
Sensu Go

Contents
Release Notes

Getting Started
Get Started with Sensu
License-Activated Features
Live Demo
Sandbox
Glossary
FAQs
Media

Installation
Install Sensu
Install Plugins
Upgrade Sensu
Authentication
Hardware Requirements
Binary-Only Distributions
Confguration Management
Supported Platforms

Guides
Monitoring Server Resources
Monitoring External Resources
Collecting Service Metrics
Aggregating StatsD Metrics
Augmenting Event Data
Sending Slack Alerts
Storing Metrics with InfuxDB
Reducing Alert Fatigue
Routing Alerts with Filters
Installing Plugins with Assets
Planning Maintenance
Creating a Read Only User
Deploying Sensu
Running a Sensu Cluster
Securing Sensu

Troubleshooting

Dashboard
Overview
Filtering

API
API Overview
Assets API
Authentication API
Authentication Providers API
Checks API
Cluster API
Cluster Role Bindings API
Cluster Roles API
Entities API
Events API
Filters API
Handlers API
Health API
Hooks API
License API
Metrics API
Mutators API
Namespaces API
Role Bindings API
Roles API
Silencing API
Tessen API
Users API
Version API

Sensuctl CLI
Quickstart
Reference

Reference
Sensu Agent
Sensu Backend
Assets
Checks
Entities
Events
Filters
Handlers
Hooks

Mutators
Role-Based Access Control
Sensu Query Expressions
Silencing
Tessen
Tokens
License Management

| Learn about licensing

Sensu is the industry leading solution for multi-cloud monitoring at scale. The Sensu monitoring event
pipeline empowers businesses to automate their monitoring workfows and gain deep visibility into their
multi-cloud environments. Founded in 2017, Sensu offers a comprehensive monitoring solution for
enterprises, providing complete visibility across every system, every protocol, every time — from
Kubernetes to bare metal.
Get started now and feel the #monitoringlove: Learn Sensu Go.

Sensu Go is the latest version of Sensu, designed to be more portable, easier and faster to deploy,
and (even more) friendly to containerized and ephemeral environments.
Learn about support packages
and license-activated features designed for monitoring at scale.

Automate your monitoring workfows: Limitless pipelines let you validate and correlate events,
mutate data formats, send alerts, manage incidents, collect and store metrics, and more.

Reduce alert fatigue: Sensu gives you full control over your alerts with fexible flters, context-rich
notifcations, reporting, event handling, and auto-remediation.

Integrate anywhere: Sensu’s open architecture makes it easy to integrate monitoring with tools you
already use like Nagios plugins, Chef, Graphite, InfuxDB, and PagerDuty.

Listen to Sensu Inc. CEO Caleb Hailey explain the Sensu monitoring event pipeline.

https://sensu.io/support
https://www.youtube.com/watch?v=jUW4rAqazwA

Monitoring for Your Infrastructure

Monitoring is the action of observing and checking the behaviors and outputs of a system
and its components over time. - Greg Poirier, Monitorama 2016

Sensu is an agent-based monitoring tool that you install on your organization’s infrastructure.
The
Sensu agent gives you visibility into everything you care about; the Sensu server gives you fexible,
automated workfows to route metrics and alerts.

Monitor containers, instances, applications, and on-premises infrastructure

Sensu is designed to monitor everything from the server closet to the cloud.
Install the Sensu agent on
the hosts you want to monitor, integrate with the Sensu API, or take advantage of proxy entities to
monitor anything on your network.
Sensu agents automatically register and de-register themselves with
the Sensu server, so you can monitor ephemeral infrastructure without getting overloaded with alerts.

Better incident response with flterable, context-rich alerts

Get meaningful alerts when and where you need them.
Use event flters to reduce noise and check
hooks to add context and speed up incident response.
Sensu integrates with the tools and services your
organization already uses like PagerDuty, Slack, and more.
Check out Bonsai, the Sensu asset index,
or write your own Sensu Plugins in any language.

Collect and store metrics with built-in support for industry-standard tools

https://vimeo.com/173610062
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/
http://localhost:1313/plugins/latest/reference/

Know what’s going on everywhere in your system.
Sensu supports industry-standard metric formats like
Nagios Performance Data, Graphite Plaintext Protocol, InfuxDB Line Protocol, OpenTSDB Data
Specifcation, and StatsD metrics.
Use the Sensu agent to collect metrics alongside check results, then
use the event pipeline to route the data to a time series database like InfuxDB.

Intuitive API and dashboard interfaces

Sensu includes a dashboard to provide a unifed view of your entities, checks, and events, as well as a
user-friendly silencing tool.
The Sensu API and the sensuctl command-line tool allow you (and your
internal customers) to create checks, register entities, manage confguration, and more.

Open core software backed by Sensu Inc.

Sensu Go’s core is open source software, freely available under a
permissive MIT License and publicly
available on GitHub.
Learn about support packages and license-activated features designed for
monitoring at scale.

https://influxdata.com/
https://github.com/sensu/sensu-go/blob/master/LICENSE
https://github.com/sensu/sensu-go
https://sensu.io/support

Sensu Go release notes

Contents
5.8.0 release notes
5.7.0 release notes
5.6.0 release notes
5.5.1 release notes
5.5.0 release notes
5.4.0 release notes
5.3.0 release notes
5.2.1 release notes
5.2.0 release notes
5.1.1 release notes
5.1.0 release notes
5.0.1 release notes
5.0.0 release notes

Versioning

Sensu Go adheres to semantic versioning using MAJOR.MINOR.PATCH release numbers, starting at
5.0.0. MAJOR version changes indicate incompatible API changes; MINOR versions add backwards-
compatible functionality; PATCH versions include backwards-compatible bug fxes.

Upgrading

Read the upgrade guide for information on upgrading to the latest version of Sensu Go.

5.8.0 release notes

May 22, 2019 — The latest release of Sensu Go, version 5.8.0, is now available for download.
This is
mainly a stability release with bug fxes and performance improvements. Additionally, we have added
support for confgurable etcd cipher suites.
See the upgrade guide to upgrade Sensu to version 5.8.0.

https://semver.org/spec/v2.0.0.html
http://localhost:1313/sensu-go/latest/installation/upgrade

IMPORTANT:

To upgrade to Sensu Go 5.8.0, Sensu clusters with multiple backend nodes must be shut down during
the upgrade process. See the upgrade guide for more information.

IMPROVEMENTS:

The sensuctl command-line tool now supports the --chunk-size fag to help you handle large
datasets. See the sensuctl reference for more information.
Sensu backends now support the etcd-cipher-suites confguration option, letting you specify the
cipher suites that can be used with etcd TLS confguration. See the backend reference for more
information.
The Sensu API now includes the version API, returning version information for your Sensu instance.
See the API docs for more information.
Tessen now collects the numbers of events processed and resources created, giving us better insight
into how we can improve Sensu. As always, all Tessen transmissions are logged for complete
transparency. See the Tessen reference for more information.
Sensu licenses now include the entity limit attached to your Sensu licensing package. See the license
management docs to learn more about entity limits.
Sensu backends now perform better at scale using increased worker pool sizes for events and
keepalives.
The maximum size of the etcd database and etcd requests is now confgurable using the etcd-
quota-backend-bytes and etcd-max-request-bytes backend confguration options. These are
advanced confguration options requiring familiarly with etcd; use with caution. See the backend
reference for more information.
Most Sensu resources now use protobuf serialization in etcd.

FIXES:

Events produced by checks now execute the correct number of write operations to etcd.
API pagination tokens for the users and namespaces APIs now work as expected.
Keepalive events for deleted and deregistered entities are now cleaned up as expected.

KNOWN ISSUES:

Auth tokens may not be purged from etcd, resulting in a possible impact to performance.

5.7.0 release notes

May 9, 2019 — The latest release of Sensu Go, version 5.7.0, is now available for download. This is
mainly a stability release with bug fxes. Additionally, we have added support for Windows packages

and updated our usage policy.
See the upgrade guide to upgrade Sensu to version 5.7.0.

IMPROVEMENTS:

The Sensu agent for Windows is now available as an MSI package, making it easier to install and
operate. See the installation guide and the agent reference to get started.

FIXES:

Sensu now enforces resource separation between namespaces sharing a similar prefx.
The sensuctl cluster commands now output correctly in JSON and wrapped JSON formats.
The API now returns an error message if label and feld selectors are used without a license.

5.6.0 release notes

April 30, 2019 — The latest release of Sensu Go, version 5.6.0, is now available for download.
We
have added some exciting new features in this release including API fltering and the ability to create
and manage checks through the web UI with the presence of a valid license key.
See the upgrade guide
to upgrade Sensu to version 5.6.0.

NEW FEATURES:

(Licensed tier) Manage your Sensu checks from your browser: Sensu’s web user interface now
supports creating, editing, and deleting checks. See the docs to get started using the Sensu web UI.
(Licensed tier) The Sensu web UI now includes an option to delete entities.
(Licensed tier) Sensu now supports resource fltering in the Sensu API and sensuctl command line
tool. Filter events using custom labels and resource attributes, such as event status and check
subscriptions. See the API docs and sensuctl reference for usage examples.

IMPROVEMENTS:

(Licensed tier) Sensu’s LDAP and Active Directory integrations now support mutual authentication
using the trusted_ca_fle , client_cert_fle , and client_key_fle attributes. See the guide to
confguring an authentication provider for more information.
(Licensed tier) Sensu’s LDAP and Active Directory integrations now support connecting to an
authentication provider using anonymous binding. See the LDAP and AD binding confguration docs to
learn more.
The health API response now includes the cluster ID.
The sensuctl cluster health and sensuctl cluster member-list commands now include the
cluster ID in tabular format.

https://discourse.sensu.io/t/introducing-usage-limits-in-the-sensu-go-free-tier/1156
http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.7/installation/install-sensu#windows-agent
http://localhost:1313/sensu-go/5.7/reference/agent#operation
http://localhost:1313/sensu-go/5.7/api/overview#filtering
http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/dashboard/overview
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/api/overview#filtering
http://localhost:1313/sensu-go/5.6/sensuctl/reference#filtering
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/installation/auth/
http://localhost:1313/sensu-go/5.6/installation/auth/
http://localhost:1313/sensu-go/5.6/getting-started/enterprise
http://localhost:1313/sensu-go/5.6/installation/auth/#binding-attributes
http://localhost:1313/sensu-go/5.6/installation/auth/#active-directory-binding-attributes
http://localhost:1313/sensu-go/5.6/api/health

FIXES:

You can now confgure labels and annotations for Sensu agents using command line fags. For
example: sensu-agent start --label example_key="example value" . See the agent reference
for more examples.
The Sensu web UI now displays the correct checkbox state when no resources are present.

5.5.1 release notes

April 17, 2019 — The latest release of Sensu Go, version 5.5.1, is now available for download. This
release is a stability release with key bug fxes, including addressing an issue with backend CPU
utilization. Additionally, we have added support for honoring the source attribute for events received via
agent socket.
See the upgrade guide to upgrade Sensu to version 5.5.1.

IMPROVEMENTS:

Sensu agents now support annotations, non-identifying metadata that helps people or external tools
interacting with Sensu. See the agent reference to add annotations in the agent confguration fle.
The agent socket event format now supports the source attribute to create a proxy entity.
Sensu 5.5.1 is built with Go version 1.12.3.

FIXES:

Backends now reinstate etcd watchers in the event of a watcher failure, fxing an issue causing high
CPU usage in some components.

5.5.0 release notes

April 4, 2019 — The latest release of Sensu Go, version 5.5.0, is now available for download. This
release has some key bug fxes and additions including the introduction of Tessen into Sensu Go. For
more information, we encourage you to read Sean Porter’s blog post on Tessen.
See the upgrade guide
to upgrade Sensu to version 5.5.0.

NEW FEATURES:

Tessen, the Sensu call-home service, is now enabled by default in Sensu backends. See the Tessen
docs to learn about the data that Tessen collects.

IMPROVEMENTS:

http://localhost:1313/sensu-go/5.6/reference/agent#general-configuration-flags
http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.5/reference/agent#general-configuration-flags
http://localhost:1313/sensu-go/5.5/reference/agent#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets
https://blog.sensu.io/announcing-tessen-the-sensu-call-home-service
http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.5/reference/tessen
http://localhost:1313/sensu-go/5.5/reference/tessen

Sensu now includes more verbose check logging to indicate when a proxy request matches an entity
according to its entity attributes.

FIXES:

The Sensu web UI now displays silences created by LDAP users.
The web UI now uses a secondary text color for quick-navigation buttons.

5.4.0 release notes

March 27, 2019 — The latest release of Sensu Go, version 5.4.0, is now available for download. This
release has some very exciting feature additions including the introduction of our new homepage. 5.4.0
also includes support for API pagination to more effciently handle large data sets and agent buffering
for robustness in lower connectivity situations along with key bug fxes.
See the upgrade guide to
upgrade Sensu to version 5.4.0.

NEW FEATURES:

The Sensu dashboard now includes a homepage designed to highlight the most important monitoring
data, giving you instant insight into the state of your infrastructure. See the dashboard docs for a
preview.
The Sensu API now supports pagination using the limit and continue query parameters, letting
you limit your API responses to a maximum number of objects and making it easier to handle large
data sets. See the API overview for more information.
Sensu now surfaces internal metrics using the /metrics API. See the metrics API reference for more
information.

IMPROVEMENTS:

Sensu now lets you specify a separate TLS certifcate and key to secure the dashboard. See the
backend reference to confgure the dashboard-cert-fle and dashboard-key-fle fags, and
check out the guide to securing Sensu for the complete guide to making your Sensu instance
production-ready.
The Sensu agent events API now queues events before sending them to the backend, making the
agent events API more robust and preventing data loss in the event of a loss of connection with the
backend or agent shutdown. See the agent reference for more information.

FIXES:

The backend now processes events without persisting metrics to etcd.

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.4/dashboard/overview
http://localhost:1313/sensu-go/5.4/api/overview#pagination
http://localhost:1313/sensu-go/5.4/api/metrics
http://localhost:1313/sensu-go/5.4/reference/backend#dashboard-configuration-flags
http://localhost:1313/sensu-go/5.4/guides/securing-sensu
http://localhost:1313/sensu-go/5.4/reference/agent#events-post

The events API POST and PUT endpoints now add the current timestamp to new events by default.
The users API now returns a 404 response code in the event that a username cannot be found.
The sensuctl command line tool now correctly accepts global fags when passed after a sub-command
fag (for example: --format yaml --namespace development).
The sensuctl handler delete and sensuctl flter delete commands now correctly delete
resources from the currently confgured namespace.
The agent now terminates consistently on SIGTERM and SIGINT.
In the event of a loss of connection with the backend, the agent now attempts to reconnect to any
backends specifed in its confguration.
The dashboard now handles cases in which the creator of a silence is inaccessible.
The dashboard event details page now displays “-” in the command feld if no command is associated
with the event.

5.3.0 release notes

March 11, 2019 — The latest release of Sensu Go, version 5.3.0, is now available for download. This
release has some very exciting feature additions and key bug fxes. 5.3.0 enables Active Directory to
be confgured as an authentication provider with a valid license key. Additionally, round robin
scheduling has been fully re-implemented and is available for use.
See the upgrade guide to upgrade
Sensu to version 5.3.0.

NEW FEATURES:

Round-robin check scheduling lets you distribute check executions evenly over a group of Sensu
agents. To enable round-robin scheduling, set the round_robin check attribute to true . See the
check reference for more information.
Sensu now provides license-activated support for using Microsoft Active Directory as an external
authentication provider. Read the authentication guide to confgure Active Directory, and check out the
getting started guide for more information about licensing.
The dashboard now features offine state detection and displays an alert banner in the event that the
dashboard loses connection to the backend.

