/sensu-agent

SHELL

sudo touch /etc/sysconfig/sensu-agent

SHELL

By default, the agent loads configuration from

$ALLUSERSPROFILE%\sensu\config\agent.yml.
If you did not change the location for the configuration file during
installation,

the sensu-agent configuration file path is:

C:\ProgramData\sensu\config\agent.yml

2. Make sure the environment variable is named correctly.All environment variables that control
Sensu agent configuration begin with sENsU .

To rename a configuration option you wish to specify as an environment variable, prepend
SENSU_ , convert dashes to underscores, and capitalize all letters.For example, the
environment variable for the flag api-host iS SENSU API HOST .

For a custom environment variable, you do not have to prepend sensu .For example,
TEST VAR 1 is a valid custom environment variable name.

3. Add the environment variable to the environment file.

In this example, the api-host flag is configured as an environment variable and set to

"0.0.0.0" :
SHELL

echo 'SENSU API HOST="0.0.0.0"' | sudo tee -a /etc/default/sensu-agent
SHELL

echo 'SENSU API HOST="0.0.0.0"' | sudo tee -a /etc/sysconfig/sensu-agent
SHELL

Save the following environment variable in the configuration file

at C:\ProgramData\sensu\config\agent.yml:

SENSU_API_HOST="0.0.0.0"

4. Restart the sensu-agent service so these settings can take effect:

SHELL

sudo systemctl restart sensu-agent

SHELL

sudo systemctl restart sensu-agent

SHELL

sc.exe start SensuAgent

NOTE: Sensu includes an environment variable for each agent configuration option.They are listed
in the configuration description tables.

Format for label and annotation environment variables

To use labels and annotations as environment variables in your check and plugin configurations, you
must use a specific format when you create the environment variables.

For example, to create the labels "region": "us-east-1" and "type": "website" asan
environment variable:

SHELL

echo 'SENSU LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/default/sensu-agent

SHELL

echo 'SENSU LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/sysconfig/sensu-agent

To create the annotations "maintainer": "Team A" and "webhook-url":
"https://hooks.slack.com/services/T0000/B00000/XXXXX" as an environment variable:

SHELL

echo 'SENSU ANNOTATIONS='{"maintainer": "Team A", "webhook-url":
"https://hooks.slack.com/services/T0000/B00000/XXXXX"}"'"' | sudo tee -a

/etc/default/sensu-agent

SHELL
echo 'SENSU ANNOTATIONS='{"maintainer": "Team A", "webhook-url":
"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'"'" | sudo tee -a

/etc/sysconfig/sensu-agent

Use environment variables with the Sensu agent

Any environment variables you create in /etc/default/sensu-agent (Debian/Ubuntu) or
/etc/sysconfig/sensu-agent (RHEL/CentOS) will be available to check and hook commands
executed by the Sensu agent.This includes your checks and plugins.

For example, if you create a custom environment variable TEST VARIABLE in your sensu-agent file, it
will be available to use in your check and hook configurations as S$TEST VARIABLE .

The following check example demonstrates how to use a TEST GITHUB TOKEN environment variable
(set to the token value in the sensu-agent file) in the check command to run a script that pings the
GitHub API:

YML

type: CheckConfig
api_version: core/v2
metadata:
name: ping-github-api
spec:
command: ping-github-api.sh S$TEST GITHUB TOKEN
handlers:
- slack
interval: 10
publish: true

subscriptions:

- system

JSON

"type": "CheckConfig",
"api version": "core/v2",

"metadata": {

"name": "ping-github-api"
by
"spec": {
"command": "ping-github-api.sh $TEST GITHUB TOKEN",
"handlers": [
"slack"

1,

"interval": 10,
"publish": true,
"subscriptions": [

"system"

Use environment variables to specify an HTTP proxy for agent use

If an HTTP proxy is required to access the internet in your compute environment, you may need to
configure the Sensu agent to successfully download dynamic runtime assets or execute commands
that depend on internet access.

For Sensu agents that require a proxy server, define HTTP PROXY and HTTPS PROXY environment
variables in your sensu-agent file.

HTTP PROXY="http://YOUR PROXY SERVER:PORT"
HTTPS PROXY="http://YOUR PROXY SERVER:PORT"

You can use the same proxy server URL for HTTP _PrOXY and HTTPS PROXY .The proxy server URL
you specify for BHTTPS PROXY does not need to use https:// .

After you add the HTTP PROXY and HTTPS PROXY environment variables and restart sensu-agent,
they will be available to check and hook commands executed by the Sensu agent.You can then use
HTTP PROXY and HTTPS PROXY to add dynamic runtime assets, run checks, and complete other

tasks that typically require an internet connection for your unconnected entities.

NOTE: If you define the uTTP PROXY a@nd HTTPS PROXY environment variables, the agent
WebSocket connection will also use the proxy URL you specify.

Create configuration overrides

Sensu has default settings and limits for certain configuration attributes, like the default log level.
Depending on your environment and preferences, you may want to create overrides for these Sensu-
specific defaults and limits.

You can create configuration overrides in several ways:

1 Command line configuration flag arguments for sensu-agent start .

71 Environment variables in /etc/default/sensu-agent (Debian/Ubuntu) or
/etc/sysconfig/sensu-agent (RHEL/CentOS).

71 Configuration settings in the agent.yml config file.

NOTE: We do not recommend editing the systemd unit file to create overrides.Future package
upgrades can overwrite changes in the systemd unit file.

Sensu applies the following precedence to override settings:

1. Arguments passed to the Sensu agent via command line configuration flags.

2. Environment variables in /etc/default/sensu-agent (Debian/Ubuntu) or
/etc/sysconfig/sensu-agent (RHEL/CentOS).

3. Configuration in the agent.yml config file.

For example, if you create overrides using all three methods, the command line configuration flag
values will take precedence over the values you specify in /etc/default/sensu-agent Or
/etc/sysconfig/sensu-agent Or the agent.yml config file.

Example override: Log level

The default log level for the Sensu agentis info in Sensu Go 6.4.0 and warn in Sensu Go 6.4.1.

To override the default and automatically apply a different log level for the agent, add the --1og-
level command line configuration flag when you start the Sensu agent.For example, to specify
debug as the log level:

sensu-agent start --log-level debug

To configure an environment variable for the desired agent log level:

SHELL

echo 'SENSU LOG LEVEL=debug' | sudo tee -a /etc/default/sensu-agent
SHELL

echo 'SENSU LOG LEVEL=debug' | sudo tee -a /etc/sysconfig/sensu-agent

To configure the desired log level in the config file, add this line to agent.ymi:

log-level: debug

Backend reference

Example Sensu backend configuration file (download)

The Sensu backend is a service that manages check requests and observability data.Every Sensu
backend includes an integrated structure for scheduling checks using subscriptions, an event
processing pipeline that applies event filters, mutators, and handlers, an embedded etcd datastore for
storing configuration and state, and the Sensu API, Sensu web Ul, and sensuctl command line tool.

The Sensu backend is available for Ubuntu/Debian and RHEL/CentOS distributions of Linux.For these
operating systems, the Sensu backend uses the Bourne shell (sh) for the execution environment.

Read the installation guide to install the backend.

Backend transport

The Sensu backend listens for agent communications via WebSocket transport.By default, this
transport operates on port 8081.The agent subscriptions are used to determine which check execution
requests the backend publishes via the transport.Sensu agents locally execute checks as requested by
the backend and publish check results back to the transport to be processed.

Sensu agents authenticate to the Sensu backend via transport by either built-in username and
password authentication or mutual transport layer security (mTLS) authentication.

To secure the WebSocket transport, first generate the certificates you will need to set up transport
layer security (TLS).Then, secure Sensu by configuring either TLS or mTLS to make Sensu production-
ready.

Read the Sensu architecture overview for a diagram that includes the WebSocket transport.

Create event pipelines

Sensu backend event pipelines process observation data and executes event filters, mutators, and
handlers.These pipelines are powerful tools to automate your monitoring workflows.To learn more abou
event filters, mutators, and handlers, see:

http://localhost:1313/sensu-go/6.4/files/backend.yml
https://etcd.io/docs
https://en.m.wikipedia.org/wiki/WebSocket

|

nd Slack alerts with handlers

]|

Reduce alert fatigue with event filters

]

Event filters reference documentation

-

Mutators reference documentation

|

Handlers reference documentation

Schedule checks

The backend is responsible for storing check definitions and scheduling check requests.Check
scheduling is subscription-based: the backend sends check requests to subscriptions. where they're
picked up by subscribing agents.

For information about creating and managing checks, see:

7 Monitor server resources with checks
a1 Collect metrics with checks

1 Checks reference documentation

Initialization

For a new installation, the backend database must be initialized by providing a username and
password for the user to be granted administrative privileges.Although initialization is required for every
new installation, the implementation differs depending on your method of installation:

71 If you are using Docker, you can use environment variables to override the default admin
username (admin) and password (pesswOrd!) during step 2 of the backend installation
process.

71 If you are using Ubuntu/Debian or RHEL/CentOS, you must specify admin credentials during

step 3 of the backend installation process.Sensu does not apply a default admin username or
password for Ubuntu/Debian or RHEL/CentoOS installations.

