Sensu Go

Contents

Release Notes

Getting Started
Get Started with Sensu
License-Activated Features
Live Demo
Sandbox
Glossary
FAQs
Media

Installation
Install Sensu

Install Plugins
Upgrade Sensu
Authentication

Hardware Requirements
Binary-Only Distribution
Configuration Management
Supported Platforms

Guides

Monitoring Server Resources
Monitoring External Resources
Collecting Service Metrics
Aggregating StatsD Metrics
Augmenting Event Data
Sending Slack Alerts

Storing Metrics with InfluxDB
Reducing Alert Fatigue
Routing Alerts with Filters
Installing Plugins with Assets
Planning Maintenance
Creating a Read Only User
Deploying Sensu

Runnin ensu Cluster

Securing Sensu

Troubleshooting

Dashboard
Overview

Filtering

API
APl Overview
Assets API
Authentication API
Authentication Providers API
Checks API
Cluster API
Cluster Role Bindings API
Cluster Roles API
Entities API
Events API
Filters API
Handlers API
Health API
Hooks AP
License API
Metrics API
Mutators API

Namespaces API
Role Bindings AP
Roles API
Silencing API
Tessen API

Users API
Version API

Sensuctl CLI

Quickstart
Reference

Reference
Sensu Agent
Sensu Backend
Assets
Checks
Entities
Events
Filters
Handlers
Hooks

Mutators

Role-Based Access Control
Sensu Query Expressions
Silencing

Tessen

Tokens

License Management

| Learn about licensing

Sensu is the industry leading solution for multi-cloud monitoring at scale. The Sensu monitoring event
pipeline empowers businesses to automate their monitoring workflows and gain deep visibility into their
multi-cloud environments. Founded in 2017, Sensu offers a comprehensive monitoring solution for
enterprises, providing complete visibility across every system, every protocol, every time — from
Kubernetes to bare metal.Get started now and feel the #monitoringlove: Learn Sensu Go.

Sensu Go is the latest version of Sensu, designed to be more portable, easier and faster to deploy,
and (even more) friendly to containerized and ephemeral environments.Learn about support packages

and license-activated features designed for monitoring at scale.

Automate your monitoring workflows: Limitless pipelines let you validate and correlate events,
mutate data formats, send alerts, manage incidents, collect and store metrics, and more.

Event Filter Mutator Handler

_— > . - > > o
Application error rate >10% during business hours — send to #monitoring in Slack
Event - Filter - Mutator o Handler
StatsD metric in production add metric tags store in InfluxDB
Event N Filter . Mutator - Handler
Server process stopped on state change create incident in PagerDuty
Event - Filter - Mutator . Handler

User login failure after 10 events create JIRA issue

Sensu Event Pipeline

Reduce alert fatigue: Sensu gives you full control over your alerts with flexible filters, context-rich
notifications, reporting, event handling, and auto-remediation.

Integrate anywhere: Sensu’s open architecture makes it easy to integrate monitoring with tools you
already use like Nagios plugins, Chef, Graphite, InfluxDB, and PagerDuty.

https://sensu.io/support
https://www.youtube.com/watch?v=jUW4rAqazwA

Monitoring for Your Infrastructure

Monitoring is the action of observing and checking the behaviors and outputs of a system
and its components over time. - Greg Poirier, Monitorama 2016

Kubernetes pods Monitoring events

Sensuagent A B) B) R) e

AWS instances Sensu backend

050 %A

! \
Sensuagent --oooo-oooe) - T - R - R - - - - ------R > Event pipeline > Operators
Jenkins server " webUl sensuctiCLl API
E s
Sensuagent oo S - BT - - B

Sensu is an agent-based monitoring tool that you install on your organization’s infrastructure.The
Sensu agent gives you visibility into everything you care about; the Sensu server gives you flexible,
automated workflows to route metrics and alerts.

Monitor containers, instances, applications, and on-premises infrastructure

Sensu is designed to monitor everything from the server closet to the cloud.Install the Sensu agent on
the hosts you want to monitor, integrate with the Sensu API, or take advantage of proxy entities to
monitor anything on your network.Sensu agents automatically register and de-register themselves with
the Sensu server, so you can monitor ephemeral infrastructure without getting overloaded with alerts.

Better incident response with filterable, context-rich alerts

Get meaningful alerts when and where you need them.Use event filters to reduce noise and check
hooks to add context and speed up incident response.Sensu integrates with the tools and services your
organization already uses like PagerDuty, Slack, and more.Check out Bonsai, the Sensu asset index,
or write your own Sensu Plugins in any language.

Collect and store metrics with built-in support for industry-standard tools

https://vimeo.com/173610062
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/
http://localhost:1313/plugins/latest/reference/

Know what’s going on everywhere in your system.Sensu supports industry-standard metric formats like
Nagios Performance Data, Graphite Plaintext Protocol, InfluxDB Line Protocol, OpenTSDB Data
Specification, and StatsD metrics.Use the Sensu agent to collect metrics alongside check results, then
use the event pipeline to route the data to a time series database like InfluxDB.

Intuitive APl and dashboard interfaces

Sensu includes a dashboard to provide a unified view of your entities, checks, and events, as well as a
user-friendly silencing tool.The Sensu API and the sensuctl command-line tool allow you (and your
internal customers) to create checks, register entities, manage configuration, and more.

Open core software backed by Sensu Inc.

Sensu Go’s core is open source software, freely available under apermissive MIT License and publicly

available on GitHub.Learn about support packages and license-activated features designed for
monitoring at scale.

https://influxdata.com/
https://github.com/sensu/sensu-go/blob/master/LICENSE
https://github.com/sensu/sensu-go
https://sensu.io/support

Sensu Go release notes

Contents

5.8.0 release notes
5.7.0 release notes
5.6.0 release notes
5.5.1 release notes
5.5.0 release notes
5.4.0 release notes
5.3.0 release notes
5.2.1 release notes
5.2.0 release notes
5.1.1 release notes
5.1.0 release notes
5.0.1 release notes
5.0.0 release notes

Versioning

Sensu Go adheres to semantic versioning using MAJOR.MINOR.PATCH release numbers, starting at
5.0.0. MAJOR version changes indicate incompatible APl changes; MINOR versions add backwards-
compatible functionality; PATCH versions include backwards-compatible bug fixes.

Upgrading

Read the upgrade guide for information on upgrading to the latest version of Sensu Go.

5.8.0 release notes

May 22, 2019 — The latest release of Sensu Go, version 5.8.0, is now available for download.This is
mainly a stability release with bug fixes and performance improvements. Additionally, we have added
support for configurable etcd cipher suites.See the upgrade guide to upgrade Sensu to version 5.8.0.

https://semver.org/spec/v2.0.0.html
http://localhost:1313/sensu-go/latest/installation/upgrade

IMPORTANT:

To upgrade to Sensu Go 5.8.0, Sensu clusters with multiple backend nodes must be shut down during
the upgrade process. See the upgrade guide for more information.

IMPROVEMENTS:

The sensuctl command-line tool now supports the --chunk-size flag to help you handle large
datasets. See the sensuctl reference for more information.

Sensu backends now support the etcd-cipher-suites configuration option, letting you specify the
cipher suites that can be used with etcd TLS configuration. See the backend reference for more
information.

The Sensu API now includes the version API, returning version information for your Sensu instance.
See the API docs for more information.

Tessen now collects the numbers of events processed and resources created, giving us better insight
into how we can improve Sensu. As always, all Tessen transmissions are logged for complete
transparency. See the Tessen reference for more information.

Sensu licenses now include the entity limit attached to your Sensu licensing package. See the license
management docs to learn more about entity limits.

Sensu backends now perform better at scale using increased worker pool sizes for events and
keepalives.

The maximum size of the etcd database and etcd requests is now configurable using the etcd-
quota-backend-bytes and etcd-max-request-bytes backend configuration options. These are
advanced configuration options requiring familiarly with etcd; use with caution. See the backend
reference for more information.

Most Sensu resources now use protobuf serialization in etcd.

FIXES:

Events produced by checks now execute the correct number of write operations to etcd.
API pagination tokens for the users and namespaces APIls now work as expected.
Keepalive events for deleted and deregistered entities are now cleaned up as expected.

KNOWN ISSUES:

Auth tokens may not be purged from etcd, resulting in a possible impact to performance.

5.7.0 release notes

May 9, 2019 — The latest release of Sensu Go, version 5.7.0, is now available for download. This is
mainly a stability release with bug fixes. Additionally, we have added support for Windows packages

and updated our usage policy.See the upgrade guide to upgrade Sensu to version 5.7.0.
IMPROVEMENTS:

The Sensu agent for Windows is now available as an MSI package, making it easier to install and
operate. See the installation guide and the agent reference to get started.

FIXES:

Sensu now enforces resource separation between namespaces sharing a similar prefix.
The sensuctl cluster commands now output correctly in JSON and wrapped JSON formats.
The API now returns an error message if label and field selectors are used without a license.

5.6.0 release notes

April 30, 2019 — The latest release of Sensu Go, version 5.6.0, is now available for download.We
have added some exciting new features in this release including API filtering and the ability to create
and manage checks through the web Ul with the presence of a valid license key.See the upgrade guide
to upgrade Sensu to version 5.6.0.

NEW FEATURES:

(Licensed tier) Manage your Sensu checks from your browser: Sensu’s web user interface now
supports creating, editing, and deleting checks. See the docs to get started using the Sensu web Ul.
(Licensed tier) The Sensu web Ul now includes an option to delete entities.

(Licensed tier) Sensu now supports resource filtering in the Sensu APl and sensuctl command line
tool. Filter events using custom labels and resource attributes, such as event status and check
subscriptions. See the APl docs and sensuctl reference for usage examples.

IMPROVEMENTS:

(Licensed tier) Sensu’s LDAP and Active Directory integrations now support mutual authentication
using the trusted ca file , client cert file ,and client key file attributes. See the guide to
configuring an authentication provider for more information.

(Licensed tier) Sensu’s LDAP and Active Directory integrations now support connecting to an
authentication provider using anonymous binding. See the LDAP and AD binding configuration docs to
learn more.

The health API response now includes the cluster ID.

The sensuctl cluster health and sensuctl cluster member-list commands now include the
cluster ID in tabular format.

https://discourse.sensu.io/t/introducing-usage-limits-in-the-sensu-go-free-tier/1156
http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.7/installation/install-sensu#windows-agent
http://localhost:1313/sensu-go/5.7/reference/agent#operation
http://localhost:1313/sensu-go/5.7/api/overview#filtering
http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/dashboard/overview
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/api/overview#filtering
http://localhost:1313/sensu-go/5.6/sensuctl/reference#filtering
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/installation/auth/
http://localhost:1313/sensu-go/5.6/installation/auth/
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/installation/auth/#binding-attributes
http://localhost:1313/sensu-go/5.6/installation/auth/#active-directory-binding-attributes
http://localhost:1313/sensu-go/5.6/api/health

FIXES:

You can now configure labels and annotations for Sensu agents using command line flags. For
example: sensu-agent start --label example key="example value" . See the agent reference
for more examples.

The Sensu web Ul now displays the correct checkbox state when no resources are present.

5.5.1 release notes

April 17, 2019 — The latest release of Sensu Go, version 5.5.1, is now available for download. This
release is a stability release with key bug fixes, including addressing an issue with backend CPU
utilization. Additionally, we have added support for honoring the source attribute for events received via
agent socket.See the upgrade guide to upgrade Sensu to version 5.5.1.

IMPROVEMENTS:

Sensu agents now support annotations, non-identifying metadata that helps people or external tools
interacting with Sensu. See the agent reference to add annotations in the agent configuration file.
The agent socket event format now supports the source attribute to create a proxy entity.

Sensu 5.5.1 is built with Go version 1.12.3.

FIXES:

Backends now reinstate etcd watchers in the event of a watcher failure, fixing an issue causing high
CPU usage in some components.

5.5.0 release notes

April 4, 2019 — The latest release of Sensu Go, version 5.5.0, is now available for download. This
release has some key bug fixes and additions including the introduction of Tessen into Sensu Go. For
more information, we encourage you to read Sean Porter’s blog post on Tessen.See the upgrade guide
to upgrade Sensu to version 5.5.0.

NEW FEATURES:

Tessen, the Sensu call-home service, is now enabled by default in Sensu backends. See the Tessen
docs to learn about the data that Tessen collects.

IMPROVEMENTS:

http://localhost:1313/sensu-go/5.6/reference/agent#general-configuration-flags
http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.5/reference/agent#general-configuration-flags
http://localhost:1313/sensu-go/5.5/reference/agent#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets
https://blog.sensu.io/announcing-tessen-the-sensu-call-home-service
http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.5/reference/tessen
http://localhost:1313/sensu-go/5.5/reference/tessen

Sensu now includes more verbose check logging to indicate when a proxy request matches an entity
according to its entity attributes.

FIXES:

The Sensu web Ul now displays silences created by LDAP users.
The web Ul now uses a secondary text color for quick-navigation buttons.

5.4.0 release notes

March 27, 2019 — The latest release of Sensu Go, version 5.4.0, is now available for download. This
release has some very exciting feature additions including the introduction of our new homepage. 5.4.0
also includes support for API pagination to more efficiently handle large data sets and agent buffering
for robustness in lower connectivity situations along with key bug fixes.See the upgrade guide to
upgrade Sensu to version 5.4.0.

NEW FEATURES:

The Sensu dashboard now includes a homepage designed to highlight the most important monitoring
data, giving you instant insight into the state of your infrastructure. See the dashboard docs for a
preview.

The Sensu API now supports pagination using the 1imit and continue query parameters, letting
you limit your API responses to a maximum number of objects and making it easier to handle large
data sets. See the API overview for more information.

Sensu now surfaces internal metrics using the /metrics API. See the metrics API reference for more
information.

IMPROVEMENTS:

Sensu now lets you specify a separate TLS certificate and key to secure the dashboard. See the
backend reference to configure the dashboard-cert-file and dashboard-key-file flags, and
check out the guide to securing Sensu for the complete guide to making your Sensu instance
production-ready.

The Sensu agent events APl now queues events before sending them to the backend, making the
agent events APl more robust and preventing data loss in the event of a loss of connection with the
backend or agent shutdown. See the agent reference for more information.

FIXES:

The backend now processes events without persisting metrics to etcd.

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.4/dashboard/overview
http://localhost:1313/sensu-go/5.4/api/overview#pagination
http://localhost:1313/sensu-go/5.4/api/metrics
http://localhost:1313/sensu-go/5.4/reference/backend#dashboard-configuration-flags
http://localhost:1313/sensu-go/5.4/guides/securing-sensu
http://localhost:1313/sensu-go/5.4/reference/agent#events-post

The events APl POST and PUT endpoints now add the current timestamp to new events by default.
The users APl now returns a 404 response code in the event that a username cannot be found.

The sensuctl command line tool now correctly accepts global flags when passed after a sub-command
flag (for example: --format yaml --namespace development).

The sensuctl handler delete and sensuctl filter delete commands now correctly delete
resources from the currently configured namespace.

The agent now terminates consistently on SIGTERM and SIGINT.

In the event of a loss of connection with the backend, the agent now attempts to reconnect to any
backends specified in its configuration.

The dashboard now handles cases in which the creator of a silence is inaccessible.

The dashboard event details page now displays “-” in the command field if no command is associated
with the event.

5.3.0 release notes

March 11, 2019 — The latest release of Sensu Go, version 5.3.0, is now available for download. This
release has some very exciting feature additions and key bug fixes. 5.3.0 enables Active Directory to
be configured as an authentication provider with a valid license key. Additionally, round robin
scheduling has been fully re-implemented and is available for use.See the upgrade guide to upgrade
Sensu to version 5.3.0.

NEW FEATURES:

Round-robin check scheduling lets you distribute check executions evenly over a group of Sensu
agents. To enable round-robin scheduling, setthe round robin check attribute to true . See the
check reference for more information.

Sensu now provides license-activated support for using Microsoft Active Directory as an external
authentication provider. Read the authentication guide to configure Active Directory, and check out the
getting started guide for more information about licensing.

The dashboard now features offline state detection and displays an alert banner in the event that the
dashboard loses connection to the backend.

IMPROVEMENTS:

The agent socket event format now supports the handlers attribute, giving you the ability to send
socket events to a Sensu pipeline. See the agent reference to learn more about creating and handling
monitoring events using the agent socket.

Assets now feature improved download performance using buffered 1/O.

The sensuctl CLI now uses a 15-second timeout period when connecting to the Sensu backend.

The dashboard now includes expandable configuration details sections on the check and entity pages.
You can now use the dashboard to review check details like command, subscriptions, and scheduling,

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.3/reference/checks#spec-attributes
http://localhost:1313/sensu-go/5.3/getting-started/enterprise
http://localhost:1313/sensu-go/5.3/installation/auth
http://localhost:1313/sensu-go/5.3/getting-started/enterprise
http://localhost:1313/sensu-go/5.3/reference/agent#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets

as well as entity details like platform, IP address, and hostname.
SECURITY:

Sensu Go 5.3.0 fixes all known TLS vulnerabilities affecting the backend, including increasing the

minimum supported TLS version to 1.2 and removing all ciphers except those with perfect forward

secrecy.

Sensu now enforces uniform TLS configuration for all three backend components: apid , agentd ,
dashboardd .

The backend no longer requires the trusted-ca-file flag when using TLS.

The backend no longer loads server TLS configuration for the HTTP client.

FIXES:

Sensu can now download assets with download times over 30 seconds without timing out.

The agent now communicates entity subscriptions to the backend in the correct format.

Sensu no longer includes the edition configuration attribute or header.

DNS resolution in Alpine Linux containers now uses the built-in Go resolver instead of the glibc
resolver.

The sensuctl user list command can now output yaml and wrapped-json formats when used
with the --format flag.

The dashboard check details page now displays long commands correctly.

The dashboard check details page now displays the timeout attribute correcily.

5.2.1 release notes

February 11, 2019 — The latest release of Sensu Go, version 5.2.1, is now available for download.
This release is a stability release with a key bug fix for proxy check functionality.See the upgrade guide
to upgrade Sensu to version 5.2.1.

FIXES:

Sensu agents now execute checks for proxy entities at the expected interval.

5.2.0 release notes

February 7, 2019 — The latest release of Sensu Go, version 5.2.0, is now available for download.
This release has a ton of exciting content, including the availability of our first enterprise-only features.
For more details on these features, see our blog post. 5.2.0 also has some key improvements and

http://localhost:1313/sensu-go/latest/installation/upgrade
https://blog.sensu.io/enterprise-features-in-sensu-go

fixes; we added support for self-signed CA certificates for sensuctl, check output truncation, and the
ability to manage silencing from the event details page on our web Ul just to name a few.See the
upgrade guide to upgrade Sensu to version 5.2.0.

IMPORTANT:

Due to changes in the release process, Sensu binary-only archives are now named following the
pattern sensu-enterprise-go 5.2.0 $0S_S$ARCH.tar.gz , where $OS is the operating system name
and $ARCH is the CPU architecture. These archives include all files in the top level directory. See the
installation guide for the latest download links.

NEW FEATURES:

Announcing our first enterprise-only features for Sensu Go: LDAP authentication, the Sensu
ServiceNow handler, and the Sensu JIRA handler. See the getting started guide for more information.
Sensu now provides the option to limit check output size or to drop check outputs following metric
extraction. See the checks reference for more information.

IMPROVEMENTS:

Sensu now includes support for Debian 8 and 9. See the installation guide to install Sensu for Debian.

Sensu’s binary-only distribution for Linux is now available for armé4 , armv5 , armvé , armv7 , and
386 in additionto amdé4 . See the installation guide for download links.

The Sensu dashboard now provides the ability to silence and unsilence events from the events page.

The Sensu dashboard entity page now displays the platform version and deregistration configuration.

sensuctl now supports TLS configuration options, allowing you to use a self-signed certificate without

adding it to the operating system’s CA store, either by explicitly trusting the signer or by disabling TLS

hostname verification. See the sensuctl reference for more information.

sensuctl now provides action-specific confirmation messages, like Created , Deleted , and
Updated .

FIXES:

Check TTL failure events now persist through cluster member failures and cluster restarts.
The Sensu backend now correctly handles errors for missing keepalive events.

Token substituted values are now omitted from event data to protect sensitive information.
Sensu now correctly processes keepalive and check TTL states following entity deletion.
sensuctl can now run sensuctl version Wwithout being configured.

When disabling users, sensuctl now provides the correct prompt for the action.

5.1.1 release notes

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.2/installation/install-sensu
http://localhost:1313/sensu-go/5.2/installation/auth
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler
http://localhost:1313/sensu-go/5.2/getting-started/enterprise
https://docs.sensu.io/sensu-go/5.2/reference/checks/#check-output-truncation-attributes
http://localhost:1313/sensu-go/5.2/installation/install-sensu
http://localhost:1313/sensu-go/5.2/installation/install-sensu
http://localhost:1313/sensu-go/5.2/sensuctl/reference/#global-flags

January 24, 2019 — The latest patch release of Sensu Go, version 5.1.1, is now available for
download. This release includes some key fixes and improvements, including refactored keepalive
functionality with increased reliability. Additionally, based on Community feedback, we have added
support for the Sensu agent and sensuctl for 32-bit Windows systems.See the upgrade guide to
upgrade Sensu to version 5.1.1.

NEW FEATURES:

Sensu now includes a sensuctl command and APl endpoint to test user credentials. See the access
control reference and APl docs for more information.

IMPROVEMENTS:

The Sensu agent and sensuctl tool are now available for 32-bit Windows. See the installation guide for
instructions.

Keepalive events now include an output attribute specifying the entity name and time last sent.

The Sensu backend includes refactored authentication and licensing to support future enterprise
features.

SECURITY:

Sensu 5.1.1 is built with Go version 1.11.5. Go 1.11.5 addresses a security vulnerability impacting TLS
handshakes and JWT tokens. See the CVE for more information.

FIXES:

Keepalive events now continue to execute after a Sensu cluster restarts.

When requested, on-demand check executions now correctly retrieve asset dependencies.

Checks now maintain a consistent execution schedule following updates to the check definition.
Proxy check request errors now include the check name and namespace.

When encountering an invalid line during metric extraction, Sensu now logs an error and continues
extraction.

sensuctl now returns an error when attempting to delete a non-existent entity.

sensuctl now removes the temporary file it creates when executing the sensuctl edit command.
The Sensu dashboard now recovers from errors correctly when shutting down.

The Sensu dashboard includes better visibility for buttons and menus in the dark theme.

5.1.0 release notes

December 19, 2018 — The latest release of Sensu Go, version 5.1.0, is now available for download.

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.1/reference/rbac#managing-users
http://localhost:1313/sensu-go/5.1/reference/rbac#managing-users
http://localhost:1313/sensu-go/5.1/api/auth
http://localhost:1313/sensu-go/5.1/installation/install-sensu
https://nvd.nist.gov/vuln/detail/CVE-2019-6486

This release includes an important change to the Sensu backend state directory as well as support for
Ubuntu 14.04 and some key bug fixes.See the upgrade guide to upgrade Sensu to version 5.1.0.

IMPORTANT:

NOTE: This applies only to Sensu backend binaries downloaded from s3-us-west-
2.amazonaws.com/sensu.io/sensu-go , ot to Sensu RPM or DEB packages.For Sensu backend
binaries, the default state-dir isnow /var/lib/sensu/sensu-backend instead of
/var/lib/sensu . To upgrade your Sensu backend binary to 5.1.0, make sure your
/etc/sensu/backend.yml configuration file specifies a state-dir . See the upgrade guide for more
information.

NEW FEATURES:

Sensu agents now include trusted-ca-file and insecure-skip-tls-verify configuration flags,
giving you more flexibility with certificates when connecting agents to the backend over TLS.

IMPROVEMENTS:
Sensu now includes support for Ubuntu 14.04.
FIXES:

The Sensu backend now successfully connects to an external etcd cluster.

SysVinit scripts for the Sensu agent and backend now include correct run and log paths.

Once created, keepalive alerts and check TTL failure events now continue to occur until a successful
event is observed.

When querying for an empty list of assets, sensuctl and the Sensu API now return an empty array
instead of null.

The sensuctl create command now successfully creates hooks when provided with the correct
definition.

The Sensu dashboard now renders status icons correctly in Firefox.

5.0.1 release notes

December 12, 2018 — Sensu Go 5.0.1 includes our top bug fixes following last week’s general
availability release.See the upgrade guide to upgrade Sensu to version 5.0.1.

FIXED:

The Sensu backend can now successfully connect to an external etcd cluster.

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.1/installation/upgrade#upgrading-sensu-backend-binaries-to-5-1-0
http://localhost:1313/sensu-go/5.1/reference/agent
http://localhost:1313/sensu-go/latest/installation/upgrade

The Sensu dashboard now sorts silences in ascending order, correctly displays status values, and
reduces shuffling in the event list.

Sensu agents on Windows now execute command arguments correctly.

Sensu agents now correctly include environment variables when executing checks.

Command arguments are no longer escaped on Windows.

Sensu backend environments now include handler and mutator execution requests.

5.0.0 release notes

December 5, 2018 — We're excited to announce the general availability release of Sensu Go!Sensu
Go is the flexible monitoring event pipeline, written in Go and designed for container-based and hybrid-
cloud infrastructures.Check out the Sensu blog for more information about Sensu Go and version 5.0.

For a complete list of changes from Beta 8-1, see the Sensu Go changelog.Going forward, this page
will be the official home for the Sensu Go changelog and release notes.

To get started with Sensu Go:
Download the sandbox

Install Sensu Go
Get started monitoring server resources

https://blog.sensu.io/sensu-go-is-here
https://github.com/sensu/sensu-go/blob/master/CHANGELOG.md#500---2018-11-30
https://github.com/sensu/sandbox/tree/master/sensu-go/core
http://localhost:1313/sensu-go/5.0/installation/install-sensu
http://localhost:1313/sensu-go/5.0/guides/monitor-server-resources

Get started with Sensu

Contents

Learn Sensu in 15 minutes

Create your first monitoring event pipeline using a local development environment pre-installed with
the essential Sensu stack.

Download the sandbox and learn Sensu Go
See more sandbox lessons
Join the community

Install Sensu Go (free tier)

Sensu Go is the flexible monitoring event pipeline, designed for container-based and multi-cloud
infrastructures.Get started with the free tier by installing an official Sensu distribution.

Install Sensu Go
Discover Sensu assets
Learn about license-activated features

Monitor at scale (licensed tier)

Sensu Inc. offers support packages for Sensu Go as well as license-activated features designed for
monitoring at scale.

Learn about license-activated features

Contact the sales team for a free trial
Activate your Sensu license

Build from source (OSS tier)

Sensu Go’s core is open source software, freely available under an MIT license.

https://sensu.io/community
https://bonsai.sensu.io/
https://sensu.io/products
https://sensu.io/products
https://sensu.io/sales/

Visit Sensu Go on GitHub
Learn about OSS-tier features
Build from source

https://github.com/sensu/sensu-go
https://sensu.io/products
https://github.com/sensu/sensu-go/blob/master/CONTRIBUTING.md#building

Getting started with license-activated
features

Contents

Sensu Go offers license-activated features designed for monitoring at scale.[Contact the Sensu sales
team for a personalized demo and free trial.License-activated features are available for all Sensu Go
packages and downloads.See the products page for a complete feature comparison.

License-activated features in Sensu Go

Manage your monitoring checks from your browser: Create, edit, and delete checks using the
Sensu web UI.

Authentication providers: Scale Sensu role-based access control with LDAP and Active Directory
integrations.

Resource filtering in the Sensu APl and sensuctl command-line tool: Designed for large
installations, label and field selectors let you filter Sensu API and sensuctl responses using custom
labels and resource attributes such as event status and check subscriptions.

Enterprise-tier assets: Connect your monitoring event pipelines to industry-standard tools like
ServiceNow and Jira with enterprise-tier assets.

Enterprise-class support: Sensu support gives you the assurance that help is available if you need it.
Our expert in-house team offers best-in-class support to help get you up and running smoothly.

Contact us for a free trial

For a personalized demo and free trial of license-activated features in Sensu Go, contact the Sensu
sales team.You can manage your Sensu account and contact support through account.sensu.io.

Contact the Sensu sales team

Log in to your Sensu account
Contact Sensu support

Get started with license-activated features in Sensu Go

https://sensu.io/sales/
https://sensu.io/sales/
https://sensu.io/products
https://bonsai.sensu.io/assets?tiers%5B%5D=4
https://sensu.io/support/
https://sensu.io/sales/
https://sensu.io/sales/
https://account.sensu.io/
https://sensu.io/sales/
https://account.sensu.io/
https://account.sensu.io/support

If you haven’t already, install the Sensu Go backend, agent, and sensuctl tool and configure sensuctl.

Log in to your Sensu account at account.sensu.ioand download your license file using the “Download
license” link.

Sensu account: Download Sensu license.

Sensu Go License

View and download your Sensu Go license key.

Account ID
44

Billing Email
- oee s fffftemmn e e

Issued
February 19, 2019

Expires
February 19, 2020

IIIIIIHHHHHHHIHHHHHHIIIIII

With the license file downloaded, you can activate your license using sensuctl.
sensuctl create --file sensu license.json

You can use sensuctl to view your license details at any time.
sensuctl license info

See these resources to get started using license-activated features in Sensu Go.

Set up authentication providers
Get started with assets

https://account.sensu.io/

Manage your Sensu license
Log in to your Sensu account
Contact Sensu support

https://account.sensu.io/
https://account.sensu.io/support

Sensu live demo

Contents
See a live demo of the Sensu dashboard (log in with username guest and password i<3sensu).

Explore the entities page to see what Sensu is monitoring, the events page to see the latest monitoring
events, and the checks page to see active service and metric checks.

You can also use the demo to try out sensuctl, the Sensu command line tool.First, install sensuctl on

your workstation, then configure sensuctl to connect to the demo.

sensuctl configure

? Sensu Backend URL: https://caviar.tf.sensu.io:8080
? Username: guest

? Password: i<3sensu

? Namespace: default

? Preferred output format: tabular
You should now be able to see the latest monitoring events.

sensuctl event list
See the sensuctl quickstart to get started using sensuctl.

About the demo

The Caviar project shown in the demo monitors the Sensu docs site using a licensed Sensu cluster of
three backends.

https://caviar.tf.sensu.io:3000/
https://caviar.tf.sensu.io:3000/default/entities
https://caviar.tf.sensu.io:3000/default/events
https://caviar.tf.sensu.io:3000/default/checks

Sensu sandbox

Contents

Welcome to the Sensu sandbox! The sandbox is the best place to get started with Sensu and try out
new features.

Learn Sensu

Start here: Building your first monitoring workflow

Container monitoring

Container and application monitoring with Sensu: Monitoring a sample app on Kubernetes

Metrics

Sensu + Prometheus: Collecting Prometheus metrics with Sensu

Upgrading from Sensu 1.x to Sensu Go

Sensu translator: Translating check configuration

https://github.com/sensu/sandbox/tree/master/sensu-go/lesson_plans/check-upgrade

Glossary of Terms

Contents

Agent

A lightweight client that runs on the infrastructure components you want to monitor.Agents self-register
with the backend, send keepalive messages, and execute monitoring checks.Each agent belongs to
one or more subscriptions that determine which checks the agent runs.An agent can run checks on the
entity it's installed on or by connecting to a remote proxy entity. Read more.

Asset

An asset is an executable that a check, handler, or mutator can specify as a dependency.Assets must
be a tar archive (optionally gzipped) with scripts or executables within a bin folder.At runtime, the
backend or agent installs required assets using the specified URL.Assets let you manage runtime
dependencies without using configuration management tools.Read more.

Backend

A flexible, scalable monitoring event pipeline.The backend processes event data using filters, mutators,
and handlers.lt maintains configuration files, stores recent event data, and schedules monitoring
checks.You can interact with the backend using the APIl, command line, and dashboard interfaces.
Read more.

Check

A recurring check run by the agent to determine the state of a system component or collect metrics.The
backend is responsible for storing check definitions, scheduling checks, and processing event data.
Check definitions specify the command to be executed, an interval for execution, one or more
subscriptions, and one or more handlers to process the resulting event data.Read more.

Check hook

A command executed by the agent in response to a check result, before creating a monitoring event.
Hooks create context-rich events by gathering related information based on the check status.Read
more.

Check token

A placeholder used in a check definition that the agent replaces with local information before executing
the check.Tokens let you fine-tune check attributes (like thresholds) on a per-entity level while re-using
the check definition.Read more.

Entity
Infrastructure components that you want to monitor.Each entity runs an agent that executes checks and

creates events.Events can be tied to the entity where the agent runs or a proxy entity that the agent
checks remotely.Read more.

Event
A representation of the state of an infrastructure component at a point in time, used by the backend to

power the monitoring event pipeline.Event data includes the result of the check or metric (or both), the
executing agent, and a timestamp.Read more.

Filter

Logical expressions that handlers evaluate before processing monitoring events.Filters can instruct
handlers to allow or deny matching events based on day, time, namespace, or any attribute in the
event data.Read more.

Handler

A component of the monitoring event pipeline that acts on events.Handlers can send monitoring event
data to an executable (or handler plugin), a TCP socket, or a UDP socket.Read more.

Mutator

An executable run by the backend prior to the handler to transform event data./Read more.

Plugin
Sensu Plugins are executables designed to work with Sensu event data, either as a check plugin,

mutator plugin, or handler plugin.You can write your own check executables in Go, Ruby, Python, and
more, or use one of over 200 plugins shared by the Sensu Community. Read more.

Proxy Entity
Components of your infrastructure that can’t run the agent locally (like a network switch or a website)

but still need to be monitored.Agents create events with information about the proxy entity in place of
the local entity when running checks with a specified proxy entity id.Read more.

RBAC

Role-based access control (RBAC) is Sensu’s local user management system.RBAC lets you manage
users and permissions with namespaces, users, roles, and role bindings.Read more.

Resources
Objects within Sensu that can be used to specify access permissions in Sensu roles and cluster roles.

Resources can be specific to a namespace (like checks and handlers) or cluster-wide (like users and
cluster roles).Read more.

Sensuct!

Command line tool that lets you interact with the backend.You can use sensuctl to create checks, view
events, create users, manage cluster, and more.Read more.

Silencing

Silences allow you to suppress execution of event handlers on an ad-hoc basis.You can use silencing
to schedule maintenances without being overloaded with alerts.Read more.

Sensu frequently asked questions

Contents

Thank you for visiting the Sensu FAQ!For a list of Sensu terms and definitions, see the glossary.

What platforms does Sensu support?
Is Sensu available as a hosted solution?
What are the hardware requirements for running a Sensu backend?

Is there an enterprise version of Sensu Go?
What'’s the difference between the OSS tier, free tier, and licensed tier?