IMPROVEMENTS:

The agent socket event format now supports the handlers attribute, giving you the ability to send
socket events to a Sensu pipeline. See the agent reference to learn more about creating and handling
monitoring events using the agent socket.
Assets now feature improved download performance using buffered I/O.
The sensuctl CLI now uses a 15-second timeout period when connecting to the Sensu backend.
The dashboard now includes expandable confguration details sections on the check and entity pages.
You can now use the dashboard to review check details like command, subscriptions, and scheduling,

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.3/reference/checks#spec-attributes
http://localhost:1313/sensu-go/5.3/getting-started/enterprise
http://localhost:1313/sensu-go/5.3/installation/auth
http://localhost:1313/sensu-go/5.3/getting-started/enterprise
http://localhost:1313/sensu-go/5.3/reference/agent#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets

as well as entity details like platform, IP address, and hostname.

SECURITY:

Sensu Go 5.3.0 fxes all known TLS vulnerabilities affecting the backend, including increasing the
minimum supported TLS version to 1.2 and removing all ciphers except those with perfect forward
secrecy.
Sensu now enforces uniform TLS confguration for all three backend components: apid , agentd ,
dashboardd .

The backend no longer requires the trusted-ca-fle fag when using TLS.
The backend no longer loads server TLS confguration for the HTTP client.

FIXES:

Sensu can now download assets with download times over 30 seconds without timing out.
The agent now communicates entity subscriptions to the backend in the correct format.
Sensu no longer includes the edition confguration attribute or header.
DNS resolution in Alpine Linux containers now uses the built-in Go resolver instead of the glibc
resolver.
The sensuctl user list command can now output yaml and wrapped-json formats when used
with the --format fag.
The dashboard check details page now displays long commands correctly.
The dashboard check details page now displays the timeout attribute correctly.

5.2.1 release notes

February 11, 2019 — The latest release of Sensu Go, version 5.2.1, is now available for download.
This release is a stability release with a key bug fx for proxy check functionality.
See the upgrade guide
to upgrade Sensu to version 5.2.1.

FIXES:

Sensu agents now execute checks for proxy entities at the expected interval.

5.2.0 release notes

February 7, 2019 — The latest release of Sensu Go, version 5.2.0, is now available for download.
This release has a ton of exciting content, including the availability of our frst enterprise-only features.
For more details on these features, see our blog post. 5.2.0 also has some key improvements and

http://localhost:1313/sensu-go/latest/installation/upgrade
https://blog.sensu.io/enterprise-features-in-sensu-go

fxes; we added support for self-signed CA certifcates for sensuctl, check output truncation, and the
ability to manage silencing from the event details page on our web UI just to name a few.
See the
upgrade guide to upgrade Sensu to version 5.2.0.

IMPORTANT:

Due to changes in the release process, Sensu binary-only archives are now named following the
pattern sensu-enterprise-go_5.2.0_$OS_$ARCH.tar.gz , where $OS is the operating system name
and $ARCH is the CPU architecture. These archives include all fles in the top level directory. See the
installation guide for the latest download links.

NEW FEATURES:

Announcing our frst enterprise-only features for Sensu Go: LDAP authentication, the Sensu
ServiceNow handler, and the Sensu JIRA handler. See the getting started guide for more information.
Sensu now provides the option to limit check output size or to drop check outputs following metric
extraction. See the checks reference for more information.

IMPROVEMENTS:

Sensu now includes support for Debian 8 and 9. See the installation guide to install Sensu for Debian.
Sensu’s binary-only distribution for Linux is now available for arm64 , armv5 , armv6 , armv7 , and
386 in addition to amd64 . See the installation guide for download links.

The Sensu dashboard now provides the ability to silence and unsilence events from the events page.
The Sensu dashboard entity page now displays the platform version and deregistration confguration.
sensuctl now supports TLS confguration options, allowing you to use a self-signed certifcate without
adding it to the operating system’s CA store, either by explicitly trusting the signer or by disabling TLS
hostname verifcation. See the sensuctl reference for more information.
sensuctl now provides action-specifc confrmation messages, like Created , Deleted , and
Updated .

FIXES:

Check TTL failure events now persist through cluster member failures and cluster restarts.
The Sensu backend now correctly handles errors for missing keepalive events.
Token substituted values are now omitted from event data to protect sensitive information.
Sensu now correctly processes keepalive and check TTL states following entity deletion.
sensuctl can now run sensuctl version without being confgured.
When disabling users, sensuctl now provides the correct prompt for the action.

5.1.1 release notes

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.2/installation/install-sensu
http://localhost:1313/sensu-go/5.2/installation/auth
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler
http://localhost:1313/sensu-go/5.2/getting-started/enterprise
https://docs.sensu.io/sensu-go/5.2/reference/checks/#check-output-truncation-attributes
http://localhost:1313/sensu-go/5.2/installation/install-sensu
http://localhost:1313/sensu-go/5.2/installation/install-sensu
http://localhost:1313/sensu-go/5.2/sensuctl/reference/#global-flags

January 24, 2019 — The latest patch release of Sensu Go, version 5.1.1, is now available for
download. This release includes some key fxes and improvements, including refactored keepalive
functionality with increased reliability. Additionally, based on Community feedback, we have added
support for the Sensu agent and sensuctl for 32-bit Windows systems.
See the upgrade guide to
upgrade Sensu to version 5.1.1.

NEW FEATURES:

Sensu now includes a sensuctl command and API endpoint to test user credentials. See the access
control reference and API docs for more information.

IMPROVEMENTS:

The Sensu agent and sensuctl tool are now available for 32-bit Windows. See the installation guide for
instructions.
Keepalive events now include an output attribute specifying the entity name and time last sent.
The Sensu backend includes refactored authentication and licensing to support future enterprise
features.

SECURITY:

Sensu 5.1.1 is built with Go version 1.11.5. Go 1.11.5 addresses a security vulnerability impacting TLS
handshakes and JWT tokens. See the CVE for more information.

FIXES:

Keepalive events now continue to execute after a Sensu cluster restarts.
When requested, on-demand check executions now correctly retrieve asset dependencies.
Checks now maintain a consistent execution schedule following updates to the check defnition.
Proxy check request errors now include the check name and namespace.
When encountering an invalid line during metric extraction, Sensu now logs an error and continues
extraction.
sensuctl now returns an error when attempting to delete a non-existent entity.
sensuctl now removes the temporary fle it creates when executing the sensuctl edit command.
The Sensu dashboard now recovers from errors correctly when shutting down.
The Sensu dashboard includes better visibility for buttons and menus in the dark theme.

5.1.0 release notes

December 19, 2018 — The latest release of Sensu Go, version 5.1.0, is now available for download.

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.1/reference/rbac#managing-users
http://localhost:1313/sensu-go/5.1/reference/rbac#managing-users
http://localhost:1313/sensu-go/5.1/api/auth
http://localhost:1313/sensu-go/5.1/installation/install-sensu
https://nvd.nist.gov/vuln/detail/CVE-2019-6486

This release includes an important change to the Sensu backend state directory as well as support for
Ubuntu 14.04 and some key bug fxes.
See the upgrade guide to upgrade Sensu to version 5.1.0.

IMPORTANT:

NOTE: This applies only to Sensu backend binaries downloaded from s3-us-west-
2.amazonaws.com/sensu.io/sensu-go , not to Sensu RPM or DEB packages.
For Sensu backend
binaries, the default state-dir is now /var/lib/sensu/sensu-backend instead of
/var/lib/sensu . To upgrade your Sensu backend binary to 5.1.0, make sure your
/etc/sensu/backend.yml confguration fle specifes a state-dir . See the upgrade guide for more

information.

NEW FEATURES:

Sensu agents now include trusted-ca-fle and insecure-skip-tls-verify confguration fags,
giving you more fexibility with certifcates when connecting agents to the backend over TLS.

IMPROVEMENTS:

Sensu now includes support for Ubuntu 14.04.

FIXES:

The Sensu backend now successfully connects to an external etcd cluster.
SysVinit scripts for the Sensu agent and backend now include correct run and log paths.
Once created, keepalive alerts and check TTL failure events now continue to occur until a successful
event is observed.
When querying for an empty list of assets, sensuctl and the Sensu API now return an empty array
instead of null.
The sensuctl create command now successfully creates hooks when provided with the correct
defnition.
The Sensu dashboard now renders status icons correctly in Firefox.

5.0.1 release notes

December 12, 2018 — Sensu Go 5.0.1 includes our top bug fxes following last week’s general
availability release.
See the upgrade guide to upgrade Sensu to version 5.0.1.

FIXED:

The Sensu backend can now successfully connect to an external etcd cluster.

http://localhost:1313/sensu-go/latest/installation/upgrade
http://localhost:1313/sensu-go/5.1/installation/upgrade#upgrading-sensu-backend-binaries-to-5-1-0
http://localhost:1313/sensu-go/5.1/reference/agent
http://localhost:1313/sensu-go/latest/installation/upgrade

The Sensu dashboard now sorts silences in ascending order, correctly displays status values, and
reduces shuffing in the event list.
Sensu agents on Windows now execute command arguments correctly.
Sensu agents now correctly include environment variables when executing checks.
Command arguments are no longer escaped on Windows.
Sensu backend environments now include handler and mutator execution requests.

5.0.0 release notes

December 5, 2018 — We’re excited to announce the general availability release of Sensu Go!
Sensu
Go is the fexible monitoring event pipeline, written in Go and designed for container-based and hybrid-
cloud infrastructures.
Check out the Sensu blog for more information about Sensu Go and version 5.0.

For a complete list of changes from Beta 8-1, see the Sensu Go changelog.
Going forward, this page
will be the offcial home for the Sensu Go changelog and release notes.

To get started with Sensu Go:

Download the sandbox
Install Sensu Go
Get started monitoring server resources

https://blog.sensu.io/sensu-go-is-here
https://github.com/sensu/sensu-go/blob/master/CHANGELOG.md#500---2018-11-30
https://github.com/sensu/sandbox/tree/master/sensu-go/core
http://localhost:1313/sensu-go/5.0/installation/install-sensu
http://localhost:1313/sensu-go/5.0/guides/monitor-server-resources

Get started with Sensu

Contents

Learn Sensu in 15 minutes

Create your frst monitoring event pipeline using a local development environment pre-installed with
the essential Sensu stack.

Download the sandbox and learn Sensu Go
See more sandbox lessons
Join the community

Install Sensu Go (free tier)

Sensu Go is the fexible monitoring event pipeline, designed for container-based and multi-cloud
infrastructures.
Get started with the free tier by installing an offcial Sensu distribution.

Install Sensu Go
Discover Sensu assets
Learn about license-activated features

Monitor at scale (licensed tier)

Sensu Inc. offers support packages for Sensu Go as well as license-activated features designed for
monitoring at scale.

Learn about license-activated features
Contact the sales team for a free trial
Activate your Sensu license

Build from source (OSS tier)

Sensu Go’s core is open source software, freely available under an MIT license.

https://sensu.io/community
https://bonsai.sensu.io/
https://sensu.io/products
https://sensu.io/products
https://sensu.io/sales/

Visit Sensu Go on GitHub
Learn about OSS-tier features
Build from source

https://github.com/sensu/sensu-go
https://sensu.io/products
https://github.com/sensu/sensu-go/blob/master/CONTRIBUTING.md#building

Getting started with license-activated
features

Contents

Sensu Go offers license-activated features designed for monitoring at scale.
Contact the Sensu sales
team for a personalized demo and free trial.
License-activated features are available for all Sensu Go
packages and downloads.
See the products page for a complete feature comparison.

License-activated features in Sensu Go

Manage your monitoring checks from your browser: Create, edit, and delete checks using the
Sensu web UI.
Authentication providers: Scale Sensu role-based access control with LDAP and Active Directory
integrations.
Resource fltering in the Sensu API and sensuctl command-line tool: Designed for large
installations, label and feld selectors let you flter Sensu API and sensuctl responses using custom
labels and resource attributes such as event status and check subscriptions.
Enterprise-tier assets: Connect your monitoring event pipelines to industry-standard tools like
ServiceNow and Jira with enterprise-tier assets.
Enterprise-class support: Sensu support gives you the assurance that help is available if you need it.
Our expert in-house team offers best-in-class support to help get you up and running smoothly.

Contact us for a free trial

For a personalized demo and free trial of license-activated features in Sensu Go, contact the Sensu
sales team.
You can manage your Sensu account and contact support through account.sensu.io.

Contact the Sensu sales team
Log in to your Sensu account
Contact Sensu support

Get started with license-activated features in Sensu Go

https://sensu.io/sales/
https://sensu.io/sales/
https://sensu.io/products
https://bonsai.sensu.io/assets?tiers%5B%5D=4
https://sensu.io/support/
https://sensu.io/sales/
https://sensu.io/sales/
https://account.sensu.io/
https://sensu.io/sales/
https://account.sensu.io/
https://account.sensu.io/support

If you haven’t already, install the Sensu Go backend, agent, and sensuctl tool and confgure sensuctl.

Log in to your Sensu account at account.sensu.io
and download your license fle using the “Download
license” link.

Sensu account: Download Sensu license.

With the license fle downloaded, you can activate your license using sensuctl.

You can use sensuctl to view your license details at any time.

See these resources to get started using license-activated features in Sensu Go.

Set up authentication providers
Get started with assets

sensuctl create --fle sensu_license.json

sensuctl license info

https://account.sensu.io/

Manage your Sensu license
Log in to your Sensu account
Contact Sensu support

https://account.sensu.io/
https://account.sensu.io/support

Sensu live demo

Contents

See a live demo of the Sensu dashboard (log in with username guest and password i<3sensu).

Explore the entities page to see what Sensu is monitoring, the events page to see the latest monitoring
events, and the checks page to see active service and metric checks.

You can also use the demo to try out sensuctl, the Sensu command line tool.
First, install sensuctl on
your workstation, then confgure sensuctl to connect to the demo.

You should now be able to see the latest monitoring events.

See the sensuctl quickstart to get started using sensuctl.

About the demo

The Caviar project shown in the demo monitors the Sensu docs site using a licensed Sensu cluster of
three backends.

sensuctl confgure

? Sensu Backend URL: https://caviar.tf.sensu.io:8080

? Username: guest

? Password: i<3sensu

? Namespace: default

? Preferred output format: tabular

sensuctl event list

https://caviar.tf.sensu.io:3000/
https://caviar.tf.sensu.io:3000/default/entities
https://caviar.tf.sensu.io:3000/default/events
https://caviar.tf.sensu.io:3000/default/checks

Sensu sandbox

Contents

Welcome to the Sensu sandbox! The sandbox is the best place to get started with Sensu and try out
new features.

Learn Sensu

Start here: Building your frst monitoring workfow

Container monitoring

Container and application monitoring with Sensu: Monitoring a sample app on Kubernetes

Metrics

Sensu + Prometheus: Collecting Prometheus metrics with Sensu

Upgrading from Sensu 1.x to Sensu Go

Sensu translator: Translating check confguration

https://github.com/sensu/sandbox/tree/master/sensu-go/lesson_plans/check-upgrade

Glossary of Terms

Contents

Agent

A lightweight client that runs on the infrastructure components you want to monitor.
Agents self-register
with the backend, send keepalive messages, and execute monitoring checks.
Each agent belongs to
one or more subscriptions that determine which checks the agent runs.
An agent can run checks on the
entity it’s installed on or by connecting to a remote proxy entity.
Read more.