This step bootstraps the first admin user account for your Sensu installation.This account will be
granted the cluster admin role.

WARNING: If you plan to run a Sensu cluster, make sure that each of your backend nodes is
configured, running, and a member of the cluster before you initialize.

Docker initialization

For Docker installations, set administrator credentials with environment variables when you configure
and start the backend as shown below, replacing YOUR USERNAME and YOUR PASSWORD With the
username and password you want to use:

DOCKER

docker run -v /var/lib/sensu:/var/lib/sensu \

-d --name sensu-backend \

-p 3000:3000 -p 8080:8080 -p 8081:8081 \

-e SENSU_BACKEND CLUSTER ADMIN USERNAME=YOUR USERNAME \
-e SENSU_BACKEND CLUSTER ADMIN PASSWORD=YOUR PASSWORD \

sensu/sensu:latest \

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug
DOCKER

version: "3"

services:

sensu-backend:

ports:

- 3000:3000

- 8080:8080

- 8081:8081

volumes:

- "sensu-backend-data:/var/lib/sensu/sensu-backend/etcd"

command: "sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-
level debug"

environment:

- SENSU BACKEND CLUSTER ADMIN USERNAME=YOUR USERNAME

- SENSU BACKEND CLUSTER ADMIN PASSWORD=YOUR PASSWORD

image: sensu/sensu:latest

volumes:

sensu-backend-data:

driver: local

If you did not use environment variables to override the default admin credentials in step 2 of the

backend installation process, we recommend changing your default admin password as soon as you
have installed sensuctl.

Ubuntu/Debian or RHEL/CentOS initialization

For Ubuntu/Debian or RHEL/CentOS, set administrator credentials with environment variables at
initialization as shown below, replacing YOUR USERNAME and YOUR PASSWORD With the username and
password you want to use:

export SENSU BACKEND CLUSTER ADMIN USERNAME=YOUR USERNAME
export SENSU BACKEND CLUSTER ADMIN PASSWORD=YOUR PASSWORD

sensu-backend init

NOTE: Make sure the Sensu backend is running before you run sensu-backend init .

You can also run the sensu-backend init command in interactive mode:

sensu-backend init --interactive

You will receive prompts for your username and password in interactive mode:

Admin Username: YOUR USERNAME
Admin Password: YOUR PASSWORD

NOTE: If you are already using Sensu, you do not need to initialize.Your installation has already
seeded the admin username and password you have set up.Running sensu-backend init Oh a
previously initialized cluster has no effect — it will not change the admin credentials.

To view available initialization flags:

sensu-backend init --help

Initialization timeout and wait flags

When you initialize the sensu-backend, you can specify how long the backend should wait to establish
a connection to etcd.

If the backend should try to establish a connection to etcd for a certain period before timing out, use
the timeout flag.To specify the timeout duration, use an integer paired with a unit of time:

1 s for seconds
1 m for minutes

1 n for hours

For example, to specify a 30-second timeout period:

sensu-backend init --timeout 30s

To specify a 5-minute timeout period:

sensu-backend init --timeout 5m

Sensu interprets timeout values less than 1 second and integer-only values as seconds.For example,
Sensu will convert both 20ms and 20 to 20 seconds.

If the backend should repeatedly try to establish a connection to etcd until it is successful, use the
wait flag:

sensu-backend init --wait

Operation and service management

NOTE: Commands in this section may require administrative privileges.

Start the service
Use the sensu-backend tool to start the backend and apply configuration flags.

To start the backend with configuration flags:
sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug
To view available configuration flags and defaults:
sensu-backend start --help
If you do not provide any configuration flags, the backend loads configuration from
/etc/sensu/backend.yml by default.

To start the backend using a service manager:

sudo systemctl start sensu-backend

Stop the service

To stop the backend service using a service manager:

sudo systemctl stop sensu-backend

Restart the service

You must restart the backend to implement any configuration updates.

To restart the backend using a service manager:

sudo systemctl restart sensu-backend

Enable on boot

To enable the backend to start on system boot:

sudo systemctl enable sensu-backend

To disable the backend from starting on system boot:

sudo systemctl disable sensu-backend

NOTE: On older distributions of Linux, use sudo chkconfig sensu-server on to enable the
backend and sudo chkconfig sensu-server off to disable the backend.

Get service status

To view the status of the backend service using a service manager:

sudo systemctl status sensu-backend

Get service version

To get the current backend version using the sensu-backend tool:

sensu-backend version

Get help
The sensu-backend tool provides general and command-specific help flags.

To view sensu-backend commands, run:

sensu-backend help

To list options for a specific command (in this case, sensu-backend start), run:

sensu-backend start --help

Cluster

You can run the backend as a standalone service, but running a cluster of backends makes Sensu
more highly available, reliable, and durable.Sensu backend clusters build on the etcd clustering system
Clustering lets you synchronize data between backends and get the benefits of a highly available
configuration.

To configure a cluster, see:
71 Datastore and cluster configuration

7 Run a Sensu cluster

Synchronize time

System clocks between agents and the backend should be synchronized to a central NTP server.If
system time is out of sync, it may cause issues with keepalive, metric, and check alerts.

Certificate bundles or chains

https://etcd.io/docs

The Sensu backend supports all types of certificate bundles (or chains) as long as the server (or leaf)
certificate is the first certificate in the bundle.This is because the Go standard library assumes that the
first certificate listed in the PEM file is the server certificate — the certificate that the program will use

to show its own identity.

If you send the server certificate alone instead of sending the whole bundle with the server certificate
first, you will receive a certificate not signed by trusted authority error.You must present the
whole chain to the remote so it can determine whether it trusts the server certificate through the chain.

Certificate revocation check

The Sensu backend checks certificate revocation list (CRL) and Online Certificate Status Protocol
(OCSP) endpoints for mutual transport layer security (mTLS), etcd client, and etcd peer connections
whose remote sides present X.509 certificates that provide CRL and OCSP revocation information.

Backend configuration options

Backend configuration is customizable.This section describes each configuration option in more detail,
including examples for each configuration method.

You can customize backend configuration with the backend configuration file, command line flag
arguments, or environment variables.

NOTE: The backend loads configuration upon startup, so you must restart the backend for any
configuration updates to take effect.

To view configuration information for the sensu-backend start command, run:
sensu-backend start --help
The response will list configuration options as command line flags for sensu-backend start :

start the sensu backend

Usage:

sensu-backend start [flags]

General Flags:
--—agent-auth-cert-file string
certificate authentication
--agent-auth-crl-urls strings
authentication
--agent-auth-key-file string

agent certificate authentication

-—-agent-auth-trusted-ca-file string

for agent certificate authentication
-—-agent-burst-limit int
--agent-host string
--agent-port int
--agent-rate-limit int
-—agent-write-timeout int
(default 15)
—-—annotations stringToString
—-—api-listen-address string
(default "[::]1:8080")
—-—api-request-limit int
(default 512000)
--api-url string
"http://localhost:8080")
--assets-burst-limit int
--assets-rate-limit float
second
—-—-cache-dir string
"/var/cache/sensu/sensu-backend")
--cert-file string
-c, -—--config-file string
"/etc/sensu/backend.yml")
—--dashboard-cert-file string
--dashboard-host string
-—-dashboard-key-file string
format
—-—-dashboard-port int
-—-debug
--deregistration-handler string
—--event-log-buffer-size int

100000)

TLS certificate in PEM format for agent
URLs of CRLs for agent certificate

TLS certificate key in PEM format for
TLS CA certificate bundle in PEM format
agent connections maximum burst size
agent listener host (default "[::]")
agent listener port (default 8081)
agent connections maximum rate limit

timeout in seconds for agent writes

entity annotations map (default [])

address to listen on for api traffic

maximum API request body size, in bytes

url of the api to connect to (default

asset fetch burst limit (default 100)

maximum number of assets fetched per

path to store cached data (default

TLS certificate in PEM format

path to sensu-backend config file (default

dashboard TLS certificate in PEM format
dashboard listener host (default "[::]")
dashboard TLS certificate key in PEM

dashboard listener port (default 3000)
enable debugging and profiling features
default deregistration handler

buffer size of the event logger (default

--event-log-buffer-wait string
--event-log-file string
—-—event-log-parallel-encoders
should be used for event logging
—-—eventd-buffer-size int
buffered (default 100)
--eventd-workers int
incoming events (default 100)

-h, --help
--insecure-skip-tls-verify
-—-jwt-private-key-file string

use to sign JWTs
-—-jwt-public-key-file string
to verify JWT signatures
—--keepalived-buffer-size int
be buffered (default 100)
--keepalived-workers int
incoming keepalives (default 100)
--key-file string
—--labels stringToString

--log-level string

warn, info, debug, trace] (default "warn")
--metrics-refresh-interval string

governs how often metrics are refreshed.