How can | contact the Sensu sales team?

What can | monitor with Sensu?

Does Sensu include a time series database for long-term storage?

Can | connect Sensu Go to clients and servers from earlier versions of Sensu Core and Sensu
Enterprise?

Can | upgrade my Sensu version 1.x deployment to Sensu Go?

Which ports does Sensu use?

Can one Sensu backend monitor multiple sites?

Is it possible to use Uchiwa with Sensu Go?

What platforms does Sensu support?

Sensu Go is available for Linux, Windows (agent and CLI only), macOS (CLI only), and Docker.See the

list of supported platforms and the installation guide for more information.

Is Sensu available as a hosted solution?

No, Sensu is installed on your organization’s infrastructure alongside other applications and services.

See the list of supported platforms and the installation guide for more information.

What are the hardware requirements for running a Sensu

backend?

See the hardware requirements guide for minimum and recommended hardware to run a Sensu
backend.

|s there an enterprise version of Sensu Go?

Yes! Sensu Inc. offers support packages for Sensu Go as well as license-activated features designed
for monitoring at scale.Contact the Sensu sales team for a personalized demo, and see the getting
started guide for more information.

What's the difference between the OSS tier, free tier, and
licensed tier?

See the Enterprise page for a complete comparison.

How can | contact the Sensu sales team?

We’d love to chat about solving your organization’s monitoring challenges with Sensu.Get in touch with
us using this form.

What can | monitor with Sensu?

Sensu supports a wide range of plugins for monitoring everything from the server closet to the cloud.
Install the Sensu agent on the hosts you want to monitor, integrate with the Sensu API, or take
advantage of proxy entities to monitor anything on your network.

Sensuctl integrates with Bonsai, the Sensu asset index, where you'll find plugins, libraries, and
runtimes you need to automate your monitoring workflows. If you want to add your own asset to the

index, read the guide for sharing an asset on Bonsai.

You can also check out the 200+ plugins shared in the Sensu plugins community—including monitoring
checks for AWS, Jenkins, Puppet, InfluxDB, and SNMP—-or write your own Sensu Plugins in any

language using the Sensu Plugins spec.

https://blog.sensu.io/enterprise-features-in-sensu-go
https://sensu.io/sales/
https://sensu.io/enterprise
https://sensu.io/sales/
https://bonsai.sensu.io/
https://github.com/sensu-plugins
https://github.com/sensu-plugins/sensu-plugins-aws
https://github.com/sensu-plugins/sensu-plugins-jenkins
https://github.com/sensu-plugins/sensu-plugins-puppet
https://github.com/sensu-plugins/sensu-plugins-influxdb
https://github.com/sensu-plugins/sensu-plugins-snmp
https://docs.sensu.io/plugins/1.0/reference/#the-sensu-plugin-specification

Does Sensu include a time series database for long-term
storage?

No, Sensu does not store event data.We recommend integrating Sensu with a time series database,
like InfluxDB, to store event data.See the guide to storing metrics with InfluxDB to get started.

Can | connect Sensu Go to clients and servers from earlier
versions of Sensu Core and Sensu Enterprise?

No, Sensu Go agents and backends are not compatible with Sensu Core or Sensu Enterprise services.

Can | upgrade my Sensu version 1.x deployment to Sensu
Go?

Sensu Go is a complete redesign of the original Sensu; it uses separate packages, dependencies, and
data models to bring you powerful new features.See the Sensu Go release announcement for more
information.Due to these changes, some features of Sensu 1.x are no longer supported in Sensu Go,
such as standalone checks.To upgrade your Sensu 1.x deployment to Sensu Go, you'll need to
translate your Sensu 1.x configuration to the format expected by Sensu Go and install the new Sensu
Go services on your infrastructure.The Sensu Go upgrade guide includes a detailed feature comparison
between Sensu Go and Sensu 1.x as well as tools to help you get started.

Which ports does Sensu use?

The Sensu backend uses:

2379 (HTTP/HTTPS) Sensu storage client: Required for Sensu backends using an external etcd
instance

2380 (HTTP/HTTPS) Sensu storage peer: Required for other Sensu backends in a cluster

3000 (HTTP/HTTPS) Sensu dashboard: Required for all Sensu backends using a Sensu dashboard
8080 (HTTP/HTTPS) Sensu API: Required for all users accessing the Sensu API

8081 (WS/WSS) Agent API: Required for all Sensu agents connecting to a Sensu backend

The Sensu agent uses:

https://www.influxdata.com/
https://blog.sensu.io/sensu-go-is-here

3030 (TCP/UDP) Sensu agent socket: Required for Sensu agents using the agent socket
3031 (HTTP) Sensu agent API: Required for all users accessing the agent API
8125 (UDP, TCP on Windows) StatsD listener: Required for all Sensu agents using the StatsD listener

The agent TCP and UDP sockets are deprecated in favor of the agent API.

For more information, see the guide to securing Sensu.

Can one Sensu backend monitor multiple sites?

Yes, as long as the port requirements described above are met, a single Sensu backend can monitor
Sensu agents at multiple sites.

Is it possible to use Uchiwa with Sensu Go?

Due to Sensu Go’s implementation, it is not possible to use Uchiwa with Sensu Go. Sensu Go does
have a built-in dashboard that you can use to visually interact with your Sensu Go deployment.

Sensu Go media

Contents

Talks

Greg Poirier - Sensu Go Deep Dive at Sensu Summit 2017
Greg Poirier - Sensu Go Assets
Sean Porter, Influx Days - Data Collection & Prometheus Scraping with Sensu 5.0

Blog posts

Simon Plourde: Understanding RBAC in Sensu Go

Sean Porter: Self-service monitoring checks in Sensu Go

Christian Michel - How to monitor 1,000 network devices using Sensu Go and Ansible
Eric Chlebek - Filters: valves for the Sensu monitoring event pipeline

Greg Schofield - Sensu Habitat Core Plans are Here

Nikki Attea - Check output metric extraction with InfluxDB & Grafana

Jef Spaleta - Migrating to 5.0
Anna Plotkin - Sensu Go is here!

Tutorials

Sensu sandbox tutorials

Podcasts

Sensu Community Chat November 2018

NOTE: Prior to October 2018, Sensu Go was known as Sensu 2.0.

https://www.youtube.com/watch?v=mfOk0mOfkvA
https://www.youtube.com/watch?v=JNHs4VD_-1M&t=1s
https://www.youtube.com/watch?v=vn32Gx8rL4o
https://blog.sensu.io/understanding-rbac-in-sensu-go
https://blog.sensu.io/self-service-monitoring-checks-in-sensu-go
https://blog.sensu.io/network-monitoring-tools-sensu-ansible
https://blog.sensu.io/filters-valves-for-the-sensu-monitoring-event-pipeline
https://blog.chef.io/2018/08/22/guest-post-sensu-habitat-core-plans-are-here/
http://blog.sensu.io/check-output-metric-extraction-with-influxdb-grafana
https://blog.sensu.io/migrating-to-2.0-the-good-the-bad-the-ugly
https://blog.sensu.io/sensu-go-is-here
https://www.youtube.com/watch?v=5tIPv-rJMZU

Installing Sensu

Contents

Select a platform from the dropdown above.Sensu Go is available for Linux, Windows (agent and CLI
only), macOS (CLI only), and Docker.See the list of supported platforms for more information.Sensu
downloads are provided under the Sensu License.

Install the Sensu backend

The Sensu backend is available for Ubuntu/Debian, RHEL/CentOS, and Docker.In addition to
packages, binary-only distributions for Linux are available for amdé64 , armé4 , armv5 , armvé ,
armv7 ,and 386 architectures.

1. Install the package

Ubuntu/Debian

Add the Sensu repository.

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

Install the sensu-go-backend package.

sudo apt-get install sensu-go-backend

RHEL/CentOS

https://sensu.io/sensu-license

Add the Sensu repository.

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

Install the sensu-go-backend package.

sudo yum install sensu-go-backend

2. Create the configuration file

Copy the example backend config file to the default config path.

sudo cp /usr/share/doc/sensu-go-backend-5.8.0/backend.yml.example

/etc/sensu/backend. yml

NOTE: The Sensu backend can be configured using a /etc/sensu/backend.yml configuration file or
using sensu-backend start configuration flags. For more information, see the backend reference.

3. Start the service

Start the backend using a service manager.

sudo service sensu-backend start

Verify that the backend is running.

service sensu-backend status

Next steps

Now that you've installed the Sensu backend:

Install the Sensu agent
Install sensuctl

Sign in to the dashboard

Install the Sensu agent

The Sensu agent is available for Ubuntu/Debian, RHEL/CentOS, Windows, and Docker.In addition to
packages, binary-only distributions for Linux are available for amdé4 , armé4 , armv5 , armvé ,
armv?7 ,and 386 architectures and for Windows amd64 and 386 architectures.

1. Install the package

Ubuntu/Debian

Add the Sensu repository.

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

Install the sensu-go-agent package.

sudo apt-get install sensu-go-agent

RHEL/CentOS

Add the Sensu repository.

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

Install the sensu-go-agent package.

sudo yum install sensu-go-agent

Windows

Download the Sensu agent for Windows amdé4 or 386 architectures.

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-
go-agent 5.8.0.2735 en-US.x64.msi -OutFile "S$env:userprofile\sensu-go-

agent 5.8.0.2735 en-US.x64.msi"

Start the installation wizard.

msiexec.exe /i S$env:userprofile\sensu-go-agent 5.8.0.2735 en-US.x64.msi

NOTE: To make this an unattended install, you can use /qn as part of the install command.

2. Create the configuration file

Linux

Copy the example agent config file to the default config path.

sudo cp /usr/share/doc/sensu-go-agent-5.8.0/agent.yml.example /etc/sensu/agent.yml

NOTE: The Sensu agent can be configured using a /etc/sensu/agent.yml configuration file or
using sensu-agent start configuration flags. For more information, see the agent reference.

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-go-agent_5.8.0.2735_en-US.x64.msi
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-go-agent_5.8.0_2380_en-US.x86.msi

Windows

Copy the example agent config file from $ALLUSERSPROFILE%\sensu\config\agent.yml.example
(default: c:\Programbata\sensu\config\agent.yml.example) tO

C:\ProgramData\sensu\config\agent.yml

cp C:\ProgramData\sensu\config\agent.yml.example C:\ProgramData\sensu\config\agent.yml

3. Start the service

Linux

Start the agent using a service manager.

sudo service sensu-agent start

Verify that the agent is running.

service sensu-agent status

Windows

Change to the sensu\sensu-agent\bin directory where you've installed Sensu.

cd 'C:\Program Files\sensu\sensu-agent\bin'

Run the sensu-agent executable.

./sensu-agent.exe

Run the following command to install and start the agent.

./sensu-agent service install

Verify that the agent is running.

sSc.exe query SensuAgent

Next steps
Now that you've installed the Sensu agent:

Install sensucitl
Create a monitoring event

Install sensuctl

Sensu Go can be configured and used with the sensuctl command line utility.Sensuctl is available for
Ubuntu/Debian, RHEL/CentOS, Windows, and macOS.

1. Install the package

Ubuntu/Debian

Add the Sensu repository.

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

Install the sensu-go-cli package.

sudo apt-get install sensu-go-cli

RHEL/CentOS

Add the Sensu repository.

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

Install the sensu-go-cli package.

sudo yum install sensu-go-cli

Windows

Download sensuctl for Windows amdé4 .

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-
enterprise-go 5.8.0 windows amdé64.tar.gz -OutFile C:\Users\Administrator\sensu-

enterprise-go 5.8.0 windows amdé64.tar.gz

Or download sensuctl for Windows 386 .

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-
enterprise-go 5.8.0 windows 386.tar.gz -OutFile C:\Users\Administrator\sensu-

enterprise-go 5.8.0 windows 386.tar.gz

See the verifying Sensu guide to verify your download using checksums.

macOS

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_386.tar.gz

Download the latest release. See the verifying Sensu guide to verify your download using checksums.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go 5.8.0 darwin amdé64.tar.gz

Extract the archive.

tar -xvf sensu-enterprise-go 5.8.0 darwin amdé64.tar.gz

Copy the executable into your PATH.

sudo cp sensuctl /usr/local/bin/

2. Configure sensuctl

You must configure sensuctl before it can connect to Sensu Go.Run sensuctl configure to get
started.

$ sensuctl configure

? Sensu Backend URL: http://127.0.0.1:8080
? Username: admin

? PaSSorely wWWwwiisisisw

? Namespace: default

? Preferred output format: tabular

By default, your Sensu installation comes with a user named admin with password pessword! .We
strongly recommended that you change the password immediately.Once authenticated, you can
change the password using the change-password command.

$ sensuctl user change-password --interactive
? Current Password: * ok ok ok ok ok ok ok ok
? Password: Kk ok ok ok kK Kk

? Confirm: K,k K kKKK KK

You can change individual values of your sensuctl configuration with the config subcommand.

sensuctl config set-namespace default

See the sensuctl reference for more information about using sensuctl.

3. Activate licensed-tier features

Sensu Inc. offers support packages for Sensu Go as well as license-activated features designed for
monitoring at scale.To learn more about license-activated features in Sensu Go, contact the Sensu
sales team.

If you already have a Sensu license, log in to your Sensu account and download your license file, then
activate your license using sensuctl.

sensuctl create --file sensu license.json

You can use sensuctl to view your license details at any time.

sensuctl license info

For more information about license-activated features in Sensu Go, see the getting started guide.

Next steps

Now that you've installed sensuctl:

See the sensuctl quick reference
Create a monitoring event pipeline

https://sensu.io/sales
https://sensu.io/sales
https://account.sensu.io/

Deploy Sensu with Docker

Sensu Go can be run via Docker or rkt using the sensu/sensu image. When running Sensu from
Docker there are a couple of things to take into consideration.

The backend requires four exposed ports and persistent storage. This example uses a shared
filesystem. Sensu Go is backed by a distributed database, and its storage should be provisioned
accordingly. We recommend local storage or something like Throughput Optimized or Provisioned
IOPS EBS if local storage is unavailable. The exposed ports are:

2380: Sensu storage peer listener (only other Sensu backends need access to this port)
3000: Sensu dashboard

8080: Sensu API (all users need access to this port)

8081: Agent API (all agents need access to this port)

We suggest, but do not require, persistent storage for Sensu backends and Sensu agents. The Sensu
agent will cache runtime assets locally for each check, and the Sensu backend will cache runtime
assets locally for each handler and mutator. This storage should be unique per sensu-backend/sensu-
agent process.

Start a Sensu backend

docker run -v /var/lib/sensu:/var/lib/sensu -d --name sensu-backend -p 2380:2380 -p

3000:3000 -p 8080:8080 -p 8081:8081 sensu/sensu:latest sensu-backend start

Start a Sensu agent

In this case, we’re starting an agent with the webserver and system subscriptions as an example.This
assumes that the Sensu backend is running on another host named sensu.yourdomain.com.If you are
running these locally on the same system, add --1ink sensu-backend to your Docker arguments
and change the backend URL to --backend-url ws://sensu-backend:8081 .

docker run -v /var/lib/sensu:/var/lib/sensu -d --name sensu-agent sensu/sensu:latest
sensu-agent start --backend-url ws://sensu.yourdomain.com:8081 —--subscriptions

webserver,system --cache-dir /var/lib/sensu

NOTE: You can configure the backend and agent log levels by using the --1log-level flag on either

https://www.docker.com/
https://coreos.com/rkt
https://hub.docker.com/r/sensu/sensu/

process. Log levels include panic, fatal , error , warn, info ,and debug , defaulting to

warn .

sensuctl and Docker

It's best to install and run sensuctl locally and point it at the exposed API port for your the Sensu
backend.The sensuctl utility stores configuration locally, and you'll likely want to persist it across uses.
While it can be run from the docker container, doing so may be problematic.

Installing Sensu Plugins

Contents

Sensu’s functionality can be extended through the use of plugins.Plugins can provide executables for
performing status or metric checks, mutators for changing data to a desired format, or handlers for
performing an action on a Sensu event.

Installing plugins using assets

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins. To get started
using and deploying assets, we recommend starting with this guide on installing assets. It has
everything you need to familiarize yourself with workflows involving assets.

Using the Bonsai Asset Index

Sensu’s Bonsai Asset Index provides a centralized place for downloading and sharing plugin assets. If
you ever need to find an asset, this is the first to stop. There, you’ll find plugins, libraries and runtimes
you need to automate your monitoring workflows. If you’d like to share your asset on Bonsai, we

recommend reading this guide on sharing your asset.

Installing plugins using the sensu-install tool

If you’'ve used previous versions of Sensu, you'll be familiar with the Sensu Plugins organization on
GitHub. While some of these plugins are Sensu Go-enabled, not all of them contain the components
necessary to work with Sensu Go. See individual plugin instructions for information about compatibility
with Sensu Go.

NOTE: Plugins found in the Sensu Plugins GitHub organization are community-maintained, meaning
that anyone can improve on a plugin found there. If you have a question about how you can get
involved in adding to, or providing a plugin, head to the Sensu Community Slack channel. Maintainers
are always happy to help answer questions and point you in the right direction.

http://localhost:1313/plugins/latest/reference
https://bonsai.sensu.io/
https://github.com/sensu-plugins
https://slack.sensu.io/

To use community plugins that are not yet Sensu Go-enabled, you'll need to use the sensu-install
tool. This tool comes with an embedded version of Ruby, so there’s no need for Ruby to be installed on
your system.

To install a Sensu Community Plugin with Sensu Go:

1. Install the sensu-plugins-ruby package from packagecloud.

2. Use the sensu-install command to install any plugins in the Sensu Plugins organization on
GitHub by repository name. Plugins are installed into /opt/sensu-plugins-
ruby/embedded/bin

sensu-install --help

Usage: sensu-install [options]

-h, --help Display this message

-v, —--verbose Enable verbose logging

-p, --plugin PLUGIN Install a Sensu PLUGIN

-P, --plugins PLUGIN[, PLUGIN] PLUGIN or comma-delimited list of Sensu plugins
to install

-e, ——extension EXTENSION Install a Sensu EXTENSION

-E, —-—extensions EXTENSION[,EXT] EXTENSION or comma-delimited list of Sensu
extensions to install

-s, —-source SOURCE Install Sensu plugins and extensions from a
custom SOURCE

-c, —--clean Clean up (remove) other installed versions of
the plugin(s) and/or extension(s)

-x, -—--proxy PROXY Install Sensu plugins and extensions via a

PROXY URL

For example, to install the Sensu InfluxDB Plugin:

sudo sensu-install -p influxdb

To install a specific version of the Sensu InfluxDB Plugin with sensu-install , run:

sudo sensu-install -p 'sensu-plugins-influxdb:2.0.0'

https://github.com/sensu-plugins
https://packagecloud.io/sensu/community
https://github.com/sensu-plugins
https://github.com/sensu-plugins
https://github.com/sensu-plugins/sensu-plugins-influxdb

We strongly recommend using a configuration management tool or using Sensu assets to pin the
versions of any plugins installed in production.

NOTE: If a plugin is not Sensu Go-enabled and there is not analog on Bonsai, it is possible to add the
necessary functionality. This guide on [discourse.sensu.io] will walk you through that process.

Troubleshooting the sensu-install tool
Some plugins, such as the Sensu Disk Checks Plugin, require additional tools to install successfully.
Depending on the plugin, you may need to install developer tool packages.

Ubuntu/Debian:

sudo apt-get update

sudo apt-get install build-essential

RHEL/CentOS:

sudo yum update

sudo yum groupinstall "Development Tools"

https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165
https://github.com/sensu-plugins/sensu-plugins-disk-checks

Upgrading Sensu

Contents

Upgrading from 5.0.0 or later

Upgrading Sensu clusters from 5.7.0 or earlier to 5.8.0 or later
Upgrading Sensu backend binaries t0 5.1.0

Upgrading from 1.x or later

Upgrading to the latest version of Sensu Go from 5.0.0 or
later

To upgrade to the latest version of Sensu Go from version 5.0.0 or later, first install the latest
packages.

Then restart the services.
NOTE: For systems using systemd , run sudo systemctl daemon-reload before restarting the
services.

Restart the Sensu agent

sudo service sensu-agent restart

Restart the Sensu backend

sudo service sensu-backend restart

You can use the version command to determine the installed version using the sensu-agent ,
sensu-backend , and sensuctl tools. For example: sensu-backend version .

Upgrading Sensu clusters from 5.7.0 or earlier to 5.8.0 or
later

NOTE: This applies only to Sensu clusters with multiple backend nodes.

Due to updates to etcd serialization, Sensu clusters with multiple backend nodes must be shut down
while upgrading from Sensu Go 5.7.0 or earlier to 5.8.0 or later.See the backend reference for more
information about stopping and starting backends.

Upgrading Sensu backend binaries to 5.1.0

NOTE: This applies only to Sensu backend binaries downloaded from s3-us-west-
2.amazonaws.com/sensu.io/sensu-go , hot to Sensu RPM or DEB packages.

For Sensu backend binaries, the default state-dir in5.1.0isnow /var/lib/sensu/sensu-
backend instead of /var/lib/sensu .To upgrade your Sensu backend binary to 5.1.0, first download
the latest version, then make sure the /etc/sensu/backend.yml configuration file specifies a

state-dir .To continue using /var/lib/sensu asthe state-dir , add the following configuration
to /etc/sensu/backend.yml .

/etc/sensu/backend.yml configuration to store backend data at /var/lib/sensu

state-dir: "/var/lib/sensu"

Then restart the backend.

Migrating to Sensu Go from Sensu Core 1.x

This guide provides general information for migrating your Sensu instance from Sensu Core 1.x to
Sensu Go 5.0.For instructions and tools to help you translate your Sensu configuration from Sensu
Core 1.x to Sensu Go, see the following resources.

Sensu translator project
Jef Spaleta - Check configuration upgrades with the Sensu Go sandbox

Sensu Go includes important changes to all parts of Sensu: architecture, installation, resource
definitions, event data model, check dependencies, filter evaluation, and more.Sensu Go also includes
a lot of powerful features to make monitoring easier to build, scale, and offer as a self-service tool to
your internal customers.

Packaging

http://localhost:1313/sensu-core/1.6/
https://github.com/sensu/sensu-translator
https://blog.sensu.io/check-configuration-upgrades-with-the-sensu-go-sandbox

Architecture

Entities

Checks

Events

Handlers

Filters

Assets

Role-based access control

Silencing
Token substitution

Aggregates
API

Custom attributes

Packaging

Sensu is now provided as three packages: sensu-go-backend, sensu-go-agent, and sensu-go-cli
(sensuctl).This results in a fundamental change in Sensu terminology from Sensu Core 1.x: the server
is now the backend; the client is now the agent.To learn more about new terminology in Sensu Go, see

the glossary.

Architecture

The external RabbitMQ transport and Redis datastore in Sensu Core 1.x have been replaced with an
embedded transport and etcd datastore in Sensu Go.The Sensu backend and agent are configured
using YAML files or using the sensu-backend Or sensu-agent command-line tools, instead of using
JSON files.Sensu checks and pipeline elements are now configured via the API or sensuctl tool instead
of JSON files.See the backend, agent, and sensuctl reference docs for more information.

Entities

“Clients” are now represented within Sensu Go as abstract “entities” that can describe a wider range of
system components (network gear, web server, cloud resource, etc.)Entities include “agent entities”
(entities running a Sensu agent) and familiar “proxy entities”.See the entity reference and the guide to

monitoring external resources for more information.

Checks

Standalone checks are no longer supported in Sensu Go, although similar functionality can be

https://github.com/etcd-io/etcd/tree/master/Documentation
https://blog.sensu.io/self-service-monitoring-checks-in-sensu-go

achieved using role-based access control, assets, and entity subscriptions.There are also a few
changes to check definitions to be aware of. The stdin check attribute is no longer supported in

Sensu Go, and Sensu Go no longer tries to run a “default” handler when executing a check without a
specified handler. Additionally, check subdues are not yet available in Sensu Go.

Check hooks are now a resource type in Sensu Go, meaning that hooks can be created, managed,
and reused independently of check definitions.You can also execute multiple hooks for any given
response code.

Events

All check results are now considered events and are processed by event handlers.You can use the
built-in incidents filter to recreate the Sensu Core 1.x behavior in which only check results with a non-
zero status are considered events.

Handlers

Transport handlers are no longer supported by Sensu Go, but you can create similar functionality using
a pipe handler that connects to a message bus and injects event data into a queue.

Filters

Ruby eval logic has been replaced with JavaScript expressions in Sensu Go, opening up powerful
possibilities to filter events based on occurrences and other event attributes.As a result, the built-in
occurrences filter in Sensu Core 1.x is not provided in Sensu Go, but you can replicate its functionality
using this filter definition.Sensu Go includes three new built-in filters: only-incidents, only-metrics, and
allow-silencing.Sensu Go does not yet include a built-in check dependencies filter or a filter-when
feature.

Assets

The sensu-install tool has been replaced in Sensu Go by assets, shareable, reusable packages that
make it easy to deploy Sensu plugins.Sensu Plugins in Ruby can still be installed via sensu-install by

installing sensu-plugins-ruby; see the installing plugins guide for more information.

Role-based access control

Role-based access control (RBAC) is a built-in feature of the open-source version of Sensu Go.RBAC

https://blog.sensu.io/self-service-monitoring-checks-in-sensu-go
https://github.com/sensu-plugins
https://packagecloud.io/sensu/community

allows management and access of users and resources based on namespaces, groups, roles, and
bindings.To learn more about setting up RBAC in Sensu Go, see the RBAC reference and the guide to

creating a read-only user.

Silencing

Silencing is now disabled by default in Sensu Go and must be enabled explicitly using the built-in
not silenced Afilter.

Token substitution

The syntax for using token substitution has changed from using triple colons to using double curly
braces.

Aggregates

Check aggregates are supported through the license-activated Sensu Go Aggregate Check Plugin.

API

In addition to the changes to resource definitions, Sensu Go includes a new, versioned API. See the
API overview for more information.

Custom attributes

Custom check attributes are no longer supported in Sensu Go.Instead, Sensu Go provides the ability to
add custom labels and annotations to entities, checks, assets, hooks, filters, mutators, handlers, and
silences.See the metadata attributes section in the reference documentation for more information about
using labels and annotations (for example: metadata attributes for entities).

https://bonsai.sensu.io/assets/sensu/sensu-aggregate-check

Authentication

Contents

Managing authentication providers

Configuring authentication providers
LDAP authentication

Examples

Specification

Troubleshooting

Active Directory authentication
Examples

Specification

Troubleshooting

Sensu requires username and password authentication to access the Sensu dashboard, API, and
command line tool (sensuctl).For Sensu’s default user credentials and more information about
configuring Sensu role based access control, see the RBAC reference and guide to creating users.

In addition to built-in RBAC, Sensu includes license-activated support for authentication using external
authentication providers.Sensu currently supports Microsoft Active Directory and standards-compliant
Lightweight Directory Access Protocol tools like OpenLDAP.

LICENSED TIER: Unlock authentication providers in Sensu Go with a Sensu license. To activate your
license, see the getting started guide.

Managing authentication providers

You can view and delete authentication providers using sensuctl and the authentication providers API.
To set up an authentication provider for Sensu, see the section on configuring authentication providers.

To view active authentication providers:

sensuctl auth list

To view configuration details for an authentication provider named openldap :
sensuctl auth info openldap
To delete an authentication provider named openldap :

sensuctl auth delete openldap

Configuring authentication providers

1. Write an authentication provider configuration definition
Write an authentication provider configuration definition.
For standards-compliant Lightweight Directory Access Protocol tools like OpenLDAP, see the LDAP

configuration examples and specification.For Microsoft Active Directory, see the AD configuration
examples and specification.

2. Apply the configuration using sensuctl

Log in to sensuctl as the default admin user and apply the configuration to Sensu.

sensuctl create --file filename.json

You can verify that your provider configuration has been applied successfully using sensuctl.

sensuctl auth list

Type Name

Idap openldap

3. Integrate with Sensu RBAC

Now that you've configured an authentication provider, you’ll need to configure Sensu RBAC to give
those users permissions within Sensu.Sensu RBAC allows management and access of users and
resources based on namespaces, groups, roles, and bindings.See the RBAC reference for more
information about configuring permissions in Sensu and implementation examples.

Namespaces partition resources within Sensu. Sensu entities, checks, handlers, and other
namespaced resources belong to a single namespace.

Roles create sets of permissions (get, delete, etc.) tied to resource types. Cluster roles apply
permissions across namespaces and include access to cluster-wide resources like users and
namespaces.

Role bindings assign a role to a set of users and groups within a namespace; cluster role bindings
assign a cluster role to a set of users and groups cluster-wide.

To enable permissions for external users and groups within Sensu, create a set of roles, cluster roles,
role bindings, and cluster role bindings that map to the usernames and group names found in your
authentication providers.Make sure to include the group prefix and username prefix when creating
Sensu role bindings and cluster role bindings.Without an assigned role or cluster role, users can sign in
to the Sensu dashboard but can’t access any Sensu resources.

4. Log in to Sensu

Once you’ve configured the correct roles and bindings, log in to sensuctl and the Sensu dashboard
using your single-sign-on username and password (no prefix required).

LDAP authentication

Sensu offers license-activated support for using a standards-compliant Lightweight Directory Access
Protocol tool for authentication to the Sensu dashboard, API, and sensuctl.The Sensu LDAP
authentication provider is tested with OpenL DAP.Active Directory users should head over to the Active

Directory section.

LDAP configuration examples

Example LDAP configuration: Minimum required attributes

YML

type: ldap

api version: authentication/v2

https://www.openldap.org/

metadata:
name: openldap
spec:
servers:
- group_search:
base dn: dc=acme, dc=org
host: 127.0.0.1
user search:

base dn: dc=acme,dc=org

JSON
{
"type": "ldap",
"api version": "authentication/v2",
"spec": {
"servers": [
{
"host": "127.0.0.1",
"group search": ({
"base dn": "dc=acme,dc=org"
}y
"user search": ({
"base dn": "dc=acme,dc=org"
}
}
]
by
"metadata": {
"name": "openldap"

Example LDAP configuration: All attributes
YML
type: ldap

api version: authentication/v2

metadata:

name: openldap
spec:
groups_prefix: ldap
servers:
- binding:
password: P@sswOrd!
user dn: cn=binder,dc=acme,dc=o0rg
client cert file: /path/to/ssl/cert.pem
client key file: /path/to/ssl/key.pem
group_ search:
attribute: member
base dn: dc=acme,dc=org
name attribute: cn
object class: groupOfNames
host: 127.0.0.1
insecure: false
port: 636
security: tls
trusted ca file: /path/to/trusted-certificate-authorities.pem
user search:
attribute: uid
base dn: dc=acme,dc=org
name attribute: cn
object class: person

username prefix: ldap

JSON
{

"type": "ldap",
"api version": "authentication/v2",
"spec": {

"servers": [

{
"host": "127.0.0.1",

"port": 636,

"insecure": false,

"security": "tls",

"trusted ca file": "/path/to/trusted-certificate-authorities.pen",
"client cert file": "/path/to/ssl/cert.pem",

"client key file": "/path/to/ssl/key.pem",

"binding": {

"user dn": "cn=binder,dc=acme,dc=org",

"password": "P@sswOrd!"
y
"group search": {
"base dn": "dc=acme,dc=org",
"attribute": "member",
"name attribute": "cn",
"object class": "groupOfNames"
}y
"user search": {
"base dn": "dc=acme,dc=org",
"attribute": "uid",
"name attribute": "cn",
"object class": "person"
}
}
1,
"groups prefix": "ldap",
"username prefix": "ldap"
by
"metadata": {
"name": "openldap"

LDAP specification

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
LDAP definitions should always be of type 1dap .

required true

type String

example
"typeﬂ . "ldapﬂ

api_version

description Top-level attribute specifying the Sensu API group and version. For
LDAP definitions, this attribute should always be authentication/v2 .

required true
type String
example
"api version": "authentication/v2"

metadata

description Top-level map containing the LDAP definition name . See the metadata
attributes reference for details.

required true
type Map of key-value pairs
example
"metadata": {
"name": "openldap"

|

spec
description Top-level map that includes the LDAP spec attributes.
required true

type Map of key-value pairs

example

"spec": {
"servers": [
{
"host": "127.0.0.1",
"port": 636,
"insecure": false,
"security": "tls",

"trusted ca file":
authorities.pem",
"client cert file":
"client key file":
"binding": {

"/path/to/trusted-certificate-

"/path/to/ssl/cert.pem",
"/path/to/ssl/key.pem",

"user dn": "cn=binder,dc=acme,dc=org",
"password": "P@sswOrd!"
},
"group_ search": {
"base dn": "dc=acme,dc=org",
"attribute": "member",
"name attribute": "cn",
"object class": "groupOfNames"
},
"user search": {
"base dn": "dc=acme,dc=org",
"attribute": "uid",
"name attribute": "cn",
"object class": "person"
}
}
1,
"groups_ prefix": "ldap",
"username prefix": "ldap"

Spec attributes

servers

description An array of LDAP servers for your directory. During the authentication
process, Sensu attempts to authenticate using each LDAP server in

sequence.
required true
type Array
example
"servers": [
{
"host": "127.0.0.1",
"port": 636,
"insecure": false,
"security": "tls",
"trusted ca file": "/path/to/trusted-certificate-

authorities.pem",
"client cert file": "/path/to/ssl/cert.pem",
"client key file": "/path/to/ssl/key.pem",
"binding": {

"user dn": "cn=binder, dc=acme,dc=org",
"password": "P@sswOrd!"
b,
"group_ search": {
"base dn": "dc=acme,dc=org",
"attribute": "member",
"name attribute": "cn",
"object class": "groupOfNames"
b,
"user search": ({
"base dn": "dc=acme,dc=org",
"attribute": "uid",
"name attribute": "cn",
"object class": "person"

groups_prefix

description The prefix added to all LDAP groups. Sensu prepends prefixes with a
colon. For example, for the groups prefix 1dap and the group dev , the
resulting group name in Sensu is 1dap:dev . Use this prefix when
integrating LDAP groups with Sensu RBAC role bindings and cluster role

required false

type String

example

"groups_ prefix": "ldap"

username_prefix

description The prefix added to all LDAP usernames. Sensu prepends prefixes with

a colon. For example, for the username prefix 1dap and the user
alice , the resulting username in Sensu is 1dap:alice . Use this

prefix when integrating LDAP users with Sensu RBAC role bindings and
cluster role bindings. Users do not need to provide this prefix when
logging in to Sensu.

required false

type String

example

"username prefix": "ldap"

Server attributes

description LDAP server IP address or EQDN
required true
type String

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

example

"host": "127.0.0.1"

port
description LDAP server port
required true
type Integer
default 389 for insecure connections, 636 for TLS connections
example
"port": 636

insecure

description Skips SSL certificate verification when setto true . WARNING: Do not
use an insecure connection in production environments.

required false
type Boolean
default false
example
"insecure": false

security

description Determines the encryption type to be used for the connection to the
LDAP server: insecure (unencrypted connection, not recommended
for production), t1s (secure encrypted connection), or starttls
(unencrypted connection upgrades to a secure connection).

type String

default "tlg"

example
"security": "tls"

trusted _ca_file

description Path to an alternative CA bundle file in PEM format to be used instead of
the system’s default bundle. This CA bundle is used to verify the server’s
certificate.
required false
type String
example
"trusted ca file": "/path/to/trusted-certificate-

authorities.pem"

client_cert_file

description Path to the certificate that should be sent to the server if it requests it
required false
type String
example
"client cert file": "/path/to/ssl/cert.pem"

client_key file

description Path to the key file associated with the client cert file

required false

type String

example
"client key file": "/path/to/ssl/key.pem"

binding

description The LDAP account that performs user and group lookups. If your sever
supports anonymous binding, you can omit the user dn Or password
attributes to query the directory without credentials.

required false
type Map
example
"binding": {
"user dn": "cn=binder, dc=acme,dc=org",
"password": "P@sswOrd!"

group_search

description Search configuration for groups. See the group search attributes for
more information.

required true
type Map
example
"group_ search": {
"base dn": "dc=acme,dc=org",
"attribute": "member",
"name attribute": "cn",

"object class": "groupOfNames"

}
user_search

description Search configuration for users. See the user search attributes for more
information.
required true
type Map
example
"user search": {
"base dn": "dc=acme,dc=org",
"attribute": "uid",
"name attribute": "cn",
"object class": "person"

Binding attributes

user_dn

description The LDAP account that performs user and group lookups. We
recommend using a read-only account. Use the distinguished name (DN)
format, such as cn=binder, cn=users,dc=domain, dc=t1d . If your sever
supports anonymous binding, you can omit this attribute to query the
directory without credentials.

required false
type String
example

"user dn": "cn=binder,dc=acme,dc=org"

password

description Password for the user dn account. If your sever supports anonymous
binding, you can omit this attribute to query the directory without
credentials.
required false
type String
example
"password": "P@sswOrd!"