Asset

An asset is an executable that a check, handler, or mutator can specify as a dependency.
Assets must
be a tar archive (optionally gzipped) with scripts or executables within a bin folder.
At runtime, the
backend or agent installs required assets using the specifed URL.
Assets let you manage runtime
dependencies without using confguration management tools.
Read more.

Backend

A fexible, scalable monitoring event pipeline.
The backend processes event data using flters, mutators,
and handlers.
It maintains confguration fles, stores recent event data, and schedules monitoring
checks.
You can interact with the backend using the API, command line, and dashboard interfaces.
Read more.

Check

A recurring check run by the agent to determine the state of a system component or collect metrics.
The
backend is responsible for storing check defnitions, scheduling checks, and processing event data.
Check defnitions specify the command to be executed, an interval for execution, one or more
subscriptions, and one or more handlers to process the resulting event data.
Read more.

Check hook

A command executed by the agent in response to a check result, before creating a monitoring event.
Hooks create context-rich events by gathering related information based on the check status.
Read
more.

Check token

A placeholder used in a check defnition that the agent replaces with local information before executing
the check.
Tokens let you fne-tune check attributes (like thresholds) on a per-entity level while re-using
the check defnition.
Read more.

Entity

Infrastructure components that you want to monitor.
Each entity runs an agent that executes checks and
creates events.
Events can be tied to the entity where the agent runs or a proxy entity that the agent
checks remotely.
Read more.

Event

A representation of the state of an infrastructure component at a point in time, used by the backend to
power the monitoring event pipeline.
Event data includes the result of the check or metric (or both), the
executing agent, and a timestamp.
Read more.

Filter

Logical expressions that handlers evaluate before processing monitoring events.
Filters can instruct
handlers to allow or deny matching events based on day, time, namespace, or any attribute in the
event data.
Read more.

Handler

A component of the monitoring event pipeline that acts on events.
Handlers can send monitoring event
data to an executable (or handler plugin), a TCP socket, or a UDP socket.
Read more.

Mutator

An executable run by the backend prior to the handler to transform event data.
Read more.

Plugin

Sensu Plugins are executables designed to work with Sensu event data, either as a check plugin,
mutator plugin, or handler plugin.
You can write your own check executables in Go, Ruby, Python, and
more, or use one of over 200 plugins shared by the Sensu Community.
Read more.

Proxy Entity

Components of your infrastructure that can’t run the agent locally (like a network switch or a website)
but still need to be monitored.
Agents create events with information about the proxy entity in place of
the local entity when running checks with a specifed proxy entity id.
Read more.

RBAC

Role-based access control (RBAC) is Sensu’s local user management system.
RBAC lets you manage
users and permissions with namespaces, users, roles, and role bindings.
Read more.

Resources

Objects within Sensu that can be used to specify access permissions in Sensu roles and cluster roles.
Resources can be specifc to a namespace (like checks and handlers) or cluster-wide (like users and
cluster roles).
Read more.

Sensuctl

Command line tool that lets you interact with the backend.
You can use sensuctl to create checks, view
events, create users, manage cluster, and more.
Read more.

Silencing

Silences allow you to suppress execution of event handlers on an ad-hoc basis.
You can use silencing
to schedule maintenances without being overloaded with alerts.
Read more.

Sensu frequently asked questions

Contents

Thank you for visiting the Sensu FAQ!
For a list of Sensu terms and defnitions, see the glossary.

What platforms does Sensu support?
Is Sensu available as a hosted solution?
What are the hardware requirements for running a Sensu backend?
Is there an enterprise version of Sensu Go?
What’s the difference between the OSS tier, free tier, and licensed tier?
How can I contact the Sensu sales team?
What can I monitor with Sensu?
Does Sensu include a time series database for long-term storage?
Can I connect Sensu Go to clients and servers from earlier versions of Sensu Core and Sensu
Enterprise?
Can I upgrade my Sensu version 1.x deployment to Sensu Go?
Which ports does Sensu use?
Can one Sensu backend monitor multiple sites?
Is it possible to use Uchiwa with Sensu Go?

What platforms does Sensu support?

Sensu Go is available for Linux, Windows (agent and CLI only), macOS (CLI only), and Docker.
See the
list of supported platforms and the installation guide for more information.

Is Sensu available as a hosted solution?

No, Sensu is installed on your organization’s infrastructure alongside other applications and services.
See the list of supported platforms and the installation guide for more information.

What are the hardware requirements for running a Sensu

backend?

See the hardware requirements guide for minimum and recommended hardware to run a Sensu
backend.

Is there an enterprise version of Sensu Go?

Yes! Sensu Inc. offers support packages for Sensu Go as well as license-activated features designed
for monitoring at scale.
Contact the Sensu sales team for a personalized demo, and see the getting
started guide for more information.

What’s the difference between the OSS tier, free tier, and
licensed tier?

See the Enterprise page for a complete comparison.

How can I contact the Sensu sales team?

We’d love to chat about solving your organization’s monitoring challenges with Sensu.
Get in touch with
us using this form.

What can I monitor with Sensu?

Sensu supports a wide range of plugins for monitoring everything from the server closet to the cloud.
Install the Sensu agent on the hosts you want to monitor, integrate with the Sensu API, or take
advantage of proxy entities to monitor anything on your network.

Sensuctl integrates with Bonsai, the Sensu asset index, where you’ll fnd plugins, libraries, and
runtimes you need to automate your monitoring workfows. If you want to add your own asset to the
index, read the guide for sharing an asset on Bonsai.

You can also check out the 200+ plugins shared in the Sensu plugins community–including monitoring
checks for AWS, Jenkins, Puppet, InfuxDB, and SNMP–or write your own Sensu Plugins in any
language using the Sensu Plugins spec.

https://blog.sensu.io/enterprise-features-in-sensu-go
https://sensu.io/sales/
https://sensu.io/enterprise
https://sensu.io/sales/
https://bonsai.sensu.io/
https://github.com/sensu-plugins
https://github.com/sensu-plugins/sensu-plugins-aws
https://github.com/sensu-plugins/sensu-plugins-jenkins
https://github.com/sensu-plugins/sensu-plugins-puppet
https://github.com/sensu-plugins/sensu-plugins-influxdb
https://github.com/sensu-plugins/sensu-plugins-snmp
https://docs.sensu.io/plugins/1.0/reference/#the-sensu-plugin-specification

Does Sensu include a time series database for long-term
storage?

No, Sensu does not store event data.
We recommend integrating Sensu with a time series database,
like InfuxDB, to store event data.
See the guide to storing metrics with InfuxDB to get started.

Can I connect Sensu Go to clients and servers from earlier
versions of Sensu Core and Sensu Enterprise?

No, Sensu Go agents and backends are not compatible with Sensu Core or Sensu Enterprise services.

Can I upgrade my Sensu version 1.x deployment to Sensu
Go?

Sensu Go is a complete redesign of the original Sensu; it uses separate packages, dependencies, and
data models to bring you powerful new features.
See the Sensu Go release announcement for more
information.
Due to these changes, some features of Sensu 1.x are no longer supported in Sensu Go,
such as standalone checks.
To upgrade your Sensu 1.x deployment to Sensu Go, you’ll need to
translate your Sensu 1.x confguration to the format expected by Sensu Go and install the new Sensu
Go services on your infrastructure.
The Sensu Go upgrade guide includes a detailed feature comparison
between Sensu Go and Sensu 1.x as well as tools to help you get started.

Which ports does Sensu use?

The Sensu backend uses:

2379 (HTTP/HTTPS) Sensu storage client: Required for Sensu backends using an external etcd
instance
2380 (HTTP/HTTPS) Sensu storage peer: Required for other Sensu backends in a cluster
3000 (HTTP/HTTPS) Sensu dashboard: Required for all Sensu backends using a Sensu dashboard
8080 (HTTP/HTTPS) Sensu API: Required for all users accessing the Sensu API
8081 (WS/WSS) Agent API: Required for all Sensu agents connecting to a Sensu backend

The Sensu agent uses:

https://www.influxdata.com/
https://blog.sensu.io/sensu-go-is-here

3030 (TCP/UDP) Sensu agent socket: Required for Sensu agents using the agent socket
3031 (HTTP) Sensu agent API: Required for all users accessing the agent API
8125 (UDP, TCP on Windows) StatsD listener: Required for all Sensu agents using the StatsD listener

The agent TCP and UDP sockets are deprecated in favor of the agent API.

For more information, see the guide to securing Sensu.

Can one Sensu backend monitor multiple sites?

Yes, as long as the port requirements described above are met, a single Sensu backend can monitor
Sensu agents at multiple sites.

Is it possible to use Uchiwa with Sensu Go?

Due to Sensu Go’s implementation, it is not possible to use Uchiwa with Sensu Go. Sensu Go does
have a built-in dashboard that you can use to visually interact with your Sensu Go deployment.

Sensu Go media

Contents

Talks

Greg Poirier - Sensu Go Deep Dive at Sensu Summit 2017
Greg Poirier - Sensu Go Assets
Sean Porter, Infux Days - Data Collection & Prometheus Scraping with Sensu 5.0

Blog posts

Simon Plourde: Understanding RBAC in Sensu Go
Sean Porter: Self-service monitoring checks in Sensu Go
Christian Michel - How to monitor 1,000 network devices using Sensu Go and Ansible
Eric Chlebek - Filters: valves for the Sensu monitoring event pipeline
Greg Schofeld - Sensu Habitat Core Plans are Here
Nikki Attea - Check output metric extraction with InfuxDB & Grafana
Jef Spaleta - Migrating to 5.0
Anna Plotkin - Sensu Go is here!

Tutorials

Sensu sandbox tutorials

Podcasts

Sensu Community Chat November 2018

NOTE: Prior to October 2018, Sensu Go was known as Sensu 2.0.

https://www.youtube.com/watch?v=mfOk0mOfkvA
https://www.youtube.com/watch?v=JNHs4VD_-1M&t=1s
https://www.youtube.com/watch?v=vn32Gx8rL4o
https://blog.sensu.io/understanding-rbac-in-sensu-go
https://blog.sensu.io/self-service-monitoring-checks-in-sensu-go
https://blog.sensu.io/network-monitoring-tools-sensu-ansible
https://blog.sensu.io/filters-valves-for-the-sensu-monitoring-event-pipeline
https://blog.chef.io/2018/08/22/guest-post-sensu-habitat-core-plans-are-here/
http://blog.sensu.io/check-output-metric-extraction-with-influxdb-grafana
https://blog.sensu.io/migrating-to-2.0-the-good-the-bad-the-ugly
https://blog.sensu.io/sensu-go-is-here
https://www.youtube.com/watch?v=5tIPv-rJMZU

Installing Sensu

Contents

Select a platform from the dropdown above.
Sensu Go is available for Linux, Windows (agent and CLI
only), macOS (CLI only), and Docker.
See the list of supported platforms for more information.
Sensu
downloads are provided under the Sensu License.

Install the Sensu backend

The Sensu backend is available for Ubuntu/Debian, RHEL/CentOS, and Docker.
In addition to
packages, binary-only distributions for Linux are available for amd64 , arm64 , armv5 , armv6 ,
armv7 , and 386 architectures.

1. Install the package

Ubuntu/Debian

Add the Sensu repository.

Install the sensu-go-backend package.

RHEL/CentOS

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

sudo apt-get install sensu-go-backend

https://sensu.io/sensu-license

Add the Sensu repository.

Install the sensu-go-backend package.

2. Create the confguration fle

Copy the example backend confg fle to the default confg path.

NOTE: The Sensu backend can be confgured using a /etc/sensu/backend.yml confguration fle or
using sensu-backend start confguration fags. For more information, see the backend reference.

3. Start the service

Start the backend using a service manager.

Verify that the backend is running.

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

sudo yum install sensu-go-backend

sudo cp /usr/share/doc/sensu-go-backend-5.8.0/backend.yml.example

/etc/sensu/backend.yml

sudo service sensu-backend start

service sensu-backend status

Next steps

Now that you’ve installed the Sensu backend:

Install the Sensu agent
Install sensuctl
Sign in to the dashboard

Install the Sensu agent

The Sensu agent is available for Ubuntu/Debian, RHEL/CentOS, Windows, and Docker.
In addition to
packages, binary-only distributions for Linux are available for amd64 , arm64 , armv5 , armv6 ,
armv7 , and 386 architectures and for Windows amd64 and 386 architectures.

1. Install the package

Ubuntu/Debian

Add the Sensu repository.

Install the sensu-go-agent package.

RHEL/CentOS

Add the Sensu repository.

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

sudo apt-get install sensu-go-agent

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

Install the sensu-go-agent package.

Windows

Download the Sensu agent for Windows amd64 or 386 architectures.

Start the installation wizard.

NOTE: To make this an unattended install, you can use /qn as part of the install command.

2. Create the confguration fle

Linux

Copy the example agent confg fle to the default confg path.

NOTE: The Sensu agent can be confgured using a /etc/sensu/agent.yml confguration fle or
using sensu-agent start confguration fags. For more information, see the agent reference.

sudo yum install sensu-go-agent

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

go-agent_5.8.0.2735_en-US.x64.msi -OutFile "$env:userprofle\sensu-go-

agent_5.8.0.2735_en-US.x64.msi"

msiexec.exe /i $env:userprofle\sensu-go-agent_5.8.0.2735_en-US.x64.msi

sudo cp /usr/share/doc/sensu-go-agent-5.8.0/agent.yml.example /etc/sensu/agent.yml

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-go-agent_5.8.0.2735_en-US.x64.msi
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-go-agent_5.8.0_2380_en-US.x86.msi

Windows

Copy the example agent confg fle from %ALLUSERSPROFILE%\sensu\confg\agent.yml.example
(default: C:\ProgramData\sensu\confg\agent.yml.example) to
C:\ProgramData\sensu\confg\agent.yml .

3. Start the service

Linux

Start the agent using a service manager.

Verify that the agent is running.

Windows

Change to the sensu\sensu-agent\bin directory where you’ve installed Sensu.

Run the sensu-agent executable.

cp C:\ProgramData\sensu\confg\agent.yml.example C:\ProgramData\sensu\confg\agent.yml

sudo service sensu-agent start

service sensu-agent status

cd 'C:\Program Files\sensu\sensu-agent\bin'

./sensu-agent.exe

Run the following command to install and start the agent.

Verify that the agent is running.

Next steps

Now that you’ve installed the Sensu agent:

Install sensuctl
Create a monitoring event

Install sensuctl

Sensu Go can be confgured and used with the sensuctl command line utility.
Sensuctl is available for
Ubuntu/Debian, RHEL/CentOS, Windows, and macOS.

1. Install the package

Ubuntu/Debian

Add the Sensu repository.

Install the sensu-go-cli package.

./sensu-agent service install

sc.exe query SensuAgent

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

RHEL/CentOS

Add the Sensu repository.

Install the sensu-go-cli package.

Windows

Download sensuctl for Windows amd64 .

Or download sensuctl for Windows 386 .

See the verifying Sensu guide to verify your download using checksums.

macOS

sudo apt-get install sensu-go-cli

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

sudo yum install sensu-go-cli

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go_5.8.0_windows_amd64.tar.gz -OutFile C:\Users\Administrator\sensu-

enterprise-go_5.8.0_windows_amd64.tar.gz

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go_5.8.0_windows_386.tar.gz -OutFile C:\Users\Administrator\sensu-

enterprise-go_5.8.0_windows_386.tar.gz

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_386.tar.gz

Download the latest release. See the verifying Sensu guide to verify your download using checksums.