—--pipelined-buffer-size int
buffered (default 100)

--pipelined-workers int

full buffer wait time (default "10ms")

path to the event log file

used to indicate parallel encoders

number of incoming events that can be

number of workers spawned for processing

help for start

skip TLS verification (not recommended!)

path to the PEM-encoded private key to

path to the PEM-encoded public key to use

number of incoming keepalives that can

number of workers spawned for processing

TLS certificate key in PEM format

entity labels map (default [])

logging level [panic, fatal, error,

Go duration value (e.g. 1h5m30s) that

(default "1m")

number of events to handle that can be

number of workers spawned for handling

events through the event pipeline (default 100)

--require-fips
required in openssl

--require-openssl

required instead of go's built-in crypto

-d, --state-dir string
"/var/lib/sensu/sensu-backend")

-—-trusted-ca-file string

Store Flags:

--etcd-advertise-client-urls strings

indicates whether fips support should be

indicates whether openssl should be

path to sensu state storage (default

TLS CA certificate bundle in PEM format

list of this member's client URLs

to advertise to clients (default [http://localhost:2379])

--etcd-cert-file string
file

—-—-etcd-cipher-suites strings

path to the client server TLS cert

list of ciphers to use for etcd

TLS configuration

-—etcd-client-cert-auth enable client cert authentication

-—-etcd-client-urls string client URLs to use when operating
as an etcd client

-—etcd-discovery string discovery URL used to bootstrap
the cluster

--etcd-discovery-srv string DNS SRV record used to bootstrap
the cluster

-—etcd-election-timeout uint time in ms a follower node will
go without hearing a heartbeat before attempting to become leader itself (default
1000)

--etcd-heartbeat-interval uint interval in ms with which the
etcd leader will notify followers that it is still the leader (default 100)

-—etcd-initial-advertise-peer-urls strings list of this member's peer URLs

to advertise to the rest of the cluster (default [http://127.0.0.1:2380])

—--etcd-initial-cluster string initial cluster configuration for
bootstrapping

--etcd-initial-cluster-state string initial cluster state ("new" or
"existing") (default "new")

—-—etcd-initial-cluster-token string initial cluster token for the

etcd cluster during bootstrap

--etcd-key-file string path to the client server TLS key
file

--etcd-listen-client-urls strings list of etcd client URLs to
listen on (default [http://127.0.0.1:2379])

-—-etcd-listen-peer-urls strings list of URLs to listen on for
peer traffic (default [http://127.0.0.1:2380])

--etcd-log-level string etcd logging level [panic, fatal,
error, warn, info, debug]

-—etcd-max-request-bytes uint maximum etcd request size in

bytes (use with caution) (default 1572864)

-—-etcd-name string name for this etcd node (default
"default")

—-—etcd-peer-cert-file string path to the peer server TLS cert
file

—-—etcd-peer-client-cert-auth enable peer client cert
authentication

--etcd-peer-key-file string path to the peer server TLS key
file

-—-etcd-peer-trusted-ca-file string path to the peer server TLS

trusted CA file

--etcd-quota-backend-bytes int maximum etcd database size in

bytes (use with caution) (default 4294967296)

-—-etcd-trusted-ca-file string path to the client server TLS

trusted CA cert file

--no-embed-etcd don't embed etcd, use external

etcd instead

The backend requires that the state-dir configuration option is set before starting.All other required

flags have default values.

For more information about log configuration options, read Event logging.

General configuration

annotations

description

Non-identifying metadata to include with entity data for backend dynamic
runtime assets (for example, handler and mutator dynamic runtime
assets).

NOTE: For annotations that you define in backend.yml, the keys are
automatically modified to use all lower-case letters. For example, if
you define the annotation webhookURL: "https://my-
webhook.com" Iin backend.yml, it will be listed as webhookurl:
"https://my-webhook.com" in entity definitions.

Key cases are not modified for annotations you define with the --
annotations command line flag or the
SENSU_BACKEND ANNOTATIONS environment variable.

required

false

type

Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default

null

environment variable

SENSU BACKEND ANNOTATIONS

command line
example

sensu-backend start --annotations

sensu.io/plugins/slack/config/webhook-
url=https://hooks.slack.com/services/T00000000/B00000000 /XX
AX XXX XX XXXXXXXXXKXXXXXX

sensu-backend start --annotations example-key="example
value" --annotations example-key2="example value"
backend.yml config
file example annotations:

api-listen-address

sensu.io/plugins/slack/config/webhook-url:
"https://hooks.slack.com/services/T00000000/B00000000/XXXXX
):9:0:0:9.9:0:9:9:0.:0:9.0.0.:0.0.0.0.0.8

description Address the API daemon will listen for requests on.
type String
default [::1:8080

environment variable

SENSU_BACKEND API LISTEN ADDRESS

command line

exanuﬂe sensu-backend start --api-listen-address [::]:8080
backend.yml config
file example api-listen-address: "[::]:8080"

api-request-limit

description Maximum size for API request bodies. In bytes.
type Integer
default 512000

environment variable

SENSU BACKEND API REQUEST LIMIT

command line
example

sensu-backend start --api-request-limit 1024000

backend.yml config
file example

api-url

api-request-limit: 1024000

description URL used to connect to the API.
type String
default http://localhost:8080 (CentOS/RHEL, Debian, and Ubuntu)

http://$SENSU HOSTNAME:8080 (Docker)

NOTE: Docker-only Sensu binds to the hostnames of containers,
represented here as sensu_HOSTNAME in Docker default values.

environment variable

SENSU_BACKEND API URL

command line
example

sensu-backend start --api-url http://localhost:8080

backend.yml config
file example

assets-burst-limit

api-url: "http://localhost:8080"

description

Maximum amount of burst allowed in a rate interval when fetching
dynamic runtime assets.

type

Integer

default

100

environment variable

SENSU BACKEND ASSETS BURST LIMIT

command line
example

sensu-backend start --assets-burst-limit 100

backend.yml config
file example

assets-rate-limit

assets-burst-limit: 100

description Maximum number of dynamic runtime assets to fetch per second. The
default value 1.39 is equivalent to approximately 5000 user-to-server
requests per hour.

type Float

default 1.39

environment variable

SENSU BACKEND ASSETS RATE LIMIT

command line
example

sensu-backend start --assets-rate-limit 1.39

backend.yml config
file example

cache-dir

assets-rate-limit: 1.39

description

Path to store cached data.

type

String

default

/var/cache/sensu/sensu-backend

environment variable

SENSU_BACKEND CACHE DIR

command line

example sensu-backend start --cache-dir /var/cache/sensu-backend
backend.yml config
file example cache-dir: "/var/cache/sensu-backend"

config-file

description Path to Sensu backend config file.
type String
default /etc/sensu/backend.yml

environment variable

SENSU BACKEND CONFIG FILE

command line
example

debug

sensu-backend start --config-file /etc/sensu/backend.yml

sensu-backend start -c /etc/sensu/backend.yml

description If true , enable debugging and profiling features for use with the Go
pprof package. Otherwise, false .

type Boolean

default false

environment variable

SENSU BACKEND DEBUG

command line
example

sensu-backend start --debug

https://golang.org/pkg/net/http/pprof/
https://golang.org/pkg/net/http/pprof/

backend.yml config
file example

deregistration-handler

debug: true

description Name of the default event handler to use when processing agent
deregistration events.

type String

default m

environment variable

SENSU BACKEND DEREGISTRATION HANDLER

command line example

sensu-backend start --deregistration-handler deregister

backend.yml config file
example

deregistration-handler: "deregister"

labels

description

Custom attributes to include with entity data for backend dynamic
runtime assets (for example, handler and mutator dynamic runtime
assets).

NOTE: For labels that you define in backend.yml, the keys are
automatically modified to use all lower-case letters. For example, if
you define the label securityzone: "us-west-2a" in
backend.yml, it will be listed as securityzone: "us-west-2a" in
entity definitions.

Key cases are not modified for labels you define with the --1abels
command line flag or the SENSU BACKEND LABELS environment
variable.

required

false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

environment variable

SENSU BACKEND LABELS

command line
example

sensu-backend start --labels security zone=us-west-2a
sensu-backend start --labels example keyl="example value"

example key2="example value"

backend.yml config
file example

log-level

labels:
security zone: "us-west-2a"
example keyl: "example value"
example key2: "example value"

description Logging level: panic , fatal , error , warn, info , debug , Of
trace .

type String

default warn

environment variable

SENSU BACKEND LOG LEVEL

command line
example

sensu-backend start --log-level debug

backend.yml config
file example

log-level: "debug"

metrics-refresh-interval

description Interval at which Sensu should refresh metrics. In hours, minutes,
seconds, or a combination — for example, 5m , 1m30s , and
1h10m30s are all valid values.

type String
default im
environment variable SENSU_ BACKEND METRICS REFRESH INTERVAL

command line example
sensu-backend start --metrics-refresh-interval 10s

backend.yml config file
example metrics-refresh-interval: "10s"

state-dir

description Path to Sensu state storage: /var/1ib/sensu/sensu-backend .
type String

required true

environment variable SENSU_BACKEND STATE DIR

command line

example sensu-backend start --state-dir /var/lib/sensu/sensu-
backend

sensu-backend start -d /var/lib/sensu/sensu-backend

backend.yml config
file example state-dir: "/var/lib/sensu/sensu-backend"

Agent communication configuration

agent-auth-cert-file

description TLS certificate in PEM format for agent certificate authentication. Sensu
supports certificate bundles (or chains) as long as the server (or leaf)
certificate is the first certificate in the bundle.