Group search attributes

base dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme, dc=org searches within the acme.org directory.

required true
type String
example
"base dn": "dc=acme,dc=org"

attribute

description Used for comparing result entries. This is combined with other filters as

" (<Attribute>=<value>)" .

required false

type String

default "member"

example
"attribute": "member"

name_attribute

description Represents the attribute to use as the entry name.
required false
type String
default "cn"
example
"name attribute": "cn"

object_class

description Identifies the class of objects returned in the search result. This is
combined with other filters as " (objectClass=<ObjectClass>)" .

required false
type String
default "groupOfNames"
example
"object class": "groupOfNames"

User search attributes

base dn

description Tells Sensu which part of the directory tree to search. For example,

dc=acme, dc=org Ssearches within the acme.org directory.

required true
type String
example
"base dn": "dc=acme,dc=org"

attribute

description Used for comparing result entries. This is combined with other filters as

" (<Attribute>=<value>)" .

required false
type String
default el ™
example
"attribute": "uid"

name_attribute

description Represents the attribute to use as the entry name.
required false

type String

default "cn"

example

"name attribute": "cn

object_class

description Identifies the class of objects returned in the search result. This is
combined with other filters as " (objectClass=<ObjectClass>)" .

required false
type String
default "person"
example
"object class": "person"

Metadata attributes

name

description A unique string used to identify the LDAP configuration. Names cannot
contain special characters or spaces (validated with Go regex
A\w\.\-]+\z)
required true
type String
example
"name": "openldap"

LDAP troubleshooting

In order to troubleshoot any issue with LDAP authentication, the first stepshould always be to increase
log verbosity of sensu-backend to the debuglog level. Most authentication and authorization errors are
only displayed onthe debug log level, in order to avoid flooding the log files.

NOTE: If you can’t locate any log entries referencing LDAP authentication, makesure the LDAP

https://regex101.com/r/zo9mQU/2

provider was successfully installed using sensuctl

Authentication errors
Here are some common error messages and possible solutions:
Error message: failed to connect: LDAP Result Code 200 "Network Error"

The LDAP provider couldn’t establish a TCP connection to the LDAP server. Verifythe host & port
attributes. If you are not using LDAP over TLS/SSL , makesure to set the value of the security
attribute to "insecure" for plaintextCcommunication.

Error message:. certificate signed by unknown authority

If you are using a self-signed certificate, make sure to set the insecure attribute to true . This will
bypass verification of the certificate’s signingauthority.

Error message: failed to bind:

The first step for authenticating a user with the LDAP provider is to bind tothe LDAP server using the
service account specified in the binding Object. Make sure the user dn specifies a valid DN,and its
password is the right one.

Error message: user <username> was not found

The user search failed, no user account could be found with the given username.Go look at the
user search _object and make sure that:

The specified base dn contains the requested user entry DN
The specified attribute contains the username as its value in the user entry
The object class attribute corresponds to the user entry object class

Error message. ldap search for user <username> returned x results, expected only 1

The user search returned more than one user entry, therefore the provider couldnot determine which of
these entries should be used. The user search oObject needs to be tweaked so the provided
username can be used touniquely identify a user entry. Here’s few possible way of doing it:

Adjust the attribute so0 its value (which corresponds to the username) isunique amongst the user
entries
Adjust the base dn so it only includes one of the user entries

Error message: 1dap entry <DN> missing required attribute <name attribute>

The user entry returned (identified by <pn>) doesn’t include the attributespecified by

name attribute _object. Therefore the LDAP provider couldnot determine which attribute to use as
the username in the user entry. The name attribute should be adjusted so it specifies a human
friendly name forthe user.

Error message: 1dap group entry <DN> missing <name attribute> and cn attributes

The group search returned a group entry (identified by <pn>) that doesn’t havethe name attribute
attribute nor a cn attribute. Therefore the LDAPprovider could not determine which attribute to use as
the group name in thegroup entry. The name attribute should be adjusted so it specifies a human
friendly name for the group.

Authorization issues

Once authenticated, a user needs to be granted permissions via either al clusterRoleBinding Or a
RoleBinding .

The way in which LDAP users and LDAP groups can be referred as subjects of acluster role or role
binding depends on the groups prefix and! username prefix configuration attributes values of the
LDAP provider.For example, for the groups prefix 1dap and the group dev , the resultinggroup name
in Sensu is 1ldap:dev .

Issue: Permissions are not granted via the LDAP group(s)

During authentication, the LDAP provider will print in the logs all groups foundin LDAP, e.g. found 1
group (s) : [dev] . Keep in mind that this group name doesnot contain the groups prefix at this
point.

The Sensu backend logs each attempt made to authorize an RBAC request. This isuseful for
determining why a specific binding didn’t grant the request. Forexample:

[...] the user is not a subject of the ClusterRoleBinding cluster-admin [...]

—
.

..] could not authorize the request with the ClusterRoleBinding system:user [...]

[...] could not authorize the request with any ClusterRoleBindings [...]

Active Directory authentication

Sensu offers license-activated support for using Microsoft Active Directory (AD) for authentication to
the Sensu dashboard, API, and sensuctl. The AD authentication provider is based on the LDAP

authentication provider.

Active Directory configuration examples

Example AD configuration: Minimum required attributes

YML

type: ad
api version: authentication/v2
metadata:
name: activedirectory
spec:
servers:
- group_search:
base dn: dc=acme,dc=org
host: 127.0.0.1
user search:

base dn: dc=acme,dc=org

JSON
{

"type": "ad",

"api version": "authentication/v2",

"spec": {

"servers": |
{
"host": "127.0.0.1",
"group search": {
"base dn": "dc=acme,dc=org"

b
"user search": {

"base dn": "dc=acme,dc=org"

}o
"metadata": {

"name": "activedirectory"

Example AD configuration: All attributes

YML

type: ad
api version: authentication/v2
metadata:
name: activedirectory
spec:
groups_prefix: ad
servers:
- binding:
password: P@sswOrd!
user dn: cn=binder,cn=users,dc=acme,dc=org
client cert file: /path/to/ssl/cert.pem
client key file: /path/to/ssl/key.pem
group_ search:
attribute: member
base dn: dc=acme,dc=org
name attribute: cn
object class: group
host: 127.0.0.1
insecure: false
port: 636
security: tls
trusted ca file: /path/to/trusted-certificate-authorities.pem
user search:
attribute: sAMAccountName
base dn: dc=acme,dc=org
name attribute: displayName
object class: person

username prefix: ad

JSON

"type" : "adll,

"api version"

: "authentication/v2",

"spec": {
"servers": [
{
"host": "127.0.0.1",
"port": 636,
"insecure": false,
"security": "tls",

"trusted ca file": "/path/to/trusted-certificate-authorities.pem",

"client cert file": "/path/to/ssl/cert.pem",
"client key file": "/path/to/ssl/key.pem",

"binding": {

"user dn": "cn=binder, cn=users,dc=acme,dc=org",
"password": "P@sswOrd!"
}I
"group search": ({
"base dn": "dc=acme,dc=org",
"attribute": "member",
"name attribute": "cn",
"object class": "group"

b

"user search": {
"base dn": "dc=acme,dc=org",

"attribute": "sAMAccountName",

"name attribute": "displayName",

"object class": "person"

1,
"groups_ prefix": "ad",

"username prefix": "ad"

Yo
"metadata": {

"name": "activedirectory"

Active Directory specification

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type. AD
definitions should always be of type ad .

required true
type String
example
"type'l . "ad"

api_version

description Top-level attribute specifying the Sensu API group and version. For AD
definitions, this attribute should always be authentication/v2 .

required true
type String
example
"api version": "authentication/v2"

metadata

description Top-level map containing the AD definition name . See the metadata
attributes reference for details.

required true

type Map of key-value pairs

example

"metadata": {
"name": "activedirectory"
}
spec
description Top-level map that includes the AD spec attributes.
required true
type Map of key-value pairs
example
"spec": {
"servers": [
{
"host": "127.0.0.1",

"port": 636,

"insecure": false,
"security": "tls",
"trusted ca file": "/path/to/trusted-certificate-

authorities.pem",

"client cert file": "/path/to/ssl/cert.pem",
"client key file": "/path/to/ssl/key.pem",
"binding": {
"user dn": "cn=binder, cn=users,dc=acme,dc=org",
"password": "P@sswOrd!"
},
"group_ search": {
"base dn": "dc=acme,dc=org",
"attribute": "member",
"name attribute": "cn",
"object class": "group"
},
"user search": {
"base dn": "dc=acme,dc=org",
"attribute": "sAMAccountName",

"name attribute": "displayName",

"object class": "person"

}
}
1,
"groups prefix": "ad",
"username prefix": "ad"

Active Directory spec attributes

servers
description An array of AD servers for your directory. During the authentication
process, Sensu attempts to authenticate using each AD server in
sequence.
required true
type Array
example
"servers": [
{
"host": "127.0.0.1",
"port": 636,
"insecure": false,
"security": "tls",
"trusted ca file": "/path/to/trusted-certificate-

authorities.pem",
"client cert file": "/path/to/ssl/cert.pem",
"client key file": "/path/to/ssl/key.pem",
"binding": {

"user dn": "cn=binder, cn=users,dc=acme,dc=org",
"password": "P@sswOrd!"
},
"group_ search": {
"base dn": "dc=acme,dc=org",
"attribute": "member",

"name attribute": "cn",

"object class": "group"

},

"user search": {
"base dn": "dc=acme,dc=org",
"attribute": "sAMAccountName",
"name attribute": "displayName",

"object class": "person"

}
}
1
groups_prefix

description The prefix added to all AD groups. Sensu prepends prefixes with a colon.
For example, for the groups prefix ad and the group dev , the resulting
group name in Sensu is ad:dev . Use this prefix when integrating AD

groups with Sensu RBAC role bindings and cluster role bindings.

required false
type String
example
"groups_prefix": "ad"

username_prefix

description The prefix added to all AD usernames. Sensu prepends prefixes with a
colon. For example, for the username prefix ad and the user alice ,
the resulting username in Sensu is ad:alice . Use this prefix when
integrating AD users with Sensu RBAC role bindings and cluster role
bindings. Users do not need to provide this prefix when logging in to

Sensu.
required false
type String

example

"username prefix": "ad"

Active Directory server attributes

host

description AD server IP address or FQDN

required true
type String
example
"host": "127.0.0.1"

port
description AD server port
required true
type Integer
default 389 for insecure connections, 636 for TLS connections
example
"port": 636

insecure

description Skips SSL certificate verification when setto true . WARNING: Do not
use an insecure connection in production environments.

required false

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

type Boolean

default false

example

"insecure": false

security

description Determines the encryption type to be used for the connection to the AD
server: insecure (unencrypted connection, not recommended for
production), tls (secure encrypted connection), or starttls
(unencrypted connection upgrades to a secure connection).

type String
default Digllg”
example
"security": "tls"

trusted ca_file

description Path to an alternative CA bundle file in PEM format to be used instead of
the system’s default bundle. This CA bundle is used to verify the server’s
certificate.
required false
type String
example
"trusted ca file": "/path/to/trusted-certificate-

authorities.pem"

client_cert_file

description Path to the certificate that should be sent to the server if it requests it

required false
type String
example
"client_cert file": "/path/to/ssl/cert.pem"

description Path to the key file associated with the client cert file
required false
type String
example

"client key file": "/path/to/ssl/key.pem"

description The AD account that performs user and group lookups. If your sever
supports anonymous binding, you can omit the user dn Or password
attributes to query the directory without credentials. To use anonymous
binding with AD, the anNoNYMOUS LOGON oObject requires read
permissions for users and groups.

required false
type Map
example

"binding": {
"user dn": "cn=binder, cn=users,dc=acme,dc=org",

"password": "P@sswOrd!"

group_search

description Search configuration for groups. See the group search attributes for
more information.

required true
type Map
example
"group_ search": {
"base dn": "dc=acme,dc=org",
"attribute": "member",
"name attribute": "cn",
"object class": "group"

user_search

description Search configuration for users. See the user search attributes for more
information.
required true
type Map
example
"user search": ({
"base dn": "dc=acme,dc=org",
"attribute": "sAMAccountName",
"name attribute": "displayName",
"object class": "person"

Active Directory binding attributes

user_dn

description The AD account that performs user and group lookups. We recommend
using a read-only account. Use the distinguished name (DN) format,
such as cn=binder, cn=users, dc=domain,dc=t1d . If your sever
supports anonymous binding, you can omit this attribute to query the
directory without credentials.

required false
type String
example
"user dn": "cn=binder, cn=users,dc=acme, dc=0rg"

password

description Password for the user dn account. If your sever supports anonymous
binding, you can omit this attribute to query the directory without
credentials.

required false

type String

example

"password": "P@sswOrd!"

Active Directory group search attributes

base dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme, dc=org Ssearches within the acme.org directory.

required true

type String

example
"base dn": "dc=acme,dc=org"

attribute

description Used for comparing result entries. This is combined with other filters as

" (<Attribute>=<value>)" .

required false
type String
default "member"
example
"attribute": "member"

name_attribute

description Represents the attribute to use as the entry name.
required false
type String
default "cn"
example
"name attribute": "cn"

object_class

description Identifies the class of objects returned in the search result. This is
combined with other filters as " (objectClass=<ObjectClass>)" .

required false

type String

default "group"

example

"object class": "group

Active Directory user search attributes

base dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme, dc=org searches within the acme.org directory.

required true
type String
example
"base dn": "dc=acme,dc=org"
description Used for comparing result entries. This is combined with other filters as

" (<Attribute>=<value>)" .

required false

type String

default "sAMAccountName"
example

"attribute": "sAMAccountName"

name_attribute

description Represents the attribute to use as the entry name.
required false
type String
default "displayName"
example
"name attribute": "displayName"

object_class

description Identifies the class of objects returned in the search result. This is
combined with other filters as " (objectClass=<ObjectClass>)" .

required false
type String
default "person"
example
"object class": "person"

Active Directory metadata attributes

name
description A unique string used to identify the AD configuration. Names cannot
contain special characters or spaces (validated with Go regex
Al\w\.\=-]+\z)

required true

https://regex101.com/r/zo9mQU/2

type String

example

"name": "activedirectory"

Active Directory troubleshooting

See the LDAP troubleshooting section.

Hardware requirements

Contents

Sensu backend requirements
Sensu agent requirements

Networking recommendations
Cloud recommendations

Sensu backend

Backend minimum requirements

The following configuration is the minimum required to run the Sensu backend, however it is
insufficient for production use.See the recommended configuration for production recommendations.

64-bit Intel or AMD CPU
4 GB RAM

4 GB free disk space

10 mbps network link

Backend recommended configuration

The following configuration is recommended as a baseline for production use to ensure a good user
and operatorexperience. Using additionalresources (even over-provisioning) further improves stability
andscalability.

64 bit 4-core Intel or AMD CPU
8 GB RAM

SSD (NVMe or SATA3)
Gigabit ethernet

The Sensu backend is typically CPU and storage intensive. In general, its use ofthese resources scales
linearly with the total number ofchecks executed by all Sensu agents connecting to the backend.

The Sensu backend is a massively parallel application that can scale toany number of CPU cores.
Provision roughly 1 CPU core for every 50checks per second (including agent keepalives).Most
installations are fine with 4 CPU cores, but larger installationsmay find that additional CPU cores (8+)
are necessary.

Every executed Sensu check results in storage writes. Whenprovisioning storage, a good guideline is to
have twice as manysustained disk IOPS as you expect to have events per second. Don’tforget to
include agent keepalives in this calculation; each agentpublishes a keepalive every 20 seconds. For
example, in a cluster of 100 agents,you can expect those agents to consume 10 write IOPS for
keepalives.

The Sensu backend uses a relatively modest amount of RAM under mostcircumstances. Larger
production deployments use a larger amountof RAM (8+ GB).

Sensu agent

Agent minimum requirements

The following configuration is the minimum required to run the Sensu agent, however it is insufficient
for production use.See the recommended configuration for production recommendations.

386, amd64, or ARM CPU (armv5 minimum)
128 MB RAM
10 mbps network link

Agent recommended configuration

The following configuration is recommended as a baseline for production use to ensure a good user
and operator experience.

64 bit 4-core Intel or AMD CPU
512 MB RAM
Gigabit ethernet

The Sensu agent itself is quite lightweight, and should be able to runon all but the most modest
hardware. However, since the agent isrésponsible for executing checks, factor the agent’s
responsibilitiesinto your hardware provisioning.

Networking recommendations

Agent connections

Sensu uses WebSockets for communication between the agent and backend.All communication occurs
over a single TCP socket.

It's recommended that users connect backends and agents via gigabitethernet, but any somewhat-
reliable network link should work (e.g.WiFi and 4G). If you see WebSocket timeouts in the backend
logs, youmay need to use a better network link between the backend and agents.

Cloud recommendations

AWS

The recommended EC2 instance type and size for Sensu backends runningembedded etcd is
M5d.xlarge. ThelM5d instance provides4/ vCPU, 16 GB of RAM, up to 10 Gbps network connectivity,
and a 150NVMe SSD directly attached to the instance host (optimal for sustaineddisk IOPS).

https://aws.amazon.com/ec2/instance-types/m5/

Binary-only distributions

Contents

In addition to packages, Sensu binary-only distributions are available for Linux, Windows (agent and
CLI only), and macOS (CLI only).

Linux

Download Sensu for Linux amdé4 , armé64 , armv5 , armv6 , armv’ ,Or 386 architectures.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go 5.8.0 linux amd64.tar.gz

Generate a SHA-512 checksum for the downloaded artifact.

shabl2sum sensu-enterprise-go 5.8.0 linux amd64.tar.gz

The result should match the checksum for your platform.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go 5.8.0 checksums.txt && cat sensu-enterprise-go 5.8.0 checksums.txt

Windows

Download the Sensu agent for Windows amdé4 or 386 architectures.

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go 5.8.0 windows amdé64.tar.gz -OutFile "Senv:userprofile\sensu-

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_arm64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_armv5.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_armv6.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_armv7.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_386.tar.gz

enterprise-go 5.8.0 windows amdé64.tar.gz"

Generate a SHA-256 checksum for the downloaded artifact.

Get-FileHash "Senv:userprofile\sensu-enterprise-go 5.8.0 windows amdé4.tar.gz" -

Algorithm SHA256 | Format-List

The result should match (with the exception of capitalization) the checksum for your platform.

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-
enterprise-go 5.8.0 checksums.txt -OutFile "Senv:userprofile\sensu-enterprise-

go 5.8.0 checksums.txt"

Get-Content "Senv:userprofile\sensu-enterprise-go 5.8.0 checksums.txt" | Select-

String -Pattern windows amd64

macOS

Download Sensu for macOS.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go 5.8.0 darwin amdé64.tar.gz

Generate a SHA-512 checksum for the downloaded artifact.

shasum -a 512 sensu-go-5.8.0-darwin-amd64.tar.gz

The result should match the checksum for your platform.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go 5.8.0 checksums.txt && cat sensu-enterprise-go 5.8.0 checksums.txt

Extract the archive.

tar -xvf sensu-enterprise-go 5.8.0 darwin amdé64.tar.gz

Copy the executable into your PATH.

sudo cp sensuctl /usr/local/bin/

Next steps

Now that you've installed Sensu:

Starting the Sensu backend
Starting the Sensu agent
sensuctl first-time setup
Monitoring server resources

Configuration Management

Contents

We highly recommend using configuration management tools to deploy Sensu in production and at
scale.

Pin versions of Sensu-related software to ensure repeatable Sensu deployments.
Ensure consistent configuration between Sensu backends.

The following configuration management tools have well-defined Sensu modules to help you get
started.
Puppet

The Puppet Sensu module can be found on the GitHub.Sensu has partnered with Tailored Automation
to enhance the Puppet module with new features and bug fixes.

Chef

The Chef cookbook for Sensu can be found on the GitHub. Interested in more information on Sensu +
Chef? Get some helpful resources here.

Ansible

The Ansible role to deploy and manage Sensu Go can be found on GitHub.

https://puppet.com/
https://github.com/sensu/sensu-puppet
https://tailoredautomation.io/
https://www.chef.io/
https://github.com/sensu/sensu-go-chef
http://monitoringlove.sensu.io/chef
https://www.ansible.com/
https://github.com/jaredledvina/sensu-go-ansible

Supported platforms

Contents

Sensu backend

The Sensu backend is available for 64-bit Linux.See the backend installation guide for more
information.

Platform & Version

CentOS/RHEL 6
CentOS/RHEL 7
Ubuntu 14.04
Ubuntu 16.04
Ubuntu 18.04
Ubuntu 18.10
Debian 8
Debian 9

Sensu agent

The Sensu agent is available for Linux and Windows.See the agent installation guide for more
information.

Platform & Version 386

CentOS/RHEL 6

CentOS/RHEL 7

Ubuntu 14.04

Ubuntu 16.04

Ubuntu 18.04

Ubuntu 18.10

Debian 8

Debian 9

Windows Server
2008 R2 and later

Windows 7 and later

Sensuctl command-line tool

Sensuctl is available for Linux, Windows, and macOS.See the sensuctl installation guide for more
information.

Platform & Version

CentOS/RHEL 6
CentOS/RHEL 7
Ubuntu 14.04
Ubuntu 16.04
Ubuntu 18.04
Ubuntu 18.10
Debian 8
Debian 9

Windows 7 and later

Windows Server
2008 R2 and later

macOS 10.10 and
later

How to monitor server resources with
checks

Contents

What are Sensu checks?

Sensu checks are commands (or scripts), executed by the Sensu agent, thatoutput data and produce
an exit code to indicate a state. Sensu checks use thesame specification as Nagios, therefore, Nagios
check plugins may beused with Sensu.

Why use a check?

You can use checks to monitor server resources, services, and applicationhealth (for example: is Nginx
running?) as well as collect and analyze metrics (for example: how much disk space do | have left?).

Using checks to monitor a service

The purpose of this guide is to help you monitor server resources, morespecifically the CPU usage, by
configuring a check named check-cpu with alsubscription named system , in order to target all
entities subscribedto the system subscription.This guide requires a Sensu backend and at least one
Sensu agent running on Linux.

Registering assets
To power the check, we'll use the Sensu CPU checks asset and the Sensu Ruby runtime asset.

Use the following sensuctl example to register the sensu-plugins-cpu-checks asset for CentOS, or
download the asset definition for Debian or Alpine from Bonsai and register the asset using sensuctl

create --file filename.yml .

https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-cpu-checks
https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime
https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-cpu-checks

sensuctl asset create sensu-plugins-cpu-checks --url
"https://assets.bonsai.sensu.i10/68546e739d96£d695655b77b35b5aabfbabeb056/sensu-
plugins—-cpu-checks 4.0.0 centos linux amd64.tar.gz" --shab5l2
"518e7cl7cf670393045bff4a£318e1d35955bfdel66e9ceec2b469109252£79043ed133241c4dc96501
b6636alec5e008ea9ce055d1609865635d4£004d7187b"

Then use the following sensuctl example to register the sensu-ruby-runtime asset for CentOS, or
download the asset definition for Debian or Alpine from Bonsai and register the asset using sensuctl

create --file filename.yml

sensuctl asset create sensu-ruby-runtime --url
"https://assets.bonsai.sensu.i10/03d08cdfc649500b7e8cdl708bb9bb93d91fea%e/sensu-ruby-
runtime 0.0.8 ruby-2.4.4 centos linux amdé64.tar.gz" --sha512
"70254d305af512cc524a20al17c601lbcfae0d51d6221bbfc60d8adel80ccl1908081258a6eecfc9bl9ob
932e774083537efe748c1534¢c83d294873dd3511e97a3"

You can use sensuctl to confirm that both the sensu-plugins-cpu-checks and sensu-ruby-
runtime assets are ready to use.

sensuctl asset list
Name URL Hash

sensu-plugins-cpu-checks //assets.bonsai.sensu.io/.../sensu-plugins-cpu-checks 4.0.0 centos linux_amd64.tar.gz
518e7cl

sensu-ruby-runtime //assets.bonsai.sensu.io/.../sensu-ruby-runtime 0.0.10_ruby-2.4.4 centos_linux_amd64.tar.gz
338b88b

Creating the check

Now that the assets are registered, we’'ll create a check named! check-cpu , which runs the command
check-cpu.rb -w 75 -c 90 usingthe sensu-plugins-cpu-checks and sensu-ruby-runtime

assets, at aninterval of 60 seconds, for all entities subscribed to the system Subscription.This checks

generates a warning event (-w) when CPU usage reaches 75% and a critical alert (-c) at 90%.

https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

sensuctl check create check-cpu \
—-—command 'check-cpu.rb -w 75 -c 90' \
-—-interval 60 \

--subscriptions system \

--runtime-assets sensu-plugins-cpu-checks, sensu-ruby-runtime

Configuring the subscription
To run the check, we’'ll need a Sensu agent with the subscription system .After installing an agent,

open /etc/sensu/agent.yml and add the system subscription so the subscription configuration
looks like:

subscriptions:

- system

Then restart the agent.

sudo service sensu-agent restart

Validating the check

We can use sensuctl to see that Sensu is monitoring CPU usage using the check-cpu , returning an
OK status (0).l might take a few moments, once the check is created,for the check to be scheduled
on the entity and the event returned to Sensu backend.

sensuctl event list
Entity Check Output Status

Silenced Timestamp

sensu-centos check-cpu CheckCPU TOTAL OK: total=0.2 user=0.0 nice=0.0 system=0.2 idle=99.8 iowait=0.0 irq=0.0

softirq=0.0 steal=0.0 guest=0.0 guest nice=0.0 0 false 2019-04-23 16:42:28 +0000 UTC

Next steps

You now know how to run a simple check to monitor CPU usage. From this point,here are some
recommended resources:

Read the checks reference for in-depth documentation on checks.

Read our guide on providing runtime dependencies to checks with assets.
Read our guide on monitoring external resources with proxy checks and entities.
Read our guide on sending alerts to Slack with handlers.

How to monitor external resources with
proxy requests and entities

Contents

Using a proxy entity to monitor a website
Using proxy requests to monitor a group of websites

Proxy entities allow Sensu to monitor external resourceson systems or devices where a Sensu agent
cannot be installed, like anetwork switch or a website.You can create proxy entities using sensuctl, the
Sensu API, orthe proxy entity name _check attribute. When executing checks that include a

proxy entity name Or proxy requests attributes, Sensu agents report the resulting event under
the proxy entity instead of the agent entity.

This guide requires a running Sensu backend, a running Sensu agent, and a sensuctl instance
configured to connect to the backend as a user with get, list, and create permissions for entities,
checks, and events.

Using a proxy entity to monitor a website

In this section, we’ll monitor the status of sensu.io by configuring a check with a proxy entity name so
that Sensu creates an entity representing the site and reports the status of the site under this entity.

Registering assets

To power the check, we'll use the Sensu plugins HTTP asset and the Sensu Ruby runtime asset.

Use the following sensuctl example to register the sensu-plugins-http asset for CentOS, or
download the asset definition for Debian or Alpine from Bonsai and register the asset using sensuctl

create --file filename.yml

sensuctl asset create sensu-plugins-http --url
"https://assets.bonsai.sensu.10/30d8361243af8c7806e2d6db4ab6dc576dab02966/sensu-
plugins-http 5.1.1 centos linux amdé64.tar.gz" --shabl2

https://sensu.io/
https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-http
https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime
https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-http

"31023af6e0073729%eecb0f5ab834ddc467ecaald9b998cbf528£3302104814ec717fc746af470556c49
6806fa8dbb6obeobded’75aef97d73abdfaz29615a81270ece6"

Then use the following sensuctl example to register the sensu-ruby-runtime asset for CentOS, or
download the asset definition for Debian or Alpine from Bonsai and register the asset using sensuctl

create --file filename.yml .

sensuctl asset create sensu-ruby-runtime --url
"https://assets.bonsai.sensu.10/03d08cdfc649500b7e8cdl708bb9bb93d91fea%e/sensu-ruby-
runtime 0.0.8 ruby-2.4.4 centos linux amdé64.tar.gz" --shab512
"7b254d305af512cc524a20al117¢c601bcfae0d51d6221bbfc60d8adel80ccl1908081258a6eecfc9bl96b
932e774083537efe748c1534c83d294873dd3511e97a3"

You can use sensuctl to confirm that both the sensu-plugins-http and sensu-ruby-runtime
assets are ready to use.

sensuctl asset list

Name URL Hash
sensu-plugins-http //assets.bonsai.sensu.io/.../sensu-plugins-http 5.1.1 centos linux_amd64.tar.gz 31023af
sensu-ruby-runtime //assets.bonsai.sensu.io/.../sensu-ruby-runtime 0.0.10_ruby-2.4.4 centos_linux_amd64.tar.gz
338b88b

Creating the check

Now that the assets are registered, we’'ll create a check named! check-sensu-site , which runs the
command check-http.rb -u https://sensu.io uUsing the sensu-plugins-http and sensu-
ruby-runtime assets, at aninterval of 60 seconds, for all agents subscribed to the proxy
subscription, using the sensu-site proxy entity name.To avoid duplicate events, we’ll add the

round robin _attribute to distribute the check execution across all agents subscribed to the proxy
subscription.

Create a file called check.json and add the following check definition.

YML

https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

type: CheckConfig

apl version: core/v2

metadata:
name: check-sensu-site
namespace: default

spec:
command: check-http.rb -u https://sensu.io
interval: 60
proxy entity name: sensu-site
publish: true
round robin: true
runtime assets:
- sensu-plugins-http

- sensu-ruby-runtime

subscriptions:
- pProxy
JSON
{

"type": "CheckConfig",

"api version": "core/v2",

"metadata": {
"name": "check-sensu-site",
"namespace": "default"

bo

"spec": {
"command": "check-http.rb -u https://sensu.

"runtime assets": [
"sensu-plugins-http",
"sensu-ruby-runtime"

1,

"interval": 60,

"proxy entity name": "sensu-site",

"publish": true,

"round robin": true,

"subscriptions": [

"proxy"

io

Now we can use sensuctl to add this check to Sensu.

sensuctl create --file check.json

sensuctl check list
Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets
Hooks Publish? Stdin?

check-sensu-site check-http.rb -u https://sensu.io 60 0 0 proxy sensu-plugins-http,sensu-

ruby-runtime true false

Adding the subscription
To run the check, we’'ll need a Sensu agent with the subscription proxy .After installing an agent, open

/etc/sensu/agent.yml and add the proxy subscription so the subscription configuration looks like:

subscriptions:

- proxy

Then restart the agent.

sudo service sensu-agent restart

Validating the check

Now we can use sensuctl to see that Sensu has created the proxy entity sensu-site .

sensuctl entity list

ID Class OS Subscriptions Last Seen

sensu-centos agent linux proxy,entity:sensu-centos 2019-01-16 21:50:03 +0000 UTC

sensu-site proxy entity:sensu-site N/A

NOTE: It might take a few moments for Sensu to execute the check and create the proxy entity.

And that Sensu is now monitoring sensu-site usingthe check-sensu-site check.

sensuctl event info sensu-site check-sensu-site

=== sensu-site - check-sensu-site
Entity: sensu-site

Check: check-sensu-site
Output:

Status: 0

History: 0,0

Silenced: false

Timestamp: 2019-01-16 21:51:53 +0000 UTC

We can also see our new proxy entity in the Sensu dashboard.

Using proxy requests to monitor a group of websites

Now let’s say that, instead of monitoring just sensu.io, we want to monitor multiple sites, for example:
docs.sensu.io, packagecloud.io, and github.com.In this section of the guide, we'll use the
proxy requests _Check attribute, along with entity labels and token substitution, to monitor three sites
using the same check.Before we get started, go ahead and register the sensu-plugins-http _and
sensu-ruby-runtime _assets if you haven’t already.

Creating proxy entities

Instead of creating a proxy entity using the proxy entity name check attribute, we'll be using

sensuctl to create proxy entities to represent the three sites we want to monitor.Our proxy entities need

the entity class attribute setto proxy to mark them as proxy entities as well as a few custom
labels that we’ll use to identify them as a group and pass in individual URLs.

Create a file called entities.json and add the following entity definitions.

"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "sensu-docs",
"namespace": "default",
"labels": {
"proxy type": "website",

"url": "https://docs.sensu.io"

},
"spec": {

"entity class": "proxy"

"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "packagecloud-site",
"namespace": "default",
"labels": {
"proxy type": "website",

"url": "https://packagecloud.io

},
"spec": {

Al

"entity class": "proxy

"type": "Entity",
"api version": "core/v2",
"metadata": {
"name": "github-site",
"namespace": "default",
"labels": {
"proxy type": "website",

"url": "https://github.com"

}
},
"spec": {

"entity class": "proxy"

PRO TIP: When creating proxy entities, you can add whatever custom labels make sense for your

environment. For example, when monitoring a group of routers, you may want to add ip address
labels.