Extract the archive.

Copy the executable into your PATH.

2. Confgure sensuctl

You must confgure sensuctl before it can connect to Sensu Go.
Run sensuctl confgure to get
started.

By default, your Sensu installation comes with a user named admin with password P@ssw0rd! .
We
strongly recommended that you change the password immediately.
Once authenticated, you can
change the password using the change-password command.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go_5.8.0_darwin_amd64.tar.gz

tar -xvf sensu-enterprise-go_5.8.0_darwin_amd64.tar.gz

sudo cp sensuctl /usr/local/bin/

$ sensuctl confgure

? Sensu Backend URL: http://127.0.0.1:8080

? Username: admin

? Password: *********

? Namespace: default

? Preferred output format: tabular

$ sensuctl user change-password --interactive

? Current Password: *********

? Password: *********

? Confrm: *********

You can change individual values of your sensuctl confguration with the confg subcommand.

See the sensuctl reference for more information about using sensuctl.

3. Activate licensed-tier features

Sensu Inc. offers support packages for Sensu Go as well as license-activated features designed for
monitoring at scale.
To learn more about license-activated features in Sensu Go, contact the Sensu
sales team.

If you already have a Sensu license, log in to your Sensu account and download your license fle, then
activate your license using sensuctl.

You can use sensuctl to view your license details at any time.

For more information about license-activated features in Sensu Go, see the getting started guide.

Next steps

Now that you’ve installed sensuctl:

See the sensuctl quick reference
Create a monitoring event pipeline

sensuctl confg set-namespace default

sensuctl create --fle sensu_license.json

sensuctl license info

https://sensu.io/sales
https://sensu.io/sales
https://account.sensu.io/

Deploy Sensu with Docker

Sensu Go can be run via Docker or rkt using the sensu/sensu image. When running Sensu from
Docker there are a couple of things to take into consideration.

The backend requires four exposed ports and persistent storage. This example uses a shared
flesystem. Sensu Go is backed by a distributed database, and its storage should be provisioned
accordingly. We recommend local storage or something like Throughput Optimized or Provisioned
IOPS EBS if local storage is unavailable. The exposed ports are:

2380: Sensu storage peer listener (only other Sensu backends need access to this port)
3000: Sensu dashboard
8080: Sensu API (all users need access to this port)
8081: Agent API (all agents need access to this port)

We suggest, but do not require, persistent storage for Sensu backends and Sensu agents. The Sensu
agent will cache runtime assets locally for each check, and the Sensu backend will cache runtime
assets locally for each handler and mutator. This storage should be unique per sensu-backend/sensu-
agent process.

Start a Sensu backend

Start a Sensu agent

In this case, we’re starting an agent with the webserver and system subscriptions as an example.
This
assumes that the Sensu backend is running on another host named sensu.yourdomain.com.
If you are
running these locally on the same system, add --link sensu-backend to your Docker arguments
and change the backend URL to --backend-url ws://sensu-backend:8081 .

NOTE: You can confgure the backend and agent log levels by using the --log-level fag on either

docker run -v /var/lib/sensu:/var/lib/sensu -d --name sensu-backend -p 2380:2380 -p

3000:3000 -p 8080:8080 -p 8081:8081 sensu/sensu:latest sensu-backend start

docker run -v /var/lib/sensu:/var/lib/sensu -d --name sensu-agent sensu/sensu:latest

sensu-agent start --backend-url ws://sensu.yourdomain.com:8081 --subscriptions

webserver,system --cache-dir /var/lib/sensu

https://www.docker.com/
https://coreos.com/rkt
https://hub.docker.com/r/sensu/sensu/

process. Log levels include panic , fatal , error , warn , info , and debug , defaulting to
warn .

sensuctl and Docker

It’s best to install and run sensuctl locally and point it at the exposed API port for your the Sensu
backend.
The sensuctl utility stores confguration locally, and you’ll likely want to persist it across uses.
While it can be run from the docker container, doing so may be problematic.

Installing Sensu Plugins

Contents

Sensu’s functionality can be extended through the use of plugins.
Plugins can provide executables for
performing status or metric checks, mutators for changing data to a desired format, or handlers for
performing an action on a Sensu event.

Installing plugins using assets

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins. To get started
using and deploying assets, we recommend starting with this guide on installing assets. It has
everything you need to familiarize yourself with workfows involving assets.

Using the Bonsai Asset Index

Sensu’s Bonsai Asset Index provides a centralized place for downloading and sharing plugin assets. If
you ever need to fnd an asset, this is the frst to stop. There, you’ll fnd plugins, libraries and runtimes
you need to automate your monitoring workfows. If you’d like to share your asset on Bonsai, we
recommend reading this guide on sharing your asset.

Installing plugins using the sensu-install tool

If you’ve used previous versions of Sensu, you’ll be familiar with the Sensu Plugins organization on
GitHub. While some of these plugins are Sensu Go-enabled, not all of them contain the components
necessary to work with Sensu Go. See individual plugin instructions for information about compatibility
with Sensu Go.

NOTE: Plugins found in the Sensu Plugins GitHub organization are community-maintained, meaning
that anyone can improve on a plugin found there. If you have a question about how you can get
involved in adding to, or providing a plugin, head to the Sensu Community Slack channel. Maintainers
are always happy to help answer questions and point you in the right direction.

http://localhost:1313/plugins/latest/reference
https://bonsai.sensu.io/
https://github.com/sensu-plugins
https://slack.sensu.io/

To use community plugins that are not yet Sensu Go-enabled, you’ll need to use the sensu-install

tool. This tool comes with an embedded version of Ruby, so there’s no need for Ruby to be installed on
your system.

To install a Sensu Community Plugin with Sensu Go:

1. Install the sensu-plugins-ruby package from packagecloud.

2. Use the sensu-install command to install any plugins in the Sensu Plugins organization on
GitHub by repository name. Plugins are installed into /opt/sensu-plugins-
ruby/embedded/bin .

For example, to install the Sensu InfuxDB Plugin:

To install a specifc version of the Sensu InfuxDB Plugin with sensu-install , run:

sensu-install --help

Usage: sensu-install [options]

 -h, --help Display this message

 -v, --verbose Enable verbose logging

 -p, --plugin PLUGIN Install a Sensu PLUGIN

 -P, --plugins PLUGIN[,PLUGIN] PLUGIN or comma-delimited list of Sensu plugins

to install

 -e, --extension EXTENSION Install a Sensu EXTENSION

 -E, --extensions EXTENSION[,EXT] EXTENSION or comma-delimited list of Sensu

extensions to install

 -s, --source SOURCE Install Sensu plugins and extensions from a

custom SOURCE

 -c, --clean Clean up (remove) other installed versions of

the plugin(s) and/or extension(s)

 -x, --proxy PROXY Install Sensu plugins and extensions via a

PROXY URL

sudo sensu-install -p infuxdb

sudo sensu-install -p 'sensu-plugins-infuxdb:2.0.0'

https://github.com/sensu-plugins
https://packagecloud.io/sensu/community
https://github.com/sensu-plugins
https://github.com/sensu-plugins
https://github.com/sensu-plugins/sensu-plugins-influxdb

We strongly recommend using a confguration management tool or using Sensu assets to pin the
versions of any plugins installed in production.

NOTE: If a plugin is not Sensu Go-enabled and there is not analog on Bonsai, it is possible to add the
necessary functionality. This guide on [discourse.sensu.io] will walk you through that process.

Troubleshooting the sensu-install tool

Some plugins, such as the Sensu Disk Checks Plugin, require additional tools to install successfully.
Depending on the plugin, you may need to install developer tool packages.

Ubuntu/Debian:

RHEL/CentOS:

sudo apt-get update

sudo apt-get install build-essential

sudo yum update

sudo yum groupinstall "Development Tools"

https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165
https://github.com/sensu-plugins/sensu-plugins-disk-checks

Upgrading Sensu

Contents
Upgrading from 5.0.0 or later
Upgrading Sensu clusters from 5.7.0 or earlier to 5.8.0 or later
Upgrading Sensu backend binaries to 5.1.0
Upgrading from 1.x or later

Upgrading to the latest version of Sensu Go from 5.0.0 or
later

To upgrade to the latest version of Sensu Go from version 5.0.0 or later, frst install the latest
packages.

Then restart the services.

NOTE: For systems using systemd , run sudo systemctl daemon-reload before restarting the
services.

You can use the version command to determine the installed version using the sensu-agent ,
sensu-backend , and sensuctl tools. For example: sensu-backend version .

Upgrading Sensu clusters from 5.7.0 or earlier to 5.8.0 or
later

Restart the Sensu agent

sudo service sensu-agent restart

Restart the Sensu backend

sudo service sensu-backend restart

NOTE: This applies only to Sensu clusters with multiple backend nodes.

Due to updates to etcd serialization, Sensu clusters with multiple backend nodes must be shut down
while upgrading from Sensu Go 5.7.0 or earlier to 5.8.0 or later.
See the backend reference for more
information about stopping and starting backends.

Upgrading Sensu backend binaries to 5.1.0

NOTE: This applies only to Sensu backend binaries downloaded from s3-us-west-
2.amazonaws.com/sensu.io/sensu-go , not to Sensu RPM or DEB packages.

For Sensu backend binaries, the default state-dir in 5.1.0 is now /var/lib/sensu/sensu-
backend instead of /var/lib/sensu .
To upgrade your Sensu backend binary to 5.1.0, frst download
the latest version, then make sure the /etc/sensu/backend.yml confguration fle specifes a
state-dir .
To continue using /var/lib/sensu as the state-dir , add the following confguration

to /etc/sensu/backend.yml .

Then restart the backend.

Migrating to Sensu Go from Sensu Core 1.x

This guide provides general information for migrating your Sensu instance from Sensu Core 1.x to
Sensu Go 5.0.
For instructions and tools to help you translate your Sensu confguration from Sensu
Core 1.x to Sensu Go, see the following resources.

Sensu translator project
Jef Spaleta - Check confguration upgrades with the Sensu Go sandbox

Sensu Go includes important changes to all parts of Sensu: architecture, installation, resource
defnitions, event data model, check dependencies, flter evaluation, and more.
Sensu Go also includes
a lot of powerful features to make monitoring easier to build, scale, and offer as a self-service tool to
your internal customers.

Packaging

/etc/sensu/backend.yml confguration to store backend data at /var/lib/sensu

state-dir: "/var/lib/sensu"

http://localhost:1313/sensu-core/1.6/
https://github.com/sensu/sensu-translator
https://blog.sensu.io/check-configuration-upgrades-with-the-sensu-go-sandbox

Architecture
Entities
Checks
Events
Handlers
Filters
Assets
Role-based access control
Silencing
Token substitution
Aggregates
API
Custom attributes

Packaging

Sensu is now provided as three packages: sensu-go-backend, sensu-go-agent, and sensu-go-cli
(sensuctl).
This results in a fundamental change in Sensu terminology from Sensu Core 1.x: the server
is now the backend; the client is now the agent.
To learn more about new terminology in Sensu Go, see
the glossary.

Architecture

The external RabbitMQ transport and Redis datastore in Sensu Core 1.x have been replaced with an
embedded transport and etcd datastore in Sensu Go.
The Sensu backend and agent are confgured
using YAML fles or using the sensu-backend or sensu-agent command-line tools, instead of using
JSON fles.
Sensu checks and pipeline elements are now confgured via the API or sensuctl tool instead
of JSON fles.
See the backend, agent, and sensuctl reference docs for more information.

Entities

“Clients” are now represented within Sensu Go as abstract “entities” that can describe a wider range of
system components (network gear, web server, cloud resource, etc.)
Entities include “agent entities”
(entities running a Sensu agent) and familiar “proxy entities”.
See the entity reference and the guide to
monitoring external resources for more information.

Checks

Standalone checks are no longer supported in Sensu Go, although similar functionality can be

https://github.com/etcd-io/etcd/tree/master/Documentation
https://blog.sensu.io/self-service-monitoring-checks-in-sensu-go

achieved using role-based access control, assets, and entity subscriptions.
There are also a few
changes to check defnitions to be aware of. The stdin check attribute is no longer supported in
Sensu Go, and Sensu Go no longer tries to run a “default” handler when executing a check without a
specifed handler. Additionally, check subdues are not yet available in Sensu Go.

Check hooks are now a resource type in Sensu Go, meaning that hooks can be created, managed,
and reused independently of check defnitions.
You can also execute multiple hooks for any given
response code.

Events

All check results are now considered events and are processed by event handlers.
You can use the
built-in incidents flter to recreate the Sensu Core 1.x behavior in which only check results with a non-
zero status are considered events.

Handlers

Transport handlers are no longer supported by Sensu Go, but you can create similar functionality using
a pipe handler that connects to a message bus and injects event data into a queue.

Filters

Ruby eval logic has been replaced with JavaScript expressions in Sensu Go, opening up powerful
possibilities to flter events based on occurrences and other event attributes.
As a result, the built-in
occurrences flter in Sensu Core 1.x is not provided in Sensu Go, but you can replicate its functionality
using this flter defnition.
Sensu Go includes three new built-in flters: only-incidents, only-metrics, and
allow-silencing.
Sensu Go does not yet include a built-in check dependencies flter or a flter-when
feature.

Assets

The sensu-install tool has been replaced in Sensu Go by assets, shareable, reusable packages that
make it easy to deploy Sensu plugins.
Sensu Plugins in Ruby can still be installed via sensu-install by
installing sensu-plugins-ruby; see the installing plugins guide for more information.

Role-based access control

Role-based access control (RBAC) is a built-in feature of the open-source version of Sensu Go.
RBAC

https://blog.sensu.io/self-service-monitoring-checks-in-sensu-go
https://github.com/sensu-plugins
https://packagecloud.io/sensu/community

allows management and access of users and resources based on namespaces, groups, roles, and
bindings.
To learn more about setting up RBAC in Sensu Go, see the RBAC reference and the guide to
creating a read-only user.

Silencing

Silencing is now disabled by default in Sensu Go and must be enabled explicitly using the built-in
not_silenced flter.

Token substitution

The syntax for using token substitution has changed from using triple colons to using double curly
braces.

Aggregates

Check aggregates are supported through the license-activated Sensu Go Aggregate Check Plugin.

API

In addition to the changes to resource defnitions, Sensu Go includes a new, versioned API. See the
API overview for more information.

Custom attributes

Custom check attributes are no longer supported in Sensu Go.
Instead, Sensu Go provides the ability to
add custom labels and annotations to entities, checks, assets, hooks, flters, mutators, handlers, and
silences.
See the metadata attributes section in the reference documentation for more information about
using labels and annotations (for example: metadata attributes for entities).

https://bonsai.sensu.io/assets/sensu/sensu-aggregate-check

Authentication

Contents
Managing authentication providers
Confguring authentication providers
LDAP authentication
Examples
Specifcation
Troubleshooting
Active Directory authentication
Examples
Specifcation
Troubleshooting

Sensu requires username and password authentication to access the Sensu dashboard, API, and
command line tool (sensuctl).
For Sensu’s default user credentials and more information about
confguring Sensu role based access control, see the RBAC reference and guide to creating users.

In addition to built-in RBAC, Sensu includes license-activated support for authentication using external
authentication providers.
Sensu currently supports Microsoft Active Directory and standards-compliant
Lightweight Directory Access Protocol tools like OpenLDAP.

LICENSED TIER: Unlock authentication providers in Sensu Go with a Sensu license. To activate your
license, see the getting started guide.