type String

default m

environment variable

SENSU_BACKEND AGENT AUTH CERT FILE

command line
example

sensu-backend start --agent-auth-cert-file

/path/to/tls/backend-1.pem

backend.yml config
file example

agent-auth-cert-file: /path/to/tls/backend-1.pem

agent-auth-crl-urls

description URLs of CRLs for agent certificate authentication. The Sensu backend
uses this list to perform a revocation check for agent mTLS.

type String

default o

environment variable

SENSU_BACKEND AGENT AUTH CRL _URLS

command line
example

sensu-backend start --agent-auth-crl-urls

http://localhost/CARoot.crl

backend.yml config
file example

agent—auth-crl-urls: http://localhost/CARoot.crl

agent-auth-key-file

description TLS certificate key in PEM format for agent certificate authentication.
type String
default n

environment variable

SENSU_BACKEND AGENT AUTH KEY FILE

command line
example

sensu-backend start --agent-auth-key-file

/path/to/tls/backend-1-key.pem

backend.yml config
file example

agent-auth-key-file: /path/to/tls/backend-1l-key.pem

agent-auth-trusted-ca-file

description TLS CA certificate bundle in PEM format for agent certificate
authentication.

type String

default o

environment variable

SENSU_BACKEND AGENT AUTH TRUSTED CA FILE

command line example

sensu-backend start --agent-auth-trusted-ca-file

/path/to/tls/ca.pem

backend.yml config file

example agent-auth-trusted-ca-file: /path/to/tls/ca.pem
agent-burst-limit
description Maximum amount of burst allowed in a rate interval for agent transport

WebSocket connections.

NOTE: The agent-burst-limit configuration flag is deprecated.

COMMERCIAL FEATURE : Access the agent-burst-limit
configuration option in the packaged Sensu Go distribution. For more
information, read Get started with commercial features.

type Integer
default null
environment variable SENSU_BACKEND AGENT BURST LIMIT

command line
example sensu-backend start --agent-burst-limit 10

backend.yml config
file example agent-burst-limit: 10

agent-host
description Agent listener host. Listens on all IPv4 and IPv6 addresses by default.
type String

default [g2]

environment variable SENSU BACKEND AGENT HOST

command line
example sensu-backend start --agent-host 127.0.0.1

backend.yml config
file example agent-host: "127.0.0.1"

description Agent listener port.

type Integer

default 8081

environment variable SENSU BACKEND AGENT PORT

command line
example sensu-backend start --agent-port 8081

backend.yml config
file example agent-port: 8081

agent-rate-limit

description Maximum number of agent transport WebSocket connections per
second, per backend.

COMMERCIAL FEATURE: Access the agent-rate-limit
configuration option in the packaged Sensu Go distribution. For more
information, read Get started with commercial features.

type Integer

default null

environment variable SENSU_BACKEND AGENT RATE LIMIT

command line
example sensu-backend start --agent-rate-limit 10

backend.yml config
file example agent-rate-limit: 10

Security configuration

description Path to the primary backend certificate file. Specifies a fallback SSL/TLS
certificate if the dashboard-cert-file configuration option is not used.
This certificate secures communications between the Sensu web Ul and
end user web browsers, as well as communication between sensuctl and
the Sensu API. Sensu supports certificate bundles (or chains) as long as
the server (or leaf) certificate is the first certificate in the bundle.

type String
default o
environment variable SENSU_BACKEND CERT FILE

command line
example sensu-backend start --cert-file /path/to/tls/backend-1.pem

backend.yml config
file example cert-file: "/path/to/tls/backend-1.pem"

insecure-skip-tls-verify

description If true , skip SSL verification. Otherwise, false .

WARNING: This configuration option is intended for use in
development systems only. Do not use this configuration option
in production.

type Boolean
default false
environment variable SENSU_BACKEND INSECURE SKIP TLS VERIFY

command line example

sensu-backend start --insecure-skip-tls-verify
backend.yml config file
example insecure-skip-tls-verify: true
jwt-private-key-file
description Path to the PEM-encoded private key to use to sign JSON Web Tokens
(JWTs).

NOTE: The internal symmetric secret key is used by default to sign
all JIWTs unless a private key is specified via this attribute.

type String
default e
environment variable SENSU_ BACKEND JWT PRIVATE KEY FILE

command line
example sensu-backend start --jwt-private-key-file
/path/to/key/private.pem

backend.yml config
file example

jwt-private-key-file: /path/to/key/private.pem

jwt-public-key-file

description Path to the PEM-encoded public key to use to verify JSON Web Token
(JWT) signatures.
NOTE: JWTs signed with the internal symmetric secret key will
continue to be verified with that key.
type String
default m

environment variable

SENSU BACKEND JWT PUBLIC KEY FILE

required

false, unless jwt-private-key-file Iis defined

command line
example

sensu-backend start --jwt-public-key-file

/path/to/key/public.pen

backend.yml config
file example

jwt-public-key-file: /path/to/key/public.pem

key-file

Path to the primary backend key file. Specifies a fallback SSL/TLS key if
the dashboard-key-file configuration option is not used. This key
secures communication between the Sensu web Ul and end user web

browsers, as well as communication between sensuctl and the Sensu
API.

description

type String

default o

environment variable SENSU_BACKEND KEY FILE

command line
example sensu-backend start --key-file /path/to/tls/backend-1-
key.pem

backend.yml config

file example key-file: "/path/to/tls/backend-1l-key.pem"
description Require Federal Information Processing Standard (FIPS) support in

OpenSSL. Logs an error at Sensu backend startup if true but
OpenSSL is not running in FIPS mode.

NOTE: The require-fips configuration option is only available
within the Linux amd64 OpenSSL-linked binary.Contact Sensu to
request the builds for OpenSSL with FIPS support.

type Boolean
default false
environment variable SENSU_BACKEND REQUIRE FIPS

command line
example sensu-backend start --require-fips

backend.yml config
file example require-fips: true

https://sensu.io/contact

require-openssl

description

Use OpenSSL instead of Go’s standard cryptography library. Logs an
error at Sensu backend startup if true but Go’s standard cryptography
library is loaded.

NOTE: The --require-openssl configuration option is only
available within the Linux amd64 OpenSSL-linked binary. Contact
Sensu to request the builds for OpenSSL with FIPS support.

type

Boolean

default

false

environment variable

SENSU BACKEND REQUIRE OPENSSL

command line
example

sensu-backend start --require-openssl

backend.yml config
file example

require-openssl: true

trusted-ca-file

description

Path to the primary backend CA file. Specifies a fallback SSL/TLS
certificate authority in PEM format used for etcd client (mutual TLS)
communication if the etcd-trusted-ca-file is not used. This CAfile is
used in communication between the Sensu web Ul and end user web
browsers, as well as communication between sensuctl and the Sensu
API.

type

String

default

mn

environment variable

SENSU_BACKEND TRUSTED CA FILE

https://sensu.io/contact
https://sensu.io/contact

command line
example

sensu-backend start --trusted-ca-file /path/to/tls/ca.pem

backend.yml config
file example

trusted-ca-file: "/path/to/tls/ca.pemn"

Web Ul configuration

dashboard-cert-file

description Web Ul TLS certificate in PEM format. This certificate secures
communication with the Sensu web Ul. If the dashboard-cert-file is
not provided in the backend configuration, Sensu uses the certificate
specified in the cert-file _configuration option for the web Ul. Sensu
supports certificate bundles (or chains) as long as the server (or leaf)
certificate is the first certificate in the bundle.

type String

default n

environment variable

SENSU BACKEND DASHBOARD CERT FILE

command line
example

sensu-backend start —--dashboard-cert-file

/path/to/tls/separate-webui-cert.pem

backend.yml config
file example

dashboard-cert-file: "/path/to/tls/separate-webui-cert.pem"

dashboard-host

description

Web Ul listener host.

type

String

default

environment variable

SENSU BACKEND DASHBOARD HOST

command line
example

sensu-backend start --dashboard-host 127.0.0.1

backend.yml config
file example

dashboard-key-file

dashboard-host: "127.0.0.1"

description Web Ul TLS certificate key in PEM format. This key secures
communication with the Sensu web Ul. If the dashboard-key-file is
not provided in the backend configuration, Sensu uses the key specified
in the kxey-file _configuration option for the web UlI.

type String

default mn

environment variable

SENSU BACKEND DASHBOARD KEY FILE

command line
example

sensu-backend start --dashboard-key-file

/path/to/tls/separate-webui-key.pem

backend.yml config
file example

dashboard-port

description

dashboard-key-file: "/path/to/tls/separate-webui-key.pemn"

Web Ul listener port.

type

Integer

default 3000

environment variable SENSU_BACKEND DASHBOARD PORT

command line
example sensu-backend start --dashboard-port 3000

backend.yml config
file example dashboard-port: 3000

Datastore and cluster configuration

etcd-advertise-client-urls

description List of this member’s client URLs to advertise to the rest of the
cluster.