Now we can use sensuctl to add these proxy entities to Sensu.

sensuctl create --file entities.json

sensuctl entity list

ID Class OS Subscriptions Last Seen
github-site proxy N/A
packagecloud-site proxy N/A

sensu-centos agent linux proxy,entity:sensu-centos 2019-01-16 23:05:03 +0000 UTC
sensu-docs proxy N/A

Creating a reusable HTTP check

Now that we have our three proxy entities set up, each with a proxy type and url label, we can
use proxy requests and token substitution to create a single check that monitors all three sites.

Create afile called check-proxy-requests.json and add the following check definition.

YML

type: CheckConfig
api version: core/v2
metadata:
name: check-http
namespace: default

spec:

command: check-http.rb -u {{ .labels.url }}
interval: 60
proxy requests:

entity attributes:

- entity.entity class == 'proxy'

- entity.labels.proxy type == 'website'
publish: true
runtime assets:
- sensu-plugins-http

- sensu-ruby-runtime

subscriptions:
- proxy
JSON
{
"type": "CheckConfig",
"api version": "core/v2",
"metadata": {
"name": "check-http",
"namespace": "default"
bo
"spec": {
"command": "check-http.rb -u {{ .labels.url

"runtime assets": |
"sensu-plugins-http",
"sensu-ruby-runtime"

1,

"interval": 60,
"subscriptions": [
"proxy"

1,
"publish": true,
"proxy requests": {
"entity attributes": [
"entity.entity class == 'proxy'",

"entity.labels.proxy type == 'website'"

PR

Our check-http check usesthe proxy requests attribute to specify the applicable entities.In our
case, we want to run the check-http check on all entities of entity class proxy and proxy type

website .8Since we're using this check to monitor multiple sites, we can use token substitution to apply
the correct url inthe check command .

Now we can use sensuctl to add this check to Sensu.

sensuctl create --file check-proxy-requests.json

sensuctl check list
Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets
Hooks Publish? Stdin?

check-http check-http.rb -u { { .labels.url } } 60 0 0 proxy sensu-plugins-http,sensu-ruby-

runtime true false

PRO TIP: To distribute check executions across multiple agents, set the round-robin check attribute
to true . For more information about round-robin checks, see the check reference.

Validating the check

Before validating the check, make sure that you've reqistered the sensu-plugins-http _and sensu-
ruby-runtime _assets and added the proxy _subscription to a Sensu agent if you haven'’t already.

Now we can use sensuctl to see that Sensu is monitoring docs.sensu.io, packagecloud.io, and
github.com using the check-http , returning a status of o (OK).

sensuctl event list

Entity Check Output Status Silenced Timestamp
github-site check-http 0 false 2019-01-17 17:10:31 +0000 UTC
packagecloud-site check-http 0 false 2019-01-17 17:10:34 +0000 UTC

sensu-centos keepalive 0 false 2019-01-17 17:10:34 +0000 UTC

sensu-docs check-http 0 false 2019-01-17 17:06:59 +0000 UTC

Next steps

You now know how to run a proxy check to verify the status of a website, aswell as using proxy
requests to run a check on two different proxy entities based on label evaluation.From this point, here
are some recommended resources:

Read the proxy checks reference for in-depth documentation on proxy checks.

Read the guide to providing runtime dependencies to checks with assets.
Read the guide to sending alerts to Slack with handlers.

How to collect and extract metrics using
Sensu checks

Contents

What are Sensu checks?

In short, Sensu checks are commands (or scripts), executed by the Sensuagent, that output data and
produce an exit code to indicate a state. If you areunfamiliar with checks, or would like to learn how to
configure one first,take a look through the check reference doc and guide before youcontinue.

Extracting metrics from check output

In order to extract metrics from check output, you'll need to do the following:

1. Configure the check command such that the command execution outputsmetrics in one of the

supported output metric formats.
2. Configure the check output metric format to one of thelsupported output metric formats.

3. Configure the check output metric handlers (optional)to a Sensu handlerthat is equipped to
handle Sensu metrics (see handlers oriinflux-db handler to learn more).

You can configure the check with these fields at creation, or use the commandsbelow assuming you
have a check named collect-metrics . In this example,we’ll be using graphite plaintext format
and sending the metrics to a handlernamed influx-db .

sensuctl check set-command collect-metrics collect metrics.sh
sensuctl check set-output-metric-format collect-metrics graphite plaintext

sensuctl check set-output-metric-handlers collect-metrics influx-db

Supported output metric formats

The output metric formats that Sensu currently supports for check output metricextraction are nagios,
influxdb, graphite, and opentsdb.

nagios

output_metric_format nagios perfdata
documentation Nagios Performance Data
example

PING ok - Packet loss = 0%, RTA = 0.80 ms |
percent packet loss=0, rta=0.80

graphite
output_metric_format graphite plaintext
documentation Graphite Plaintext Protocol
example
local.random.diceroll 4 123456789
influxdb
output_metric_format influxdb line
documentation InfluxDB Line Protocol
example

weather, location=us-midwest temperature=82

1465839830100400200

opentsdb

output_metric_format opentsdb line

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://docs.influxdata.com/influxdb/v1.4/write_protocols/line_protocol_tutorial/#measurement

documentation OpenTSDB Data Specification

example
sys.cpu.user 1356998400 42.5 host=webserver01l cpu=0

Validating the metrics

If the check output is formatted correctly according to its output metric format ,the metrics will be
extracted in Sensu Metric Format, and passed to the event pipeline.You should expect to see logged
errors if Sensu is unable to parse the check output.You can validate that metrics have been extracted
from your check by inspecting the event passed to the handler. See our troubleshooting guide for an
example debug handler which writes events to a file for inspection.The example check we used would
yield an event similar to the one below:

YML

type: Event
api version: core/v2
metadata: {}
spec:
check:
command: collect metrics.sh
metadata:
name: collect-metrics
namespace: default
output: |-
cpu.idle percentage 61 1525462242
mem.sys 104448 1525462242
output metric format: graphite plaintext
output metric handlers:
- influx-db
metrics:
handlers:
- influx-db
points:
- name: cpu.idle percentage
tags: []
timestamp: 1525462242

value: 61

http://opentsdb.net/docs/build/html/user_guide/writing/index.html#data-specification

- name: mem.sys
tags: []
timestamp: 1525462242
value: 104448

JSON
{
"type": "Event",
"api version": "core/v2",
"metadata": {1},
"spec": {
"check": {
"metadata": {
"name": "collect-metrics",
"namespace": "default"
by
"command": "collect metrics.sh",
"output”: "cpu.idle percentage 61 1525462242\nmem.sys 104448 1525462242",
"output metric format": "graphite plaintext",
"output metric handlers": [
"influx-db"
]
}y
"metrics": {
"handlers": |
"influx-db"
I
"points": [
{
"name": "cpu.idle percentage",

"value": 61,
"timestamp": 1525462242,
"tags": []

"name": "mem.sys",
"value": 104448,
"timestamp": 1525462242,
"tags": []

Next steps

Now you know how to extract metrics from check output! Check out the belowresources for some
further reading:

Read the checks reference for in-depth documentation on checks.

Read the checks guide for directions on how to schedule checks.

Read the handlers reference for in-depth documentation on handlers.

Read the influx-db handler guide for instructions on Sensu’s built-inmetric handler.

How to aggregate metrics with the Sensu
StatsD listener

Contents

What is StatsD?

StatsD, originating from the daemon written by Etsy, is a daemon, tool,and protocol that can be used to
send, collect, and aggregate custom metrics.Services that implement StatsD typically expose UDP port
8125 to receive metricsaccording to the line protocol <metricname>:<value>|<type> .

Why use StatsD?

StatsD allows you to measure anything and everything. You can monitorapplication performance by
collecting custom metrics in your code and sendingthem to a StatsD server or you can monitor system
levels of CPU, I/O, networketc. with collection daemons. The metrics that StatsD aggregates can be fed
tomultiple different backends to store or visualize the data.

How does Sensu implement StatsD?

Sensu implements a StatsD listener on its agents. Each sensu-agent listens on the default port 8125
for UDP messages which follow the StatsD lineprotocol. StatsD aggregates the metrics, and Sensu
translates them to Sensumetrics and events to be passed to the event pipeline. The listener is
configurable (see Configuring the StatsD listener)and can be accessed with the netcat utility command:

echo 'abc.def.g:10|c' | nc -wl -u localhost 8125

Metrics received through the StatsD listener are not stored in etcd, soitlis important to configure an
event handler(s).

https://github.com/etsy/statsd/

NOTE: On Windows machines running Sensu, the StatsD UDP port is not supported,rather the TCP
port is exposed.

Configuring the StatsD listener

The Sensu StatsD Server is configured at the start-up of a sensu-agent . Theflags below allow you to
configure the event handlers, flush interval, address,and port:

--statsd-disable disables the statsd listener and metrics
server
--statsd-event-handlers stringSlice comma-delimited list of event handlers for

statsd metrics

--statsd-flush-interval int number of seconds between statsd flush (default
10)

--statsd-metrics-host string address used for the statsd metrics server
(default "127.0.0.1")

--statsd-metrics-port int port used for the statsd metrics server

(default 8125)

For example:

sensu-agent start --statsd-event-handlers influx-db --statsd-flush-interval 1 --
statsd-metrics-host "123.4.5.6" --statsd-metrics-port 8125
Next steps

Now that you know how to feed StatsD metrics into Sensu, check out the followingresources to learn
how to handle those metrics:

Read the handlers reference for in-depth documentation on handlers.
Read the InfluxDB handler guide for instructions on Sensu’s built-inmetric handler.

How to augment event data using check
hooks

Contents

What are check hooks?

Check hooks are commands run by the Sensu agent in response to the result oficheck command
execution. The Sensu agent executes the appropriateconfigured hook, depending on the exit status
code (e.g., 1).

Why use check hooks?

Check hooks allow Sensu users to automate data collection routinely performed byoperators
investigating monitoring alerts, freeing precious operator time! Whilecheck hooks can be used for
rudimentary auto-remediation tasks, they are intendedfor enrichment of monitoring event data.

Using check hooks to gather context

The purpose of this guide is to help you put in place a check hook which capturesthe process tree in
the event that an nginx process check returns a status of 2 (critical,not running).

Creating the hook

The first step is to create a new hook that runs a specific command tocapture the process tree. We can
set an execution timeout of 10 secondsfor this command.

sensuctl hook create process tree \
—-—-command 'ps aux' \

-—timeout 10

Assigning the hook to a check

Now that the process tree hook has been created, it can be assigned to acheck. Here we apply our
hook to an already existing nginx process check.By settingthe <type to critical , we ensure
that whenever the check command returns a critical status, Sensu executes the process tree hook
and adds the output to the resulting event data.

sensuctl check set-hooks nginx process \
-—type critical \

-—-hooks process tree

Validating the check hook

You can verify the proper behavior of the check hook against a specific event byusing sensuctl . It

might take a few moments, once the check hook is assigned,for the check to be scheduled on the entity

and the result sent back to the Sensubackend. The check hook command result is available in the
hooks array,within the check scope.

sensuctl event info 1-424242 nginx process -—-format json
{
[oool]
"check": {
[...]
"hooks": [
{
"config": {
"name": "process tree",
"command": "ps aux",
"timeout": 10,
"namespace": "default"

b,
"duration": 0.008713605,
"executed": 1521724622,

"output" . Al ",

"status": 0

Having confirmed that the hook is attached to our check, we can stopNginx and observe the check

hook in action on the next checkexecution. Here we use sensuctl to query event info and send the
response to jg so we can isolate the check hook output:

sensuctl event info 1-424242 nginx process --format json

'.check.hooks[0] .output'’

USER PID %CPU SMEM
root 1 0.0 0.3
/usr/lib/systemd/systemd
root 2 0.0 0.0
root 3 0.0 0.0
root 7 0.0 0.0
root 8 0.0 0.0
root 9 0.0 0.0

ja -r

VSZ RSS TTY STAT START TIME COMMAND
46164 6704 ? S8 Nov1l7 0:11
--switched-root --system --deserialize 20

0 02 S Novl7 0:00 [kthreadd]
0 0 ? S Novl7 0:01 [ksoftirgd/0]
0 0 ? S Nowvl7 0:01 [migration/0]
0 0 2 S Novl7 0:00 [rcu bh]
0 0 2 S Nov1l7 0:34 [rcu_ sched]

Note that the above output, although truncated in the interest ofbrevity, reflects the output of the

aux command specified in thecheck hook we created. Now when we are alerted that Nginx is not

Ps

running, we can review the check hook output to confirm this was thecase, without ever firing up an

SSH session to investigate!

Next steps

You now know how to run data collection tasks using check hooks. From this point,here are some

recommended resources:

Read the hooks reference for in-depth documentation on hooks.

How to send alerts to Slack with handlers

Contents

What are Sensu handlers?

Sensu event handlers are actions executed by the Sensu server on events.

Why use a handler?

Handlers can be used for sending an email alert, creating or resolving an incident(in PagerDuty, for
example), or storing metrics in a time-seriesdatabase (InfluxDB, for example).

Using a handler to send alerts to Slack

The purpose of this guide is to help you send alerts to Slack, on the channell monitoring , by
configuring a handler named slack toacheck namedl check-cpu . If you don’t already have a check
in place, this guide is agreat place to start.

Registering the asset

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.In this guide, we’ll
use the Sensu Slack handler asset to power a slack handler.

You can use the following sensuctl example to register the Sensu Slack handler asset for Linux
AMDG64, or you can download the latest asset definition for your platform from Bonsai and register the
asset using sensuctl create --file filename.yml .

sensuctl asset create sensu-slack-handler --url
"https://assets.bonsai.sensu.i10/3149de09525d5e042a83edbb6eb46152b02b5a65/sensu-
slack-handler 1.0.3 linux amd64.tar.gz" --shabl2

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

"68720865127fbc7c2felbcadd’bbf2al87a2df703f4bdacaelc93e8a66556e9079e1270521999058714
73e6c851£f51b34097¢c54fdb8d18eedb7064d£9019adc8"

You should see a confirmation message from sensuctl.

Created

Getting a Slack webhook

If you're already an admin of a Slack, visit https://YOUR WORKSPACE NAME
HERE.slack.com/services/new/incoming-webhook and follow the steps to add the Incoming
WebHooks integration, choose a channel, and save the settings.(If you're not yet a Slack admin, start
here to create a new workspace.)After saving, you’ll see your webhook URL under Integration Settings.

Creating the handler

Now we’ll use sensuctl to create a handler called siack that pipes event data to Slack using the
sensu-slack-handler asset.Editthe command below to include your Slack channel and webhook
URL.For more information about customizing your Sensu slack alerts, see the asset page in Bonsai.

sensuctl handler create slack \

--type pipe \
--env-vars "SLACK WEBHOOK URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX"
\

--command "sensu-slack-handler --channel '#monitoring'" \

-—-runtime-assets sensu-slack-handler

You should see a confirmation message from sensuctl.

Created

Assigning the handler to a check

https://slack.com/get-started#create
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

With the silack handler now created, it can be assigned to a check. Here, sincewe want to receive
Slack alerts whenever the CPU usage of our systems reach somespecific thresholds, we will apply our
handler to the check check-cpu .

sensuctl check set-handlers check-cpu slack

Validating the handler

It might take a few moments, once the handler is assigned to the check, for thecheck to be scheduled
on the entities and the result sent back to Sensu backend,but once an event is handled, you should see
the following message inSlack.

@ sensu APP 3:30 PM

sensu | Description
Status
Warning
Entity Check
i-424242 check-cpu

Otherwise, you can verify the proper behavior of this handler by using’ sensu-backend logs.See the
troubleshooting guide for log locations by platform.

Whenever an event is being handled, a log entry is added with the message
"handler":"slack","level":"debug"”, "msg":"sending event to handler" , followedby a second
one with the message "msg":"pipelined executed event pipe

handler", "output":"","status":0 .

Next steps

You now know how to apply a handler to a check and take action on events. Fromthis point, here are
some recommended resources:

Read the handlers reference for in-depthdocumentation on handlers.
Read our guide on reducing alert fatigue with filters.

How to populate InfluxDB metrics using
handlers

Contents

What are Sensu handlers?

Sensu event handlers are actions executed by the Sensu server on events.In this example, we’ll use a
handler to populate a time series database. Ifyou’re not totally comfortable with handlers yet, check out
the in-depthguide on handlers first!

Using a handler to populate InfluxDB

The purpose of this guide is to help you populate Sensu metrics into the timeseries database InfluxDB.
Metrics can be collected from check outputor from the Sensu StatsD Server.
Registering the asset

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.In this guide, we’ll
use the Sensu InfluxDB handler asset to power an influx-db handler.

You can use the following sensuctl example to register the Sensu InfluxDB handler asset for Linux
AMDG64, or you can download the latest asset definition for your platform from Bonsai and register the
asset using sensuctl create --file filename.yml .

sensuctl asset create sensu-influxdb-handler --url
"https://assets.bonsai.sensu.io0/b28f8719a48aa8ea80c603f97e402975a98cead’7/sensu—
influxdb-handler 3.1.2 linux amdé64.tar.gz" --shabl2
"612c6££9928841090c4d23bf20aaf7558e4eed8977a848cf£9e2899%0bl13al13e7540bac2b63e324£39d9%b
1257bb479676bcl55b24e21bf93c722b812b0£f15chb3bd"

https://github.com/influxdata/influxdb
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

You should see a confirmation message from sensuctl.

Created

Creating the handler

Now we’ll use sensuctl to create a handler called influx-db that pipes event data to InfluxDB using
the sensu-influxdb-handler asset.Editthe command below to include your database name, address,
username, and password.For more information about the Sensu InfluxDB handler, see the asset page
in Bonsai.

sensuctl handler create influx-db \

-—type pipe \

-—-command "sensu-influxdb-handler -d sensu" \

--env-vars "INFLUXDB ADDR=http://influxdb.default.svc.cluster.local:8086,
INFLUXDB USER=sensu, INFLUXDB PASS=password" \

-—-runtime-assets sensu-influxdb-handler

You should see a confirmation message from sensuctl.

Created

Assigning the handler to an event

With the influx-db handler now created, it can be assigned to a check foricheck output metric
extraction. In this example, the check name isl collect-metrics :

sensuctl check set-output-metric-handlers collect-metrics influx-db

The handler can also be assigned to the Sensu StatsD listener at agent startup to passall StatsD
metrics into InfluxDB:

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

sensu-agent start --statsd-event-handlers influx-db

Validating the handler

It might take a few moments once the handler is assigned to the check or StatsDserver, for Sensu to
receive the metrics, but once an event is handled, youshould start to see your InfluxDB being
populated! Otherwise, you can verify theproper behavior of this handler by using sensu-backend logs.
See the troubleshooting guide for log locations by platform.

Whenever an event is being handled, a log entry is added with the messagel "handler":"influx-
db", "level":"debug", "msg":"sending event to handler" ,followed by a second one with the
message "msg":"pipelined executed event pipehandler", "output":"","status":0

Next steps

You now know how to apply a handler to metrics and take action on events. Fromthis point, here are
some recommended resources:

Read the handlers reference for in-depth documentation on handlers.

Read the StatsD listener guide for instructions on how to aggregateStatsD metrics in Sensu.

Read the check output metric extraction guide to learn how to collectand extract metrics using Sensu
checks.

How to reduce alert fatigue with filters

Contents

What are Sensu filters?

Sensu filters allow you to filter events destined for one or more eventlhandlers. Sensu filters evaluate
their expressions against the event data, todetermine if the event should be passed to an event
handler.

Why use a filter?

Filters are commonly used to filter recurring events (i.e. to eliminatenotification noise) and to filter
events from systems in pre-productionenvironments.

Using filters to reduce alert fatigue

The purpose of this guide is to help you reduce alert fatigue by configuring afilter named hourly , fora
handler named slack , in order to prevent alertsfrom being sent to Slack every minute. If you don’t
already have a handler inplace, learn how to send alerts with handlers.

Creating the filter
We’ll show you two approaches to creating a filter that will handle occurrences. The first approach will

be to create our own filter that we’ll add to Sensu. The second approach will cover implementing the
filter as an asset.

Using Sensuctl to Create a Filter

The first step is to create a filter that we will call hourly , which matcheshew events (where the
event’'s occurrences isequalto 1)orhourly events(so every hour after the first occurrence,

calculated with the check’s interval and the event’s occurrences).
Events in Sensu Go are handled regardless ofcheck execution status; even successful check events

are passed through thepipeline. Therefore, it's necessary to add a clause for non-zero status.

sensuctl filter create hourly \

—-—-action allow \

[}

-—expressions "event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0"

Assigning the filter to a handler

Now that the nhourly filter has been created, it can be assigned to a handler.Here, since we want to
reduce the number of Slack messages sent by Sensu, we will applyour filter to an already existing
handler named slack , in addition to thebuilt-in is incident filter so only failing events are handled.

sensuctl handler update slack

Follow the prompts to add the hourly and is incident filters to the Slackhandler.

Creating a fatigue check filter

While we can use sensuctl to interactively create a filter, we can create more reusable filters
through the use of assets. Read on to see how to implement a filter using this approach.

Using a Filter Asset

If you're not already familiar with assets, take a minute or two and read over our guide to installing
plugins with assets. This will help you understand what an asset is and how they are used in Sensu.

The first step we’ll need to take is to obtain a filter asset that will allow us to replicate the behavior we
used when we created the hourly filter via sensuctl . Let’'s use the fatigue check asset from the
Bonsai Asset Index. You can download the asset directly by running the following:

curl -s https://bonsai.sensu.io/release assets/nixwiz/sensu-go-fatigue-check-

https://bonsai.sensu.io/assets/nixwiz/sensu-go-fatigue-check-filter
https://bonsai.sensu.io/

filter/0.1.3/any/noarch/download | sensuctl create

Excellent! You've registered the asset. We still need to create our filter. We’'ll use the following
configuration for creating the actual filter. In this case, we’ll call it sensu-fatigue-check-filter.yml :

type: EventFilter
api version: core/v2
metadata:
name: fatigue check
namespace: default
spec:
action: allow
expressions:
- fatigue check (event)
runtime assets:

- fatigue-check-filter

And we’ll go ahead and create it:

sensuctl create -f sensu-fatigue-check-filter.yml

Now that we’ve created the filter asset and the filter, let's move on to the check annotations needed for
the asset to work properly.

Annotating a check for filter asset use

Now that we’ve created the filter, we’ll need to make some additions to any checks we want to use the
filter with. Let’s look at an example CPU check:

type: CheckConfig
api version: core/v2
metadata:

name: linux-cpu-check

namespace: default

annotations:
fatigue check/occurrences: 'l'
fatigue check/interval: '3600'
fatigue check/allow resolution: 'false'

spec:

command: check-cpu -w 90 c 95

env_vars:

handlers:

- email

high flap threshold: 0

interval: 60

low flap threshold: O

output metric format: "'

output metric handlers:

proxy entity name: "'

publish: true

round robin: false

runtime assets:

stdin: false

subdue:

subscriptions:

- linux

timeout: O

ttl: O

You'll notice that under the metadata scope we’ve added some annotations. For our filter asset to
work the way that our interactively created filter does, these annotations are necessary. Let’s discuss
those annotations briefly.

The annotations in our check definition are doing several things:

1. fatigue check/occurrences : This tells the filter on which occurrence we’re going to send the
even through for further processing

2. fatigue check/interval : This value (in seconds) tells the filter at what interval to allow
additional events to be processed

3. fatigue check/allow resolution : Determinesifa resolve event will be passed through to
the filter.

For more information on configuring these values, see the filter asset README. Now let’s assign our
newly minted filter to a handler.

https://github.com/nixwiz/sensu-go-fatigue-check-filter#configuration

Assigning the filter to a handler

Just like we did with our interactively created filter, we’re going to assign our filter to a handler. We can
use the following handler example:

api version: core/v2
type: Handler
metadata:
namespace: default
name: slack
spec:
type: pipe

command: 'sensu-slack-handler --channel ''#general'' --timeout 20 --username

T Ty 1

sensu
env_vars:

- SLACK WEBHOOK URL=https://www.webhook-url-for-slack.com
timeout: 30

filters:

- 1s incident

- fatigue check

Let’s move on to validating our filter.

Validating the filter

You can verify the proper behavior of these filters by using sensu-backend logs.The default location
of these logs varies based on the platform used, but thetroubleshooting guide provides this
information.

Whenever an event is being handled, a log entry is added with the message
"handler":"slack","level":"debug"”, "msg":"sending event to handler" , followed bya second
one with the message "msg":"pipelined executed event pipe

handler", "output":"", "status":0 . However, if the event is being discarded byour filter, a log entry
with the message event filtered will appear instead.

Next steps

You now know how to apply a filter to a handler, as well as use a filter asset and hopefully reduce alert
fatigue. From this point, here are some recommended resources:

Read the filters reference for in-depthdocumentation on filters.

How to route alerts using filters

Contents

Every alert has an ideal first responder: a team or individual with the knowledge to triage and address
the issue.Sensu contact routing lets you alert the right people using their preferred contact methods,
reducing mean time to response and recovery.

Prerequisites
Configuring contact routing

1. Register the has-contact filter asset
2. Create contact filters

3. Create a handler for each contact
4. Create a handler set

Testing contact routing
Managing contact labels in checks and entities

In this guide, we’ll set up alerting for two teams (ops and dev) with separate Slack channels.Each team
wants to be alerted only for the things they care about, using their team’s Slack channel.To achieve
this, we’'ll be creating two types of Sensu resources:

Event handlers to store contact preferences for the ops team, the dev team, and a fallback option
Event filters to match contact labels to the right handler

Here’s a quick overview of the configuration we’ll need to set up contact routing.You can see that the
check definition includes the contacts: dev label, resulting in an alert being sent to the dev team,
but not to the ops team or to the fallback contact.

SENSU BACKEND

Check Handler (set) Handlers
app_error_rate g slack = slack_ops
labels: type: set command: sensu-slack-handler
contacts: dev handlers: --channel #alert-ops
command: "query influx..." - slack ops runtime_assets:
handlers: slack - slack_dev - sensu-slack-handler

- slack fallback

filters:
- is_incident
- contact_ops

—l S 1aCk_dev
command: sensu-slack-handler
--channel #alert-dev

runtime assets:

- sensu-slack-handler
filters:

- is_incident

- contact_dev

—- 51 ack_fallback
command: sensu-slack-handler
--channel #alert-all

runtime_assets:

- sensu-slack-handler
filters:

- is_incident

- contact_fallback

Event Filters

== contact_ops
action: allow
runtime_assets:
- has-contact-filter
expressions:
- has_contact(event,

= contact_dev

action: allow
runtime_assets:

- has-contact-filter
expressions:

- has_contact(event,

== contact_fallback
action: allow
runtime_assets:
- has-contact-filter
expressions:
- no_contact(event)

‘ops')

'dev')

- #alert-ops X

- #alert-dev \/

X

- #alert-all

Sensu Go contact routing: Routing alerts to the ops team using a check label

Prerequisites

To complete this guide, you'll need:

a Sensu backend
at least one Sensu agent

sensuctl, configured to talk to the Sensu backend

curl

a Slack webhook URL and three Slack channels available to receive test alerts

To set up a quick testing environment, download and start the Sensu sandbox.

Configuring contact routing

1. Register the has-contact filter asset

Contact routing is powered by the has-contact filter asset.To add the has-contact asset to Sensu, use
this sensuctl command, or download the latest asset definition from Bonsai.

http://localhost:1313/images/contact-routing1.png
https://curl.haxx.se/
https://api.slack.com/incoming-webhooks
https://bonsai.sensu.io/assets/sensu/sensu-go-has-contact-filter
https://bonsai.sensu.io/assets/sensu/sensu-go-has-contact-filter

curl https://bonsai.sensu.io/release assets/sensu/sensu-go-has-contact-
filter/0.2.0/any/noarch/download \

| sensuctl create

You can run sensuctl asset list --format yaml to confirm thatthe asset is ready to use.

2. Create contact filters
Looking at the documentation in Bonsai, we can see that the has-contact asset supports two functions:

has_contact , taking the Sensu event and the contact name as arguments
no contact , to use as a fallback in the absence of contact labels and taking only the event as an
argument

We’'ll use these functions to create filters that represent the three actions that the Sensu Slack handler
can take on an event: contact the ops team, contact the dev team, and contact the fallback option.

filter name expression description

contact_ops has_contact (event, "ops") Allow events with the entity
or check label contacts: ops

contact_dev has_contact (event, "dev") Allow events with the entity
or check label contacts: dewv

contact fallback no contacts (event) Allow events without an entity
or check contacts label

To add these filters to Sensu, use sensuctl create :

echo '---
type: EventFilter
api version: core/v2
metadata:

name: contact ops
spec:

action: allow

runtime assets:

- sensu-go-has-contact-filter any noarch
expressions:
- has contact (event, "ops")
type: EventFilter
api version: core/v2
metadata:
name: contact dev
spec:
action: allow
runtime assets:
- sensu-go-has-contact-filter any noarch
expressions:
- has contact (event, "dev")
type: EventFilter
apil version: core/v2
metadata:
name: contact fallback
spec:
action: allow
runtime assets:
- sensu-go-has-contact-filter any noarch
expressions:

- no_contacts (event)' | sensuctl create

You canrun sensuctl filter list --format yaml to confirm that the filters are ready to use.

3. Create a handler for each contact

With our contact filters in place, we’ll create a handler for each contact: ops, dev, and fallback.If you
haven’t already, add the Slack handler asset to Sensu using sensuctl:

curl https://bonsai.sensu.io/release assets/sensu/sensu-slack-
handler/1.0.3/linux/amd64/download \

| sensuctl create

In each handler definition, we’ll specify:

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

a unique name: slack ops , slack dev ,Or slack fallback

a customized command with the contact’s preferred Slack channel

the contact filter

the built-in is_incident and not silenced filters to reduce noise and enable silences
an environment variable containing your Slack webhook URL

the sensu-slack-handler runtime asset

To create the slack ops , slack dev ,and slack fallback handlers, edit and run:
Edit before running:

1. Add your SLACK WEBHOOK URL

2. Make sure the Slack channels specified in the

command ' attributes match channels available
to receive test alerts in your Slack instance.
echo '—---

type: Handler
api version: core/v2
metadata:
name: slack ops
spec:
command: sensu-slack-handler --channel "#alert-ops"
env_vars:
- SLACK WEBHOOK URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX
filters:
- 1s _incident
- not silenced
- contact ops
runtime assets:
- sensu-slack-handler linux amd64
type: pipe
type: Handler
apl version: core/v2
metadata:
name: slack dev
spec:
command: sensu-slack-handler --channel "#alert-dev"
env_vars:
- SLACK WEBHOOK URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX
filters:

- 1is incident

- not silenced
- contact dev
runtime assets:

- sensu-slack-handler linux amd64
type: pipe
type: Handler
apl version: core/v2
metadata:
name: slack fallback
spec:
command: sensu-slack-handler --channel "#alert-all"
env_vars:
- SLACK WEBHOOK URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX
filters:
- 1is_incident
- not silenced
- contact fallback
runtime assets:
- sensu-slack-handler linux amd64

type: pipe' | sensuctl create

You can run sensuctl handler list --format yaml to confirm that the handlers are ready to use.

4. Create a handler set

To centralize contact management and simplify configuration, we’ll create a handler set that combines
our contact-specific handlers under a single handler name.

Use sensuctl tocreatea slack handler set:

echo '---
type: Handler
api version: core/v2
metadata:
name: slack
namespace: default
spec:

handlers:

- slack ops
- slack dev
- slack fallback

type: set' | sensuctl create

You should see the output of sensuctl handler list update toinclude the siack handler set.

Testing contact routing

To make sure our contact filters are working, we’ll use the agent API to create ad-hoc events and send
them to our Slack pipeline.

First, let’s create an event without a contacts label.You may need to modify the URL with your
Sensu agent address.

curl -X POST \

-H 'Content-Type: application/json' \

-d '{
"check": {
"metadata": {
"name": "example-check"
},
"status": 1,
"output": "You should receive this example event in the Slack channel specified

by your slack fallback handler.",
"handlers": ["slack"]
}
PO
http://127.0.0.1:3031/events

You should see a 202 response from the API and, since this event doesn’t include a contacts label,
an alert in the Slack channel specified by the slack fallback handler.Behind the scenes, Sensu
uses the contact fallback filter to match the eventto the slack fallback handler.

Now let’s create an event with a contacts label.

curl -X POST \

-H 'Content-Type: application/json' \

-d '{
"check": {
"metadata": {
"name": "example-check",
"labels": {
"contacts": "dev"
}
}y
"status": 1,
"output": "You should receive this example event in the Slack channel specified

by your slack dev handler.",
"handlers": ["slack"]
}
PO
http://127.0.0.1:3031/events

Since this event contains the contacts: dev label, you should see an alert in the Slack channel
specified by the slack dev handler.

Resolve the events by sending the same API requests with status setto o .

Managing contact labels in checks and entities

To assign an alert to a contact, add a contacts label to the check or entity.

Checks

For example, this check definition includes two contacts (ops and dev) and the handler siack .To
set up the check cpu check, see the guide to monitoring server resources.

type: CheckConfig
api version: core/v2
metadata:

name: check cpu

labels:

contacts: ops, dev
spec:
command: check-cpu.rb -w 75 -c 90
handlers:
- slack
interval: 10
publish: true
subscriptions:
- system
runtime-assets:
- sensu-plugins-cpu-checks

- sensu-ruby-runtime

When the check cpu check generates an incident, Sensu filters the event according to the
contact ops and contact dev filters, resulting in an alert sent to #alert-ops and #alert-dev.

SENSU BACKEND
Check Handler (set) Handlers Event Filters
check_cpu = slack - slack_ops == contact_ops —- #alert-ops \/
labels: type: set command: sensu-slack-handler action: allow
contacts: ops, dev handlers: --channel #alert-ops runtime_assets:
command: "check-cpu.rb ..." - slack_ops runtime_assets: - has-contact-filter
handlers: slack - slack_dev - sensu-slack-handler expressions:

- slack_fallback filters: - has_contact(event, 'ops')
- is_incident
- contact_ops

r—- S 1 aCk_dev == contact_dev - #alert-dev \/
command: sensu-slack-handler action: allow
--channel #alert-dev runtime_assets:
runtime_assets: - has-contact-filter
- sensu-slack-handler expressions:
filters: - has_contact(event, 'dev')

- is_incident
- contact_dev

——- 5 1ack_fallback = contact_fallback e #alert-all X
command: sensu-slack-handler action: allow
--channel #alert-all runtime_assets:
runtime_assets: - has-contact-filter
- sensu-slack-handler expressions:
filters: - no_contact(event)

- is_incident
- contact fallback

Sensu Go contact routing: Routing alerts to two contacts using a check label

Entities

You can also specify contacts using an entity label.For more information about managing entity labels,
see the entity reference.