Managing authentication providers

You can view and delete authentication providers using sensuctl and the authentication providers API.
To set up an authentication provider for Sensu, see the section on confguring authentication providers.

To view active authentication providers:

sensuctl auth list

To view confguration details for an authentication provider named openldap :

To delete an authentication provider named openldap :

Confguring authentication providers

1. Write an authentication provider confguration defnition

Write an authentication provider confguration defnition.

For standards-compliant Lightweight Directory Access Protocol tools like OpenLDAP, see the LDAP
confguration examples and specifcation.
For Microsoft Active Directory, see the AD confguration
examples and specifcation.

2. Apply the confguration using sensuctl

Log in to sensuctl as the default admin user and apply the confguration to Sensu.

You can verify that your provider confguration has been applied successfully using sensuctl.

3. Integrate with Sensu RBAC

sensuctl auth info openldap

sensuctl auth delete openldap

sensuctl create --fle flename.json

sensuctl auth list

 Type Name
────── ──────────

 ldap openldap

Now that you’ve confgured an authentication provider, you’ll need to confgure Sensu RBAC to give
those users permissions within Sensu.
Sensu RBAC allows management and access of users and
resources based on namespaces, groups, roles, and bindings.
See the RBAC reference for more
information about confguring permissions in Sensu and implementation examples.

Namespaces partition resources within Sensu. Sensu entities, checks, handlers, and other
namespaced resources belong to a single namespace.
Roles create sets of permissions (get, delete, etc.) tied to resource types. Cluster roles apply
permissions across namespaces and include access to cluster-wide resources like users and
namespaces.
Role bindings assign a role to a set of users and groups within a namespace; cluster role bindings
assign a cluster role to a set of users and groups cluster-wide.

To enable permissions for external users and groups within Sensu, create a set of roles, cluster roles,
role bindings, and cluster role bindings that map to the usernames and group names found in your
authentication providers.
Make sure to include the group prefx and username prefx when creating
Sensu role bindings and cluster role bindings.
Without an assigned role or cluster role, users can sign in
to the Sensu dashboard but can’t access any Sensu resources.

4. Log in to Sensu

Once you’ve confgured the correct roles and bindings, log in to sensuctl and the Sensu dashboard
using your single-sign-on username and password (no prefx required).

LDAP authentication

Sensu offers license-activated support for using a standards-compliant Lightweight Directory Access
Protocol tool for authentication to the Sensu dashboard, API, and sensuctl.
The Sensu LDAP
authentication provider is tested with OpenLDAP.
Active Directory users should head over to the Active
Directory section.

LDAP confguration examples

Example LDAP confguration: Minimum required attributes

type: ldap

api_version: authentication/v2

YML

https://www.openldap.org/

Example LDAP confguration: All attributes

metadata:

 name: openldap

spec:

 servers:

 - group_search:

 base_dn: dc=acme,dc=org

 host: 127.0.0.1

 user_search:

 base_dn: dc=acme,dc=org

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

}

JSON

type: ldap

api_version: authentication/v2

metadata:

YML

 name: openldap

spec:

 groups_prefx: ldap

 servers:

 - binding:

 password: P@ssw0rd!

 user_dn: cn=binder,dc=acme,dc=org

 client_cert_fle: /path/to/ssl/cert.pem

 client_key_fle: /path/to/ssl/key.pem

 group_search:

 attribute: member

 base_dn: dc=acme,dc=org

 name_attribute: cn

 object_class: groupOfNames

 host: 127.0.0.1

 insecure: false

 port: 636

 security: tls

 trusted_ca_fle: /path/to/trusted-certifcate-authorities.pem

 user_search:

 attribute: uid

 base_dn: dc=acme,dc=org

 name_attribute: cn

 object_class: person

 username_prefx: ldap

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

JSON

LDAP specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
LDAP defnitions should always be of type ldap .

required true

type String

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "P@ssw0rd!"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "groups_prefx": "ldap",

 "username_prefx": "ldap"

 },

 "metadata": {

 "name": "openldap"

 }

}

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
LDAP defnitions, this attribute should always be authentication/v2 .

required true

type String

example

metadata

description Top-level map containing the LDAP defnition name . See the metadata
attributes reference for details.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes the LDAP spec attributes.

required true

type Map of key-value pairs

"type": "ldap"

"api_version": "authentication/v2"

"metadata": {

 "name": "openldap"

}

example

Spec attributes

servers

"spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "P@ssw0rd!"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "groups_prefx": "ldap",

 "username_prefx": "ldap"

}

description An array of LDAP servers for your directory. During the authentication
process, Sensu attempts to authenticate using each LDAP server in
sequence.

required true

type Array

example

groups_prefx

"servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "P@ssw0rd!"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

]

description The prefx added to all LDAP groups. Sensu prepends prefxes with a
colon. For example, for the groups prefx ldap and the group dev , the
resulting group name in Sensu is ldap:dev . Use this prefx when
integrating LDAP groups with Sensu RBAC role bindings and cluster role
bindings.

required false

type String

example

username_prefx

description The prefx added to all LDAP usernames. Sensu prepends prefxes with
a colon. For example, for the username prefx ldap and the user
alice , the resulting username in Sensu is ldap:alice . Use this

prefx when integrating LDAP users with Sensu RBAC role bindings and
cluster role bindings. Users do not need to provide this prefx when
logging in to Sensu.

required false

type String

example

Server attributes

host

description LDAP server IP address or FQDN

required true

type String

"groups_prefx": "ldap"

"username_prefx": "ldap"

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

example

port

description LDAP server port

required true

type Integer

default 389 for insecure connections, 636 for TLS connections

example

insecure

description Skips SSL certifcate verifcation when set to true . WARNING: Do not
use an insecure connection in production environments.

required false

type Boolean

default false

example

security

description Determines the encryption type to be used for the connection to the
LDAP server: insecure (unencrypted connection, not recommended
for production), tls (secure encrypted connection), or starttls
(unencrypted connection upgrades to a secure connection).

"host": "127.0.0.1"

"port": 636

"insecure": false

type String

default "tls"

example

trusted_ca_fle

description Path to an alternative CA bundle fle in PEM format to be used instead of
the system’s default bundle. This CA bundle is used to verify the server’s
certifcate.

required false

type String

example

client_cert_fle

description Path to the certifcate that should be sent to the server if it requests it

required false

type String

example

client_key_fle

description Path to the key fle associated with the client_cert_fle

"security": "tls"

"trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem"

"client_cert_fle": "/path/to/ssl/cert.pem"

required false

type String

example

binding

description The LDAP account that performs user and group lookups. If your sever
supports anonymous binding, you can omit the user_dn or password
attributes to query the directory without credentials.

required false

type Map

example

group_search

description Search confguration for groups. See the group search attributes for
more information.

required true

type Map

example

"client_key_fle": "/path/to/ssl/key.pem"

"binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "P@ssw0rd!"

}

"group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

user_search

description Search confguration for users. See the user search attributes for more
information.

required true

type Map

example

Binding attributes

user_dn

description The LDAP account that performs user and group lookups. We
recommend using a read-only account. Use the distinguished name (DN)
format, such as cn=binder,cn=users,dc=domain,dc=tld . If your sever
supports anonymous binding, you can omit this attribute to query the
directory without credentials.

required false

type String

example

}

"user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

}

"user_dn": "cn=binder,dc=acme,dc=org"

password

description Password for the user_dn account. If your sever supports anonymous
binding, you can omit this attribute to query the directory without
credentials.

required false

type String

example

Group search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

example

attribute

description Used for comparing result entries. This is combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default "member"

"password": "P@ssw0rd!"

"base_dn": "dc=acme,dc=org"

example

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default "cn"

example

object_class

description Identifes the class of objects returned in the search result. This is
combined with other flters as "(objectClass=<ObjectClass>)" .

required false

type String

default "groupOfNames"

example

User search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,

"attribute": "member"

"name_attribute": "cn"

"object_class": "groupOfNames"

dc=acme,dc=org searches within the acme.org directory.

required true

type String

example

attribute

description Used for comparing result entries. This is combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default "uid"

example

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default "cn"

example

"base_dn": "dc=acme,dc=org"

"attribute": "uid"

"name_attribute": "cn"

object_class

description Identifes the class of objects returned in the search result. This is
combined with other flters as "(objectClass=<ObjectClass>)" .

required false

type String

default "person"

example

Metadata attributes

name

description A unique string used to identify the LDAP confguration. Names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z).

required true

type String

example

LDAP troubleshooting

In order to troubleshoot any issue with LDAP authentication, the frst step
should always be to increase
log verbosity of sensu-backend to the debug
log level. Most authentication and authorization errors are
only displayed on
the debug log level, in order to avoid fooding the log fles.

NOTE: If you can’t locate any log entries referencing LDAP authentication, make
sure the LDAP

"object_class": "person"

"name": "openldap"

https://regex101.com/r/zo9mQU/2

provider was successfully installed using sensuctl

Authentication errors

Here are some common error messages and possible solutions:

Error message: failed to connect: LDAP Result Code 200 "Network Error"

The LDAP provider couldn’t establish a TCP connection to the LDAP server. Verify
the host & port
attributes. If you are not using LDAP over TLS/SSL , make
sure to set the value of the security

attribute to "insecure" for plaintext
communication.

Error message: certifcate signed by unknown authority

If you are using a self-signed certifcate, make sure to set the insecure
attribute to true . This will
bypass verifcation of the certifcate’s signing
authority.

Error message: failed to bind: ...

The frst step for authenticating a user with the LDAP provider is to bind to
the LDAP server using the
service account specifed in the binding
object . Make sure the user_dn specifes a valid DN,
and its
password is the right one.

Error message: user <username> was not found

The user search failed, no user account could be found with the given username.
Go look at the
user_search object and make sure that:

The specifed base_dn contains the requested user entry DN
The specifed attribute contains the username as its value in the user entry
The object_class attribute corresponds to the user entry object class

Error message: ldap search for user <username> returned x results, expected only 1

The user search returned more than one user entry, therefore the provider could
not determine which of
these entries should be used. The user_search
object needs to be tweaked so the provided
username can be used to
uniquely identify a user entry. Here’s few possible way of doing it:

Adjust the attribute so its value (which corresponds to the username) is
unique amongst the user
entries
Adjust the base_dn so it only includes one of the user entries

Error message: ldap entry <DN> missing required attribute <name_attribute>

The user entry returned (identifed by <DN>) doesn’t include the attribute
specifed by
name_attribute object. Therefore the LDAP provider could
not determine which attribute to use as

the username in the user entry. The
name_attribute should be adjusted so it specifes a human
friendly name for
the user.

Error message: ldap group entry <DN> missing <name_attribute> and cn attributes

The group search returned a group entry (identifed by <DN>) that doesn’t have
the name_attribute

attribute nor a cn attribute. Therefore the LDAP
provider could not determine which attribute to use as
the group name in the
group entry. The name_attribute should be adjusted so it specifes a human
friendly name for the group.

Authorization issues

Once authenticated, a user needs to be granted permissions via either a
ClusterRoleBinding or a
RoleBinding .

The way in which LDAP users and LDAP groups can be referred as subjects of a
cluster role or role
binding depends on the groups_prefx and
username_prefx confguration attributes values of the
LDAP provider.
For example, for the groups prefx ldap and the group dev , the resulting
group name
in Sensu is ldap:dev .

Issue: Permissions are not granted via the LDAP group(s)

During authentication, the LDAP provider will print in the logs all groups found
in LDAP, e.g. found 1

group(s): [dev] . Keep in mind that this group name does
not contain the groups_prefx at this
point.

The Sensu backend logs each attempt made to authorize an RBAC request. This is
useful for
determining why a specifc binding didn’t grant the request. For
example:

[...] the user is not a subject of the ClusterRoleBinding cluster-admin [...]

[...] could not authorize the request with the ClusterRoleBinding system:user [...]

[...] could not authorize the request with any ClusterRoleBindings [...]

Active Directory authentication

Sensu offers license-activated support for using Microsoft Active Directory (AD) for authentication to
the Sensu dashboard, API, and sensuctl. The AD authentication provider is based on the LDAP
authentication provider.

Active Directory confguration examples

Example AD confguration: Minimum required attributes

type: ad

api_version: authentication/v2

metadata:

 name: activedirectory

spec:

 servers:

 - group_search:

 base_dn: dc=acme,dc=org

 host: 127.0.0.1

 user_search:

 base_dn: dc=acme,dc=org

YML

{

 "type": "ad",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

JSON

Example AD confguration: All attributes

]

 },

 "metadata": {

 "name": "activedirectory"

 }

}

type: ad

api_version: authentication/v2

metadata:

 name: activedirectory

spec:

 groups_prefx: ad

 servers:

 - binding:

 password: P@ssw0rd!

 user_dn: cn=binder,cn=users,dc=acme,dc=org

 client_cert_fle: /path/to/ssl/cert.pem

 client_key_fle: /path/to/ssl/key.pem

 group_search:

 attribute: member

 base_dn: dc=acme,dc=org

 name_attribute: cn

 object_class: group

 host: 127.0.0.1

 insecure: false

 port: 636

 security: tls

 trusted_ca_fle: /path/to/trusted-certifcate-authorities.pem

 user_search:

 attribute: sAMAccountName

 base_dn: dc=acme,dc=org

 name_attribute: displayName

 object_class: person

 username_prefx: ad

YML

{

 "type": "ad",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "P@ssw0rd!"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

 }

 }

],

 "groups_prefx": "ad",

 "username_prefx": "ad"

 },

 "metadata": {

 "name": "activedirectory"

 }

}

JSON

Active Directory specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type. AD
defnitions should always be of type ad .

required true

type String

example

api_version

description Top-level attribute specifying the Sensu API group and version. For AD
defnitions, this attribute should always be authentication/v2 .

required true

type String

example

metadata

description Top-level map containing the AD defnition name . See the metadata
attributes reference for details.

required true

type Map of key-value pairs

"type": "ad"

"api_version": "authentication/v2"

example

spec

description Top-level map that includes the AD spec attributes.

required true

type Map of key-value pairs

example

"metadata": {

 "name": "activedirectory"

}

"spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "P@ssw0rd!"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

Active Directory spec attributes

servers

description An array of AD servers for your directory. During the authentication
process, Sensu attempts to authenticate using each AD server in
sequence.

required true

type Array

example

 "object_class": "person"

 }

 }

],

 "groups_prefx": "ad",

 "username_prefx": "ad"

}

"servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "P@ssw0rd!"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

groups_prefx

description The prefx added to all AD groups. Sensu prepends prefxes with a colon.
For example, for the groups prefx ad and the group dev , the resulting
group name in Sensu is ad:dev . Use this prefx when integrating AD
groups with Sensu RBAC role bindings and cluster role bindings.

required false

type String

example

username_prefx

description The prefx added to all AD usernames. Sensu prepends prefxes with a
colon. For example, for the username prefx ad and the user alice ,
the resulting username in Sensu is ad:alice . Use this prefx when
integrating AD users with Sensu RBAC role bindings and cluster role
bindings. Users do not need to provide this prefx when logging in to
Sensu.

required false

type String

example

 "object_class": "group"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

 }

 }

]

"groups_prefx": "ad"

Active Directory server attributes

host

description AD server IP address or FQDN

required true

type String

example

port

description AD server port

required true

type Integer

default 389 for insecure connections, 636 for TLS connections

example

insecure

description Skips SSL certifcate verifcation when set to true . WARNING: Do not
use an insecure connection in production environments.

required false

"username_prefx": "ad"

"host": "127.0.0.1"

"port": 636

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

type Boolean

default false

example

security

description Determines the encryption type to be used for the connection to the AD
server: insecure (unencrypted connection, not recommended for
production), tls (secure encrypted connection), or starttls
(unencrypted connection upgrades to a secure connection).

type String

default "tls"

example

trusted_ca_fle

description Path to an alternative CA bundle fle in PEM format to be used instead of
the system’s default bundle. This CA bundle is used to verify the server’s
certifcate.

required false

type String

example

client_cert_fle

"insecure": false

"security": "tls"

"trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem"

description Path to the certifcate that should be sent to the server if it requests it

required false

type String

example

client_key_fle

description Path to the key fle associated with the client_cert_fle

required false

type String

example

binding

description The AD account that performs user and group lookups. If your sever
supports anonymous binding, you can omit the user_dn or password
attributes to query the directory without credentials. To use anonymous
binding with AD, the ANONYMOUS LOGON object requires read
permissions for users and groups.

required false

type Map

example

"client_cert_fle": "/path/to/ssl/cert.pem"

"client_key_fle": "/path/to/ssl/key.pem"

"binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "P@ssw0rd!"