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.Do not configure external etcd in Sensu
via backend command line flags or the backend configuration
file (/etc/sensu/backend.yml).

type List

default http://localhost:2379 (CentOS/RHEL, Debian, and Ubuntu)

http://$SENSU HOSTNAME:2379 (Docker)

NOTE: Docker-only Sensu binds to the hostnames of
containers, represented here as sensU HOSTNAME in Docker
default values.

environment variable SENSU_BACKEND ETCD ADVERTISE CLIENT URLS

command line example

https://etcd.io/docs/latest/op-guide/clustering/

sensu-backend start --etcd-advertise-client-urls
http://localhost:2378,http://localhost:2379
sensu-backend start --etcd-advertise-client-urls
http://localhost:2378 --etcd-advertise-client-urls
http://localhost:2379

backend.yml config file
example

etcd-cert-file

etcd-advertise-client-urls:
- http://localhost:2378
- http://localhost:2379

description

Path to the etcd client API TLS certificate file. Secures communication
between the embedded etcd client APl and any etcd clients. Sensu
supports certificate bundles (or chains) as long as the server (or leaf)
certificate is the first certificate in the bundle.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type

String

default

environment variable

SENSU BACKEND ETCD CERT FILE

command line
example

sensu-backend start --etcd-cert-file /path/to/tls/backend-
1.pem

backend.yml config
file example

etcd-cert-file: "/path/to/tls/backend-1.pem"

https://etcd.io/docs/latest/op-guide/clustering/

etcd-cipher-suites

description List of allowed cipher suites for etcd TLS configuration. Sensu supports
TLS 1.0-1.2 cipher suites as listed in the Go TLS documentation. You
can use this attribute to defend your TLS servers from attacks on weak
TLS ciphers. Go determines the default cipher suites based on the
hardware used.
NOTE: To use TLS 1.3, add the following environment variable:
GODEBUG="t1s13=1" .
To use Sensu with an external etcd cluster, follow etcd’s clustering
quide.Do not configure external etcd in Sensu via backend command
line flags or the backend configuration file
(/etc/sensu/backend.yml).
recommended
etcd-cipher-suites:
- TLS_ECDHE ECDSA WITH AES 256 GCM SHA384
- TLS_ECDHE RSA WITH AES 256 GCM SHA384
- TLS ECDHE ECDSA WITH AES 128 GCM SHA256
- TLS ECDHE RSA WITH AES 128 GCM SHA256
- TLS ECDHE ECDSA WITH CHACHA20 POLY1305
- TLS ECDHE RSA WITH CHACHA20 POLY1305
type List

environment variable

SENSU BACKEND ETCD CIPHER SUITES

command line
example

sensu-backend start --etcd-cipher-suites

TLS ECDHE RSA WITH AES 128 GCM SHA256,TLS ECDHE RSA WITH AE
S 256 GCM SHA384

sensu-backend start --etcd-cipher-suites

TLS ECDHE RSA WITH AES 128 GCM SHA256 --etcd-cipher-suites
TLS_ECDHE RSA WITH AES 256 GCM SHA384

https://golang.org/pkg/crypto/tls/#pkg-constants
https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

backend.yml config
file example

etcd-cipher-suites:

- TLS_ECDHE RSA WITH AES 128 GCM SHA256

- TLS_ECDHE RSA WITH AES 256 GCM SHA384

etcd-client-cert-auth

description If true , enable client certificate authentication. Otherwise, false .
NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via
backend command line flags or the backend configuration file
(/etc/sensu/backend.yml).

type Boolean

default false

environment variable

SENSU_BACKEND ETCD CLIENT CERT AUTH

command line
example

sensu-backend start --etcd-client-cert-auth

backend.yml config file
example

etcd-client-cert-auth: true

etcd-client-urls

description

List of client URLs to use when a sensu-backend is not operating as an
etcd member. To configure sensu-backend for use with an external etcd
instance, use this flag in conjunction with --no-embed-etcd when
executing sensu-backend start or sensu-backend init. If you do not use
this flag when using --no-embed-etcd , sensu-backend start and
sensu-backend-init will fall back to —etcd-listen-client-urls.

https://etcd.io/docs/latest/op-guide/clustering/

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type List
default http://127.0.0.1:2379
environment variable SENSU_BACKEND ETCD CLIENT URLS

command line

exanuﬂe sensu-backend start --etcd-client-urls
'https://10.0.0.1:2379 https://10.1.0.1:2379"
sensu-backend start --etcd-client-urls
https://10.0.0.1:2379 --etcd-client-urls
https://10.1.0.1:2379

backend.yml config
file example etcd-client-urls:

- https://10.0.0.1:2379
- https://10.1.0.1:2379

etcd-discovery

description Exposes etcd’s embedded auto-discovery features. Attempts to use etcd
discovery to get the cluster configuration.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type String

default "

https://etcd.io/docs/latest/op-guide/clustering/#discovery
https://etcd.io/docs/latest/op-guide/clustering/#etcd-discovery
https://etcd.io/docs/latest/op-guide/clustering/#etcd-discovery
https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

environment variable

SENSU_BACKEND ETCD DISCOVERY

command line
example

sensu-backend start --etcd-discovery
https://discovery.etcd.i10/3e86059982e49066c5d813aflc2e2579¢
bf573de

backend.yml config
file example

etcd-discovery-srv

etcd-discovery:

https://discovery.etcd.i0/3e860b59982e49066c5d813aflc2e2579¢
bf573de

description

Exposes etcd’s embedded auto-discovery features. Attempts to use a

DNS SRV record to get the cluster configuration.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type

String

default

n»

environment variable

SENSU BACKEND ETCD DISCOVERY SRV

command line
example

sensu-backend start --etcd-discovery-srv example.org

backend.yml config
file example

etcd-discovery-srv:

- example.org

http://localhost:1313/sensu-go/6.4/files/backend.yml
https://etcd.io/docs/latest/op-guide/clustering/#dns-discovery
https://etcd.io/docs/latest/op-guide/clustering/

etcd-initial-advertise-peer-urls

description List of this member’s peer URLs to advertise to the rest of
the cluster.

NOTE: To use Sensu with an external etcd cluster,
follow etcd’s clustering guide.Do not configure external
etcd in Sensu via backend command line flags or the
backend configuration file (/etc/sensu/backend.yml).

type List
default http://127.0.0.1:2380 (CentOS/RHEL, Debian, and
Ubuntu)

http://$SENSU HOSTNAME:2380 (Docker)

NOTE: Docker-only Sensu binds to the hostnames of
containers, represented here as SENSU _HOSTNAME In
Docker default values.

environment variable SENSU_BACKEND ETCD INITIAL ADVERTISE PEER URLS

command line example
sensu-backend start --etcd-initial-advertise-

peer-urls
https://10.0.0.1:2380,https://10.1.0.1:2380
sensu-backend start --etcd-initial-advertise-
peer-urls https://10.0.0.1:2380 --etcd-initial-
advertise-peer-urls https://10.1.0.1:2380

backend.yml config file example
etcd-initial-advertise-peer-urls:

- https://10.0.0.1:2380
- https://10.1.0.1:2380

https://etcd.io/docs/latest/op-guide/clustering/

etcd-initial-cluster

description

Initial cluster configuration for bootstrapping.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type

String

default

default=http://127.0.0.1:2380 (CentOS/RHEL, Debian, and
Ubuntu)

default=http://S$SSENSU HOSTNAME:2380 (Docker)

NOTE: Docker-only Sensu binds to the hostnames of containers,
represented here as sensu HOSTNAME in Docker default values.

environment variable

SENSU_BACKEND ETCD INITIAL CLUSTER

command line
example

sensu-backend start --etcd-initial-cluster backend-
O=https://10.0.0.1:2380,backend-
l=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380

backend.yml config
file example

etcd-initial-cluster: "backend-
O=https://10.0.0.1:2380, backend-
l=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380"

etcd-initial-cluster-state

https://etcd.io/docs/latest/op-guide/clustering/

description

Initial cluster state (new or existing).

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via
backend command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type

String

default

new

environment variable

SENSU BACKEND ETCD INITIAL CLUSTER STATE

command line example

sensu-backend start --etcd-initial-cluster-state
existing

backend.yml config file

exanuﬂe etcd-initial-cluster-state: "existing"

etcd-initial-cluster-token

description

Unique token for the etcd cluster. Provide the same etcd-
initial-cluster-token Value for each cluster member. The

etcd-initial-cluster-token allows etcd to generate unique
cluster IDs and member IDs even for clusters with otherwise
identical configurations, which prevents cross-cluster-interaction
and potential cluster corruption.