In the case that contact labels are present in both the check and entity, the check contacts override the

http://localhost:1313/images/contact-routing2.png

entity contacts.Here we can see that the dev label in the check configuration overrides the ops label
in the agent definition, resulting in an alert sent to #alert-dev but not to #alert-ops or #alert-all.

SENSU AGENT SENSU BACKEND
Entity Check Handler (set) Handlers Event Filters
agent .yml - App_ETTOr_rate =P slack - slack ops =g contact_ops g #alert-ops X
labels: labels: type: set command: sensu-slack-handler action: allow
contacts: ops contacts: dev handlers: --channel #alert-ops runtime assets:
subscriptions: command: “query influx..." - slack_ops runtime_assets: - has-contact-filter
- app-checks handlers: slack - slack_dev - sensu-slack-handler expressions:
subscriptions: - slack_fallback filters: - has_contact(event, 'ops')
- app-checks - is_incident
- contact_ops
- s 1ack_dev = contact_dev — #alert-dev \/
command: sensu-slack-handler action: allow
--channel #alert-dev runtime_assets:
runtime_assets: - has-contact-filter
- sensu-slack-handler expressions:
filters: - has_contact(event, 'dev')

- is_incident
- contact_dev

—- 51ack_fallback === contact_fallback —- #alert-all X
command: sensu-slack-handler action: allow
--channel #alert-all runtime_assets:
runtime_assets: - has-contact-filter
- sensu-slack-handler expressions:
filters: - no_contact(event)

- is_incident
- contact fallback

Sensu Go contact routing: Check contacts take precedence over entity contacts

Next steps

Now that you've set up contact routing for two example teams, you can create additional filters,
handlers, and labels to represent your team’s contacts.For more tools to reduce alert fatigue, see the

guide.

http://localhost:1313/images/contact-routing3.png

How to install plugins using assets

Contents

1. Download an asset definition from Bonsai

2. Reqister the asset with Sensu
3. Create a monitoring workflow
Next steps

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.You can use
assets to provide the plugins, libraries, and runtimes you need to automate your monitoring workflows.
See the asset reference for more information about assets.

1. Download an asset definition from Bonsai

You can discover, download, and share assets using Bonsai, the Sensu asset index.To use an asset,
select the Download button on the asset page in Bonsai to download the asset definition for your
Sensu backend platform and architecture.Asset definitions tell Sensu how to download and verify the
asset when required by a check, filter, mutator, or handler.

For example, here’s the asset definition for version 1.1.0 of the Sensu PagerDuty handler asset for
Linux AMDG64.

type: Asset
api version: core/v2
metadata:
name: sensu-pagerduty-handler
namespace: default
labels: {}
annotations: {}
spec:
url:
https://assets.bonsai.sensu.10/698710262d59c72ace3e31524960630dc1edf190/sensu-
pagerduty-handler 1.1.0 linux amdé64.tar.gz
shab512:

https://bonsai.sensu.io/
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

e93ecd4465af5a2057664e8c3cd68e93524570b813150b97578ecaaeb5e21f0cf7419d4£fc36feb0155eeb0dd5
a227e267307a58ee58a9f3e85bf3d44da3738bf691ca

filters:
- entity.system.os == 'linux'
- entity.system.arch == 'amdo64'

After downloading an asset definition, open the file and adjust the namespace and filters for your
Sensu instance.Filters for check assets should match entity platforms, while filters for handler and filter
assets should match your Sensu backend platform.If the provided filters are too restrictive for your
platform, replace os and arch with any supported entity system attributes (for example:

entity.system.platform family == 'rhel').You may also want to customize the asset name to
reflect the supported platform (for example: sensu-pagerduty-handler-linux)and add custom
attributes using labels and annotations .

Enterprise-tier assets (like the ServiceNow and Jira event handlers) require a Sensu license. For
more information about licensed-tier features and to activate your license, see the getting started

guide.

2. Register the asset with Sensu

Once you’ve downloaded the asset definition, you can register the asset with Sensu using sensuctl.

sensuctl create --file sensu-sensu-pagerduty-handler-1.1.0-linux-amd64.yml

You can use sensuctl to verify that the asset is registered and ready to use.

sensuctl asset list

3. Create a workflow

Now we can use assets in a monitoring workflow.Depending on the asset, you may want to create
Sensu checks, filters, mutators, and handlers.The asset details in Bonsai are the best resource for
information about asset capabilities and configuration.

For example, to use the Sensu PagerDuty handler asset, create a pagerduty handler that includes
your PagerDuty service API key in place of SECRET and sensu-pagerduty-handler as aruntime

https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

asset.

YML

type: Handler
api version: core/v2
metadata:
name: pagerduty
namespace: default
spec:
command: sensu-pagerduty-handler
env_vars:
- PAGERDUTY TOKEN=SECRET
filters:
- 1s_incident
runtime assets:
- sensu-pagerduty-handler

timeout: 10

type: pipe
JSON
{

"api version": "core/v2",

"type": "Handler",

"metadata": {
"namespace": "default",
"name": "pagerduty"

b

"spec": {
"type": "pipe",
"command": "sensu-pagerduty-handler",

"env_vars": [
"PAGERDUTYiTOKEN=SECRET"
I

"runtime assets": ["sensu-pagerduty-handler"],
"timeout": 10,
"filters": [

"is incident"

Save the definition to a file (for example: pagerduty-handler.json), and add to Sensu using
sensuctl.

sensuctl create --file pagerduty-handler.json

Now that Sensu can create incidents in PagerDuty, we can automate this workflow by adding the
pagerduty handler to our Sensu service checks.To get started with checks, see the guide to

monitoring server resources.

Next steps

Learn more about assets

Read the asset specification
Share your assets on Bonsai

How to plan maintenance windows using
silencing

Contents

What is Sensu silencing?

As check results are processed by a Sensu server, the server executes eventhandlers to send alerts
to personnel or otherwise relay event data toexternal services. Sensu’s built-in silencing, along with

the built-in not silenced filter, provides the means to suppress execution of eventhandlers on an ad
hoc basis.

When to use silencing

Silencing is used to prevent handlers configured with the not silenced filterfrom being triggered
based on the check name present in a check result or thesubscriptions associated with the entity that
published the check result. Thiscan be desirable in many scenarios, giving operators the ability to quiet
incoming alerts while coordinating their response.

Sensu silences make it possible to:

Silence all checks on a specific entity

Silence a specific check on a specific entity

Silence all checks on entities with a specific subscription
Silence a specific check on entities with a specific subscription
Silence a specific check on every entity

Using silencing to plan maintenance

The purpose of this guide is to help you plan a maintenance window, by creatingal silenced entry for a
specific entity named i-424242 and its check named! check-http , in order to prevent alerts as you
restart or redeploy theservices associated with this entity.

Creating the silenced entry
The first step is to create a silenced entry that will silence the checkl check-http on an entity named

i-424242 , for a planned maintenance windowthat starts at 01:00, on Sunday, and ends 1 hour later.
Yourusername will automatically be added as the creator of the silenced entry.

sensuctl silenced create \
--subscription 'entity:i-424242"' \
--check 'check-http' \

--begin '2018-03-16 01:00:00 -04:00" \
-—expire 3600 \

—--reason 'Server upgrade'

See the sensuctl documentation for the supported time formats in thel begin flag.

Validating the silenced entry
You can verify that the silenced entry against our entity, here named! i-424242 , has been properly
created, by using sensuctl .

sensuctl silenced info 'entity:1-424242:check-http’

Once the silenced entry starts to take effect, events that are silenced will bemarked as so in sensuctl

events .

sensuctl event list

Entity Check Output Status Silenced Timestamp

i-424242 check-http 0 true 2018-03-16 13:22:16 -0400 EDT

WARNING: By default, a silenced event will be handled unless the handler usesthe not silenced
filter to discard silenced events.

Next steps

You now know how to create silenced entries to plan a maintenance and hopefullyavoid false positive.
From this point, here are some recommended resources:

Read the silencing reference for in-depth documentation on silenced entries.

How to create a read-only user with RBAC

Contents

Sensu role-based access control (RBAC) helps different teams and projects share a Sensu instance.
RBAC allows management and access of users and resources based on namespaces, groups,
roles, and bindings.

By default, Sensu includes a default namespace and an admin user with full permissions to
create, modify, and delete resources within Sensu, including RBAC resources like users and roles.This
guide requires a running Sensu backend and a sensuctl instance configured to connect to the backend
as the default admin _user.

Why use RBAC?

RBAC allows you to exercise fine-grained control over how Sensu users interactwith Sensu resources.
Using RBAC rules, you can easily achieve multitenancyso different projects and teams can share a
Sensu instance.

How to create a read-only user

In this section, you’ll create a user and assign them read-only access to resources within the
default namespace using a role and a role binding.

1. Create a user with the username alice and assign them to the group ops :

sensuctl user create alice --password='password' --groups=ops

2. Create a read-only role with get and 1ist permissions for all resources (*) within the
default namespace:

sensuctl role create read-only --verb=get,list --resource=* --namespace=default

3. Create an ops-read-only role binding to assign the read-only role tothe ops group:

sensuctl role-binding create ops-read-only --role=read-only —--group=0ps

You can also use role bindings to tie roles directly to users using the --user flag.

All users in the ops group now have read-only access to all resources within the default namespace.
You can use the sensuctl user , sensuctl role ,and sensuctl role-binding commands to
manage your RBAC configuration.

How to create a cluster-wide event-reader user

Now let’s say you want to create a user that has read-only access to events across all namespaces.
Since you want this role to have cluster-wide permissions, you’ll need to create a cluster role and a
cluster role binding.

1. Create a user with the username bob and assign them to the group ops :

sensuctl user create bob --password='password' --groups=ops

2. Create a global-event-reader clusterrole with get and 1ist permissions for events
across all namespaces:

sensuctl cluster-role create global-event-reader --verb=get,list --

resource=events

3. Create an ops-event-reader cluster role binding to assign the global-event-reader role to
the ops group:

sensuctl cluster-role-binding create ops-event-reader --cluster-role=global-

event-reader --group=ops

All users in the ops group now have read-only access to events across all namespaces.

Next steps

You now know how to create a user, create a role, and create a role binding to assign a role to a user.
From this point, here are some recommended resources:

Read the RBAC reference for in-depth documentation on role-based access control, examples, and
information about cluster-wide permissions.

Planning your Sensu Go deployment

Contents

This guide describes various deployment considerations and recommendations, including details
related to communication security and common deployment architectures.

What is etcd?

Hardware sizing
Communications security
Common Sensu architectures

Single backend using embedded etcd
Clustered backend with embedded etcd

What is etcd?

etcd is a key-value store which is used by applications of varying complexity, from simple web apps to
Kubernetes. The Sensu backend uses an embedded etcd instance for storing both configuration and
event data, so you can get Sensu up and running without external dependencies.

By building atop etcd, Sensu’s backend inherits a number of characteristics that should be considered
when planning for a Sensu deployment.

Hardware sizing

Because etcd’s design prioritizes consistency across a cluster, the speed with which write operations
can be completed is very important to the performance of a Sensu cluster.

This means that Sensu backend infrastructure should be provisioned to provide sustained IO
operations per second (IOPS) appropriate for the rate of monitoring events the system will be required
to process.

For more detail, our hardware requirements document describes the minimum and recommended
hardware specifications for running the Sensu backend.

Communications security

Whether using a single or multiple Sensu backends in a cluster, communication with the backend’s
various network ports (web Ul, HTTP API, websocket API, etcd client & peer) occurs in cleartext by
default. Encrypting network communications via TLS is highly recommended, and requires both some
planning and explicit configuration.

Planning TLS for etcd

The URLSs for each member of an etcd cluster are persisted to the database after initialization. As a
result, moving a cluster from cleartext to encrypted communications requires resetting the cluster,
which destroys all configuration and event data in the database. Therefore, we recommend planning
for encryption before initiating a clustered Sensu backend deployment.

WARNING: Reconfiguring a Sensu cluster for TLS post-deployment will require resetting all etcd
cluster members, resulting in the loss of all data.

As described in our guide for securing Sensu, the backend uses a shared certificate and key for web
Ul and agent communications. Communications with etcd can be secured using the same certificate
and key; the certificate’s common name or subject alternate names must include the network
interfaces and DNS names that will point to those systems.

See our clustering guide and the etcd docs for more info on setup and configuration, including a walk-
through for generating TLS certificates for your cluster.

Common Sensu architectures

Depending on your infrastructure and the type of environments you’ll be monitoring, you may use one
or a combination of these architectures to best fit your needs.

Single backend using embedded etcd

This architecture requires minimal resources, but provides no redundancy in the event of failure.

https://etcd.io/docs/

WORKSTATION SENSU-BACKEND MONITORED ENTITIES

requests checks

.

sensuctl —_— HTTP API WebSocket API > T
PORT 8080 PORT 8081 returns events
browser —_— web UI embedded etcd store

PORT 3000

Sensu standalone architecture with embedded etcd

A single backend can later be reconfigured as a member of a cluster, but this operation is destructive —
meaning that it requires destroying the existing database.

Use cases

The simplicity of this architecture may make it a good fit for small to medium-sized deployments, such
as monitoring a remote office or datacenter, deploying alongside individual auto-scaling groups or in
various segments of a logical environment spanning multiple cloud providers.

For example, in environments with unreliable WAN connectivity, having agents connect to a local
backend may be more reliable than having those agents connect over WAN or VPN tunnel to a
backend running in a central location.

NOTE: Multiple Sensu backends can relay their events to a central backend using the sensu-relay-
handler.

Clustered backend with embedded etcd

The embedded etcd databases of multiple Sensu backend instances can be joined together in a
cluster, providing increased availability and replication of both configuration and data. Please see our
clustering guide for more information.

https://bonsai.sensu.io/assets/sensu/sensu-relay-handler
https://bonsai.sensu.io/assets/sensu/sensu-relay-handler

WORKSTATION LOAD BALANCER
sensuctl _— HTTP API
browser I pEa——_ | web UI

— WebSocket API

MONITORED ENTITIES

sensu-agent

SENSU BACKEND NODE

embedded etcd store €——

- HTTP API

——> web UI

b WebSocket API

SENSU BACKEND NODE

embedded etcd store

— HTTP API

> web UI

——> WebSocket API

SENSU BACKEND NODE

embedded etcd store €4——

e HTTP API

—b web UI

> WehbSocket API

Sensu clustered architecture with embedded etcd

zvvw X

etcd replication LAN

Clustering requires an odd number of backend instances. While larger clusters provide better fault
tolerance, write performance suffers because data must be replicated across more machines.
Following on the advice of the etcd maintainers, clusters of 3, 5 or 7 backends are the only

recommended sizes. See the etcd docs for more info.

Cluster creation and maintenance

Sensu’s embedded etcd supports initial cluster creation via a static list of peer URLs. Once the cluster

https://etcd.io/docs/

is created, members can be added or removed using etcdctl tooling. See our clustering guide and the
etcd docs for more info.

Networking considerations

Clustered deployments benefit from a fast and reliable network. Ideally they should be co-located in
the same network segment with as low latency as possible between all the nodes. Clustering backends
across disparate subnets or WAN connections is not recommended.

While a 1GbE is sufficient for common deployments, larger deployments will benefit from 10GbE
network allowing for a reduced mean time to recovery.

As the number of agents connected to a backend cluster grows, so will the communication between
members of the cluster required for data replication. With this in mind, it is recommended that clusters
with a thousand or more agents use a discrete network interface for peer communication.

Load balancing

Although each Sensu agent can be configured with the URLs for multiple backend instances, we
recommend that agents be configured for connecting to a load balancer. This approach provides
operators with greater control over agent connection distribution and makes it possible to replace
members of the backend cluster without requiring updates to agent configuration.

Conversely, the sensuctl command-line utility cannot be configured with multiple backend URLs. Under
normal conditions it is desirable for both sensuctl communications and browser access to the web Ul to
be routed via a load balancer as well.

https://etcd.io/docs/

How to run a Sensu cluster

Contents

What is a Sensu cluster?

Why use clustering?

Configuring a cluster

Adding sensu agents to the cluster
Cluster health

Managing cluster members
Security

Client-to-server transport security with HTTPS
Client-to-server authentication with HTTPS client certificates

Peer communication authentication with HTTPS client certificates

Sensu agent with HTTPS
Using an external etcd cluster
Troubleshooting

What is a Sensu cluster?

A Sensu cluster is a group of at least three sensu-backend nodes, each connected to a shared etcd
cluster, using Sensu’s embedded etcd or an external etcd cluster. Creating a Sensu cluster ultimately

configures an etcd cluster.

Why use clustering?

Clustering is important to make Sensu more highly available, reliable, and durable. It will help you cope
with the loss of a backend node, prevent data loss, and distribute the network load of agents.

NOTE: We recommend using a load balancer to evenly distribute agent connections across the

cluster.

Configuring a cluster

https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/clustering/

The sensu-backend arguments for its store mirror the etcd configuration flags, however the Sensu
flags are prefixed with etcd . For more detailed descriptions of the different arguments, you can refer
to the etcd docs or the Sensu backend reference.

You can configure a Sensu cluster in a couple different ways (we’ll show you a few below) but it's
recommended to adhere to some etcd cluster guidelines as well.

The recommended etcd cluster size is 3, 5 or 7, which is decided by the fault tolerance
requirement. A 7-member cluster can provide enough fault tolerance in most cases.
While a larger cluster provides better fault tolerance, the write performance reduces
since data needs to be replicated to more machines. It is recommended to have an odd
number of members in a cluster. Having an odd cluster size doesn’t change the number
needed for majority, but you gain a higher tolerance for failure by adding the extra
member (Core OS).

We also recommend using stable platforms to support your etcd instances (see etcd’s supported
platforms).

Docker

If you'd prefer to stand up your Sensu cluster within Docker containers, check out the Sensu Go
docker configuration. This configuration defines three sensu-backend containers and three sensu-
agent containers.

Traditional computer instance

NOTE: The remainder of this guide uses on disk configuration. If you are using an ephemeral
computer instance, you can use sensu-backend start --help to see examples of etcd command
line flags. The configuration file entries below translate to sensu-backend flags.

Sensu backend configuration

Below are example configuration snippets from /etc/sensu/backend.yml using a three node cluster.
The nodes are named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1 ,
10.0.0.2 and 10.0.0.3 , respectively.

NOTE: This backend configuration assumes you have set up and installed the sensu-backend on all
the nodes used in your cluster. You can use our installation and configuration guide guide if you have
not done so.

https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/
https://etcd.io/docs/v3.4.0/platforms/
https://etcd.io/docs/v3.4.0/platforms/
https://github.com/sensu/sensu-go/blob/master/docker-compose.yaml

backend-1

##

store configuration for backend-1/10.0.0.1

##

etcd-advertise-client-urls: "http://10.0.0.1:2379"
etcd-listen-client-urls: "http://10.0.0.1:2379"
etcd-listen-peer-urls: "http://0.0.0.0:2380"
etcd-initial-cluster: "backend-l=http://10.0.0.1:2380,backend-
2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"
etcd-initial-advertise-peer-urls: "http://10.0.0.1:2380"

etcd-initial-cluster-state: "new

etcd-initial-cluster-token:

etcd-name: "backend-1"

backend-2

##

store configuration for backend-2/10.0.0.2

##

etcd-advertise-client-urls: "http://10.0.0.2:2379"
etcd-listen-client-urls: "http://10.0.0.2:2379"
etcd-listen-peer-urls: "http://0.0.0.0:2380"
etcd-initial-cluster: "backend-1l=http://10.0.0.1:2380,backend-
2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"
etcd-initial-advertise-peer-urls: "http://10.0.0.2:2380"
etcd-initial-cluster-state: "new"

etcd-initial-cluster-token:

etcd-name: "backend-2"

backend-3

##

store configuration for backend-3/10.0.0.3

##

etcd-advertise-client-urls: "http://10.0.0.3:2379"
etcd-listen-client-urls: "http://10.0.0.3:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"
etcd-initial-cluster: "backend-1l=http://10.0.0.1:2380,backend-
2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"
etcd-initial-advertise-peer-urls: "http://10.0.0.3:2380"
etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-3"

Once each node has the configuration described above, start each sensu-backend:

sudo systemctl start sensu-backend

Adding sensu agents to the cluster

Each Sensu agent should have the following entries in /etc/sensu/agent.yml to ensure they are
aware of all cluster members. This allows the agent to reconnect to a working backend if the backend it
is currently connected to goes into an unhealthy state.

##
backend-url configuration for all agents connecting to cluster over ws

##

backend-url:
- "ws://10.0.0.1:8081"
- "ws://10.0.0.2:8081"
- "ws://10.0.0.3:8081"

You should now have a highly available Sensu cluster! You can verify its health and try other cluster
management commands using sensuctl.

Sensuctl

Sensuctl has several commands to help you manage and monitor your cluster. See sensuctl
cluster -h for additional help usage.

Cluster health

Get cluster health status and etcd alarm information.

sensuctl cluster health

ID Name Error Healthy
a32e8f613b529ad4 backend-1 true
¢3d9f4b8d0ddlac9 backend-2 dial tcp 10.0.0.2:2379: connect: connection refused false
c8f63ae435a5e6bf backend-3 true

Add a cluster member

Add a new member node to an existing cluster.

sensuctl cluster member-add backend-4 https://10.0.0.4:2380
added member 2f7ae42c315f8c2d to cluster

ETCD NAME="backend-4"

ETCD_INITIAL CLUSTER="backend-4=https://10.0.0.4:2380,backend-
l=https://10.0.0.1:2380,backend-2=https://10.0.0.2:2380,backend-

3=https://10.0.0.3:2380"
ETCD_INITIAL_CLUSTER_STATE="eXiStiDg"

List cluster members

List the ID, name, peer urls, and client urls of all nodes in a cluster.

sensuctl cluster member-list

1D Name Peer URLs Client URLs

a32e8f613b529ad4 backend-1 https://10.0.0.1:2380 https://10.0.0.1:2379
¢3d9f4b8d0dd1ac9 backend-2 https://10.0.0.2:2380 https://10.0.0.2:2379
c8f63ae435a5e¢6bf backend-3 https://10.0.0.3:2380 https://10.0.0.3:2379
2f7ae42c¢315f8c2d backend-4 https://10.0.0.4:2380 https://10.0.0.4:2379

Remove a cluster member

Remove a faulty or decommissioned member node from a cluster.

sensuctl cluster member-remove 2f7aed42c315f8c2d

Removed member 2f7ae42c315f8c2d from cluster

Replace a faulty cluster member
Here’s how to replace a faulty cluster member to restore a cluster’s health.

First, run sensuctl cluster health to identify the faulty cluster member.For a faulty cluster
member, the Error column will include an error message and the Healthy column will list false .

In this example, cluster member backend-4 is faulty:

sensuctl cluster health

ID Name Error Healthy
a32e8f613b529ad4 backend-1 true
¢3d9f4b8d0ddlac9 backend-2 true
c8f63ae435a5e6bf backend-3 true

2f7ae42c¢315f8c2d backend-4 dial tcp 10.0.0.4:2379: connect: connection refused false

Second, delete the faulty cluster member. To continue this example, you will delete cluster member
backend-4 using its ID field:

sensuctl cluster member-remove 2f7aed42c315f8c2d

Removed member 2f7ae42c315f8c2d from cluster

Third, add a newly created member to the cluster. You can use the same name and IP address as the
faulty member you deleted, with one change to the configuration: specify the etcd-initial-cluster-

state aS existing .

etcd-advertise-client-urls: "http://10.0.0.4:2379"
etcd-listen-client-urls: "http://10.0.0.4:2379"
etcd-listen-peer-urls: "http://0.0.0.0:2380"
etcd-initial-cluster: "backend-1l=http://10.0.0.1:2380,backend-
2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380,backend-
4=http://10.0.0.4:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.4:2380"
etcd-initial-cluster-state: "existing"
etcd-initial-cluster-token: ""

etcd-name: "backend-4"

If replacing the faulty cluster member does not resolve the problem, please see the etcd operations
guide for more information.

Update a cluster member

Update the peer URLs of a member in a cluster.

sensuctl cluster member-update c8f63aed435a5e6bf https://10.0.0.4:2380

Updated member with ID c8f63aed435a5e6bf in cluster

Security

https://etcd.io/docs/v3.4.0/op-guide/
https://etcd.io/docs/v3.4.0/op-guide/

Creating self-signed certificates
We will use the cfssl tool to generate our self-signed certificates.

The first step is to create a Certificate Authority (CA). In order to keep things simple, we will generate
all our clients and peer certificates using this CA, but you might eventually want to create distinct CA.

echo '"{"CN":"CA","key":{"algo":"rsa","size":2048}}"' | cfssl gencert -initca - |
cfssljson -bare ca -
echo '{"signing":{"default":{"expiry":"43800h", "usages":["signing", "key

encipherment", "server auth","client auth"]}}}' > ca-config.json

Then, using that CA, we can generate certificates and keys for each peer (backend server) by
specifying their Common Name (CN) and their hosts. A *.pem , *.csr and *.pem will be created
for each backend.

export ADDRESS=10.0.0.1,backend-1

export NAME=backend-1

echo '"{"CN":"'SNAME'", "hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl
gencert -config=ca-config.json -ca=ca.pem -ca-key=ca-key.pem -hostname="SADDRESS" -

profile=peer - | cfssljson -bare S$NAME

export ADDRESS=10.0.0.2,backend-2

export NAME=backend-2

echo "{"CN":"'SNAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}"' | cfssl
gencert -config=ca-config.json -ca=ca.pem -ca-key=ca-key.pem -hostname="SADDRESS" -

profile=peer - | cfssljson -bare SNAME

export ADDRESS=10.0.0.3,backend-3

export NAME=backend-3

echo "{"CN":"'SNAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}"' | cfssl
gencert -config=ca-config.json -ca=ca.pem -ca-key=ca-key.pem -hostname="SADDRESS"

profile=peer - | cfssljson -bare SNAME

We will also create generate a client certificate that can be used by clients to connect to the etcd client
URL. This time, we don’t need to specify an address but simply a Common Name (CN) (here
client) The files client-key.pem , client.csr and client.pem Will be created.

https://github.com/cloudflare/cfssl

export NAME=client
echo '"{"CN":"'SNAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl
gencert -config=ca-config.json -ca=ca.pem -ca-key=ca-key.pem -hostname=""

profile=client - | cfssljson -bare SNAME

See etcd’s guide to generating self signed certificates for detailed instructions.

Once done, you should have the following files created. The *.csr files will not be used in this guide.

backend-1-key.pem
backend-1.csr
backend-1.pem
backend-2-key.pem
backend-2.csr
backend-2.pem
backend-3-key.pem
backend-3.csr
backend-3.pem
ca-config. json
ca-key.pem

ca.csr

ca.pem
client-key.pem
client.csr

client.pem

Client-to-server transport security with HTTPS

Below are example configuration snippets from /etc/sensu/backend.yml on three Sensu backends

named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1, 10.0.0.2 and
10.0.0.3 respectively.This configuration assumes that your client certificates are in
/etc/sensu/certs/ and your CA certificate isin /usr/local/share/ca-certificates/sensu/ .

##
etcd peer ssl configuration for backend-1/10.0.0.1
##

https://etcd.io/docs/v3.4.0/op-guide/clustering/#self-signed-certificates

etcd-peer-cert-file: "/etc/sensu/certs/backend-1.pem"
etcd-peer-key-file: "/etc/sensu/certs/backend-1-key.pem"

etcd-peer-trusted-ca-file: "/usr/local/share/ca-certificates/sensu/ca.pem"

##
etcd peer ssl configuration for backend-2/10.0.0.2
##

etcd-peer-cert-file: "/etc/sensu/certs/backend-2.pem"
etcd-peer-key-file: "/etc/sensu/certs/backend-2-key.pem"

etcd-peer-trusted-ca-file: "/usr/local/share/ca-certificates/sensu/ca.pem"

##
etcd peer ssl configuration for backend-3/10.0.0.3
##

etcd-peer-cert-file: "/etc/sensu/certs/backend-3.pem"
etcd-peer-key-file: "/etc/sensu/certs/backend-3-key.pem"

etcd-peer-trusted-ca-file: "/usr/local/share/ca-certificates/sensu/ca.pem"

Validating with curl:

curl --cacert /usr/local/share/ca-certificates/sensu/ca.pem \

https://127.0.0.1:2379/v2/keys/foo -XPUT -d value=bar

Client-to-server authentication with HTTPS client certificates

Below are example configuration snippets from /etc/sensu/backend.yml on three Sensu backends
named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1, 10.0.0.2 and

10.0.0.3 respectively.This configuration assumes your client certificates are in /etc/sensu/certs/
and your CA certificate isin /usr/local/share/ca-certificates/sensu/ .

##
etcd peer ssl configuration for backend-1/10.0.0.1
##

etcd-peer-cert-file: "/etc/sensu/certs/backend-1.pem"

etcd-peer-key-file: "/etc/sensu/certs/backend-1-key.pem"
etcd-peer-trusted-ca-file: "/usr/local/share/ca-certificates/sensu/ca.pem"

etcd-client-cert-auth: true

##
etcd peer ssl configuration for backend-2/10.0.0.2
##
etcd-peer-cert-file: "/etc/sensu/certs/backend-2.pem"

etcd-peer-key-file: "/etc/sensu/certs/backend-2-key.pem"
etcd-peer-trusted-ca-file: "/usr/local/share/ca-certificates/sensu/ca.pem"

etcd-client-cert-auth: true

##
etcd peer ssl configuration for backend-3/10.0.0.3
##
etcd-peer-cert-file: "/etc/sensu/certs/backend-3.pem"

etcd-peer-key-file: "/etc/sensu/certs/backend-3-key.pem"
etcd-peer-trusted-ca-file: "/usr/local/share/ca-certificates/sensu/ca.pem"

etcd-client-cert-auth: true

Validating with curl, with a different certificate and key:

curl --cacert /usr/local/share/ca-certificates/sensu/ca.pem \
-—cert /etc/sensu/certs/client.pem \

-—-key /etc/sensu/certs/client-key.pem \

-L https://127.0.0.1:2379/v2/keys/foo -XPUT -d value=bar

Peer communication authentication with HTTPS client certificates

Below are example configuration snippets from /etc/sensu/backend.yml on three Sensu backends
named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1, 10.0.0.2 and
10.0.0.3 respectively.

NOTE: If you ran through the first part of the guide, you will need to update the store configuration for
all backends to use https instead of http.

backend-1

##
store configuration for backend-1/10.0.0.1

##

etcd-listen-client-urls: "https://10.0.0.1:2379"
etcd-listen-peer-urls: "https://0.0.0.0:2380"
etcd-initial-cluster: "backend-1l=https://10.0.0.1:2380,backend-
2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380"
etcd-initial-advertise-peer-urls: "https://10.0.0.1:2380"
etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "sensu"

etcd-name: "backend-1"

##

etcd peer ssl configuration for backend-1/10.0.0.1
##

etcd-peer-cert-file: "/etc/sensu/certs/backend-1.pem"

etcd-peer-key-file: "/etc/sensu/certs/backend-1-key.pem"
etcd-peer-trusted-ca-file: "/usr/local/share/ca-certificates/sensu/ca.pem"

etcd-peer-client-cert-auth: true

backend-2

##
store configuration for backend-2/10.0.0.2

#it

etcd-listen-client-urls: "https://10.0.0.2:2379"
etcd-listen-peer-urls: "https://0.0.0.0:2380"
etcd-initial-cluster: "backend-l=https://10.0.0.1:2380,backend-
2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380"
etcd-initial-advertise-peer-urls: "https://10.0.0.2:2380"
etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "sensu"

etcd-name: "backend-2"

##
etcd peer ssl configuration for backend-2/10.0.0.2

##

etcd-peer-cert-file: "/etc/sensu/certs/backend-2.pem"
etcd-peer-key-file: "/etc/sensu/certs/backend-2-key.pem"
etcd-peer-trusted-ca-file: "/usr/local/share/ca-certificates/sensu/ca.pem"

etcd-peer-client-cert-auth: true

backend-3

##
store configuration for backend-3/10.0.0.3
##

etcd-listen-client-urls: "https://10.0.0.3:2379"
etcd-listen-peer-urls: "https://0.0.0.0:2380"
etcd-initial-cluster: "backend-1l=https://10.0.0.1:2380,backend-
2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380"
etcd-initial-advertise-peer—-urls: "https://10.0.0.3:2380"
etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "sensu"

etcd-name: "backend-3"

##
etcd peer ssl configuration for backend-3/10.0.0.3
##
etcd-peer-cert-file: "/etc/sensu/certs/backend-3.pem"

etcd-peer-key-file: "/etc/sensu/certs/backend-3-key.pem"
etcd-peer-trusted-ca-file: "/usr/local/share/ca-certificates/sensu/ca.pem"

etcd-peer-client-cert-auth: true

Sensu agent with HTTPS

Below is a sample configuration for an agent that would connect to the cluster using wss from

/etc/sensu/agent.yml

##

backend-url configuration for all agents connecting to cluster over wss

##

backend-url:
- "wss://10.0.0.1:8081"
- "wss://10.0.0.2:8081"
- "wss://10.0.0.3:8081"

Using an external etcd cluster

Using Sensu with an external etcd cluster requires etcd 3.3.2 or newer. To stand up an external etcd
cluster, you can follow etcd’s clustering guide using the same store configuration.

In this example, we will enable client-to-server and peer communication authentication using self-
signed TLS certificates. Below is how you would start etcd for backend-1 from our three node
configuration example above.

etcd \

—-listen-client-urls "https://10.0.0.1:2379" \
-—advertise-client-urls "https://10.0.0.1:2379" \
--listen-peer-urls "https://10.0.0.1:2380" \
-—initial-cluster "backend-1l=https://10.0.0.1:2380,backend-
2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380" \
--initial-advertise-peer-urls "https://10.0.0.1:2380" \
--initial-cluster-state "new" \

--name "backend-1" \

-—trusted-ca-file=./ca.pem \

-—cert-file=./backend-1.pem \

--key-file=. /backend-1-key.pem \

--client-cert-auth \

--peer-trusted-ca-file=./ca.pem \

--peer-cert-file=. /backend-1.pem \

--peer-key-file=. /backend-1-key.pem \
--peer-client-cert-auth \

-—auto-compaction-mode revision \

-—auto-compaction-retention 2

https://etcd.io/docs/v3.4.0/op-guide/clustering/

NOTE: The auto-compaction-mode and auto-compaction-retention flags are of particular
significance. Without these settings your database may quickly reach etcd’s maximum database size
limit.