}

group_search

description Search confguration for groups. See the group search attributes for
more information.

required true

type Map

example

user_search

description Search confguration for users. See the user search attributes for more
information.

required true

type Map

example

Active Directory binding attributes

"group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

}

"user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

}

user_dn

description The AD account that performs user and group lookups. We recommend
using a read-only account. Use the distinguished name (DN) format,
such as cn=binder,cn=users,dc=domain,dc=tld . If your sever
supports anonymous binding, you can omit this attribute to query the
directory without credentials.

required false

type String

example

password

description Password for the user_dn account. If your sever supports anonymous
binding, you can omit this attribute to query the directory without
credentials.

required false

type String

example

Active Directory group search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

"user_dn": "cn=binder,cn=users,dc=acme,dc=org"

"password": "P@ssw0rd!"

example

attribute

description Used for comparing result entries. This is combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default "member"

example

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default "cn"

example

object_class

description Identifes the class of objects returned in the search result. This is
combined with other flters as "(objectClass=<ObjectClass>)" .

required false

"base_dn": "dc=acme,dc=org"

"attribute": "member"

"name_attribute": "cn"

type String

default "group"

example

Active Directory user search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

example

attribute

description Used for comparing result entries. This is combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default "sAMAccountName"

example

"object_class": "group"

"base_dn": "dc=acme,dc=org"

"attribute": "sAMAccountName"

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default "displayName"

example

object_class

description Identifes the class of objects returned in the search result. This is
combined with other flters as "(objectClass=<ObjectClass>)" .

required false

type String

default "person"

example

Active Directory metadata attributes

name

description A unique string used to identify the AD confguration. Names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z).

required true

"name_attribute": "displayName"

"object_class": "person"

https://regex101.com/r/zo9mQU/2

type String

example

Active Directory troubleshooting

See the LDAP troubleshooting section.

"name": "activedirectory"

Hardware requirements

Contents
Sensu backend requirements
Sensu agent requirements
Networking recommendations
Cloud recommendations

Sensu backend

Backend minimum requirements

The following confguration is the minimum required to run the Sensu backend, however it is
insuffcient for production use.
See the recommended confguration for production recommendations.

64-bit Intel or AMD CPU
4 GB RAM
4 GB free disk space
10 mbps network link

Backend recommended confguration

The following confguration is recommended as a baseline for production use to ensure a good user
and operator
experience. Using additional
resources (even over-provisioning) further improves stability
and
scalability.

64 bit 4-core Intel or AMD CPU
8 GB RAM
SSD (NVMe or SATA3)
Gigabit ethernet

The Sensu backend is typically CPU and storage intensive. In general, its use of
these resources scales
linearly with the total number of
checks executed by all Sensu agents connecting to the backend.

The Sensu backend is a massively parallel application that can scale to
any number of CPU cores.
Provision roughly 1 CPU core for every 50
checks per second (including agent keepalives).
Most
installations are fne with 4 CPU cores, but larger installations
may fnd that additional CPU cores (8+)
are necessary.

Every executed Sensu check results in storage writes. When
provisioning storage, a good guideline is to
have twice as many
sustained disk IOPS as you expect to have events per second. Don’t
forget to
include agent keepalives in this calculation; each agent
publishes a keepalive every 20 seconds. For
example, in a cluster of 100 agents,
you can expect those agents to consume 10 write IOPS for
keepalives.

The Sensu backend uses a relatively modest amount of RAM under most
circumstances. Larger
production deployments use a larger amount
of RAM (8+ GB).

Sensu agent

Agent minimum requirements

The following confguration is the minimum required to run the Sensu agent, however it is insuffcient
for production use.
See the recommended confguration for production recommendations.

386, amd64, or ARM CPU (armv5 minimum)
128 MB RAM
10 mbps network link

Agent recommended confguration

The following confguration is recommended as a baseline for production use to ensure a good user
and operator experience.

64 bit 4-core Intel or AMD CPU
512 MB RAM
Gigabit ethernet

The Sensu agent itself is quite lightweight, and should be able to run
on all but the most modest
hardware. However, since the agent is
responsible for executing checks, factor the agent’s
responsibilities
into your hardware provisioning.

Networking recommendations

Agent connections

Sensu uses WebSockets for communication between the agent and backend.
All communication occurs
over a single TCP socket.

It’s recommended that users connect backends and agents via gigabit
ethernet, but any somewhat-
reliable network link should work (e.g.
WiFi and 4G). If you see WebSocket timeouts in the backend
logs, you
may need to use a better network link between the backend and agents.

Cloud recommendations

AWS

The recommended EC2 instance type and size for Sensu backends running
embedded etcd is
M5d.xlarge. The
M5d instance provides
4 vCPU, 16 GB of RAM, up to 10 Gbps network connectivity,
and a 150
NVMe SSD directly attached to the instance host (optimal for sustained
disk IOPS).

https://aws.amazon.com/ec2/instance-types/m5/

Binary-only distributions

Contents

In addition to packages, Sensu binary-only distributions are available for Linux, Windows (agent and
CLI only), and macOS (CLI only).

Linux

Download Sensu for Linux amd64 , arm64 , armv5 , armv6 , armv7 , or 386 architectures.

Generate a SHA-512 checksum for the downloaded artifact.

The result should match the checksum for your platform.

Windows

Download the Sensu agent for Windows amd64 or 386 architectures.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go_5.8.0_linux_amd64.tar.gz

sha512sum sensu-enterprise-go_5.8.0_linux_amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go_5.8.0_checksums.txt && cat sensu-enterprise-go_5.8.0_checksums.txt

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go_5.8.0_windows_amd64.tar.gz -OutFile "$env:userprofle\sensu-

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_arm64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_armv5.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_armv6.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_armv7.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_linux_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-enterprise-go_5.8.0_windows_386.tar.gz

Generate a SHA-256 checksum for the downloaded artifact.

The result should match (with the exception of capitalization) the checksum for your platform.

macOS

Download Sensu for macOS.

Generate a SHA-512 checksum for the downloaded artifact.

The result should match the checksum for your platform.

enterprise-go_5.8.0_windows_amd64.tar.gz"

Get-FileHash "$env:userprofle\sensu-enterprise-go_5.8.0_windows_amd64.tar.gz" -

Algorithm SHA256 | Format-List

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go_5.8.0_checksums.txt -OutFile "$env:userprofle\sensu-enterprise-

go_5.8.0_checksums.txt"

Get-Content "$env:userprofle\sensu-enterprise-go_5.8.0_checksums.txt" | Select-

String -Pattern windows_amd64

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go_5.8.0_darwin_amd64.tar.gz

shasum -a 512 sensu-go-5.8.0-darwin-amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.8.0/sensu-

enterprise-go_5.8.0_checksums.txt && cat sensu-enterprise-go_5.8.0_checksums.txt

Extract the archive.

Copy the executable into your PATH.

Next steps

Now that you’ve installed Sensu:

Starting the Sensu backend
Starting the Sensu agent
sensuctl frst-time setup
Monitoring server resources

tar -xvf sensu-enterprise-go_5.8.0_darwin_amd64.tar.gz

sudo cp sensuctl /usr/local/bin/

Confguration Management

Contents

We highly recommend using confguration management tools to deploy Sensu in production and at
scale.

Pin versions of Sensu-related software to ensure repeatable Sensu deployments.
Ensure consistent confguration between Sensu backends.

The following confguration management tools have well-defned Sensu modules to help you get
started.

Puppet

The Puppet Sensu module can be found on the GitHub.
Sensu has partnered with Tailored Automation
to enhance the Puppet module with new features and bug fxes.

Chef

The Chef cookbook for Sensu can be found on the GitHub. Interested in more information on Sensu +
Chef? Get some helpful resources here.

Ansible

The Ansible role to deploy and manage Sensu Go can be found on GitHub.

https://puppet.com/
https://github.com/sensu/sensu-puppet
https://tailoredautomation.io/
https://www.chef.io/
https://github.com/sensu/sensu-go-chef
http://monitoringlove.sensu.io/chef
https://www.ansible.com/
https://github.com/jaredledvina/sensu-go-ansible

Supported platforms

Contents

Sensu backend

The Sensu backend is available for 64-bit Linux.
See the backend installation guide for more
information.

Platform & Version amd64

CentOS/RHEL 6

CentOS/RHEL 7

Ubuntu 14.04

Ubuntu 16.04

Ubuntu 18.04

Ubuntu 18.10

Debian 8

Debian 9

Sensu agent

The Sensu agent is available for Linux and Windows.
See the agent installation guide for more
information.

Platform & Version amd64 386

CentOS/RHEL 6

CentOS/RHEL 7

Ubuntu 14.04

Ubuntu 16.04

Ubuntu 18.04

Ubuntu 18.10

Debian 8

Debian 9

Windows Server
2008 R2 and later

Windows 7 and later

Sensuctl command-line tool

Sensuctl is available for Linux, Windows, and macOS.
See the sensuctl installation guide for more
information.

Platform & Version amd64 386

CentOS/RHEL 6

CentOS/RHEL 7

Ubuntu 14.04

Ubuntu 16.04

Ubuntu 18.04

Ubuntu 18.10

Debian 8

Debian 9

Windows 7 and later

Windows Server
2008 R2 and later

macOS 10.10 and
later

How to monitor server resources with
checks

Contents

What are Sensu checks?

Sensu checks are commands (or scripts), executed by the Sensu agent, that
output data and produce
an exit code to indicate a state. Sensu checks use the
same specifcation as Nagios, therefore, Nagios
check plugins may be
used with Sensu.

Why use a check?

You can use checks to monitor server resources, services, and application
health (for example: is Nginx
running?) as well as collect and analyze metrics (for example: how much disk space do I have left?).

Using checks to monitor a service

The purpose of this guide is to help you monitor server resources, more
specifcally the CPU usage, by
confguring a check named check-cpu with a
subscription named system , in order to target all
entities subscribed
to the system subscription.
This guide requires a Sensu backend and at least one
Sensu agent running on Linux.

Registering assets

To power the check, we’ll use the Sensu CPU checks asset and the Sensu Ruby runtime asset.

Use the following sensuctl example to register the sensu-plugins-cpu-checks asset for CentOS, or
download the asset defnition for Debian or Alpine from Bonsai and register the asset using sensuctl
create --fle flename.yml .

https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-cpu-checks
https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime
https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-cpu-checks

Then use the following sensuctl example to register the sensu-ruby-runtime asset for CentOS, or
download the asset defnition for Debian or Alpine from Bonsai and register the asset using sensuctl
create --fle flename.yml .

You can use sensuctl to confrm that both the sensu-plugins-cpu-checks and sensu-ruby-
runtime assets are ready to use.

Creating the check

Now that the assets are registered, we’ll create a check named
check-cpu , which runs the command
check-cpu.rb -w 75 -c 90 using the sensu-plugins-cpu-checks and sensu-ruby-runtime

assets, at an
interval of 60 seconds, for all entities subscribed to the system
subscription.
This checks
generates a warning event (-w) when CPU usage reaches 75% and a critical alert (-c) at 90%.

sensuctl asset create sensu-plugins-cpu-checks --url

"https://assets.bonsai.sensu.io/68546e739d96fd695655b77b35b5aabfbabeb056/sensu-

plugins-cpu-checks_4.0.0_centos_linux_amd64.tar.gz" --sha512

"518e7c17cf670393045bff4af318e1d35955bfde166e9ceec2b469109252f79043ed133241c4dc96501

b6636a1ec5e008ea9ce055d1609865635d4f004d7187b"

sensuctl asset create sensu-ruby-runtime --url

"https://assets.bonsai.sensu.io/03d08cdfc649500b7e8cd1708bb9bb93d91fea9e/sensu-ruby-

runtime_0.0.8_ruby-2.4.4_centos_linux_amd64.tar.gz" --sha512

"7b254d305af512cc524a20a117c601bcfae0d51d6221bbfc60d8ade180cc1908081258a6eecfc9b196b

932e774083537efe748c1534c83d294873dd3511e97a3"

sensuctl asset list

 Name URL Hash
──────────────────────────
───
─────────

 sensu-plugins-cpu-checks //assets.bonsai.sensu.io/.../sensu-plugins-cpu-checks_4.0.0_centos_linux_amd64.tar.gz

518e7c1

 sensu-ruby-runtime //assets.bonsai.sensu.io/.../sensu-ruby-runtime_0.0.10_ruby-2.4.4_centos_linux_amd64.tar.gz

338b88b

https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

Confguring the subscription

To run the check, we’ll need a Sensu agent with the subscription system .
After installing an agent,
open /etc/sensu/agent.yml
and add the system subscription so the subscription confguration
looks like:

Then restart the agent.

Validating the check

We can use sensuctl to see that Sensu is monitoring CPU usage using the check-cpu , returning an
OK status (0).
It might take a few moments, once the check is created,
for the check to be scheduled
on the entity and the event returned to Sensu backend.

sensuctl check create check-cpu \

--command 'check-cpu.rb -w 75 -c 90' \

--interval 60 \

--subscriptions system \

--runtime-assets sensu-plugins-cpu-checks,sensu-ruby-runtime

subscriptions:

 - system

sudo service sensu-agent restart

sensuctl event list

 Entity Check Output Status

Silenced Timestamp
────────────── ───────────
──

─── ──────── ──────────
───────────────────────────────

 sensu-centos check-cpu CheckCPU TOTAL OK: total=0.2 user=0.0 nice=0.0 system=0.2 idle=99.8 iowait=0.0 irq=0.0

Next steps

You now know how to run a simple check to monitor CPU usage. From this point,
here are some
recommended resources:

Read the checks reference for in-depth documentation on checks.
Read our guide on providing runtime dependencies to checks with assets.
Read our guide on monitoring external resources with proxy checks and entities.
Read our guide on sending alerts to Slack with handlers.

softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0 0 false 2019-04-23 16:42:28 +0000 UTC

How to monitor external resources with
proxy requests and entities

Contents
Using a proxy entity to monitor a website
Using proxy requests to monitor a group of websites

Proxy entities allow Sensu to monitor external resources
on systems or devices where a Sensu agent
cannot be installed, like a
network switch or a website.
You can create proxy entities using sensuctl, the
Sensu API, or the proxy_entity_name check attribute. When executing checks that include a
proxy_entity_name or proxy_requests attributes, Sensu agents report the resulting event under

the proxy entity instead of the agent entity.

This guide requires a running Sensu backend, a running Sensu agent, and a sensuctl instance
confgured to connect to the backend as a user with get, list, and create permissions for entities,
checks, and events.