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.Do not configure external etcd in Sensu
via backend command line flags or the backend configuration
file (/etc/sensu/backend.yml).

type

String

https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

default

mn

environment variable

SENSU BACKEND ETCD INITIAL CLUSTER TOKEN

command line example

sensu-backend start --etcd-initial-cluster-token

unique token for this cluster

backend.yml config file
example

etcd-key-file

etcd-initial-cluster-token:

"unique token for this cluster"

description

Path to the etcd client APl TLS key file. Secures communication between
the embedded etcd client APl and any etcd clients.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type

String

environment variable

SENSU_BACKEND ETCD KEY FILE

command line
example

sensu-backend start --etcd-key-file /path/to/tls/backend-1-
key.pem

backend.yml config
file example

etcd-key-file: "/path/to/tls/backend-1-key.pem"

etcd-listen-client-urls

https://etcd.io/docs/latest/op-guide/clustering/

description List of URLSs to listen on for client traffic. Sensu’s default embedded
etcd configuration listens for unencrypted client communication on port
2379.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.Do not configure external etcd in Sensu via
backend command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type List

default http://127.0.0.1:2379 (CentOS/RHEL, Debian, and Ubuntu)
http://[::1:2379 (Docker)

environment variable SENSU_BACKEND ETCD LISTEN CLIENT URLS

command line example
sensu-backend start --etcd-listen-client-urls

https://10.0.0.1:2379,https://10.1.0.1:2379
sensu-backend start --etcd-listen-client-urls
https://10.0.0.1:2379 --etcd-listen-client-urls
https://10.1.0.1:2379

backend.yml config file
example etcd-listen-client-urls:

- https://10.0.0.1:2379
- https://10.1.0.1:2379

etcd-listen-peer-urls

description List of URLs to listen on for peer traffic. Sensu’s default embedded etcd
configuration listens for unencrypted peer communication on port 2380.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via

https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

backend command line flags or the backend configuration file
(/etc/sensu/backend.yml).

type

List

default

http://127.0.0.1:2380 (CentOS/RHEL, Debian, and Ubuntu)

http://[::1:2380 (Docker)

environment variable

SENSU_BACKEND ETCD LISTEN PEER URLS

command line
example

sensu-backend start --etcd-listen-peer-urls
https://10.0.0.1:2380,https://10.1.0.1:2380
sensu-backend start --etcd-listen-peer-urls
https://10.0.0.1:2380 --etcd-listen-peer-urls
https://10.1.0.1:2380

backend.yml config file
example

etcd-log-level

etcd-listen-peer-urls:
- https://10.0.0.1:2380
- https://10.1.0.1:2380

description Logging level for the embedded etcd server: panic , fatal , error ,
warn , info , Or debug . Defaults to value provided for the backend
log level. If the backend log level is setto trace , the etcd log level will
be setto debug (trace is nota valid etcd log level).

type String

default Backend log level value (or debug , if the backend log level is set to

trace)

environment variable

SENSU_BACKEND ETCD LOG LEVEL

command line

sensu-backend start --etcd-log-level debug

example

backend.yml config

file example etcd-log-level: "debug"
etcd-name
description Human-readable name for this member.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type String
default default
environment variable SENSU_BACKEND ETCD NAME

command line
example sensu-backend start --etcd-name backend-0

backend.yml config
file example etcd-name: "backend-0"

etcd-peer-cert-file

description Path to the peer server TLS certificate file. Sensu supports certificate
bundles (or chains) as long as the server (or leaf) certificate is the first
certificate in the bundle.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s

https://etcd.io/docs/latest/op-guide/clustering/

clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file
(/etc/sensu/backend.yml).

type

String

environment variable

SENSU_BACKEND ETCD PEER CERT FILE

command line
example

sensu-backend start --etcd-peer-cert-file

/path/to/tls/backend-1.pem

backend.yml config
file example

etcd-peer-cert-file: "/path/to/tls/backend-1.pem"

etcd-peer-client-cert-auth

description

Enable peer client certificate authentication.

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.Do not configure external etcd in Sensu
via backend command line flags or the backend configuration
file (/etc/sensu/backend.yml).

type

Boolean

default

false

environment variable

SENSU_BACKEND ETCD PEER CLIENT CERT AUTH

command line example

sensu-backend start --etcd-peer-client-cert-auth

backend.yml config file
example

etcd-peer-client-cert-auth: true

https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

etcd-peer-key-file

description

Path to the etcd peer API TLS key file. Secures communication between
etcd cluster members.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type

String

environment variable

SENSU_BACKEND ETCD PEER KEY FILE

command line
example

sensu-backend start --etcd-peer-key-file

/path/to/tls/backend-1-key.pemn

backend.yml config
file example

etcd-peer-key-file: "/path/to/tls/backend-1-key.pem"

etcd-peer-trusted-ca-file

description

Path to the etcd peer API server TLS trusted CA file. Secures
communication between etcd cluster members.

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.Do not configure external etcd in Sensu
via backend command line flags or the backend configuration
file (/etc/sensu/backend.yml).

type

String

https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

environment variable SENSU_BACKEND ETCD PEER TRUSTED CA FILE

command line example

sensu-backend start --etcd-peer-trusted-ca-file
./ca.pem
backend.yml config file
example etcd-peer-trusted-ca-file: "./ca.pem"
etcd-trusted-ca-file
description Path to the client server TLS trusted CA certificate file. Secures

communication with the etcd client server.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type String
default e
environment variable SENSU_BACKEND ETCD TRUSTED CA FILE

command line
example sensu-backend start --etcd-trusted-ca-file ./ca.pem

backend.yml config
file example etcd-trusted-ca-file: "./ca.pem"

no-embed-etcd

description If true , do not embed etcd (use external etcd instead). Otherwise,

https://etcd.io/docs/latest/op-guide/clustering/

false .

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via backend
command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type

Boolean

default

false

environment variable

SENSU_BACKEND NO EMBED ETCD

command line
example

sensu-backend start --no-embed-etcd

backend.yml config
file example

no-embed-etcd: true

Advanced configuration options

etcd-election-timeout

description

Time that a follower node will go without hearing a heartbeat before
attempting to become leader itself. In milliseconds (ms). Set to at least
10 times the etcd-heartbeat-interval. Read the etcd time parameter
documentation for details and other considerations.

WARNING: Make sure to set the same election timeout value for
all etcd members in one cluster. Setting different values for etcd
members may reduce cluster stability.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via
backend command line flags or the backend configuration file

https://etcd.io/docs/current/tuning/#time-parameters
https://etcd.io/docs/current/tuning/#time-parameters
https://etcd.io/docs/latest/op-guide/clustering/
https://etcd.io/docs/latest/op-guide/clustering/

(/etc/sensu/backend.yml).

type

Integer

default

1000

environment variable

SENSU BACKEND ETCD ELECTION TIMEOUT

command line example

sensu-backend start —--etcd-election-timeout 1000

backend.yml config file
example

etcd-election-timeout: 1000

etcd-heartbeat-interval

description

Interval at which the etcd leader will notify followers that it is still the
leader. In milliseconds (ms). Best practice is to set the interval based
on round-trip time between members. Read the etcd time parameter
documentation for details and other considerations.

WARNING: Make sure to set the same heartbeat interval value
for all etcd members in one cluster. Setting different values for
etcd members may reduce cluster stability.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering quide.Do not configure external etcd in Sensu via
backend command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type

Integer

default

100

environment variable

SENSU BACKEND ETCD HEARTBEAT INTERVAL

https://etcd.io/docs/current/tuning/#time-parameters
https://etcd.io/docs/current/tuning/#time-parameters
https://etcd.io/docs/latest/op-guide/clustering/

command line example

sensu-backend start --etcd-heartbeat-interval 100

backend.yml config file
example

etcd-heartbeat-interval: 100

etcd-max-request-bytes

description

Maximum etcd request size in bytes that can be sent to an etcd
server by a client. Increasing this value allows etcd to process
events with large outputs at the cost of overall latency.

WARNING: Use with caution. This configuration option requires
familiarity with etcd. Improper use of this option can result in a
non-functioning Sensu instance.

NOTE: To use Sensu with an external etcd cluster, follow etcd’s
clustering guide.Do not configure external etcd in Sensu via
backend command line flags or the backend configuration file

(/etc/sensu/backend.yml).

type

Integer

default

1572864

environment variable

SENSU BACKEND ETCD MAX REQUEST BYTES

command line example

sensu-backend start --etcd-max-request-bytes 1572864

backend.yml config file
example

etcd-max-request-bytes: 1572864

https://etcd.io/docs/latest/op-guide/clustering/

etcd-quota-backend-bytes

description Maximum etcd database size in bytes. Increasing this value
allows for a larger etcd database at the cost of performance.

WARNING: Use with caution. This configuration option
requires familiarity with etcd. Improper use of this option can
result in a non-functioning Sensu instance.

NOTE: To use Sensu with an external etcd cluster, follow
etcd’s clustering guide.Do not configure external etcd in
Sensu via backend command line flags or the backend
configuration file (/etc/sensu/backend.yml).

type Integer
default 4294967296
environment variable SENSU_BACKEND ETCD_ QUOTA BACKEND BYTES

command line example

sensu-backend start --etcd-quota-backend-bytes
4294967296
backend.yml config file
example etcd-quota-backend-bytes: 4294967296
eventd-buffer-size
description Number of incoming events that can be buffered before being processed

by an eventd worker.

WARNING: Modify with caution. Increasing this value may result in
greater memory usage.

https://etcd.io/docs/latest/op-guide/clustering/

type

Integer

default

100

environment variable

SENSU_BACKEND EVENTD BUFFER SIZE

command line
example

sensu-backend start --eventd-buffer-size 100

backend.yml config
file example

eventd-workers

eventd-buffer-size: 100

description Number of workers spawned for processing incoming events that are
stored in the eventd buffer.
WARNING: Modify with caution. Increasing this value may result in
greater CPU usage.
type Integer
default 100

environment variable

SENSU BACKEND EVENTD WORKERS

command line
example

sensu-backend start --eventd-workers 100

backend.yml config
file example

keepalived-buffer-size

eventd-workers: 100

description Number of incoming keepalives that can be buffered before being
processed by a keepalived worker.