In order to inform Sensu that you'd like to use this external etcd data source, add the sensu-backend
flag --no-embed-etcd to the original configuration, along with the path to a client certificate created
using our CA.

sensu-backend start \

-—etcd-trusted-ca-file=./ca.pem \

-—etcd-cert-file=./client.pem \

-—etcd-key-file=./client-key.pem \

-—etcd-advertise-client-
urls=https://10.0.0.1:2379,https://10.0.0.2:2379,https://10.0.0.3:2379 \

--no—-embed-etcd

Troubleshooting

Failures modes

See the etcd failure modes documentation for more information.

Disaster recovery

See the etcd recovery guide for more information.

https://etcd.io/docs/v3.4.0/op-guide/failures/
https://etcd.io/docs/v3.4.0/op-guide/recovery/

Securing Sensu

Contents

As with any piece of software, it is critical to minimize any attack surface exposed by the software.
Sensu is no different. The following component pieces need to be secured in order for Sensu to be
considered production ready:

etcd peer communication
APl and dashboard

Sensu agent to server communication

We’ll cover securing each one of those pieces, starting with etcd peer communication.

Securing etcd peer communication

Let’s start by covering how to secure etcd peer communication via the configuration at
/etc/sensu/backend.yml . Let’s look at the parameters you’ll need to configure:

##

backend store configuration

##

etcd-listen-client-urls: "https://localhost:2379"
etcd-listen-peer-urls: "https://localhost:2380"
etcd-initial-advertise-peer—-urls: "https://localhost:2380"
etcd-cert-file: "/path/to/your/cert"

etcd-key-file: "/path/to/your/key"
etcd-trusted-ca-file: "/path/to/your/ca/file"
etcd-peer-cert-file: "/path/to/your/peer/cert"
etcd-peer-key-file: "/path/to/your/peer/key"
etcd-peer-client-cert-auth: "true"

etcd-peer-trusted-ca-file: "/path/to/your/peer/ca/file"

Securing the APl and the dashboard

Let’s go over how to secure the API| and dashboard. Please note that by changing the parameters
below, the server will now communicate over TLS and expect agents connecting to it to use the
WebSocket secure protocol. In order for communication to continue, both this section and the following
section must be completed.

Both the Sensu Go API and the dashboard use a common stanza in /etc/sensu/backend.yml to
provide the certificate, key, and CA file needed to provide secure communication. Let’s look at the
attributes you’ll need to configure:

##

backend ssl configuration

##

cert-file: "/path/to/ssl/cert.pem"

key-file: "/path/to/ssl/key.pem"

trusted-ca-file: "/path/to/trusted-certificate-authorities.pem"

insecure-skip-tls-verify: false

Providing the above cert-file and key-file parameters will cause the API to serve HTTP requests over
SSL/TLS (https). As a result, you will also need to specify https:// schemaforthe api-url
parameter:

##

backend api configuration

##

api-url: "https://localhost:8080"

You can also specify a certificate and key for the dashboard separately from the API using the
dashboard-cert-file and dashboard-key-file parameters as shown in the following example.

##

backend ssl configuration

##

cert-file: "/path/to/ssl/cert.pem"
key-file: "/path/to/ssl/key.pem"

trusted-ca-file: "/path/to/trusted-certificate-authorities.pem"

insecure-skip-tls-verify: false
dashboard-cert-file: "/path/to/ssl/cert.pem"
dashboard-key-file: "/path/to/ssl/key.pem"

In the example above, we provide the path to the cert, key and CA file. After restarting the sensu-
backend service, the parameters are loaded and you are able to access the dashboard at
https://localhost:3000. Configuring these attributes will also ensure that agents are able to
communicate securely. Let's move on to securing agent to server communication.

Securing Sensu agent to server communication

We’ll now discuss securing agent to server communication. Please note: by changing the agent
configuration to communicate via WebSocket Secure protocol, the agent will no longer communicate
over a plaintext connection. If the server is not secured as described in the section above,
communication between the agent and server will not function.

By default, an agent uses the insecure ws:// transport. Let’s look at the example from

/etc/sensu/agent.yml

##

agent configuration
##

backend-url:

- "ws://127.0.0.1:8081"

In order to use WebSockets over SSL/TLS (wss), change the backend-url value to the wss://
schema:

##

agent configuration
#i#

backend-url:

- "wss://127.0.0.1:8081"

https://localhost:3000/

The agent will then connect Sensu servers over wss. Do note that by changing the configuration to
wss, plaintext communication will not be possible.

It is also possible to provide a trusted CA as part of the agent configuration by passing --trusted-
ca-file if starting the agentvia sensu-agent start .

You may include it as part of the agent configuration in /etc/sensu/agent.yml as:

trusted-ca-file: "/path/to/trusted-certificate-authorities.pem"

NOTE: If creating a Sensu cluster, every cluster member needs to be present in the configuration. See

the Sensu Go clustering guide for more information on how to configure agents for a clustered
configuration.

Hopefully you’ve found this useful! If you find any issues or have any questions, feel free to reach out
in our Community Slack, or open an issue on Github.

https://slack.sensu.io/
https://github.com/sensu/sensu-docs/issues/new

Troubleshooting

Contents

Service logging
Log levels
Log file locations

Sensu backend startup errors
Permission issues

Handlers and filters

Service logging

Logs produced by Sensu services — i.e. sensu-backend and sensu-agent — areoften the best place to
start when troubleshooting a variety of issues.

Log levels

Each log message is associated with a log level, indicative of the relative severity of the event being
logged:

Log level Description

panic Severe errors causing the service to shut down in an unexpected state
fatal Fatal errors causing the service to shut down (status 0)

error Non-fatal service error messages

warn Warning messages indicating potential issues

info Informational messages representing service actions

debug Detailed service operation messages to help troubleshoot issues

These log levels can be configured by specifying the desired log level as thevalue of 1og-level inthe
service configuration file (e.g. agent.yml oOrl backend.yml configuration files), or as an argument to
the --log-level command line flag:

sensu-agent start --log-level debug

Changes to log level via configuration file or command line arguments requirerestarting the service. For
guidance on restarting a service, pleaseconsult the Operating section of the agent orlbackend
reference, respectively.

Log file locations

Linux

Sensu services print structured log messages to standard output.In order to capture these log
messages to disk or another logging facility, Sensu servicesmake use of capabilities provided by the
underlying operating system’s servicemanagement. For example, logs are sent to the journald when
systemd is the service manager,whereas log messages are redirected to /var/log/sensu when
running under sysvinit schemes. If you are running systemd as your service manager and would rather
have logs written to /var/log/sensu/ , see the guide to forwarding logs from journald to syslog.

In the table below, the common targets for logging and example commands forfollowing those logs are
described. The name of the desired service, e.g. backend Or agent may be substituted for
${service} variable.

Platform Command to follow log

RHEL/Centos >=7 journal
d journalctl --follow --unit
sensu-${service}
RHEL/Centos <=6 log file

tail —--follow

/var/log/sensu/sensu-S${service}

https://dzone.com/articles/what-is-structured-logging

Ubuntu >= journal
15.04 d journalctl --follow --unit

sensu-${service}

Ubuntu <= log file
14.10 tail --follow
/var/log/sensu/sensu-${service}
Debian >=8 journal
d journalctl --follow --unit
sensu-S${service}
Debian <=7 log file

tail --follow

/var/log/sensu/sensu-${service}

NOTE: Platform versions described above are for reference only and do notsupercede the documented
supported platforms.

Windows

The Sensu agent stores service logs to the location specified by the 1og-file configuration flag
(default: $ALLUSERSPROFILES%\sensu\log\sensu-agent.log , C:\ProgramData\sensu\log\sensu-
agent.log on standard Windows installations).For more information about managing the Sensu agent
for Windows, see the agent reference.You can also view agent events using the Windows Event
Viewer, under Windows Logs, as events with source SensuAgent.

If you're running a binary-only distribution of the Sensu agent for Windows, you can follow the service

log printed to standard output using the following command.

Get-Content - Path "C:\scripts\test.txt" -Wait

Sensu backend startup errors

The following errors are expected when starting up a Sensu backend with the default configuration.

{"component":"etcd","level":"warning", "msg":"simple token is not cryptographically
signed", "pkg":"auth","time":"2019-11-04T10:26:31-05:00"}
{"component":"etcd","level":"warning", "msg":"set the initial cluster version to
3.3","pkg":"etcdserver/membership", "time":"2019-11-04T10:26:31-05:00"}
{"component":"etcd","level":"warning", "msg":"serving insecure client requests on
127.0.0.1:2379, this is strongly discouraged!","pkg":"embed","time":"2019-11-
04T10:26:33-05:00"}

The serving insecure client requests erroris an expected warning from etcd.TLS configuration
is recommended but not required. For more information, see etcd security documentation.

Permission issues

Files and folders within /var/cache/sensu/ and /var/lib/sensu/ need to be owned by the sensu
user and group. You will see a logged error similar to the following if there is a permission issue with
either the sensu-backend or the sensu-agent:

{"component":"agent","error":"open /var/cache/sensu/sensu-agent/assets.db:
permission denied","level":"fatal","msg":"error executing sensu-agent","time":"2019-

02-21T22:01:042"}
{"component":"backend","level":"fatal", "msg":"error starting etcd: mkdir

/var/lib/sensu: permission denied","time":"2019-03-05T20:24:012"}

You can use a recursive chown to resolve permission issues with the sensu-backend:

sudo chown -R sensu:sensu /var/cache/sensu/sensu-backend

or the sensu-agent:

sudo chown -R sensu:sensu /var/cache/sensu/sensu-agent

https://etcd.io/docs/v3.4.0/op-guide/security/

Troubleshooting handlers and filters

Whether implementing new workflows or modifying existing ones, its sometimes necessary to
troubleshoot various stages of the event pipeline. In many cases generating events using the agent
API will save you time and effort over modifying existing check configurations.

Here’s an example using curl with the API of a local sensu-agent process to generate test-event check
results:

curl -X POST \

-H 'Content-Type: application/json' \

-d '{
"check": {
"metadata": {
"name": "test-event",
"namespace": "default"
},
"status": 2,
"output": "this is a test event targeting the email ops handler",
"handlers": ["email ops"]
}
FUOA

http://127.0.0.1:3031/events

Additionally, it's frequently helpful to see the full event object being passed to your workflows. We
recommend using a debug handler like this one to write an event to disk as JSON data:

YML

type: Handler
api version: core/v2
metadata:
name: debug
namespace: default
spec:
type: pipe
command: cat > /var/log/sensu/debug-event.json

timeout: 2

JSON

"type": "Handler",
"api version": "core/v2",
"metadata": {
"name": "debug"
by
"spec": {
"type": "pipe",
"command": "cat > /var/log/sensu/debug-event.json",

"timeout": 2

With this handler definition installed in your Sensu backend, you can add the debug to the list of
handlers in your test event:

curl -X POST \
-H 'Content-Type: application/json' \

-d '{
"check": {
"metadata": {
"name": "test-event"
by
"status": 2,
"output": "this is a test event targeting the email ops handler",
"handlers": ["email ops", "debug"]
}
PO

http://127.0.0.1:3031/events

The event data should be written to /var/1og/sensu/debug-event.json forinspection. The
contents of this file will be overwritten by every event sent to the debug handler.

NOTE: When multiple Sensu backends are configured in a cluster, event processing is distributed
across all members. You may need to check the filesystem of each Sensu backend to locate the

debug output for your test event.

Dashboard overview

Contents

Accessing the dashboard
Signing in

Namespaces

Managing checks

Managing entities
Themes

The Sensu backend includes the Sensu dashboard:a unified view of your events, entities, and checks
with user-friendly tools to reduce alert fatigue.

= Sensu default ©

Incidents Entities

Ry Criti 5 Keepalives 10 Entities
3 [0 Unresponsive 5 Agents

TOTAE 1 Silenced 5 Proxy Entities

Namespaces

@ Hot Tip!

Proxy entities allow Sensu to monitor external resources on systems

or devices where a Sensu agent cannot be installed, like a network default devops
switch or a website. You can create proxy entities using sensuctl,

the Sensu API, or the proxy_entity name check attribute.

LEARN MORE £

Sensu dashboard homepage

Accessing the dashboard

After starting the Sensu backend, you can access the dashboard in your browserby visiting
http://localhost:3000. You may need to replace 1localhost with thehostname or IP address where the
Sensu backend is running.

Signing in

Sign in to the dashboard with your sensuctl username and password.See the role-based access control
reference for default user credentials and instructions for creating new users.

Namespaces

The dashboard displays events, entities, checks, and silences for a single namespace at a time.By
default, the dashboard displays the default namespace.To switch namespaces, select the menu
icon in the upper-left corner, and choose a namespace from the dropdown.

©

default

default

A Events

[Entities

Checks

dev
ops

Checks

Sensu dashboard namespace switcher

Managing checks

LICENSED TIER: Unlock check management in the Sensu Go dashboard with a Sensu license. To
activate your license, see the getting started guide.

You can create, edit, and delete Sensu checks using the dashboard checks page.

Managing entities

LICENSED TIER: Unlock entity management in the Sensu Go dashboard with a Sensu license. To
activate your license, see the getting started guide.

http://localhost:3000/

You can delete Sensu entities using the dashboard entities page.

Themes

Use the preferences menu to change the theme or switch to the dark theme.

Dashboard filtering

Contents

Events page filtering
Entities page filtering
Checks page filtering
Silences page filtering
Arrays

Regular expressions

The Sensu dashboard supports filtering on the events, entities, checks, and silences pages.Dashboard

filtering uses Sensu query expression syntax (for example: entity.entity class === "proxy")
depending on the scope of the page.

Syntax quick reference

operator description

==} == Identity operator / Nonidentity operator

—= A = Equality operator / Inequality operator

s& | || Logical AND / Logical OR

</ > Less than / Greater than

= /= Less than or equal to / Greater than or equal to

Events page filtering

Filtering on the events page supports all entity and check attributes present in the event data, prefixed
with entity. Or check. respectively.

To show only events for the entity hostname serveri :

entity.system.hostname === "serverl"

To show only events with a warning or critical status produced by the check named check http :

check.status > 0 && check.name === "check http"

Entities page filtering

Filtering on the entities page assumes the entity scope and supports all entity attributes.

To show only entities of entity class proxy :

entity class === "proxy"

To show only entities running on Linux or Windows:

—_—n

system.os === "linux" || system.os === "windows"

Checks page filtering

Filtering on the check page assumes the check scope and supports all check attributes.

To show only the check named check cpu :

name === "check cpu"

To show only checks with the publish attribute setto false :

'publish

Silences page filtering
Filtering on the silences page assumes the silences scope and supports all silencing entry attributes.

To show only silences with the creator admin :

creator === "admin"

To show only silences applied to the check check cpu :

check === "check cpu"

Arrays
To filter based on an attribute that contains an array of elements, use the .indexof method.

On the checks page, to show only checks with the handler siack :

handlers.indexOf ("slack") >= 0

Regular expressions

The Sensu dashboard supports filtering with regular expressions using the .match syntax.

On the checks page, to show only checks with names prefixed with metric- :

! 'name .match (/" "metric-/)

APl overview

Contents

URL format
Data format
Versioning
Access control
Pagination
Filtering
Request size

Sensu Go 5.8 includes API v2.

The Sensu backend REST API provides access to Sensu workflow configurations and monitoring
event data.For the Sensu agent API, see the agent reference.

URL format

Sensu API endpoints use the standard URL format

/api/{group}/{version}/namespaces/{namespace} Where:

{group} is the API group. All currently existing Sensu API endpoints are of group core .

{version} is the API version. Sensu Go 5.8 uses API v2.

{namespace} Iis the namespace name. The examples in these API docs use the default
namespace. The Sensu API requires that the authenticated user have the correct access permissions
for the namespace specified in the URL. If the authenticated user has the correct cluster-wide
permissions, you can leave out the /namespaces/{namespace} portion of the URL to access Sensu
resources across namespaces. See the RBAC reference for more information about configuring Sensu
users and access controls.

Data format

The API uses JSON formatted requests and responses.In terms of sensuctl output types, the Sensu
APl uses the json format, not wrapped-json .

Versioning

The Sensu Go API is versioned according to the format v{majorversion}{stabilityLevel}
{iterationNumber} , in which v2 is stable version 2.The Sensu API guarantees backward
compatibility for stable versions of the API.

Sensu makes no guarantee that an alpha or beta API will be maintained for any period of time.Alpha
versions should be considered under active development and may not be published for every release.
Beta APls, while more stable than alpha versions, offer similarly short-lived lifespans and also provide
no guarantee of programmatic conversions when the API is updated.

Access control

With the exception of the health and metrics APIs, the Sensu API requires authentication using a JWT
access token.You can generate access tokens and refresh tokens using the authentication AP| and
your Sensu username and password.These docs use $SENSU TOKEN to represent a valid access
token in API requests.

Authentication quick start

To set up a local API testing environment, save your Sensu credentials and token as environment
variables:
Requires curl and jq

export SENSU USER=admin && SENSU PASS=P@sswOrd!

export SENSU TOKEN="curl -XGET -u "SSENSU USER:S$SSENSU PASS" -s
http://localhost:8080/auth | jg -r ".access token"®

Basic authentication using the authentication API

The /auth API endpoint lets you generate short-lived API tokens using your Sensu username and
password.

1. Retrieve an access token for your user.For example, to generate an access token using the
default admin credentials:

curl -u 'admin:P@sswOrd!' http://localhost:8080/auth

The access token should be included in the output, along with a refresh token:

"access_ token": "eyJhbGciOiJIUzI1NiIs...",
"expires at": 1544582187,
"refresh token": "eyJhbGciOiJIUzIINiIs..."

2. Copy the access token into the authentication header of the API request.For example:

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1INiIs..." \
http://127.0.0.1:8080/api/core/v2/namespaces/default/events

3. Access tokens last for around 15 minutes.When your token expires, you should see a 401
Unauthorized response from the API.To generate a new access token, use the /auth/token
API endpoint, including the expired access token in the authorization header and the refresh
token in the request body:

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1INiIs..." \
-H 'Content-Type: application/json' \

-d '{"refresh token": "eyJhbGciOiJIUzIINiIs..."}' \
http://127.0.0.1:8080/auth/token

The new access token should be included in the output:

"access token": "eyJhbGciOiJIUzI1NiIs...",
"expires at": 1561055277,
"refresh token": "eyJhbGciOiJIUzIINiIs..."

Generating an API token using sensuct!

You can also generate an API access token using the sensuctl command-line tool.The user credentials
that you use to log in to sensuctl determine your permissions to get, list, create, update, and delete
resources using the Sensu API.

1. Install and log in to sensuctl.

2. Retrieve an access token for your user:

cat ~/.config/sensu/sensuctl/cluster|grep access token

The access token should be included in the output:

"access token": "eyJhbGciOiJIUzI1NiIs...",

3. Copy the access token into the authentication header of the API request. For example:

curl -H "Authorization: Bearer eyJhbGciOiJIUzIINiIs..." \
http://127.0.0.1:8080/api/core/v2/namespaces/default/events

4. Access tokens last for around 15 minutes.If your token expires, you should see a 401
Unauthorized response from the API.To regenerate a valid access token, first run any sensuctl
command (like sensuctl event 1list)then repeat step 2.

Filtering

LICENSED TIER: Unlock API filtering in Sensu Go with a Sensu license. To activate your license, see
the getting started guide.

The Sensu API supports filtering for all GET endpoints that return an array. You can filter resources
based on their labels with a label selector using the 1abelSelector query parameter and on certain
pre-determined fields with a field selector using the fieldselector query parameter.

For example, the following request filters the response to only include resources that have a label entry
region with the value us-west-1 . We will use the flag --data-urlencode in curl so it encodes
the query parameter for us, in conjunction with the -G flag so it appends the data to the URL.

curl -H "Authorization: Bearer $SENSU TOKEN"
http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'labelSelector=region == "us-west-1"'

Label selector

A label selector can use any label attributes to group a set of resources. All resources support labels
within the metadata object. For example, see entities metadata attributes.

Field selector

A field selector can use certain fields of resources to organize and select subsets of resources. Here’s
the list of available fields.

Resource
Asset asset.name asset.namespace asset.filters
Check check.name check.namespace check.handlers check.publish

check.round robin check.runtime assets check.subscriptions

ClusterRole clusterrole.name

ClusterRoleBinding clusterrolebinding.name clusterrolebinding.role ref.name

clusterrolebinding.role ref.type

EntHy entity.name entity.namespace entity.deregister

entity.entity class entity.subscriptions

Event event.name event.namespace event.check.handlers
event.check.publish event.check.round robin
event.check.runtime assets event.check.status
event.check.subscriptions event.entity.deregister

event.entity.entity class event.entity.subscriptions

Extension extension.name extension.namespace

Filter filter.name filter.namespace filter.action

filter.runtime assets

Handler handler.name

handler.handlers

handler.namespace

handler.mutator

handler.filters
handler. type

Hook hook.name hook.namespace

Mutator mutator.name mutator.namespace mutator.runtime assets

Namespace namespace.name

Role role.name role.namespace

RoleBinding rolebinding.name rolebinding.namespace
rolebinding.role ref.name rolebinding.role ref.type

Silenced silenced.name silenced.namespace silenced.check
silenced.creator silenced.expire on resolve
silenced.subscription

User user.username user.disabled wuser.groups

Supported operators

There are two equality-based operators supported, =
the following statements are possible:

check.publish true

check.namespace != "default"

(equality) and '= (inequality). For example,

Additionally, there are two set-based operators to deal with lists of values, in and notin . For

example, the following statements are possible:

linux in check.subscriptions
slack notin check.handlers

check.namespace in [dev,production]

Combining selectors and statements

A field or label selector can be made of multiple statements which are separated with the logical

operator &s (AND). For example, the following curl request looks up checks that are configured to be
published and have the siack handler:

curl -H "Authorization: Bearer $SENSU TOKEN"
http://127.0.0.1:8080/api/core/v2/checks -G \

-—-data-urlencode 'fieldSelector=check.publish == true && slack in check.handlers'

In addition to selectors with multiple statements, both field and label selectors can be used at the same
time:

curl -H "Authorization: Bearer $SENSU TOKEN"
http://127.0.0.1:8080/api/core/v2/checks -G \
--data-urlencode 'fieldSelector=slack in check.handlers' \

--data-urlencode 'labelSelector=region != "us-west-1"'

Request size

API request bodies are limited to 0.512 MB in size.

Assets API

Contents

The /assets API endpoint
/assets (GET)

/assets (POST)

The /assets/:asset APl endpoint
/assets/:asset (GET)
/assets/:asset (PUT)

The /assets API endeInt

/assets (G ET)

The /assets API endpoint provides HTTP GET access to asset data.

EXAMPLE

The following example demonstrates a request to the /assets API, resulting inal JSON Array
containing asset definitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/assets -H "Authorization:
Bearer $SENSU TOKEN"

[

"url": "http://example.com/assetl.tar.gz",

"shabl2":
"4£926bf4328fbad2b9cac873d117£771914£4b837¢c9¢c85584c38ccf55a3ef3c2e8d154812246e5ddada
87450576b2c58ad%ab40c9%e2edc31b288d066b195b21b",

"metadata": {
"name": "check scriptl",
"namespace": "default",

"labels": null,

"annotations": null

API Specification

/assets (GET)

description Returns the list of assets.
example url http://hostname:8080/api/core/v2/namespaces/default/assets
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

"url": "http://example.com/assetl.tar.gz",

"shabl2":
"4£926bf4328fbad2b9cac873d117£771914£f4b837c9¢c85584c38ccf55a
3ef3c2e8d154812246e5dda4a87450576b2c58ad9%ab40c9%e2edc31b288d
066b195b21b",

"metadata": {
"name": "check scriptl",
"namespace": "default",

"labels": null,

"annotations": null
}
},
{
"url": "http://example.com/asset2.tar.gz",
"shabl2":

"37c9c85584c38ccf55a3ef3c2e8d154812246e5ddad4a84£926bf4328fb

http://hostname:8080/api/core/v2/namespaces/default/assets

ad2b9cac873d11450576b2c58ad%ab40c9e2edc31b288d066b195b21b7E
771914£4b87",

"metadata": {
"name": "check script2",
"namespace": "default",

"labels": null,

"annotations": null

/assets (POST)

/assets (POST)

description Create a Sensu asset.
example URL http://hostname:8080/api/core/v2/namespaces/default/assets
payload
{
"url": "http://example.com/assetl.tar.gz",
"shab1l2":

"4£926bf4328fbad2b9cac873d117£771914£f4b837c9¢c85584c38ccf55a
3ef3c2e8d154812246e5dda4a87450576b2c58ad9%ab40c9%e2edc31b288d
066b195b21b",
"metadata": {
"name": "check scriptl",
"namespace": "default",
"labels": null,

"annotations": null

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/assets

The /assets/:asset API endelnt

/assets/:asset (G ET)

The /assets/:asset API endpoint provides HTTP GET access to asset data for specific :asset
definitions, by asset name .

EXAMPLE

In the following example, querying the /assets/:asset API returns a JSON Mapcontaining the
requested :asset _definition (in this example: for the :asset named[check script).

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/check script -H
"Authorization: Bearer SSENSU TOKEN"
{

"url": "http://example.com/asset.tar.gz",

"shab51l2":
"4£926b£f4328fbad2b9cac873d117£771914£4b837¢c9¢c85584c38ccfbbal3ef3c2e8d154812246e5ddada
87450576b2c58ad9%ab40c9e2edc31b288d066b195b21b",

"filters": [
"system.os == 'linux'",
"system.arch == 'amde4'"
1,
"metadata": {
"name": "check script",
"namespace": "default",

"labels": null,

"annotations": null

API Specification

/assets/:asset

(GET)

description Returns an asset.

example url http://hostname:8080/api/core/v2/namespaces/default/assets/check_scri
pt

response type Map

response codes Success: 200 (OK)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

"url": "http://example.com/asset.tar.gz",

"sha512":
"4£f926bf4328fbad2b9cac873d117£771914£4b837¢c9c85584c38cct55a
3ef3c2e8d154812246e5dda4a87450576b2c58ad9%ab40c9e2edc31b288d
066b195b21b",

"filters": [
"system.os == 'linux'",
"system.arch == 'amde64'"
1y
"metadata": {
"name": "check script",
"namespace": "default",

"labels": null,

"annotations": null

/assets/:asset (PUT)

API Specification

/assets/:asset

(PUT)

http://hostname:8080/api/core/v2/namespaces/default/assets/check_script
http://hostname:8080/api/core/v2/namespaces/default/assets/check_script

description Create or update a Sensu asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets/check_scri
pt
payload
{
"url": "http://example.com/assetl.tar.gz",
"shabl2":

"4£926bf4328fbad2b9cac873d117£771914£f4b837¢c9¢c85584c38ccf55a
3ef3c2e8d154812246e5ddad4a87450576b2c58ad%ab40c9%9e2edc31b288d
066b195b21b",

"metadata": {
"name": "check scriptl",
"namespace": "default",

"labels": null,

"annotations": null

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/assets/check_script
http://hostname:8080/api/core/v2/namespaces/default/assets/check_script

Authentication API

Contents

The /auth API endpoint
Zauth (GET)

The /auth/test APl endpoint
lauth/test (GET)

The /auth/token API endpoint
/auth/token (POST)

The /..cn APl endpoint

Jautn (GET)

The /auth API endpoint provides HTTP GET access to create an access token using basic
authentication.

EXAMPLE

In the following example, querying the /auth API with a given username and password returns a 200
OK response, indicating that the credentials are valid, along with an access and a refresh token.

curl -u myusername:mypassword http://127.0.0.1:8080/auth

HTTP/1.1 200 OK

{
"access_ token": "eyJhbGciOiJIUzI1NiIs...",
"expires at": 1544582187,
"refresh token": "eyJhbGciOiJIUzIINiIs..."

API Specification

Jauth (GET)

description Generates an access token to the API using basic authentication. Access
tokens last for around 15 minutes. When your token expires, you should
see a 401 Unauthorized response from the API. To generate a new
access token, use the /auth/token API endpoint.

example url http://hostname:8080/api/core/v2/auth
output
{
"access token": "eyJhbGciOiJIUzI1NiIs...",
"expires at": 1544582187,
"refresh token": "eyJhbGciOiJIUzIINiIs..."
}
response codes Valid credentials: 200 (OK)

Invalid credentials: 401 (Unauthorized)
Error: 500 (Internal Server Error)

The /aun/tese APl endpoint

/auth/test (G ET)

The /auth/test API endpoint provides HTTP GET access to test user credentials.

EXAMPLE

In the following example, querying the /auth/test API with a given username and password returns
a 200 OK response, indicating that the credentials are valid.

curl -u myusername:mypassword http://127.0.0.1:8080/auth/test

http://hostname:8080/api/core/v2/auth

HTTP/1.1 200 OK

API Specification
/auth/test (GET)
description Tests a given username and password.
example url http://hostname:8080/api/core/v2/auth/test
response codes Valid credentials: 200 (OK)

Invalid credentials: 401 (Unauthorized)
Error: 500 (Internal Server Error)

The /autn/toxen APl endpoint

/auth/token (POST)

The /auth/test API endpoint provides HTTP POST access to renew an access token.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /auth/token API to generate a
valid access token. The request includes the refresh token in the request body and returns a
successful HTTP 200 OK response along with the new access token.

curl -H "Authorization: Bearer eyJhbGciOiJIUzIINiIs..." \
-H 'Content-Type: application/json' \

-d '{"refresh token": "eyJhbGciOiJIUzIINiIs..."}' \
http://127.0.0.1:8080/auth/token

HTTP/1.1 200 OK

{
"access token": "eyJhbGciOiJIUzIINiIs...",
"expires at": 1544582187,

http://hostname:8080/api/core/v2/auth/test

"refresh token": "eyJhbGciOiJIUzIINiIs..."

API Specification

/auth/token

(POST)

description Generates a new access token using a refresh token and an expired
access token

example url http://hostname:8080/api/core/v2/auth

example payload

"refresh token": "eyJhbGciOiJIUzIINiIs..."
}
output
{
"access token": "eyJhbGciOiJIUzIINiIs...",
"expires at": 1544582187,
"refresh token": "eyJhbGciOiJIUzIINiIs..."
}
response codes Success: 200 (OK)

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/auth

Authentication providers API

Contents

The authproviders API endpoints (licensed tier)
/authproviders (GET)

The authproviders/:name APl endpoints (licensed tier)
authproviders/:name (GET)

authproviders/:name (PUT)

authproviders/:name (DELETE)

LICENSED TIER: Unlock authentication providers in Sensu Go with a Sensu license. To activate your
license, see the getting started guide.

The Jautnprovicers APl endpoints

/authproviders (G ET)

The /authproviders API endpoint provides HTTP GET access to authentication provider
configuration in Sensu.

API Specification
/authproviders
(GET)
description Returns the list of active authentication providers.
example url http://hostname:8080/api/enterprise/authentication/v2/authproviders
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type Array

http://hostname:8080/api/enterprise/authentication/v2/authproviders

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

"Type": "ldap",
"api version": "authentication/v2",
"spec": {
"servers": |
{
"host": "127.0.0.1",

"binding": {

"user dn": "cn=binder,dc=acme,dc=org",
"password": "P@sswOrd!"
by
"group search": ({
"base dn": "dc=acme,dc=org"
}y
"user search": ({
"base dn": "dc=acme,dc=org"
}
}
]
by
"metadata": {
"name": "openldap"

The /authproviders/:name API endeIntS

/authproviders/:name (G ET)

The /authproviders/:name API endpoint provides HTTP GET access to authentication provider
configuration for a specific :name .

API Specification

/authproviders/:na

me (GET)

description Returns the configuration for an authentication provider given the
configured provider name.

example url http://hosthame:8080/api/enterprise/authentication/v2/authproviders/open
ldap

response type Map

response codes Success: 200 (OK)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output
{

"Type": "ldap",
"api version": "authentication/v2",
"spec": {

"servers": [

{
"host": "127.0.0.1",

"binding": {

"user dn": "cn=binder, dc=acme,dc=org",
"password": "P@sswOrd!"
by
"group search": {
"base dn": "dc=acme,dc=org"
by
"user search": {
"base dn": "dc=acme,dc=org"
}
}
]
}y
"metadata": {

"name": "openldap"

http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap
http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap

/authproviders/ :name (F)LJ1-)

The /authproviders/:name APl endpoint provides HTTP PUT access to create or update an
authentication provider configuration given :name .

API Specification

/authproviders/:na

me (PUT)

description Create or update an authentication provider configuration given the
name. See the authentication guide for more information about
supported providers.

example url http://hosthame:8080/api/enterprise/authentication/v2/authproviders/open
Idap
payload
{
"Type": "ldap",
"api version": "authentication/v2",
"spec": {
"servers": [
{
"host": "127.0.0.1",

"binding": {

"user dn": "cn=binder,dc=acme,dc=org",
"password": "P@sswOrd!"
},
"group search": ({
"base dn": "dc=acme,dc=org"
b,
"user search": {
"base dn": "dc=acme,dc=org"

http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap
http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap

1
b

"metadata": {

"name": "openldap"

payload parameters All attributes shown in the example payload are required. For more
information about configuring authentication providers, see the

authentication guide.

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/authproviders/:name (DELETE)

The /authproviders/:name API endpoint provides HTTP DELETE access to delete an
authentication provider configuration from Sensu given the :name .

EXAMPLE

The following example shows a request to delete the configuration for the authentication provider
openldap , resulting in a successful HTTP 204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer S$SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/authproviders/openldap

HTTP/1.1 204 No Content

API Specification

/authproviders/:na

me (DELETE)

description Deletes an authentication provide configuration from Sensu given the

name.
example url http://hosthame:8080/api/enterprise/authentication/v2/authproviders/open
ldap
response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap
http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap

Checks API

Contents

The /checks API endpoint

/checks (GET)

/checks (POST)

The /checks/:check API endpoint
/checks/:check (GET)

/checks/:check (PUT)

/checks/:check (DELETE)

The /checks/:check/execute API endpoint
/checks/:check/execute (POST)

The /checks/:check/hooks/:type APl endpoint

/checks/:check/hooks/:type (PUT)
checks/:check/hooks/:type/hook/:hook APl endpoint

checks/:check/hooks/:type/hook/:hook (DELETE)

The /aecxs APl endpoint

/checks (G ET)

The /checks API endpoint provides HTTP GET access to check data.