Using a proxy entity to monitor a website

In this section, we’ll monitor the status of sensu.io by confguring a check with a proxy entity name so
that Sensu creates an entity representing the site and reports the status of the site under this entity.

Registering assets

To power the check, we’ll use the Sensu plugins HTTP asset and the Sensu Ruby runtime asset.

Use the following sensuctl example to register the sensu-plugins-http asset for CentOS, or
download the asset defnition for Debian or Alpine from Bonsai and register the asset using sensuctl
create --fle flename.yml .

sensuctl asset create sensu-plugins-http --url

"https://assets.bonsai.sensu.io/30d8361243af8c7806e2d6db4a6dc576dab02966/sensu-

plugins-http_5.1.1_centos_linux_amd64.tar.gz" --sha512

https://sensu.io/
https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-http
https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime
https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-http

Then use the following sensuctl example to register the sensu-ruby-runtime asset for CentOS, or
download the asset defnition for Debian or Alpine from Bonsai and register the asset using sensuctl
create --fle flename.yml .

You can use sensuctl to confrm that both the sensu-plugins-http and sensu-ruby-runtime
assets are ready to use.

Creating the check

Now that the assets are registered, we’ll create a check named
check-sensu-site , which runs the
command check-http.rb -u https://sensu.io using the sensu-plugins-http and sensu-
ruby-runtime assets, at an
interval of 60 seconds, for all agents subscribed to the proxy

subscription, using the sensu-site proxy entity name.
To avoid duplicate events, we’ll add the
round_robin attribute to distribute the check execution across all agents subscribed to the proxy

subscription.

Create a fle called check.json and add the following check defnition.

"31023af6e0073729eecb0f5ab834ddc467eeaa1d9b998cbf528f3302104814ec717fc746af470556c49

6806fa8db66e6ded75aef97d73abdfa29615a81270ee6"

sensuctl asset create sensu-ruby-runtime --url

"https://assets.bonsai.sensu.io/03d08cdfc649500b7e8cd1708bb9bb93d91fea9e/sensu-ruby-

runtime_0.0.8_ruby-2.4.4_centos_linux_amd64.tar.gz" --sha512

"7b254d305af512cc524a20a117c601bcfae0d51d6221bbfc60d8ade180cc1908081258a6eecfc9b196b

932e774083537efe748c1534c83d294873dd3511e97a3"

sensuctl asset list

 Name URL Hash
──────────────────────────
───
─────────

 sensu-plugins-http //assets.bonsai.sensu.io/.../sensu-plugins-http_5.1.1_centos_linux_amd64.tar.gz 31023af

 sensu-ruby-runtime //assets.bonsai.sensu.io/.../sensu-ruby-runtime_0.0.10_ruby-2.4.4_centos_linux_amd64.tar.gz

338b88b

YML

https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

type: CheckConfg

api_version: core/v2

metadata:

 name: check-sensu-site

 namespace: default

spec:

 command: check-http.rb -u https://sensu.io

 interval: 60

 proxy_entity_name: sensu-site

 publish: true

 round_robin: true

 runtime_assets:

 - sensu-plugins-http

 - sensu-ruby-runtime

 subscriptions:

 - proxy

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-sensu-site",

 "namespace": "default"

 },

 "spec": {

 "command": "check-http.rb -u https://sensu.io",

 "runtime_assets": [

 "sensu-plugins-http",

 "sensu-ruby-runtime"

],

 "interval": 60,

 "proxy_entity_name": "sensu-site",

 "publish": true,

 "round_robin": true,

 "subscriptions": [

 "proxy"

]

 }

JSON

Now we can use sensuctl to add this check to Sensu.

Adding the subscription

To run the check, we’ll need a Sensu agent with the subscription proxy .
After installing an agent, open
/etc/sensu/agent.yml
and add the proxy subscription so the subscription confguration looks like:

Then restart the agent.

Validating the check

Now we can use sensuctl to see that Sensu has created the proxy entity sensu-site .

}

sensuctl create --fle check.json

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets

Hooks Publish? Stdin?
────────────────── ────────────────────────────────── ────────── ────── ───────── ─────
─────────────── ────────── ─────────────────────────────────────── ─────── ──────────
────────

 check-sensu-site check-http.rb -u https://sensu.io 60 0 0 proxy sensu-plugins-http,sensu-

ruby-runtime true false

subscriptions:

 - proxy

sudo service sensu-agent restart

sensuctl entity list

NOTE: It might take a few moments for Sensu to execute the check and create the proxy entity.

And that Sensu is now monitoring sensu-site using the check-sensu-site check.

We can also see our new proxy entity in the Sensu dashboard.

Using proxy requests to monitor a group of websites

Now let’s say that, instead of monitoring just sensu.io, we want to monitor multiple sites, for example:
docs.sensu.io, packagecloud.io, and github.com.
In this section of the guide, we’ll use the
proxy_requests check attribute, along with entity labels and token substitution, to monitor three sites

using the same check.
Before we get started, go ahead and register the sensu-plugins-http and
sensu-ruby-runtime assets if you haven’t already.

Creating proxy entities

Instead of creating a proxy entity using the proxy_entity_name check attribute, we’ll be using
sensuctl to create proxy entities to represent the three sites we want to monitor.
Our proxy entities need
the entity_class attribute set to proxy to mark them as proxy entities as well as a few custom
labels that we’ll use to identify them as a group and pass in individual URLs.

 ID Class OS Subscriptions Last Seen
────────────── ─────── ─────── ───────────────────────────
───────────────────────────────

sensu-centos agent linux proxy,entity:sensu-centos 2019-01-16 21:50:03 +0000 UTC

sensu-site proxy entity:sensu-site N/A

sensuctl event info sensu-site check-sensu-site

=== sensu-site - check-sensu-site

Entity: sensu-site

Check: check-sensu-site

Output:

Status: 0

History: 0,0

Silenced: false

Timestamp: 2019-01-16 21:51:53 +0000 UTC

Create a fle called entities.json and add the following entity defnitions.

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs",

 "namespace": "default",

 "labels": {

 "proxy_type": "website",

 "url": "https://docs.sensu.io"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "packagecloud-site",

 "namespace": "default",

 "labels": {

 "proxy_type": "website",

 "url": "https://packagecloud.io"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "github-site",

 "namespace": "default",

 "labels": {

 "proxy_type": "website",

 "url": "https://github.com"

PRO TIP: When creating proxy entities, you can add whatever custom labels make sense for your
environment. For example, when monitoring a group of routers, you may want to add ip_address
labels.

Now we can use sensuctl to add these proxy entities to Sensu.

Creating a reusable HTTP check

Now that we have our three proxy entities set up, each with a proxy_type and url label, we can
use proxy requests and token substitution to create a single check that monitors all three sites.

Create a fle called check-proxy-requests.json and add the following check defnition.

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

sensuctl create --fle entities.json

sensuctl entity list

 ID Class OS Subscriptions Last Seen
─────────────────── ─────── ─────── ───────────────────────────
───────────────────────────────

 github-site proxy N/A

 packagecloud-site proxy N/A

 sensu-centos agent linux proxy,entity:sensu-centos 2019-01-16 23:05:03 +0000 UTC

 sensu-docs proxy N/A

type: CheckConfg

api_version: core/v2

metadata:

 name: check-http

 namespace: default

spec:

YML

 command: check-http.rb -u {{ .labels.url }}

 interval: 60

 proxy_requests:

 entity_attributes:

 - entity.entity_class == 'proxy'

 - entity.labels.proxy_type == 'website'

 publish: true

 runtime_assets:

 - sensu-plugins-http

 - sensu-ruby-runtime

 subscriptions:

 - proxy

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-http",

 "namespace": "default"

 },

 "spec": {

 "command": "check-http.rb -u {{ .labels.url }}",

 "runtime_assets": [

 "sensu-plugins-http",

 "sensu-ruby-runtime"

],

 "interval": 60,

 "subscriptions": [

 "proxy"

],

 "publish": true,

 "proxy_requests": {

 "entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

]

 }

 }

}

JSON

Our check-http check uses the proxy_requests attribute to specify the applicable entities.
In our
case, we want to run the check-http check on all entities of entity class proxy and proxy type
website .
Since we’re using this check to monitor multiple sites, we can use token substitution to apply

the correct url in the check command .

Now we can use sensuctl to add this check to Sensu.

PRO TIP: To distribute check executions across multiple agents, set the round-robin check attribute
to true . For more information about round-robin checks, see the check reference.

Validating the check

Before validating the check, make sure that you’ve registered the sensu-plugins-http and sensu-
ruby-runtime assets and added the proxy subscription to a Sensu agent if you haven’t already.

Now we can use sensuctl to see that Sensu is monitoring docs.sensu.io, packagecloud.io, and
github.com using the check-http , returning a status of 0 (OK).

sensuctl create --fle check-proxy-requests.json

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets

Hooks Publish? Stdin?
───────────────── ─────────────────────────────────── ────────── ────── ───────── ─────
─────────────── ────────── ─────────────────────────────────────── ─────── ──────────
────────

 check-http check-http.rb -u {{ .labels.url }} 60 0 0 proxy sensu-plugins-http,sensu-ruby-

runtime true false

sensuctl event list

 Entity Check Output Status Silenced Timestamp
─────────────────── ───────────────────── ──────── ──────── ──────────
───────────────────────────────

github-site check-http 0 false 2019-01-17 17:10:31 +0000 UTC

packagecloud-site check-http 0 false 2019-01-17 17:10:34 +0000 UTC

sensu-centos keepalive ... 0 false 2019-01-17 17:10:34 +0000 UTC

Next steps

You now know how to run a proxy check to verify the status of a website, as
well as using proxy
requests to run a check on two different proxy entities based on label evaluation.
From this point, here
are some recommended resources:

Read the proxy checks reference for in-depth documentation on proxy checks.
Read the guide to providing runtime dependencies to checks with assets.
Read the guide to sending alerts to Slack with handlers.

sensu-docs check-http 0 false 2019-01-17 17:06:59 +0000 UTC

How to collect and extract metrics using
Sensu checks

Contents

What are Sensu checks?

In short, Sensu checks are commands (or scripts), executed by the Sensu
agent, that output data and
produce an exit code to indicate a state. If you are
unfamiliar with checks, or would like to learn how to
confgure one frst,
take a look through the check reference doc and guide before you
continue.

Extracting metrics from check output

In order to extract metrics from check output, you’ll need to do the following:

1. Confgure the check command such that the command execution outputs
metrics in one of the
supported output metric formats.

2. Confgure the check output_metric_format to one of the
supported output metric formats.
3. Confgure the check output_metric_handlers (optional) to a Sensu handler
that is equipped to

handle Sensu metrics (see handlers or
infux-db handler to learn more).

You can confgure the check with these felds at creation, or use the commands
below assuming you
have a check named collect-metrics . In this example,
we’ll be using graphite_plaintext format
and sending the metrics to a handler
named infux-db .

Supported output metric formats

sensuctl check set-command collect-metrics collect_metrics.sh

sensuctl check set-output-metric-format collect-metrics graphite_plaintext

sensuctl check set-output-metric-handlers collect-metrics infux-db

The output metric formats that Sensu currently supports for check output metric
extraction are nagios,
infuxdb, graphite, and opentsdb.

nagios

output_metric_format nagios_perfdata

documentation Nagios Performance Data

example

graphite

output_metric_format graphite_plaintext

documentation Graphite Plaintext Protocol

example

infuxdb

output_metric_format infuxdb_line

documentation InfuxDB Line Protocol

example

opentsdb

output_metric_format opentsdb_line

PING ok - Packet loss = 0%, RTA = 0.80 ms |

percent_packet_loss=0, rta=0.80

local.random.diceroll 4 123456789

weather,location=us-midwest temperature=82

1465839830100400200

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://docs.influxdata.com/influxdb/v1.4/write_protocols/line_protocol_tutorial/#measurement

documentation OpenTSDB Data Specifcation

example

Validating the metrics

If the check output is formatted correctly according to its output_metric_format ,
the metrics will be
extracted in Sensu Metric Format, and passed to the event pipeline.
You should expect to see logged
errors if Sensu is unable to parse the check output.
You can validate that metrics have been extracted
from your check by inspecting the event passed to the handler. See our troubleshooting guide for an
example debug handler which writes events to a fle for inspection.
The example check we used would
yield an event similar to the one below:

sys.cpu.user 1356998400 42.5 host=webserver01 cpu=0

type: Event

api_version: core/v2

metadata: {}

spec:

 check:

 command: collect_metrics.sh

 metadata:

 name: collect-metrics

 namespace: default

 output: |-

 cpu.idle_percentage 61 1525462242

 mem.sys 104448 1525462242

 output_metric_format: graphite_plaintext

 output_metric_handlers:

 - infux-db

 metrics:

 handlers:

 - infux-db

 points:

 - name: cpu.idle_percentage

 tags: []

 timestamp: 1525462242

 value: 61

YML

http://opentsdb.net/docs/build/html/user_guide/writing/index.html#data-specification

 - name: mem.sys

 tags: []

 timestamp: 1525462242

 value: 104448

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "check": {

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default"

 },

 "command": "collect_metrics.sh",

 "output": "cpu.idle_percentage 61 1525462242\nmem.sys 104448 1525462242",

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

]

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "cpu.idle_percentage",

 "value": 61,

 "timestamp": 1525462242,

 "tags": []

 },

 {

 "name": "mem.sys",

 "value": 104448,

 "timestamp": 1525462242,

 "tags": []

 }

]

JSON

Next steps

Now you know how to extract metrics from check output! Check out the below
resources for some
further reading:

Read the checks reference for in-depth documentation on checks.
Read the checks guide for directions on how to schedule checks.
Read the handlers reference for in-depth documentation on handlers.
Read the infux-db handler guide for instructions on Sensu’s built-in
metric handler.

 }

 }

}

How to aggregate metrics with the Sensu
StatsD listener

Contents

What is StatsD?

StatsD, originating from the daemon written by Etsy, is a daemon, tool,
and protocol that can be used to
send, collect, and aggregate custom metrics.
Services that implement StatsD typically expose UDP port
8125 to receive metrics
according to the line protocol <metricname>:<value>|<type> .

Why use StatsD?

StatsD allows you to measure anything and everything. You can monitor
application performance by
collecting custom metrics in your code and sending
them to a StatsD server or you can monitor system
levels of CPU, I/O, network
etc. with collection daemons. The metrics that StatsD aggregates can be fed
to
multiple different backends to store or visualize the data.

How does Sensu implement StatsD?

Sensu implements a StatsD listener on its agents. Each sensu-agent
listens on the default port 8125
for UDP messages which follow the StatsD line
protocol. StatsD aggregates the metrics, and Sensu
translates them to Sensu
metrics and events to be passed to the event pipeline. The listener is
confgurable (see Confguring the StatsD listener)
and can be accessed with the netcat utility command:

Metrics received through the StatsD listener are not stored in etcd, so
it is important to confgure an
event handler(s).

echo 'abc.def.g:10|c' | nc -w1 -u localhost 8125

https://github.com/etsy/statsd/

NOTE: On Windows machines running Sensu, the StatsD UDP port is not supported,
rather the TCP
port is exposed.

Confguring the StatsD listener

The Sensu StatsD Server is confgured at the start-up of a sensu-agent . The
fags below allow you to
confgure the event handlers, fush interval, address,
and port:

For example:

Next steps

Now that you know how to feed StatsD metrics into Sensu, check out the following
resources to learn
how to handle those metrics:

Read the handlers reference for in-depth documentation on handlers.
Read the InfuxDB handler guide for instructions on Sensu’s built-in
metric handler.