WARNING: Modify with caution. Increasing this value may result
in greater memory usage.

type Integer
default 100
environment variable SENSU_BACKEND KEEPALIVED BUFFER SIZE

command line example

sensu-backend start --keepalived-buffer-size 100
backend.yml config file
example keepalived-buffer-size: 100
keepalived-workers
description Number of workers spawned for processing incoming keepalives that

are stored in the keepalived buffer.

WARNING: Modify with caution. Increasing this value may result in

greater CPU usage.
type Integer
default 100
environment variable SENSU_BACKEND KEEPALIVED WORKERS

command line
example sensu-backend start --keepalived-workers 100

backend.yml config
file example keepalived-workers: 100

pipelined-buffer-size

description Number of events to handle that can be buffered before being
processed by a pipelined worker.

WARNING: Modify with caution. Increasing this value may result in
greater memory usage.

type Integer
default 100
environment variable SENSU_BACKEND PIPELINED BUFFER SIZE

command line example

sensu-backend start --pipelined-buffer-size 100

backend.yml config file
example pipelined-buffer-size: 100

pipelined-workers

description Number of workers spawned for handling events through the event
pipeline that are stored in the pipelined buffer.

WARNING: Modify with caution. Increasing this value may result in
greater CPU usage.

type Integer

default 100

environment variable SENSU_BACKEND PIPELINED WORKERS

command line
example sensu-backend start --pipelined-workers 100

backend.yml config
file example pipelined-workers: 100

Backend configuration methods

Backend configuration file

You can customize the backend configurationina .ym1 configuration file.The default backend
configuration file path for Linux is /etc/sensu/backend.yml .

To use the backend.yml file to configure the backend, list the desired configuration attributes and
values.Review the example Sensu backend configuration file for a complete example.

NOTE: The backend loads configuration upon startup.If you make changes in the backend.yml
configuration file after startup, you must restart the backend for the changes to take effect.

Configuration via command line flags or environment variables overrides any configuration specified in
the backend configuration file.Read Create overrides to learn more.

Command line flags
You can customize the backend configuration with sensu-agent start command line flags.

To use command line flags, specify the desired configuration options and values along with the
sensu-backend start command.For example:

sensu-backend start --deregistration-handler slack deregister --log-level debug

http://localhost:1313/sensu-go/6.4/files/backend.yml

Configuration via command line flags overrides attributes specified in a configuration file or with
environment variables.Read Create overrides to learn more.

Environment variables

Instead of using a configuration file or command line flags, you can use environment variables to
configure your Sensu backend.Each backend configuration option has an associated environment
variable.You can also create your own environment variables, as long as you name them correctly and
save them in the correct place.Here’s how.

1. Create the files from which the sensu-backend service configured by our supported packages
will read environment variables:

SHELL

sudo touch /etc/default/sensu-backend

SHELL

sudo touch /etc/sysconfig/sensu-backend

2. Make sure the environment variable is named correctly.All environment variables that control
Sensu backend configuration begin with SENSU_BACKEND .

To rename a configuration option you wish to specify as an environment variable, prepend
SENSU_BACKEND , convert dashes to underscores, and capitalize all letters.For example, the
environment variable for the configuration option api-listen-address is
SENSU BACKEND API LISTEN ADDRESS .

For a custom environment variable, you do not have to prepend seNsu BACKEND .For example,
TEST VAR 1 is a valid custom environment variable name.

3. Add the environment variable to the environment file.

For example, to create api-listen-address as an environment variable and set it to
192.168.100.20:8080 :

SHELL

echo 'SENSU BACKEND API LISTEN ADDRESS=192.168.100.20:8080' | sudo tee -a

/etc/default/sensu-backend

SHELL

echo 'SENSU BACKEND API LISTEN ADDRESS=192.168.100.20:8080' | sudo tee -a

/etc/sysconfig/sensu-backend

4. Restart the sensu-backend service so these settings can take effect:

SHELL

sudo systemctl restart sensu-backend

SHELL

sudo systemctl restart sensu-backend

NOTE: Sensu includes an environment variable for each backend configuration option.They are
listed in the configuration description tables.

Format for label and annotation environment variables

To use labels and annotations as environment variables in your handler configurations, you must use a
specific format when you create the label and annotation environment variables.

For example, to create the labels "region": "us-east-1" and "type": "website" asan
environment variable:

SHELL

echo 'BACKEND LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/default/sensu-backend

SHELL

echo 'BACKEND LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/sysconfig/sensu-backend

To create the annotations "maintainer": "Team A" and "webhook-url":
"https://hooks.slack.com/services/T0000/B00000/XXXXX" as an environment variable:

SHELL
echo 'BACKEND ANNOTATIONS='{"maintainer": "Team A", "webhook-url":
"https://hooks.slack.com/services/T0000/B00000/XXXXX"}"'"'" | sudo tee -a

/etc/default/sensu-backend

SHELL
echo 'BACKEND ANNOTATIONS='{"maintainer": "Team A", "webhook-url":
"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'"'"' | sudo tee -a

/etc/sysconfig/sensu-backend

Use environment variables with the Sensu backend

Any environment variables you create in /etc/default/sensu-backend (Debian/Ubuntu) or
/etc/sysconfig/sensu-backend (RHEL/CentOS) will be available to handlers executed by the Sensu

backend.

For example, if you create a custom environment variable TEST VARIABLE in your sensu-backend
file, it will be available to use in your handler configurations as $TEsT varIiaBLE .The following handler
will print the TEST vARIABLE value setin your sensu-backend file in /tmp/test.txt :

YML

type: Handler
api_version: core/v2
metadata:
name: print test var
spec:
command: echo $TEST_VARIABLE >> . /tmp/test.txt

timeout: 0

type: pipe
JSON
{
"type": "Handler",
"api version": "core/v2",
"metadata": {
"name": "print test var"
by
"spec": {
"command": "echo $TEST VARIABLE >> ./tmp/test.txt",
"timeout": O,
"type": "pipe"

NOTE: We recommend using secrets with the Env provider to expose secrets from environment
variables on your Sensu backend nodes rather than using environment variables directly in your
handler commands.Read the secrets reference and Use Env for secrets management for details.

Create configuration overrides

Sensu has default settings and limits for certain configuration attributes, like the default log level.
Depending on your environment and preferences, you may want to create overrides for these Sensu-
specific defaults and limits.

You can create configuration overrides in several ways:

7 Command line configuration flag arguments for sensu-backend start .

7 Environment variables in /etc/default/sensu-backend (Debian/Ubuntu) or
/etc/sysconfig/sensu-backend (RHEL/CentOS).

71 Configuration settings in the backend.yml config file.

NOTE: We do not recommend editing the systemd unit file to create overrides.Future package

https://docs.sensu.io/sensu-go/latest/operations/manage-secrets/secrets/

upgrades can overwrite changes in the systemd unit file.

Sensu applies the following precedence to override settings:

1. Arguments passed to the Sensu backend via command line configuration flags.

2. Environment variables in /etc/default/sensu-backend (Debian/Ubuntu) or
/etc/sysconfig/sensu-backend (RHEL/CentOS).

3. Configuration in the backend.yml config file.

For example, if you create overrides using all three methods, the command line configuration flag
values will take precedence over the values you specify in /etc/default/sensu-backend Or
/etc/sysconfig/sensu-backend or the backend.yml config file.

Example override: Log level

The default log level for the Sensu backend is warn .To override the default and automatically apply a
different log level for the backend, add the --1og-1evel command line configuration flag when you
start the Sensu backend.For example, to specify debug as the log level:

sensu-backend start --log-level debug

To configure an environment variable for the desired backend log level:

SHELL

echo 'SENSU BACKEND LOG LEVEL=debug' | sudo tee -a /etc/default/sensu-backend
SHELL

echo 'SENSU BACKEND LOG LEVEL=debug' | sudo tee -a /etc/sysconfig/sensu-backend

To configure the desired log level in the config file, add this line to backend.ymil:

log-level: debug

Event logging

COMMERCIAL FEATURE: Access event logging in the packaged Sensu Go distribution.For more
information, read Get started with commercial features.

If you wish, you can log all Sensu events to a file in JSON format.You can use this file as an input
source for your favorite data lake solution.The event logging functionality provides better performance
and reliability than event handlers.

NOTE: Event logs do not include log messages produced by sensu-backend service.To write
Sensu service logs to flat files on disk, read Log Sensu services with systemd.