EXAMPLE
The following example demonstrates a request to the /checks API, resulting inal JSON Array
containing check definitions.

curl -H "Authorization: Bearer S$SENSU TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

HTTP/1.1 200 OK
[

"command" :

"handlers":

"slack"

1,

"interval":
"publish":

"subscriptions":

"linux"

1,

"metadata":

"name" :

"namespace":

API Specification

/checks (GET)

"check-cpu.sh -w 75 -c 90",

[

"check-cpu",

"default"

description Returns the list of checks.
example url http://hostname:8080/api/core/v2/namespaces/default/checks
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type

Array

response codes

Success: 200 (OK)
Error: 500 (Internal Server Error)

output

"command": "check-cpu.sh -w 75 -c 90",
"handlers": [

"slack"

1,

http://hostname:8080/api/core/v2/namespaces/default/checks

"interval": 60,

"publish": true,

"subscriptions": [
"linux"
1,
"metadata": {
"name": "check-cpu",
"namespace": "default"
}
},
{
"command": "http check.sh https://sensu.io",
"handlers": [
"slack"
1,
"interval": 15,
"proxy entity name": "sensu.io",
"publish": true,
"subscriptions": [
"site"
1,
"metadata": {
"name": "check-sensu-site",
"namespace": "default"
}
}

/checks (POST)

EXAMPLE

In the following example, an HTTP POST request is submitted to the /checks API to create a
check-cpu check.The request includes the check definition in the request body and returns a
successful HTTP 200 OK response and the created check definition.

curl -X POST \
-H "Authorization: Bearer S$SSENSU TOKEN" \

-H 'Content-Type: application/json' \

-d '{
"command": "check-cpu.sh -w 75 -c 90",
"subscriptions": [

"linux"
1y
"interval": 60,

"publish": true,

"handlers": [
"slack"

I

"metadata": {
"name": "check-cpu",
"namespace": "default"

}

PO

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

HTTP/1.1 200 OK

{
"command": "check-cpu.sh -w 75 -c 90",
"subscriptions": [
"linux"
1,
"interval": 60,
"publish": true,
"handlers": [
"slack"
1,
"metadata": {
"name": "check-cpu",
"namespace": "default"
}
}
API Specification

/checks (POST)

description Create a Sensu check.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks

example payload

"command": "check-cpu.sh -w 75 -c 90",
"subscriptions": [
"linux"
1,
"interval": 60,

"publish": true,
"handlers": [
"slack"
1,
"metadata": {
"name": "check-cpu",

"namespace": "default"

payload parameters Required check attributes: interval (integer)or cron (string), and a
metadata Scope containing name (string) and namespace (string).
For more information about creating checks, see the check reference.

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /cnecks/:cnee APl endpoint

/checks/:check (G ET)

The /checks/:check API endpoint provides HTTP GET access to check data for specific :check
definitions, by check name .

EXAMPLE

http://hostname:8080/api/core/v2/namespaces/default/checks

In the following example, querying the /checks/:check APIreturns a JSON Mapcontaining the
requested :check _definition (in this example: for the :check named! check-cpu).

curl -H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 200 OK
{
"command": "check-cpu.sh -w 75 -c 90",
"handlers": [
"slack"
1,
"interval": 60,

"publish": true,

"subscriptions": [
"linux"

1,

"metadata": {
"name": "check-cpu",
"namespace": "default"

}

}
API Specification

/checks/:check

(GET)

description Returns a check.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu
response type Map

response codes Success: 200 (OK)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

"command": "check-cpu.sh -w 75 -c 90",
"handlers": [
"slack"
1,
"interval": 60,

"publish": true,

"subscriptions": [
"linux"

1,

"metadata": {
"name": "check-cpu",
"namespace": "default"

/checks/:check (PUT)

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /checks/:check API to update
the check-cpu check, resulting in a 200 (OK) HTTP response code and the updated check definition.

curl -X PUT \
-H "Authorization: Bearer SSENSU TOKEN" \

-H 'Content-Type: application/json' \

-d '{
"command": "check-cpu.sh -w 75 -c 90",
"handlers": |
"slack"
I
"interval": 60,

"publish": true,

"subscriptions": [
"linux"

I

"metadata": {

"name": "check-cpu",

"namespace": "default"
}
PN
http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 200 OK

API Specification

/checks/:check

(PUT)
description Create or update a Sensu check given the name of the check as a URL
parameter.
example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu
payload
{
"command": "check-cpu.sh -w 75 -c 90",

"handlers": [
"slack"

1,

"interval": 60,

"publish": true,

"subscriptions": [
"linux"

1,

"metadata": {
"name": "check-cpu",
"namespace": "default"

}

}
payload parameters Required check attributes: interval (integer)or cron (string), and a

metadata Scope containing name (string) and namespace (string).
For more information about creating checks, see the check reference.

response codes Success: 200 (OK)

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/checks/:check (DELETE)

The /checks/:check API endpoint provides HTTP DELETE access to delete a check from Sensu
given the check name.

EXAMPLE

The following example shows a request to delete the check named check-cpu , resulting in a
successful HTTP 204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer S$SSENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 204 No Content

API Specification

/checks/:check

(DELETE)

description Removes a check from Sensu given the check name.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu
response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /checks/:check/execute API endeInt

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

/checks/:check/execute (F)()E;1-)

The /checks/:check/execute API endpoint provides HTTP POST access to create an ad-hoc check
execution request, allowing you to execute a check on demand.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /checks/:check/execute API
to execute the check-sensu-site check.The request includes the check name in the request body
and returns a successful HTTP 202 Accepted response and an issued timestamp.

curl -X POST \

-H "Authorization: Bearer $SENSU TOKEN" \
-H 'Content-Type: application/json' \

-d '"{"check": "check-sensu-site"}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-sensu-site/execute

HTTP/1.1 202 Accepted
{"issued":1543861798}

PRO TIP: Include the subscriptions attribute with the request body to override the subscriptions
configured in the check definition. This gives you the flexibility to execute a check on any Sensu entity
or group of entities on demand.

API Specification

/checks/:check/ex

ecute (POST)

description Creates an adhoc request to execute a check given the check name.
example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check-

sensu-site/execute

payload

"check": "check-sensu-site",

"subscriptions": [

http://hostname:8080/api/core/v2/namespaces/default/checks/check-sensu-site/execute
http://hostname:8080/api/core/v2/namespaces/default/checks/check-sensu-site/execute

"entity:1-424242"

payload parameters check (required): the name of the check to execute, and
subscriptions (optional): an array of subscriptions to publish the
check request to. When provided with the request, the subscriptions
attribute overrides any subscriptions configured in the check definition.

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /checks/:check/hooks/:type API endeInt

/checks/:check/hooks/:type (F)LJ1-)

The /checks/:check/hooks/:type API endpoint provides HTTP PUT access to assign a hook to a
check.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /checks/:check/hooks/:type
APl,assigning the process tree hook tothe check-cpu checkinthe eventofa critical type
check result, resulting in a successful 204 (No Content) HTTP response code.

curl -X PUT \
-H "Authorization: Bearer S$SENSU TOKEN" \
-H 'Content-Type: application/json' \
=@l " {

"critical": [

"process tree"

1
PN
http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical

HTTP/1.1 204 No Content

API Specification

checks/:check/hoo

ks/:type (PUT)

description Assigns a hook to a check given the check name and check response
type.
example URL http://hosthame:8080/api/core/v2/namespaces/default/checks/check-

cpu/hooks/critical

example payload

"critical": [
"example-hookl",

"example-hook2"

payload parameters This endpoint requires a JSON map of check response types (for
example: critical , warning), each containing an array of hook
names.

response codes Success: 204 (No Content)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /checks/:check/hooks/:type/hook/:hook API endeInt

/checks/:check/hooks/:type/hook/:hook (DELETE)

This endpoint provides HTTP DELETE access to a remove a hook from a check.

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical
http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical

EXAMPLE

The following example shows a request to remove the process tree hook from the check-cpu
check, resulting in a successful 204 (No Content) HTTP response code.

curl -X DELETE \
-H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-

cpu/hooks/critical/hook/process tree

HTTP/1.1 204 No Content

API Specification

/checks/:check/ho

oks/

:type/hook/:hook

(DELETE)

description Removes a single hook from a check given the check name, check
response type, and hook name. See the checks reference for available
types.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-

cpu/hooks/critical/hook/process _tree

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical/hook/process_tree
http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical/hook/process_tree

Cluster API

Contents

The /cluster/members API endpoint
/cluster/members (GET)
/cluster/members (POST)

The /cluster/members/:member API endpoint
/cluster/members/:member (PUT)
/cluster/members/:member (DELETE)

The /cluster/members API endeInt

/cluster/members (G ET)

The /cluster/members API endpoint provides HTTP GET access to Sensu cluster data.

EXAMPLE

The following example demonstrates a request to the /cluster/members API, resulting ina JSON
Map containing a Sensu cluster definition.

curl -H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/cluster/members

HTTP/1.1 200 OK
{
"header": {
"cluster id": 4255616304056076734,
"member id": 9882886658148554927,
"raft term": 2
},
"members": [

{

"ID": 9882886658148554927,

"name": "default",

"peerURLs": [
"http://127.0.0.1:2380"

1,

"clientURLs": [
"http://127.0.0.1:2379"

API Specification

/cluster/members

(GET)

description Returns the cluster definition.

example url http://hostname:8080/api/core/v2/cluster/members
response type Map

response codes Success: 200 (OK)

Error: 500 (Internal Server Error)

example output

{

"header": {
"cluster id": 4255616304056076734,
"member id": 9882886658148554927,
"raft term": 2

},

"members": [
{

"ID": 9882886658148554927,
"name": "default",
"peerURLs": [

"http://127.0.0.1:2380"
1,

http://hostname:8080/api/core/v2/cluster/members

"clientURLs": [
"http://127.0.0.1:2379"

/cluster/members (POST)

The /cluster/members API endpoint provides HTTP POST access to create a Sensu cluster
member.

EXAMPLE

curl -X POST \
-H "Authorization: Bearer S$SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380

HTTP/1.1 200 OK
{
"header": {
"cluster id": 4255616304056077000,
"member id": 9882886658148555000,

"raft term": 2

},
"members": [
{
"ID": 9882886658148555000,
"name": "default",
"peerURLs": [
"http://127.0.0.1:2380"
1,
"clientURLs": [
"http://localhost:2379"
1
}

API Specification

[cluster/members/:

member (POST)
description Creates a cluster member.
example url http://hostname:8080/api/core/v2/cluster/members?peer-

addrs=http://127.0.0.1:2380

query parameters peer-addrs (required): A comma-delimited list of peer addresses

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /cluster/members/:member API endeInt

/cluster/members/ :member (F)LJ1-)

EXAMPLE

curl -X PUT \

-H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/cluster/members/8927110dc66458af?peer—
addrs=http://127.0.0.1:2380

HTTP/1.1 200 OK
{
"header": {
"cluster id": 4255616304056077000,
"member id": 9882886658148555000,
"raft term": 2

b,

http://hostname:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380
http://hostname:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380

"members": [
{

"ID": 9882886658148555000,

"name": "default",

"peerURLs": [
"http://127.0.0.1:2380"

1,

"clientURLs": [
"http://localhost:2379"

API Specification

/cluster/members/:

member (PUT)
description Creates a cluster member.
example url http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af?

peer-addrs=http://127.0.0.1:2380

url parameters 8927110dc66458af (required): Required hex-encoded uint64 cluster
member ID generated using sensuctl cluster member-list

query parameters peer-addrs (required): A comma-delimited list of peer addresses

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

/cluster/members/ :member (DELETE)

The /cluster/members/:member API endpoint provides HTTP DELETE access to remove a Sensu
cluster member.

http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af?peer-addrs=http://127.0.0.1:2380
http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af?peer-addrs=http://127.0.0.1:2380

EXAMPLE

The following example shows a request to remove the Sensu cluster member with the ID
8927110dc66458af , resulting in a successful HTTP 204 No Content response.

curl -X DELETE \

-H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/cluster/members/8927110dc66458a
£

HTTP/1.1 204 No Content

API Specification
[cluster/
members/:member
(DELETE)
description Removes a member from a Sensu cluster given the member ID.
example url http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af
url parameters 8927110dc66458af (required): Required hex-encoded uint64 cluster

member ID generated using sensuctl cluster member-list

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af

Cluster role bindings API

Contents

The /clusterrolebindings API endpoint
/clusterrolebindings (GET)

/clusterrolebindings (POST)

The /clusterrolebindings/:clusterrolebinding API endpoint
/clusterrolebindings/:clusterrolebinding (GET)
/clusterrolebindings/:clusterrolebinding (PUT)
/clusterrolebindings/:clusterrolebinding (DELETE)

The /clusterrolebindings API endeInt

/clusterrolebindings (G ET)

The /clusterrolebindings API endpoint provides HTTP GET access to cluster role binding data.

EXAMPLE

The following example demonstrates a request to the /clusterrolebindings API, resulting ina
JSON Array containing cluster role binding definitions.

curl http://127.0.0.1:8080/api/core/v2/clusterrolebindings -H "Authorization: Bearer
$SENSU_TOKEN"

HTTP/1.1 200 OK
[

"subjects": [
{
"type": "Group",

"name": "cluster-admins"

1,

"role ref": {

"type": "ClusterRole",
"name": "cluster-admin"
},
"metadata": {
"name": "cluster-admin"
}
},
{
"subjects": [
{
"type": "Group",
"name": "system:agents"
}
1,
"role ref": ({
"type": "ClusterRole",
"name": "system:agent"
},
"metadata": {
"name": "system:agent"
}
}
1
API Specification

[clusterrolebinding

s (GET)

description Returns the list of cluster role bindings.

example url http://hostname:8080/api/core/v2/clusterrolebindings

pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the API overview for details.

response type Array

http://hostname:8080/api/core/v2/clusterrolebindings

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

"subjects": [
{
"type": "Group",
"name": "cluster-admins"
}
1,
"role ref": {
"type": "ClusterRole",
"name": "cluster-admin"
b,
"metadata": {
"name": "cluster-admin"

/clusterrolebindings (F)()ES1-)

The /clusterrolebindings API endpoint provides HTTP POST access to create a cluster role
binding.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /clusterrolebindings APIto
create a cluster role binding that assigns the cluster-admin cluster role to the user bob .The
request includes the cluster role binding definition in the request body and returns a successful HTTP
200 OK response and the created cluster role binding definition.

curl -X POST \

-H "Authorization: Bearer $SENSU TOKEN" \
-H 'Content-Type: application/json' \

_d V{

"subjects":

{

n type " :

"name" :

I

"role ref":

lltypell :
"name" :

by

"metadata":

"name" :
}
PO
http://127.0

"User",

"bob Al

{

"ClusterRole",

"cluster-admin"

{

"bob-binder"

.0.1:8080/api/core/v2/clusterrolebindings

n

HTTP/1.1 200 OK
{
"subjects": [
{
"type": "User",
"name": "bob"
}
1,
"role ref": {
"type": "ClusterRole",
"name": "cluster-admin
},
"metadata": {
"name": "bob-binder"
}
}
API Specification

[clusterrolebinding

s (POST)

description

Create a Sensu cluster role binding.

example URL http://hostname:8080/api/core/v2/clusterrolebindings

payload
{
"subjects": [
{
"type": "User",
"name": "bob"
}
1,
"role ref": {
"type": "ClusterRole",
"name": "cluster-admin"
},
"metadata": {
"name": "bob-binder"
}
}
response codes Success: 200 (OK)

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /clusterrolebindings/:clusterrolebinding APl endeInt

/clusterrolebindings/:clusterrolebinding (GET)

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP GET access to
cluster role binding data for specific :clusterrolebinding definitions, by cluster role binding name .

EXAMPLE

In the following example, querying the /clusterrolebindings/:clusterrolebinding API returns a
JSON Mapcontaining the requested :clusterrolebinding _definition (in this example: for the
:clusterrolebinding named! bob-binder).

http://hostname:8080/api/core/v2/clusterrolebindings

curl http://127.0.0.1:8080/api/core/v2/clusterrolebindings/bob-binder -H
"Authorization: Bearer SSENSU TOKEN"

HTTP/1.1 200 OK
{

"subjects": [
{
"type": "User",
"name": "bob"
}
1,
"role ref": {
"type": "ClusterRole",
"name": "cluster-admin"
b,
"metadata": {
"name": "bob-binder"
}
}
API Specification

/clusterrolebinding

s/:clusterrolebindin

g (GET)

description Returns a cluster role binding.

example url http://hostname:8080/api/core/v2/clusterrolebindings/bob-binder
response type Map

response codes Success: 200 (OK)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

"subjects": [

{

http://hostname:8080/api/core/v2/clusterrolebindings/bob-binder

"type" . "User",

"name": "bob"
}
1,
"role ref": {
"type": "ClusterRole",
"name": "cluster-admin"
by
"metadata": {
"name": "bob-binder"

/clusterrolebindings/:clusterrolebinding (F)LJ1_)

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP PUT access to
create or update a cluster role binding, by cluster role binding name .

EXAMPLE

In the following example, an HTTP PUT request is submitted to the
/clusterrolebindings/:clusterrolebinding API to create a cluster role binding that assigns the
cluster-admin cluster role to users in the group ops .The request includes the cluster role binding

definition in the request body and returns a successful HTTP 200 OK response and the created cluster

role binding definition.

curl -X PUT \
-H "Authorization: Bearer S$SSENSU TOKEN" \

-H 'Content-Type: application/json' \

-d '{
"subjects": [
{
"type": "Group",
"name": "ops"
}
I
"role ref": {

"type": "ClusterRole",

"name": "cluster-admin"
bo
"metadata": {
"name": "ops-group-binder"
}
PO
http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops—group-binder

HTTP/1.1 200 OK

{
"subjects": [
{
"type": "Group",
"name": "ops"
}
1,
"role ref": {
"type": "ClusterRole",
"name": "cluster-admin"
},
"metadata": {
"name": "ops-group-binder"
}
}
API Specification

[clusterrolebinding

s/:clusterrolebindin

g (PUT)
description Create or update a Sensu cluster role binding.
example URL http://hostname:8080/api/core/v2/clusterrolebindings/ops-group-binder
payload
{
"subjects": [

{
lltype": llGroup",

http://hostname:8080/api/core/v2/clusterrolebindings/ops-group-binder

llnamell : "OpS"
}
1,

"role ref": {
"type": "ClusterRole",
"name": "cluster-admin"

b

"metadata": {

"name": "ops-group-binder"

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/clusterrolebindings/:clusterrolebinding (DELETE)

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP DELETE access to
delete a cluster role binding from Sensu given the cluster role binding name.

EXAMPLE

The following example shows a request to delete the cluster role binding ops-binding , resulting in a
successful HTTP 204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-binding

HTTP/1.1 204 No Content

API Specification

/clusterrolebinding

s/:clusterrolebindin

g (DELETE)

description Removes a cluster role binding from Sensu given the cluster role binding
name.

example url http://hostname:8080/api/core/v2/clusterrolebindings/ops-binding

response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/clusterrolebindings/ops-binding

Cluster roles API

Contents

The /clusterroles API endpoint
/clusterroles (GET)

/clusterroles (POST)

The /clusterroles/:clusterrole APl endpoint
/clusterroles/:clusterrole (GET)
/clusterroles/:clusterrole (PUT)
/clusterroles/:clusterrole (DELETE)

The /clusterroles API endeInt

/clusterroles (GET)

The /clusterroles API endpoint provides HTTP GET access to cluster role data.

EXAMPLE
The following example demonstrates a request to the /clusterroles API, resulting inalJSON Array
containing cluster role definitions.

curl http://127.0.0.1:8080/api/core/v2/clusterroles -H "Authorization: Bearer

$SENSU_TOKEN"

HTTP/1.1 200 OK
[

"rules": [

"verbs": [

LIROR 1]

"resources": [
"assets",
"checks",
"entities",
"extensions",
"events",
"filters",
"handlers",
"hooks",
"mutators",
"silenced",
"roles",
"rolebindings"

1,

"resource names": null

},
{

"verbs": [
"get",
"list"

1,

"resources": [
"namespaces"

1,

"resource names": null

1,

"metadata": {

"name": "admin"

"rules": [

{

"verbs": [

W

1,

"resources": [

"Wk

1,

"resource names": null

1,

"metadata": {

"name": "cluster-admin

API Specification

[clusterroles (GET)

description Returns the list of cluster roles.
example url http://hostname:8080/api/core/v2/clusterroles
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type

Array

response codes

Success: 200 (OK)
Error: 500 (Internal Server Error)

output

"rules": [
{
"verbs": [
"k n
1,
"resources": [
"k n
1,
"resource names": null
}
1,
"metadata": {

"name": "cluster-admin"

http://hostname:8080/api/core/v2/clusterroles

/clusterroles (POST)

[clusterroles

(POST)
description Create a Sensu cluster role.
example URL http://hostname:8080/api/core/v2/clusterroles
payload
{
"metadata": {
"name": "global-event-reader"
b,
"rules": [
{
"verbs": [
"get",
"list"
1,
"resources": [
"events"
1,
"resource names": null
}
1
}
response codes Success: 200 (OK)

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/clusterroles

The /clusterroles/:clusterrole API endeInt

/clusterroles/:clusterrole (G ET)

The /clusterroles/:clusterrole APl endpoint provides HTTP GET access to cluster role data for
specific :clusterrole definitions, by cluster role name .

EXAMPLE

In the following example, querying the /clusterroles/:clusterrole API returns a JSON Map
containing the requested :clusterrole definition (in this example: for the :clusterrole named

global-event-reader).

curl http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader -H
"Authorization: Bearer S$SENSU TOKEN"

HTTP/1.1 200 OK
{

"metadata": {

"name": "global-event-reader"
},
"rules": [

{

"verbs": [
"get",
"list"

1,

"resources": [
"events"

1,

"resource names": null

API Specification

[clusterroles/:clust

errole (GET)

description Returns a cluster role.
example url http://hostname:8080/api/core/v2/clusterroles/global-event-reader

response type

Map

response codes

Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

"metadata": {

"name": "global-event-reader"
bo
"rules": [

{

"verbs": [
"get",
"list"

1y

"resources": [
"events"

1,

"resource names": null

/clusterroles/:clusterrole (PUT)

API Specification

[clusterroles/:clust

errole (PUT)

http://hostname:8080/api/core/v2/clusterroles/global-event-reader

description Create or update a Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles/global-event-reader

payload

"metadata": {

"name": "global-event-reader"
},
"rules": [

{

"verbs": [
"get",
"list"

]I

"resources": [
"events"

1,

"resource names": null

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/clusterroles/:clusterrole (DELETE)

The /clusterroles/:clusterrole API endpoint provides HTTP DELETE access to delete a cluster
role from Sensu given the cluster role name.

EXAMPLE

The following example shows a request to delete the cluster role global-event-reader , resultingin
a successful HTTP 204 No Content response.

http://hostname:8080/api/core/v2/clusterroles/global-event-reader

curl -X DELETE \
-H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader

HTTP/1.1 204 No Content

API Specification

/clusterroles/:clust

errole (DELETE)

description Removes a cluster role from Sensu given the cluster role name.
example url http://hostname:8080/api/core/v2/clusterroles/global-event-reader
response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/clusterroles/global-event-reader

Entities API

Contents

The /entities API endpoint
[entities (GET)

/entities (POST)

The /entities/:entity API endpoint
/entities/:entity (GET)
[entities/:entity (PUT)
/entities/:entity (DELETE)

The /enticies APl endpoint

/entities (GET)

The /entities API endpoint provides HTTP GET access to entity data.

EXAMPLE

The following example demonstrates a request to the /entities API, resulting inal JSON Array
containing entity definitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/entities -H
"Authorization: Bearer S$SENSU TOKEN"

[

{
"entity class": "agent",
"system": {
"hostname": "sensu-centos",
"os": "linux",
"platform": "centos",
"platform family": "rhel",

"platform version": "7.4.1708",

"network": {
"interfaces": [
{
"name": "lo",
"addresses": [
"127.0.0.1/8",
"::1/128"

"name": "enpOs3",
"mac": "08:00:27:11:ad:d2",
"addresses": [
"10.0.2.15/24",
"fe80::f50c:b029:30a5:3e26/64"

"name": "enpOs8",

"mac": "08:00:27:9f:5d:£3",

"addresses": [
"172.28.128.3/24",
"fe80::200:27ff:fedf:5df3/64"

1

},

"arch": "amd64"
},
"subscriptions": [

"entity:sensu-centos"
1,
"last seen": 1543349936,
"deregister": false,
"deregistration": {},
"user": "agent",
"redact": [

"password",

"passwd",

"pass",

"api key",

"api token",

"access key",
"secret key",

"private key",

"secret"

]l

"metadata": {
"name": "sensu-centos",
"namespace": "default",

"labels": null,

"annotations": null

API Specification

/entities (GET)

description Returns the list of entities.
example url http://hostname:8080/api/core/v2/namespaces/default/entities
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output
[
{

"entity class": "agent",

"system": {
"hostname": "sensu-centos",
"os": "linux",
"platform": "centos",
"platform family": "rhel",

"platform version": "7.4.1708",

http://hostname:8080/api/core/v2/namespaces/default/entities

"network": {

"interfaces": [

{
"name": "lo",
"addresses": [
"127.0.0.1/8",
"::1/128"
1
},
{
"name": "enpOs3",
"mac": "08:00:27:11:ad:d2",
"addresses": [
"10.0.2.15/24",
"feB80::£50c:b029:30a5:3e26/64"
1
},
{
"name": "enpOs8",
"mac": "08:00:27:9f:54:£3",
"addresses": [
"172.28.128.3/24",
"feB80::a00:27ff:fe9f:5df3/64"
1
}
1
},
"arch": "amde64"
},
"subscriptions": [

"entity:sensu-centos"
1,
"last seen": 154334993¢,
"deregister": false,
"deregistration": {},
"user": "agent",
"redact": [

"password",

"passwd",

"pass",

"api key",

"api token",

"access key",
"secret key",

"private key",

"secret"

]I

"metadata": {
"name": "sensu-centos",
"namespace": "default",

"labels": null,

"annotations": null

/entities (POST)

/entities (POST)

description Create a Sensu entity.
example URL http://hostname:8080/api/core/v2/namespaces/default/entities
payload
{
"entity class": "proxy",
"subscriptions": [
"web"

1,

"deregister": false,

"deregistration": {},

"metadata": {
"name": "sensu-centos",
"namespace": "default",
"labels": null,

"annotations": null

http://hostname:8080/api/core/v2/namespaces/default/entities

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /entities/:entity API endeInt

/entities/:entity (GET)

The /entities/:entity API endpoint provides HTTP GET access to entity data for specific
:entity definitions, by entity name .

EXAMPLE

In the following example, querying the /entities/:entity APIreturns a JSON Mapcontaining the
requested :entity _definition (in this example: forthe :entity named[sensu-centos).

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/sensu-centos -H
"Authorization: Bearer SSENSU TOKEN"
{
"entity class": "agent",
"system": {
"hostname": "sensu-centos",
"os": "linux",
"platform": "centos",
"platform family": "rhel",
"platform version": "7.4.1708",
"network": {
"interfaces": [
{
"name": "lo",
"addresses": [
"127.0.0.1/8",
"::1/128"

"name": "enpOs3",

A

mac": "08:00:27:11:ad:d2",
"addresses": [

"10.0.2.15/24",
"fe80::£f50c:0029:30a5:3e26/64"

1
},
{
"name": "enpOs8",
"mac": "08:00:27:9f:5d:£3",
"addresses": [
"172.28.128.3/24",
"fe80::a00:27ff:fe9f:5df3/64"
1
}
1
},
"arch": "amde64"

},
"subscriptions": [

"entity:sensu-centos"
1,
"last seen": 1543349936,
"deregister": false,
"deregistration": {},
"user": "agent",
"redact": [

"password",

"passwd",

"pass",

"api key",

"api token",

"access key",

"secret key",

"private key",

"secret"

1,

"metadata": {
"name": "sensu-centos",
"namespace": "default",

"labels": null,

"annotations": null

API Specification

/entities/:entity

(GET)

description Returns a entity.

example url http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

response type Map

response codes Success: 200 (OK)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output
{
"entity class": "agent",
"system": {
"hostname": "sensu-centos",
"os": "linux",
"platform": "centos",
"platform family": "rhel",
"platform version": "7.4.1708",
"network": {
"interfaces": [
{
"name": "lo",
"addresses": [
"127.0.0.1/8",
"::1/128"
]
by
{
"name": "enpOs3",
"mac": "08:00:27:11:ad:d2",

"addresses": [

http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos
http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos

"10.0.2.15/24",
"fe80::£50c:b029:30a5:3e26/64"

"name": "enpOs8",

"mac": "08:00:27:9f:5d:£3",

"addresses": [
"172.28.128.3/24",
"fe80::a00:27ff:fe9f:5df3/64"

by
"arch": "amd64"
by
"subscriptions": [
"entity:sensu-centos"
1,
"last seen": 1543349936,

"deregister": false,

"deregistration": {},
"user": "agent",
"redact": [

"password",
"passwd",
"pass",

"api key",
"api token",
"access key",
"secret key",

"private key",

"secret"

]I

"metadata": {
"name": "sensu-centos",
"namespace": "default",

"labels": null,

"annotations": null

/entities/:entity (PUT)

API Specification

/entities/:entity

(PUT)

description Create or update a Sensu entity.

example URL http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

payload

"entity class": "proxy",
"subscriptions": [
"web"
1,
"deregister": false,
"deregistration": {},
"metadata": {
"name": "sensu-centos",
"namespace": "default",
"labels": null,

"annotations": null

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/entities/:entity (DELETE)

The /entities/:entity API endpoint provides HTTP DELETE access to delete an entity from
Sensu given the entity name.

http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos
http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos

EXAMPLE

The following example shows a request to delete the entity server1 , resulting in a successful HTTP
204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer S$SSENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/serverl

HTTP/1.1 204 No Content

API Specification

/entities/:entity

(DELETE)

description Removes a entity from Sensu given the entity name.

example url http://hostname:8080/api/core/v2/namespaces/default/entities/server1
response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/entities/server1

Events API

Contents

The /events API endpoint
/events (GET)
/events (POST)
The /events/:entity APl endpoint

/events/:entity (GET)
The ven ienti :check ‘APl endpoint

/events/:entity/:check (GET)
/events/:entity/:check (PUT)

/events/:entity/:check (DELETE)

The /events APl endpoint

/events (G ET)

The /events API endpoint provides HTTP GET access to event data.

EXAMPLE

The following example demonstrates a request to the /events API, resulting inal JSON Array
containing event definitions.

curl -H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/events

HTTP/1.1 200 OK
[

"timestamp": 1542667666,
"entity": {

"entity class": "agent",

"system": {

"hostname": "webserver01l",

A LLIS n n
o o . . o o . 2

"arch": "amde64"

},

"subscriptions": [
"testing",
"entity:webserver01"

1,

"metadata": {
"name": "check-nginx",
"namespace": "default",

"labels": null,

"annotations": null

},
"check": {

"check hooks": null,

"duration": 2.033888684,

"command": "http check.sh http://localhost:80",

"handlers": [

"slack"
1,
"high flap threshold": O,
"interval": 20,
"low flap threshold": O,
"publish": true,

"runtime assets": [],

"subscriptions": [
"testing"

1,

"proxy entity name": "",

"check hooks": null,

"stdin": false,
"ttl": O,
"timeout": O,

"duration": 0.010849143,

"Output" : A H,
"state": "failing",
"status": 1,

"total state change": 0,
"last ok": 0,

"occurrences": 1,
"occurrences watermark": 1,
"output metric format": ""
"output metric handlers": [],
"env_vars": null,
"metadata": {
"name": "check-nginx",
"namespace": "default",

"labels": null,

"annotations": null

API Specification

levents (GET)

description Returns the list of events.
example url http://hostname:8080/api/core/v2/namespaces/default/events
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output
[
{
"timestamp": 1542667666,
"entity": {
"entity class": "agent",
"system": {

"hostname": "webserver01l",

r

http://hostname:8080/api/core/v2/namespaces/default/events

"arch": "amdo64"

b,

"subscriptions": [
"testing",
"entity:webserverQl"

1,

"metadata": {

"name": "check-nginx",
"namespace": "default",
"labels": null,

"annotations": null

},

"check": {
"check hooks": null,
"duration": 2.033888684,
"command": "http check.sh http://localhost
"handlers": [

"slack"
1,
"high flap threshold": 0,
"interval": 20,
"low flap threshold": O,
"publish": true,
"runtime assets": [],
"subscriptions": [
"testing"

1,
"proxy entity name": "",
"check hooks": null,
"stdin": false,
"ttl": O,
"timeout": O,

"duration": 0.010849143,

"outputll : nmn ,
"state": "failing",
"status": 1,

"total state change": O,
"last ok": O,
"occurrences": 1,
"occurrences watermark": 1,

"output metric format": "",

: 80",

"output metric handlers": [],

"env_vars": null,
"metadata": {
"name": "check-nginx",
"namespace": "default",

"labels": null,

"annotations": null

/events (POST)

The /events API endpoint provides HTTP POST access to create an event and send it to the Sensu
pipeline.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /events API to create an event.
The request includes information about the check and entity represented by the event and returns a
successful HTTP 200 OK response and the event definition.

curl -X POST \
-H "Authorization: Bearer $SENSU TOKEN" \
-H 'Content-Type: application/json' \

-d '{
"entity": |
"entity class": "proxy",
"metadata": {
"name": "serverl",
"namespace": "default"
}
by
"check": {
"output": "Server error",
"state": "failing",

"status": 2,

"handlers": ["slack"],

"interval": 60,
"metadata": {
"name": "server-health"

}
FUOA
http://127.0.0.1:8080/api/core/v2/namespaces/default/events

HTTP/1.1 200 OK

{"timestamp":1552582569, "entity":{"entity class":"proxy","system":{"network":{"inter
faces":null}}, "subscriptions”:null, "last seen":0,"deregister":false,"deregistration"
:{}, "metadata":{"name" :"serverl", "namespace" :"default"}}, "check":{"handlers":["slack
"],"high flap threshold":0,"interval":60,"low flap threshold":0,"publish":false,"runti
me assets":null, "subscriptions":[],"proxy entity name":"","check hooks":null, "stdin"

:false, "subdue":null, "ttl":0, "timeout":0, "round robin":false, "executed":0, "history":

null, "issued":0, "output":"Server
error","state":"failing", "status":2,"total state change":0,"last ok":0,"occurrences"
:0,"occurrences watermark":0, "output metric format":"","output metric handlers":null
,"env_vars":null, "metadata":{"name":"server-health"}}, "metadata":{}}

API Specification

levents (POST)

description Create a Sensu event for a new entity and check combination. To create
an event for an existing entity and check combination or to update an

existing event, use the /events/:entity/:check PUT endpoint.

example URL http://hostname:8080/api/core/v2/namespaces/default/events
payload
{
"entity": {
"entity class": "proxy",

"metadata": {
"name": "serverl",

"namespace": "default"

b

http://hostname:8080/api/core/v2/namespaces/default/events

"check": {

"output": "Server error",
"state": "failing",
"status": 2,

"handlers": ["slack"],
"interval": 60,
"metadata": {

"name": "server-health"

payload parameters See the payload parameters section for the /events/:entity/:check
PUT endpoint.

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Conflict: 409 (Event already exists for the entity and check)
Error: 500 (Internal Server Error)

The /events/:entity API endelnt

/events/:entity (G ET)

The /events/:entity API endpoint provides HTTP GET access to event data specific to an
tentity , by entity name .

EXAMPLE

In the following example, querying the /events/:entity API returns a list of Sensu events for the
sensu-go-sandbox entity and a successful HTTP 200 OK response.

curl -H "Authorization: Bearer S$SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox

HTTP/1.1 200 OK

"timestamp": 1543871497,
"entity": {

"entity class": "agent",
"system": {
"hostname": "webserver01l",
Vooo¥g WoooW,
"arch": "amde64"
b,
"subscriptions": [
"linux",

"entity:sensu-go-sandbox"

1,
"last seen": 1543858763,

"metadata": {
"name": "sensu-go-sandbox",
"namespace": "default"
}
},
"check": {
"command": "check-cpu.sh -w 75 -c

"duration": 1.054253257,
"executed": 1543871496,
"history": [
{
"status": O,

"executed": 1543870296

1,
"issued": 1543871496,

"output": "CPU OK - Usage:.50\n",
"state": "passing",
"status": O,

"total state change": 0,
"last ok": 1543871497,

"occurrences": 1,
"metadata": {
"name": "check-cpu",
"namespace": "default"
}

b,

9011,

"metadata": {

"namespace": "default"

"timestamp": 1543871524,
"entity": {
"entity class": "agent",
"system": {

"hostname": "webserver01l",

A LLI " "
o o . . o o . ’

"arch": "amde64"
},
"subscriptions": [
"linux",
"entity:sensu-go-sandbox"
1,
"last seen": 1543871523,

"metadata": {

"name": "sensu-go-sandbox",
"namespace": "default"
}
}I
"check": {

"handlers": [
"keepalive"
1,
"executed": 1543871524,
"history": [
{
"status": O,

"executed": 1543871124

1,
"issued": 1543871524,

Houtput" : " ",
"state": "passing",
"status": O,

"total state change": 0,
"last ok": 1543871524,
"occurrences": 1,

"metadata": {

"name": "keepalive",
"namespace": "default"

},
"metadata": {}

API Specification

/events/:entity

(GET)

description Returns a list of events for the specified entity.

example url http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-
sandbox

pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type Array

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

"timestamp": 1543871524,
"entity": {
"entity class": "agent",
"system": {

"hostname": "webserver(01l",

A L1 " "
PR . . . 12

"arch": "amdo64"

b
"subscriptions": [

"linux",

http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox
http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox

"entity:sensu-go-sandbox"

1,
"last seen": 1543871523,

"metadata": {
"name": "sensu-go-sandbox",
"namespace": "default"
}
by
"check": {

"handlers": [
"keepalive"
1,
"executed": 1543871524,
"history": [
{
"status": O,

"executed": 1543871124

1,
"issued": 1543871524,

"Output" . n H,
"state": "passing",
"status": O,

"total state change": 0,
"last ok": 1543871524,

"occurrences": 1,
"metadata": |
"name": "keepalive",
"namespace": "default"

by

"metadata": {}

The /events/:entity/:check API endeInt

/events/:entity/:check (GET)

API Specification

/events/:entity/:che

ck (GET)
description Returns an event for a given entity and check.
example url http://hosthame:8080/api/core/v2/namespaces/default/events/sensu-go-

sandbox/check-cpu

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

"timestamp": 1543871524,
"entity": {
"entity class": "agent",
"system": {

"hostname": "webserver01l",

AL LU " n
P . . . r

"arch": "amd64"

by

"subscriptions": [
"linux",
"entity:sensu-go-sandbox"

1,
"last seen": 1543871523,

"metadata": {
"name": "sensu-go-sandbox",
"namespace": "default"
}
by
"check": {
"handlers": [

"keepalive"

i

http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu

"executed": 1543871524,
"history": [
{
"status": 0,

"executed": 1543871124

1,
"issued": 1543871524,

"Output" : " ll,
"state": "passing",
"status": O,

"total state change": 0,
"last ok": 1543871524,

"occurrences": 1,
"metadata": |
"name": "keepalive",
"namespace": "default"

s

"metadata": {}

/events/:entity/:check (F)LJ1-)

The /events/:entity/:check API endpoint provides HTTP PUT access to create or update an
event and send it to the Sensu pipeline.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /events/:entity/:check APIto
create an event for the server1 entity andthe server-health check and process it using the

slack event handler.The event includes a status code of 1 , indicating a warning, and an output
message of “Server error”.

curl -X PUT \

-H "Authorization: Bearer $SENSU TOKEN" \
-H 'Content-Type: application/json' \

-d '{

"entity": {

"entity class": "proxy",
"metadata": |
"name": "serverl",
"namespace": "default"
}
I
"check": {
"output": "Server error",
"status": 1,
"handlers": ["slack"],
"interval": 60,
"metadata": {
"name": "server-health"

}
Pt
http://127.0.0.1:8080/api/core/v2/namespaces/default/events/serverl/server-health

The request returns a 200 (OK) HTTP response code and the resulting event definition.

HTTP/1.1 200 OK
{"timestamp":1552582569, "entity":{"entity class":"proxy","system":{"network":{"inter
faces":null}}, "subscriptions":null, "last seen":0,"deregister":false,"deregistration"
:{}, "metadata":{"name" :"serverl", "namespace" :"default"}}, "check":{"handlers":["slack
"],"high flap threshold":0,"interval":60,"low flap threshold":0,"publish":false,"runti
me assets":null, "subscriptions":[],"proxy entity name":"","check hooks":null,"stdin"
:false, "subdue":null,"ttl":0, "timeout":0, "round robin":false, "executed":0,"history":
null,"issued":0, "output":"Server
error","status":1,"total state change":0,"last ok":0,"occurrences":0,"occurrences wa
termark":0, "output metric format":"","output metric handlers":null,"env vars":null,"

metadata":{"name":"server-health"}}, "metadata":{}}

You can use sensuctl or the Sensu dashboard to see the event.

sensuctl event list

You should see the event with the status and output specified in the request.

Entity Check Output Status Silenced Timestamp
serverl server-health Server error 1 false 2019-03-14 16:56:09 +0000 UTC
API Specification

/events/:entity/:che

ck (PUT)

description Creates an event for a given entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/serveri/ser

ver-health

payload

"entity": {
"entity class": "proxy",
"metadata": {
"name": "serverl",

"namespace": "default"

}

},

"check": {
"output": "Server error",
"status": 1,

"handlers": ["slack"],

"interval": 60,
"metadata": {
"name": "server-health"

payload parameters See the payload parameters section below.

http://hostname:8080/api/core/v2/namespaces/default/events/server1/server-health
http://hostname:8080/api/core/v2/namespaces/default/events/server1/server-health

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

Payload parameters

The /events/:entity/:check PUT endpoint requires a request payload containing an entity
scope and a check scope.The entity scope contains information about the component of your
infrastructure represented by the event.At a minimum, Sensu requires the entity scope to contain
the entity class (agent Or proxy)andthe entity name and namespace withina metadata
scope.For more information about entity attributes, see the entity specification.

The check scope contains information about the event status and how the event was created.At a
minimum, Sensu requires the check scope to contain a name within a metadata scope and either
an interval Or cron attribute.For more information about check attributes, see the check

specification.
Example request with minimum required event attributes
curl -X PUT \

-H "Authorization: Bearer S$SENSU TOKEN" \

-H 'Content-Type: application/json' \

-d '{
"entity": {
"entity class": "proxy",
"metadata": |
"name": "serverl",
"namespace": "default"
}
I
"check": {
"interval": 60,
"metadata": {
"name": "server-health"
}
}
PO

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/serverl/server-health

The minimum required attributes shown above let you create an event using the
/events/:entity/:check PUT endpoint, however the request can include any attributes defined in
the event specification.To create useful, actionable events, we recommend adding check attributes
such as the event status (0 for OK, 1 forwarning, 2 for critical), an output message, and
one or more event handlers .For more information about these attributes and their available values,

see the event specification.

Example request with minimum recommended event attributes

curl -X PUT \
-H "Authorization: Bearer $SENSU TOKEN" \
-H 'Content-Type: application/json' \
-d '{
"entity": |

"entity class": "proxy",
"metadata": {
"name": "serverl",
"namespace": "default"
}
b
"check": {
"output": "Server error",
"status": 1,
"handlers": ["slack"],
"interval": 60,
"metadata": {
"name": "server-health"

}
PN
http://127.0.0.1:8080/api/core/v2/namespaces/default/events/serverl/server-health

Creating metric events

In addition to the entity and check scopes, Sensu events can include a metrics scope
containing metrics in Sensu metric format.See the events reference and for more information about
Sensu metric format.

Example request including metrics

curl -X PUT \
-H "Authorization: Bearer $SENSU TOKEN" \
-H 'Content-Type: application/json' \
-d '{
"entity": |

"entity class": "proxy",
"metadata": {
"name": "serverl",
"namespace": "default"
}
bo
"check": {
"status": O,
"output metric handlers": ["influxdb"],
"interval": 60,
"metadata": {
"name": "server-metrics"
}
bo
"metrics": {
"handlers": |
"influxdb"
1y
"points": [
{
"name": "serverl.server-metrics.time total",
"tags": [],

"timestamp": 1552506033,
"value": 0.005

"name": "serverl.server-metrics.time namelookup",
"tags": [],

"timestamp": 1552506033,

"value": 0.004

}
PN
http://127.0.0.1:8080/api/core/v2/namespaces/default/events/serverl/server-metrics

/events/:entity/:check (DELETE)

EXAMPLE

The following example shows a request to delete the event produced by the sensu-go-sandbox
entity and check-cpu check, resulting in a successful HTTP 204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer S$SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-

cpu

HTTP/1.1 204 No Content

API Specification

levents/:entity/:che

ck (DELETE)

description Deletes the event created by the specified entity using the specified
check
example url http://hosthame:8080/api/core/v2/namespaces/default/events/sensu-go-

sandbox/check-cpu

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu

Filters AP

Contents

The /filters API endpoint
[filters (GET)

/filters (POST)

The /filters/:filter API endpoint
/filters/:filter (GET)
[filters/:filter (PUT)
[filters/:filter (DELETE)

The /nicexs APl endpoint

/filters (G ET)

The /filters API endpoint provides HTTP GET access to filter data.

EXAMPLE

The following example demonstrates a request to the /filters API, resulting inal JSON Array
containing filter definitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/filters -H "Authorization:
Bearer S$TOKEN"
[

"metadata": {
"name": "state change only",
"namespace": "default",
"labels": null,
"annotations": null

b,

"action": "allow",

"expressions": [

"event.check.occurrences == 1"
1,
"runtime assets": []
}
1
API Specification

ffilters (GET)

description Returns the list of filters.
example url http://hosthame:8080/api/core/v2/namespaces/defaultffilters
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

"metadata": {
"name": "state change only",
"namespace": "default",
"labels": null,
"annotations": null
b,
"action": "allow",
"expressions": [
"event.check.occurrences == 1"
1,
"runtime assets": []
},
{

"metadata": {

http://hostname:8080/api/core/v2/namespaces/default/filters

"name": "development filter",
"namespace": "default",
"labels": null,
"annotations": null
},
"action": "deny",
"expressions": [
"event.entity.metadata.namespace == 'production'"

1,

"runtime assets": []

/filters (POST)

[filters (POST)

description Create a Sensu filter.
example URL http://hostname:8080/api/core/v2/namespaces/default/filters
payload
{
"metadata": {
"name": "development filter",
"namespace": "default",

"labels": null,

"annotations": null
b,
"action": "deny",
"expressions": [
"event.entity.metadata.namespace == 'production'"
1,
"runtime assets": []
}
response codes Success: 200 (OK)

Malformed: 400 (Bad Request)

http://hostname:8080/api/core/v2/namespaces/default/filters

Error: 500 (Internal Server Error)

The /filters/:filter API endeInt

/filters/:filter (G ET)

The /filters/:filter API endpoint provides HTTP GET access to filter data for specific :filter
definitions, by filter name .

EXAMPLE

In the following example, querying the /filters/:filter APIreturns a JSON Mapcontaining the
requested :filter _definition (in this example: for the :filter named! state change only).

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/filters/state change only -

H

{

"Authorization: Bearer S$STOKEN"

"metadata": {
"name": "state change only",
"namespace": "default",
"labels": null,
"annotations": null
b,
"action": "allow",
"expressions": [
"event.check.occurrences == 1"
1,

"runtime assets": []

API Specification

ffilters/ filter (GET)

description Returns a filter.

example url http://hostname:8080/api/core/v2/namespaces/default/filters/state_chang

e_only
response type Map
response codes Success: 200 (OK)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output
{
"metadata": {
"name": "state change only",
"namespace": "default",

"labels": null,
"annotations": null

b

"action": "allow",

" 2 ",

expressions™: |
"event.check.occurrences == 1"

1,

"runtime assets": []

/filters/:filter (PUT)

API Specification

ffilters/:filter (PUT)

description Create or update a Sensu filter.

example URL http://hostname:8080/api/core/v2/namespaces/default/filters/developmen
t_filter

payload

"metadata": {

http://hostname:8080/api/core/v2/namespaces/default/filters/state_change_only
http://hostname:8080/api/core/v2/namespaces/default/filters/state_change_only
http://hostname:8080/api/core/v2/namespaces/default/filters/development_filter
http://hostname:8080/api/core/v2/namespaces/default/filters/development_filter

"name": "development filter",
"namespace": "default",
"labels": null,
"annotations": null
},
"action": "deny",
"expressions": [
"event.entity.metadata.namespace == 'production'"

1,

"runtime assets": []

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/filters/:filter (DELETE)

The /filters/:filter API endpoint provides HTTP DELETE access to delete a filter from Sensu
given the filter name.

EXAMPLE

The following example shows a request to delete the filter production-only , resultingin a
successful HTTP 204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/filters/production-only

HTTP/1.1 204 No Content

API Specification

[filters/filter

(DELETE)

description Removes a filter from Sensu given the filter name.

example url http://hostname:8080/api/core/v2/namespaces/default/filters/production-
only

response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/filters/production-only
http://hostname:8080/api/core/v2/namespaces/default/filters/production-only

Handlers AP

Contents

The /handlers API endpoint
/handlers (GET)

/handlers (POST)

The /handlers/:handler API endpoint
/handlers/:handler (GET)
/handlers/:handler (PUT)
/handlers/:handler (DELETE)

The /nenaiers APl endpoint

/handlers (G ET)

The /handlers API endpoint provides HTTP GET access to handler data.

EXAMPLE

The following example demonstrates a request to the /handlers API, resulting inalJSON Array
containing handler definitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers -H
"Authorization: Bearer S$SENSU TOKEN"

[

"metadata": {
"name": "slack",
"namespace": "default",
"labels": null,
"annotations™: null

b

"command": "sensu-slack-handler --channel '#monitoring'",

"env _vars": [

"SLACK WEBHOOK URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXKXXXXX

):0:0:9:0:0:0:0.0:0.0.0.4
1,
"filters": [
"is incident",
"not silenced"

1,
"handlers": [],

"runtime assets":

"timeout": O,

"type": "pj_pe"

API Specification

/handlers (GET)

1,

description Returns the list of handlers.
example url http://hostname:8080/api/core/v2/namespaces/default/handlers
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the API overview for details.

response type

Array

response codes

Success: 200 (OK)
Error: 500 (Internal Server Error)

output

"metadata": {
"name": "slack",
"namespace": "default",

"labels": null,

"annotations": null

http://hostname:8080/api/core/v2/namespaces/default/handlers

b,

"command": "sensu-slack-handler --channel

'#monitoring'",

"env_vars": [

"SLACK WEBHOOK URL=https://hooks.slack.com/services/T000000

00/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX"
1,
"filters": [
"is incident",
"not silenced"

1,

"handlers": [],

"runtime assets": [],
"timeout": O,
"type": "pipe"
},
{
"metadata": {
"name": "influx-db",
"namespace": "default",
"labels": null,
"annotations": null
b,
"command": "sensu-influxdb-handler
"env vars": [

"INFLUXDB_ADDR=http://influxdb.default.
6",
"INFLUXDB USER=sensu",
"INFLUXDB PASSWORD=password"
1,
"filters": [1,
"handlers": [],
"runtime assets": [],
"timeout": O,

"type" . "pipe"

-d sensu",

svc.cluster

.local:808

/handlers (POST)

/handlers (POST)

description Create a Sensu handler.
example URL http://hostname:8080/api/core/v2/namespaces/default/handlers
payload

"metadata": {
"name": "influx-db",
"namespace": "default",

"labels": null,

"annotations": null
}I
"command": "sensu-influxdb-handler -d sensu",
"env _vars": [

"INFLUXDB ADDR=http://influxdb.default.svc.cluster.local:808
6",
"INFLUXDB USER=sensu",
"INFLUXDB PASSWORD=password"
1,
"filters": []1,
"handlers": [],
"runtime assets": [],
"timeout": O,

"type": "pipe"

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /handlers/:handler API endelnt

http://hostname:8080/api/core/v2/namespaces/default/handlers

/handlers/:handler (G ET)

The /nhandlers/:handler API endpoint provides HTTP GET access to handler data for specific
:handler definitions, by handler name .

EXAMPLE

In the following example, querying the /handlers/:handler API returns a JSON Mapcontaining the
requested :handler _definition (in this example: for the :handler named! slack).

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack -H
"Authorization: Bearer SSENSU TOKEN"

{
"metadata": {
"name": "slack",
"namespace": "default",

"labels": null,

"annotations": null
}I
"command": "sensu-slack-handler --channel '#monitoring'",
"env vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX
0:0.0:0:0:0:0:0.0.0.0.: 44
1,
"filters": [
"is incident",
"not silenced"

1,
"handlers": [1],

"runtime assets": [],
"timeout": O,
"type" : "pipe"
}
API Specification

/handlers/:handler

(GET)

description Returns a handler.
example url http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

response type

Map

response codes

Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

"metadata": {
"name": "slack",
"namespace": "default",

"labels": null,
"annotations": null
}y
"command": "sensu-slack-handler --channel '#monitoring'",

"env_vars": [

"SLACK WEBHOOK URL=https://hooks.slack.com/services/T000000
00/B00000000/XXXXXXXXXXXXXXXXXXXXKXKX"
1,
"filters": [
"is incident",
"not silenced"

1,

"handlers": [],
"runtime assets": [],
"timeout": O,

"type": "pipe"

/handlers/:handler (F)LJ1-)

API Specification

http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

/handlers/:handler

(PUT)

description Create or update a Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers/influx-db
payload

"metadata": {
"name": "influx-db",
"namespace": "default",

"labels": null,

"annotations": null
},
"command": "sensu-influxdb-handler -d sensu",
"env_vars": [

"INFLUXDB ADDR=http://influxdb.default.svc.cluster.local:808
6",
"INFLUXDB USER=sensu",
"INFLUXDB PASSWORD=password"
1,
"filters": [1,
"handlers": [1],
"runtime assets": [],
"timeout": O,

"type": "pipe"

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/handlers/:handler (DELETE)

The /handlers/:handler API endpoint provides HTTP DELETE access to delete a handler from
Sensu given the handler name.

http://hostname:8080/api/core/v2/namespaces/default/handlers/influx-db

EXAMPLE

The following example shows a request to delete the handler siack , resulting in a successful HTTP
204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer $SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack

HTTP/1.1 204 No Content

API Specification

/handlers/:handler

(DELETE)

description Removes a handler from Sensu given the handler name.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers/slack
response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

Health API

Contents

The /meaen APl endpoint

/health (G ET)

The /health API endpoint provides HTTP GET access to health data for your Sensu instance.

EXAMPLE

The following example demonstrates a request to the /health API, resulting inalJSON map
containing Sensu health data.

curl http://127.0.0.1:8080/health

HTTP/1.1 200 OK
{
"Alarms": null,
"ClusterHealth": [
{
"MemberID": 9882886658148554927,
"Name": "default",
"Err": "",

"Healthy": true

1,

"Header": {
"cluster id": 4255616304056076734,
"member id": 9882886658148554927,

"raft term": 26

API Specification

/health (GET)

description Returns health information about the Sensu instance
example url http://hosthame:8080/health

response type Map

response codes Success: 200 (OK)

Error: 500 (Internal Server Error)

output

"Alarms": null,
"ClusterHealth": [
{
"MemberID": 9882886658148554927,
"Name": "default",
"Err": U,
"Healthy": true
}
1,

"Header": {
"cluster id": 4255616304056076734,
"member id": 9882886658148554927,
"raft term": 26

http://hostname:8080/health

Hooks API

Contents

The /hooks API endpoint
/hooks (GET)

/hooks (POST)

The /hooks/:hook API endpoint
/hooks/:hook (GET)
/hooks/:hook (PUT)
/hooks/:hook (DELETE)

The /m.oxs APl endpoint

/hooks (G ET)

The /hooks API endpoint provides HTTP GET access to hook data.

EXAMPLE

The following example demonstrates a request to the /hooks API, resulting inal JSON Array
containing hook definitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks -H "Authorization:
Bearer $SENSU TOKEN"
[

"metadata": {
"name": "process-tree",
"namespace": "default",
"labels": null,
"annotations": null

b

"command": "ps aux",

"timeout": 10,

"stdin": false

API Specification

/hooks (GET)

description Returns the list of hooks.
example url http://hosthame:8080/api/core/v2/namespaces/default/hooks
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type

Array

response codes

Success: 200 (OK)
Error: 500 (Internal Server Error)

output

{
"metadata": {
"name": "process-tree",
"namespace": "default",
"labels": null,
"annotations": null
b,
"command": "ps aux",
"timeout": 10,
"stdin": false
},
{
"metadata": {
"name": "nginx-log",
"namespace": "default",

"labels": null,

"annotations": null

http://hostname:8080/api/core/v2/namespaces/default/hooks

b

"command": "tail -n 100 /var/log/nginx/error.log",

"timeout": 10,
"stdin": false
}
1
/hooks (POST)
/hooks (POST)
description Create a Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks

payload
{
"metadata": {
"name": "process-tree",
"namespace": "default",
"labels": null,
"annotations": null
},
"command": "ps aux",
"timeout": 10,
"stdin": false
}
response codes Success: 200 (OK)

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /hooks/ :hook API endeInt

http://hostname:8080/api/core/v2/namespaces/default/hooks

/hooks/:hook (G ET)

The /nooks/:hook API endpoint provides HTTP GET access to hook data for specific :hook
definitions, by hook name .

EXAMPLE

In the following example, querying the /hooks/:hook API returns a JSON Mapcontaining the
requested :hook _definition (in this example: for the :hook named[process-tree).

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree -H
"Authorization: Bearer SSENSU TOKEN"
{
"metadata": {
"name": "process-tree",

"namespace": "default",

"labels": null,

"annotations": null
b,
"command": "ps aux",
"timeout": 10,
"stdin": false
}
API Specification
/hooks/:hook
(GET)
description Returns a hook.
example url http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree
response type Map
response codes Success: 200 (OK)

Missing: 404 (Not Found)

http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree

Error: 500 (Internal Server Error)

output
{
"metadata": {
"name": "process-tree",
"namespace": "default",

"labels": null,
"annotations": null
b
"command": "ps aux",
"timeout": 10,

"stdin": false

/hooks/:hook (PUT)

API Specification
/hooks/:hook
(PUT)
description Create or update a Sensu hook.
example URL http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree
payload
{
"metadata": {
"name": "process-tree",
"namespace": "default",

"labels": null,

"annotations": null
}l
"command": "ps aux",
"timeout": 10,

"stdin": false

http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/hooks/:hook (DELETE)

The /hooks/:hook API endpoint provides HTTP DELETE access to delete a check hook from Sensu
given the hook name.

EXAMPLE

The following example shows a request to delete the hook process-tree , resulting in a successful
HTTP 204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer SSENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree

HTTP/1.1 204 No Content

API Specification

/hooks/:hook

(DELETE)

description Removes a hook from Sensu given the hook name.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree

License management API

Contents

The /license API endpoints
/license (GET)
/license (PUT)

The /1icense APl endpoints

For more information about license-activated features designed for enterprises, see the getting started
guide.

/license (G ET)

The /1icense API endpoint provides HTTP GET access to the active license configuration.

API Specification

/llicense (GET)

description Returns the active enterprise license configuration. To download your
license, log in to your Sensu account or contact the Sensu sales team for
a free trial.

example url http://hosthname:8080/api/enterprise/licensing/v2/license

response type Map

response codes Success: 200 (OK)

Error: 500 (Internal Server Error)

/license

https://account.sensu.io/
https://sensu.io/sales
https://sensu.io/sales
http://hostname:8080/api/enterprise/licensing/v2/license

(PUT)

The /1license API endpoint provides HTTP PUT access to activate an enterprise license.

API Specification

/license (PUT)

description Activates an enterprise license, or updates an existing license

configuration. To download your license, log in to your Sensu account or
contact the Sensu sales team for a free trial.

example url http://hostname:8080/api/enterprise/licensing/v2/license
payload License definition
response codes Success: 201 (Created)

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

https://account.sensu.io/
https://sensu.io/sales
http://hostname:8080/api/enterprise/licensing/v2/license

Metrics API

Contents

The /metrics API endeInt

/metrics (G ET)

The /metrics API endpoint provides HTTP GET access to internal Sensu metrics in Prometheus
format, including embedded etcd, memory usage, garbage collection, and gRPC metrics.

EXAMPLE

The following example demonstrates a request to the /metrics API, resulting inplaintext output
containing internal Sensu metrics.

curl http://127.0.0.1:8080/metrics

HTTP/1.1 200 OK

HELP etcd debugging mvcc db compaction keys total Total number of db keys
compacted.

TYPE etcd debugging mvcc db compaction keys total counter

etcd debugging mvcc db compaction keys total 2386

HELP etcd debugging mvcc db compaction pause duration milliseconds Bucketed
histogram of db compaction pause duration.

TYPE etcd debugging mvcc db compaction pause duration milliseconds histogram
etcd debugging mvcc db compaction pause duration milliseconds bucket{le="1"} 0

etcd debugging mvcc db compaction pause duration milliseconds bucket{le="2"} 0

API Specification

https://prometheus.io/docs/concepts/data_model/

/metrics (GET)

description Returns internal Sensu metrics in Prometheus format, including
embedded etcd, memory usage, garbage collection, and gRPC metrics.

example url http://hosthame:8080/metrics
response type Prometheus-formatted plaintext
response codes Success: 200 (OK)

Error: 500 (Internal Server Error)

output
HELP etcd debugging mvcc db compaction keys total Total

number of db keys compacted.

TYPE etcd debugging mvcc db compaction keys total counter
etcd debugging mvcc db compaction keys total 2386

HELP

etcd debugging mvcc db compaction pause duration millisecon
ds Bucketed histogram of db compaction pause duration.

TYPE

etcd debugging mvcc db compaction pause duration millisecon
ds histogram

etcd debugging mvcc db compaction pause duration millisecon
ds_bucket{le="1"} 0

etcd debugging mvcc db compaction pause duration millisecon

ds_bucket{le="2"} 0

http://hostname:8080/metrics
https://prometheus.io/docs/concepts/data_model/

Mutators API

Contents

The /mutators API endpoint
/mutators (GET)

/mutators (POST)

The /mutators/:mutator API endpoint
/mutators/:mutator (GET)
/mutators/:mutator (PUT)
/mutators/:mutator (DELETE)

The /mutators API endelnt

/mutators (G ET)

The /mutators API endpoint provides HTTP GET access to mutator data.

EXAMPLE

The following example demonstrates a request to the /mutators API, resulting inal JSON Array
containing mutator definitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators -H
"Authorization: Bearer S$SENSU TOKEN"

[

"metadata": {
"name": "example-mutator",
"namespace": "default",

"labels": null,

"annotations": null

b

"command": "example mutator.go",

"timeout": O,
"env vars": [1,

"runtime assets": []

API Specification

/mutators (GET)

description Returns the list of mutators.
example url http://hostname:8080/api/core/v2/namespaces/default/mutators
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output
[
{
"metadata": {
"name": "example-mutator",
"namespace": "default",

"labels": null,

"annotations": null
}I
"command": "example mutator.go",
"timeout": 0,
"env_vars": [],

"runtime assets": []

http://hostname:8080/api/core/v2/namespaces/default/mutators

/mutators (POST)

/mutators (POST)

description Create a Sensu mutator.
example URL http://hostname:8080/api/core/v2/namespaces/default/mutators
payload
{
"metadata": {
"name": "example-mutator",
"namespace": "default",

"labels": null,

"annotations": null
},
"command": "example mutator.go",
"timeout": O,
"env_vars": [],
"runtime assets": []
}
response codes Success: 200 (OK)

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /mutators/:mutator API endeInt

/mutators/:mutator (G ET)

The /mutators/:mutator API endpoint provides HTTP GET access to mutator data for specific
:mutator definitions, by mutator name .

EXAMPLE

In the following example, querying the /mutators/:mutator API returns a JSON Mapcontaining the

http://hostname:8080/api/core/v2/namespaces/default/mutators

requested :mutator _definition (in this example: for the :mutator namedl example-mutator).

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator -
H "Authorization: Bearer S$SSENSU TOKEN"

{
"metadata": {
"name": "example-mutator",
"namespace": "default",
"labels": null,
"annotations": null
},
"command": "example mutator.go",
"timeout": O,
"env vars": [1,
"runtime assets": []
}
API Specification

/mutators/:mutator

(GET)

description Returns a mutator.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-
name

response type Map

response codes Success: 200 (OK)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output
{
"metadata": {
"name": "example-mutator",
"namespace": "default",

"labels": null,

http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-name
http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-name

"annotations": null

y

"command": "example mutator.go",
"timeout": O,
"env_vars": [],

"runtime assets": []

/mutators/:mutator (F)LJ1-)

API Specification

/mutators/:mutator

(PUT)
description Create or update a Sensu mutator.
example URL http://hostname:8080/api/core/v2/namespaces/default/mutators/example-
mutator
payload
{
"metadata": {
"name": "example-mutator",
"namespace": "default",

"labels": null,

"annotations": null
},
"command": "example mutator.go",
"timeout": O,
"env_vars": [],
"runtime assets": []
}
response codes Success: 201 (Created)

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator
http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator

/mutators/:mutator (DELETE)

The /mutators/:mutator API endpoint provides HTTP DELETE access to delete a mutator from
Sensu given the mutator name.

EXAMPLE

The following example shows a request to delete the mutator example-mutator , resultingin a
successful HTTP 204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer S$SENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator

HTTP/1.1 204 No Content

API Specification

/mutators/:mutator

(DELETE)

description Removes a mutator from Sensu given the mutator name.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators/example-
mutator

response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator
http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator

Namespaces AP

Contents

The /namespaces API endpoint
/namespaces (GET)

/namespaces (POST)

The /namespaces/:namespace API endpoint
/namespaces/:namespace (PUT)
/namespaces/:namespace (DELETE)

The /namespaces API endeInt

/namespaces (G ET)

The /namespaces API endpoint provides HTTP GET access to namespace data.

EXAMPLE

The following example demonstrates a request to the /namespaces API, resulting inal JSON Array
containing namespace definitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces —-H "Authorization: Bearer
SSENSU_TOKEN"
[

"name": "default"

"name": "development"

API Specification

/namespaces

(GET)

description Returns the list of namespaces.

example url http://hosthame:8080/api/core/v2/namespaces

pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

"name": "default"

"name": "development"

/namespaces (POST)

/namespaces

(POST)

description Create a Sensu namespace.

example URL http://hostname:8080/api/core/v2/namespaces

payload

http://hostname:8080/api/core/v2/namespaces
http://hostname:8080/api/core/v2/namespaces

"name": "development"

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /namespaces/ :namespace API endeInt

/namespaces/:namespace (PUT)

API Specification

/namespaces/:na

mespace (PUT)

description Create or update a Sensu namespace.
example URL http://hostname:8080/api/core/v2/namespaces/development
payload
{
"name": "development"
}
response codes Success: 201 (Created)

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/namespaces/:namespace (DELETE)

The /namespaces/:namespace API endpoint provides HTTP DELETE access to delete a namespace
from Sensu given the namespace name.

http://hostname:8080/api/core/v2/namespaces/development

EXAMPLE

The following example shows a request to delete the namespace development , resultingin a
successful HTTP 204 No Content response.

curl -X DELETE \
-H "Authorization: Bearer SSENSU TOKEN" \
http://127.0.0.1:8080/api/core/v2/namespaces/development

HTTP/1.1 204 No Content

API Specification

/namespaces/:na

mespace

(DELETE)

description Removes a namespace from Sensu given the namespace name.
example url http://hostname:8080/api/core/v2/namespaces/development
response codes Success: 204 (No Content)

Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/development

Role bindings API

Contents

The /rolebindings API endpoint
/rolebindings (GET)
/rolebindings (POST)
The /rolebindings/:rolebinding APl endpoint
/rolebindings/:rolebinding (GET)
indin :rolebinding (PUT)
/rolebindings/:rolebinding (DELETE)

The /rolebindings API endp0|nt

/rolebindings (G ET)

The /rolebindings API endpoint provides HTTP GET access to role binding data.

EXAMPLE

The following example demonstrates a request to the /rolebindings API, resulting inal JSON Array
containing role binding definitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings -H
"Authorization: Bearer S$SENSU TOKEN"

HTTP/1.1 200 OK
[

"subjects": [
{
lltype": "Group",

"name": "readers"

1,
"role ref": {
"type": "Role",
"name": "read-only"
},

"metadata": {

"name": "readers-group-binding",
"namespace": "default"
}
}
1
API Specification

/rolebindings

(GET)

description Returns the list of role bindings.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings
pagination This endpoint supports pagination using the 1imit and continue

query parameters. See the APl overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

"subjects": [

{

"type": "Group",
"name": "readers"
}
1,
"role ref": {

"type": "ROle",

http://hostname:8080/api/core/v2/namespaces/default/rolebindings

"name": "read-only"

b

"metadata": {
"name": "readers—-group-binding",
"namespace": "default"

/rolebindings (POST)

/rolebindings

(POST)
description Create a Sensu role binding.
example U