Use these backend configuration options to customize event logging:

event-log-buffer-size

description Buffer size of the event logger. Corresponds to the maximum number
of events kept in memory in case the log file is temporarily unavailable
or more events have been received than can be written to the log file.

type Integer
default 100000
environment variable SENSU_BACKEND EVENT LOG BUFFER SIZE

command line example
sensu-backend start --event-log-buffer-size 100000

backend.yml config file
example event-log-buffer-size: 100000

event-log-buffer-wait

description Buffer wait time for the event logger. When the buffer is full, the event

logger will wait for the specified time for the writer to consume events
from the buffer.

type

String

default

10ms

environment variable

SENSU_BACKEND EVENT LOG BUFFER WAIT

command line example

sensu-backend start --event-log-buffer-wait 10ms

backend.yml config file
example

event-log-buffer-wait: 10ms

event-log-file

description Path to the event log file.
WARNING: The log file should be located on a local drive. Logging
directly to network drives is not supported.

type String

environment variable

SENSU_BACKEND EVENT LOG FILE

command line
example

sensu-backend start --event-log-file

/var/log/sensu/events.log

backend.yml config
file example

event-log-file: "/var/log/sensu/events.log"

event-log-parallel-encoders

description Indicates whether Sensu should use parallel JSON encoders
for event logging. If true , Sensu sets the number of JSON
encoder workers to 50% of the total number of cores, with a
minimum of 2 (for example, 6 JSON encoders on a 12-core
machine). Otherwise, Sensu uses the default setting, which is a
single JSON encoding worker.

The event-log-parallel-encoders Setting will not take
effect unless you also specify a path to the event log file with
the event-log-file configuration attribute.

NOTE: The event-log-parallel-encoders
configuration attribute is available in Sensu Go 6.4.2.

type Boolean
default false
environment variable SENSU_BACKEND EVENT LOG PARALLEL ENCODERS

command line example

sensu-backend start --event-log-parallel-encoders
true

backend.yml config file

exanuﬂe event-log-parallel-encoders: true

Log rotation

To manually rotate event logs, first rename (move) the current log file.Then, send the SIGHUP signal
the sensu-backend process so it creates a new log file and starts logging to it.Most Linux distributions
include 1logrotate to automatically rotate log files as a standard utility, configured to run once per
day by default.

Because event log files can grow quickly for larger Sensu installations, we recommend using
logrotate to automatically rotate log files more frequently.To use the example log rotation
configurations listed below, you may need to configure logrotate _to run once per hour.

https://unix.stackexchange.com/questions/29574/how-can-i-set-up-logrotate-to-rotate-logs-hourly
https://unix.stackexchange.com/questions/29574/how-can-i-set-up-logrotate-to-rotate-logs-hourly
https://unix.stackexchange.com/questions/29574/how-can-i-set-up-logrotate-to-rotate-logs-hourly

Log rotation for systemd

In this example, the postrotate script will reload the backend after log rotate is complete.

/var/log/sensu/events.log
{
rotate 3
hourly
missingok
notifempty
compress
postrotate
/bin/systemctl reload sensu-backend.service > /dev/null 2>/dev/null || true

endscript

Without the postrotate script, the backend will not reload.This will cause sensu-backend (and
sensu-agent, if translated for the Sensu agent) to no longer write to the log file, even if logrotate
recreates the log file.

Log rotation for sysvinit

/var/log/sensu/events.log
{

rotate 3

hourly

missingok

notifempty

compress

postrotate

kill -HUP ‘"cat /var/run/sensu/sensu-backend.pid 2> /dev/null’ 2> /dev/null ||

true

endscript

Checks reference

Checks work with Sensu agents to produce observability events automatically.You can use checks to
monitor server resources, services, and application health as well as collect and analyze metrics.Read
Monitor server resources to get started.Use Bonsai, the Sensu asset hub, to discover, download, and
share Sensu check dynamic runtime assets.

Check example (minimum recommended attributes)

This example shows a check resource definition that includes the minimum recommended attributes.

NOTE: The attribute interval Is notrequired if a valid cron schedule is defined.Read
scheduling for more information.

YML

type: CheckConfig
api_version: core/v2
metadata:

name: check minimum
spec:

command: collect.sh

handlers:

- slack

interval: 10

publish: true

subscriptions:
- system
JSON
{
"type": "CheckConfig",
"api version": "core/v2",

"metadata": {

https://bonsai.sensu.io/

"name": "check minimum"
by
"spec": {
"command": "collect.sh",
"subscriptions": [
"system"
1,
"handlers": [
"slack"
1,
"interval": 10,

"publish": true

Check commands

Each Sensu check definition specifies a command and the schedule at which it should be executed.
Check commands are executable commands that the Sensu agent executes.

A command may include command line arguments for controlling the behavior of the command
executable.Many common checks are available as dynamic runtime assets from Bonsai and support
command line arguments so different check definitions can use the same executable.

NOTE: Sensu advises against requiring root privileges to execute check commands or scripts.The
Sensu user is not permitted to kill timed-out processes invoked by the root user, which could result
in zombie processes.

Check command execution
All check commands are executed by Sensu agents as the sensu user.Commands must be

executable files that are discoverable on the Sensu agent system (for example, installed in a system
$PATH directory).

Check result specification

https://bonsai.sensu.io/

Although Sensu agents attempt to execute any command defined for a check, successful check result
processing requires adherence to a simple specification.
7 Result data is output to stdout or stderr.
71 For service checks, this output is typically a human-readable message.
71 For metric checks, this output contains the measurements gathered by thecheck.
71 Exit status code indicates state.
7 0 indicates OK.
7 1 indicates WARNING.
7 2 indicates CRITICAL.

71 Exit status codes otherthan o0, 1 ,and 2 indicate an UNKNOWN or custom status

PRO TIP: If you’re familiar with the Nagios monitoring system, you may recognize this
specification — it is the same one that Nagios plugins use.As a result, you can use Nagios plugins
with Sensu without any modification.

At every execution of a check command, regardless of success or failure, the Sensu agent publishes
the check’s result for eventual handling by the event processor (the Sensu backend).

Check scheduling

The Sensu backend schedules checks and publishes check execution requests to entities via a
publish/subscribe model.Checks have a defined set of subscriptions: transport topics to which the
Sensu backend publishes check requests.Sensu entities become subscribers to these topics (called
subscriptions) via their individual subscriptions attribute.

You can schedule checks using the interval , cron ,and publish attributes.Sensu requires that
checks include either an interval attribute (interval scheduling) ora cron attribute (cron
scheduling).

Round robin checks

By default, Sensu schedules checks once per interval for each agent with a matching subscription: one
check execution per agent per interval.Sensu also supports deduplicated check execution when
configured with the round robin check attribute.For checks with round robin setto true , Sensi

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://en.wikipedia.org/wiki/Standard_streams

executes the check once per interval, cycling through the available agents alphabetically according to
agent name.

For example, for three agents configured with the system subscription (agents A, B, and C), a check
configured with the system subscription and round robin setto true results in one observability
event per interval, with the agent creating the event following the pattern A->B -> C ->A->B -> C for
the first six intervals.

Standard check 15t execution 2 execution 3rd execution

interval: 60

round_robin: false agentA agent A agent A
agent B 60 seconds agent B 60 seconds agent B
agent C agent C agent C

Round-robin check 15t execution 2 execution 3rd execution

. . e _—

interval: 60 agent A 60 seconds agent B 60 seconds agent C

round_robin: true

In the diagram above, the standard check is executed by agents A, B, and C every 60 seconds.The
round robin check cycles through the available agents, resulting in each agent executing the check
every 180 seconds.

Tousecheck ttl and round robin together, your check configuration must also specify a
proxy entity name .If you do not specify a proxy entity name when using check ttl1 and
round robin together, your check will stop executing.

PRO TIP: Use round robin to distribute check execution workload across multiple agents when
using proxy checks.

Event storage for round robin scheduling
If you use round robin scheduling for check execution, we recommend using PostgreSQL rather than

etcd for event storage.Etcd leases are unreliable as the scheduling mechanism for round robin check
execution, and etcd will not produce precise round robin behavior.

When you enable round robin scheduling on PostgreSQL, any existing round robin scheduling will stop

http://localhost:1313/images/go/checks_reference/round_robin_diagram.png

and migrate to PostgreSQL as entities check in with keepalives.Sensu will gradually delete the existing
etcd scheduler state as keepalives on the etcd scheduler keys expire over time.

Interval scheduling

You can schedule a check to be executed at regular intervals using the interval and publish
check attributes.For example, to schedule a check to execute every 60 seconds, set the interval
attribute to 60 and the publish attribute to true .

NOTE: When creating an interval check, Sensu calculates an initial offset to splay the check’s first
scheduled request.This helps balance the load of both the backend and the agent and may result
in a delay before initial check execution.

Example interval check
YML

type: CheckConfig
api_version: core/v2
metadata:
name: interval check
spec:
command: check-cpu.sh -w 75 -c 90
handlers:
- slack
interval: 60

publish: true

subscriptions:
- system
JSON
{
"type": "CheckConfig",
"api version": "core/v2",
"metadata": {
"name": "interval check"

by

"SpeC": {

"command": "check-cpu.sh -w 75 -c 90",

"subscriptions": ["system"],
"handlers": ["slack"],
"interval": 60,

"publish": true

Cron scheduling
You can also schedule checks using cron syntax.
Examples of valid cron values include:

7 cron: CRON TZ=Asia/Tokyo * * * * x
7 cron: TZ=Asia/Tokyo * * * * *

T cron: '* * *x *x 1

NOTE: If you’re using YAML to create a check that uses cron scheduling and the first character of
the cron schedule is an asterisk (*), place the entire cron schedule inside single or double
quotes (for example, cr