--statsd-disable disables the statsd listener and metrics

server

--statsd-event-handlers stringSlice comma-delimited list of event handlers for

statsd metrics

--statsd-fush-interval int number of seconds between statsd fush (default

10)

--statsd-metrics-host string address used for the statsd metrics server

(default "127.0.0.1")

--statsd-metrics-port int port used for the statsd metrics server

(default 8125)

sensu-agent start --statsd-event-handlers infux-db --statsd-fush-interval 1 --

statsd-metrics-host "123.4.5.6" --statsd-metrics-port 8125

How to augment event data using check
hooks

Contents

What are check hooks?

Check hooks are commands run by the Sensu agent in response to the result of
check command
execution. The Sensu agent executes the appropriate
confgured hook, depending on the exit status
code (e.g., 1).

Why use check hooks?

Check hooks allow Sensu users to automate data collection routinely performed by
operators
investigating monitoring alerts, freeing precious operator time! While
check hooks can be used for
rudimentary auto-remediation tasks, they are intended
for enrichment of monitoring event data.

Using check hooks to gather context

The purpose of this guide is to help you put in place a check hook which captures
the process tree in
the event that an nginx_process check returns a status of 2 (critical,
not running).

Creating the hook

The frst step is to create a new hook that runs a specifc command to
capture the process tree. We can
set an execution timeout of 10 seconds
for this command.

sensuctl hook create process_tree \

--command 'ps aux' \

--timeout 10

Assigning the hook to a check

Now that the process_tree hook has been created, it can be assigned to a
check. Here we apply our
hook to an already existing nginx_process check.
By setting the type to critical , we ensure
that whenever the check command returns a critical status, Sensu executes the process_tree hook
and adds the output to the resulting event data.

Validating the check hook

You can verify the proper behavior of the check hook against a specifc event by
using sensuctl . It
might take a few moments, once the check hook is assigned,
for the check to be scheduled on the entity
and the result sent back to the Sensu
backend. The check hook command result is available in the
hooks array,
within the check scope.

sensuctl check set-hooks nginx_process \

--type critical \

--hooks process_tree

sensuctl event info i-424242 nginx_process --format json

{

 [...]

 "check": {

 [...]

 "hooks": [

 {

 "confg": {

 "name": "process_tree",

 "command": "ps aux",

 "timeout": 10,

 "namespace": "default"

 },

 "duration": 0.008713605,

 "executed": 1521724622,

 "output": "",

Having confrmed that the hook is attached to our check, we can stop
Nginx and observe the check
hook in action on the next check
execution. Here we use sensuctl to query event info and send the
response to jq so we can isolate the check hook output:

Note that the above output, although truncated in the interest of
brevity, refects the output of the ps

aux command specifed in the
check hook we created. Now when we are alerted that Nginx is not
running, we can review the check hook output to confrm this was the
case, without ever fring up an
SSH session to investigate!

Next steps

You now know how to run data collection tasks using check hooks. From this point,
here are some
recommended resources:

Read the hooks reference for in-depth documentation on hooks.

 "status": 0

 }

],

 [...]

 }

}

sensuctl event info i-424242 nginx_process --format json | jq -r

'.check.hooks[0].output'

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.3 46164 6704 ? Ss Nov17 0:11

/usr/lib/systemd/systemd --switched-root --system --deserialize 20

root 2 0.0 0.0 0 0 ? S Nov17 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S Nov17 0:01 [ksoftirqd/0]

root 7 0.0 0.0 0 0 ? S Nov17 0:01 [migration/0]

root 8 0.0 0.0 0 0 ? S Nov17 0:00 [rcu_bh]

root 9 0.0 0.0 0 0 ? S Nov17 0:34 [rcu_sched]

How to send alerts to Slack with handlers

Contents

What are Sensu handlers?

Sensu event handlers are actions executed by the Sensu server on events.

Why use a handler?

Handlers can be used for sending an email alert, creating or resolving an incident
(in PagerDuty, for
example), or storing metrics in a time-series
database (InfuxDB, for example).

Using a handler to send alerts to Slack

The purpose of this guide is to help you send alerts to Slack, on the channel
monitoring , by
confguring a handler named slack to a check named
check-cpu . If you don’t already have a check
in place, this guide is a
great place to start.

Registering the asset

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
In this guide, we’ll
use the Sensu Slack handler asset to power a slack handler.

You can use the following sensuctl example to register the Sensu Slack handler asset for Linux
AMD64, or you can download the latest asset defnition for your platform from Bonsai and register the
asset using sensuctl create --fle flename.yml .

sensuctl asset create sensu-slack-handler --url

"https://assets.bonsai.sensu.io/3149de09525d5e042a83edbb6eb46152b02b5a65/sensu-

slack-handler 1.0.3 linux amd64.tar.gz" --sha512

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

You should see a confrmation message from sensuctl.

Getting a Slack webhook

If you’re already an admin of a Slack, visit https://YOUR WORKSPACE NAME
HERE.slack.com/services/new/incoming-webhook and follow the steps to add the Incoming
WebHooks integration, choose a channel, and save the settings.
(If you’re not yet a Slack admin, start
here to create a new workspace.)
After saving, you’ll see your webhook URL under Integration Settings.

Creating the handler

Now we’ll use sensuctl to create a handler called slack that pipes event data to Slack using the
sensu-slack-handler asset.
Edit the command below to include your Slack channel and webhook

URL.
For more information about customizing your Sensu slack alerts, see the asset page in Bonsai.

You should see a confrmation message from sensuctl.

Assigning the handler to a check

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8"

Created

sensuctl handler create slack \

--type pipe \

--env-vars "SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX"

\

--command "sensu-slack-handler --channel '#monitoring'" \

--runtime-assets sensu-slack-handler

Created

https://slack.com/get-started#create
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

With the slack handler now created, it can be assigned to a check. Here, since
we want to receive
Slack alerts whenever the CPU usage of our systems reach some
specifc thresholds, we will apply our
handler to the check check-cpu .

Validating the handler

It might take a few moments, once the handler is assigned to the check, for the
check to be scheduled
on the entities and the result sent back to Sensu backend,
but once an event is handled, you should see
the following message in
Slack.

Otherwise, you can verify the proper behavior of this handler by using
sensu-backend logs.
See the
troubleshooting guide for log locations by platform.

Whenever an event is being handled, a log entry is added with the message
"handler":"slack","level":"debug","msg":"sending event to handler" , followed
by a second

one with the message "msg":"pipelined executed event pipe
handler","output":"","status":0 .

Next steps

You now know how to apply a handler to a check and take action on events. From
this point, here are
some recommended resources:

Read the handlers reference for in-depth
documentation on handlers.
Read our guide on reducing alert fatigue with flters.

sensuctl check set-handlers check-cpu slack

How to populate InfuxDB metrics using
handlers

Contents

What are Sensu handlers?

Sensu event handlers are actions executed by the Sensu server on events.
In this example, we’ll use a
handler to populate a time series database. If
you’re not totally comfortable with handlers yet, check out
the in-depth
guide on handlers frst!

Using a handler to populate InfuxDB

The purpose of this guide is to help you populate Sensu metrics into the time
series database InfuxDB.
Metrics can be collected from check output
or from the Sensu StatsD Server.

Registering the asset

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
In this guide, we’ll
use the Sensu InfuxDB handler asset to power an infux-db handler.

You can use the following sensuctl example to register the Sensu InfuxDB handler asset for Linux
AMD64, or you can download the latest asset defnition for your platform from Bonsai and register the
asset using sensuctl create --fle flename.yml .

sensuctl asset create sensu-infuxdb-handler --url

"https://assets.bonsai.sensu.io/b28f8719a48aa8ea80c603f97e402975a98cea47/sensu-

infuxdb-handler_3.1.2_linux_amd64.tar.gz" --sha512

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9b

1257bb479676bc155b24e21bf93c722b812b0f15cb3bd"

https://github.com/influxdata/influxdb
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

You should see a confrmation message from sensuctl.

Creating the handler

Now we’ll use sensuctl to create a handler called infux-db that pipes event data to InfuxDB using
the sensu-infuxdb-handler asset.
Edit the command below to include your database name, address,
username, and password.
For more information about the Sensu InfuxDB handler, see the asset page
in Bonsai.

You should see a confrmation message from sensuctl.

Assigning the handler to an event

With the infux-db handler now created, it can be assigned to a check for
check output metric
extraction. In this example, the check name is
collect-metrics :

The handler can also be assigned to the Sensu StatsD listener at agent startup to pass
all StatsD
metrics into InfuxDB:

Created

sensuctl handler create infux-db \

--type pipe \

--command "sensu-infuxdb-handler -d sensu" \

--env-vars "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086,

INFLUXDB_USER=sensu, INFLUXDB_PASS=password" \

--runtime-assets sensu-infuxdb-handler

Created

sensuctl check set-output-metric-handlers collect-metrics infux-db

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

Validating the handler

It might take a few moments once the handler is assigned to the check or StatsD
server, for Sensu to
receive the metrics, but once an event is handled, you
should start to see your InfuxDB being
populated! Otherwise, you can verify the
proper behavior of this handler by using sensu-backend logs.
See the troubleshooting guide for log locations by platform.

Whenever an event is being handled, a log entry is added with the message
"handler":"infux-
db","level":"debug","msg":"sending event to handler" ,
followed by a second one with the
message "msg":"pipelined executed event pipe
handler","output":"","status":0 .

Next steps

You now know how to apply a handler to metrics and take action on events. From
this point, here are
some recommended resources:

Read the handlers reference for in-depth documentation on handlers.
Read the StatsD listener guide for instructions on how to aggregate
StatsD metrics in Sensu.
Read the check output metric extraction guide to learn how to collect
and extract metrics using Sensu
checks.

sensu-agent start --statsd-event-handlers infux-db

How to reduce alert fatigue with flters

Contents

What are Sensu flters?

Sensu flters allow you to flter events destined for one or more event
handlers. Sensu flters evaluate
their expressions against the event data, to
determine if the event should be passed to an event
handler.

Why use a flter?

Filters are commonly used to flter recurring events (i.e. to eliminate
notifcation noise) and to flter
events from systems in pre-production
environments.

Using flters to reduce alert fatigue

The purpose of this guide is to help you reduce alert fatigue by confguring a
flter named hourly , for a
handler named slack , in order to prevent alerts
from being sent to Slack every minute. If you don’t
already have a handler in
place, learn how to send alerts with handlers.

Creating the flter

We’ll show you two approaches to creating a flter that will handle occurrences. The frst approach will
be to create our own flter that we’ll add to Sensu. The second approach will cover implementing the
flter as an asset.

Using Sensuctl to Create a Filter

The frst step is to create a flter that we will call hourly , which matches
new events (where the
event’s occurrences is equal to 1) or hourly events
(so every hour after the frst occurrence,

calculated with the check’s
interval and the event’s occurrences).

Events in Sensu Go are handled regardless of
check execution status; even successful check events
are passed through the
pipeline. Therefore, it’s necessary to add a clause for non-zero status.

Assigning the flter to a handler

Now that the hourly flter has been created, it can be assigned to a handler.
Here, since we want to
reduce the number of Slack messages sent by Sensu, we will apply
our flter to an already existing
handler named slack , in addition to the
built-in is_incident flter so only failing events are handled.

Follow the prompts to add the hourly and is_incident flters to the Slack
handler.

Creating a fatigue check flter

While we can use sensuctl to interactively create a flter, we can create more reusable flters
through the use of assets. Read on to see how to implement a flter using this approach.

Using a Filter Asset

If you’re not already familiar with assets, take a minute or two and read over our guide to installing
plugins with assets. This will help you understand what an asset is and how they are used in Sensu.

The frst step we’ll need to take is to obtain a flter asset that will allow us to replicate the behavior we
used when we created the hourly flter via sensuctl . Let’s use the fatigue check asset from the
Bonsai Asset Index. You can download the asset directly by running the following:

sensuctl flter create hourly \

--action allow \

--expressions "event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0"

sensuctl handler update slack

curl -s https://bonsai.sensu.io/release_assets/nixwiz/sensu-go-fatigue-check-

https://bonsai.sensu.io/assets/nixwiz/sensu-go-fatigue-check-filter
https://bonsai.sensu.io/

Excellent! You’ve registered the asset. We still need to create our flter. We’ll use the following
confguration for creating the actual flter. In this case, we’ll call it sensu-fatigue-check-flter.yml :

And we’ll go ahead and create it:

Now that we’ve created the flter asset and the flter, let’s move on to the check annotations needed for
the asset to work properly.

Annotating a check for flter asset use

Now that we’ve created the flter, we’ll need to make some additions to any checks we want to use the
flter with. Let’s look at an example CPU check:

flter/0.1.3/any/noarch/download | sensuctl create

type: EventFilter

api_version: core/v2

metadata:

 name: fatigue_check

 namespace: default

spec:

 action: allow

 expressions:

 - fatigue_check(event)

 runtime_assets:

 - fatigue-check-flter

sensuctl create -f sensu-fatigue-check-flter.yml

type: CheckConfg

api_version: core/v2

metadata:

 name: linux-cpu-check

 namespace: default

You’ll notice that under the metadata scope we’ve added some annotations. For our flter asset to
work the way that our interactively created flter does, these annotations are necessary. Let’s discuss
those annotations briefy.

The annotations in our check defnition are doing several things:

1. fatigue_check/occurrences : This tells the flter on which occurrence we’re going to send the
even through for further processing

2. fatigue_check/interval : This value (in seconds) tells the flter at what interval to allow
additional events to be processed

3. fatigue_check/allow_resolution : Determines if a resolve event will be passed through to
the flter.

For more information on confguring these values, see the flter asset README. Now let’s assign our
newly minted flter to a handler.

 annotations:

 fatigue_check/occurrences: '1'

 fatigue_check/interval: '3600'

 fatigue_check/allow_resolution: 'false'

spec:

 command: check-cpu -w 90 c 95

 env_vars:

 handlers:

 - email

 high_fap_threshold: 0

 interval: 60

 low_fap_threshold: 0

 output_metric_format: ''

 output_metric_handlers:

 proxy_entity_name: ''

 publish: true

 round_robin: false

 runtime_assets:

 stdin: false

 subdue:

 subscriptions:

 - linux

 timeout: 0

 ttl: 0

https://github.com/nixwiz/sensu-go-fatigue-check-filter#configuration

Assigning the flter to a handler

Just like we did with our interactively created flter, we’re going to assign our flter to a handler. We can
use the following handler example:

Let’s move on to validating our flter.

Validating the flter

You can verify the proper behavior of these flters by using sensu-backend logs.
The default location
of these logs varies based on the platform used, but the
troubleshooting guide provides this
information.

Whenever an event is being handled, a log entry is added with the message
"handler":"slack","level":"debug","msg":"sending event to handler" , followed by
a second

one with the message "msg":"pipelined executed event pipe
handler","output":"","status":0 . However, if the event is being discarded by
our flter, a log entry
with the message event fltered will appear instead.

Next steps

api_version: core/v2

type: Handler

metadata:

 namespace: default

 name: slack

spec:

 type: pipe

 command: 'sensu-slack-handler --channel ''#general'' --timeout 20 --username

''sensu'' '

 env_vars:

 - SLACK_WEBHOOK_URL=https://www.webhook-url-for-slack.com

 timeout: 30

 flters:

 - is_incident

 - fatigue_check

You now know how to apply a flter to a handler, as well as use a flter asset and hopefully reduce alert
fatigue. From this point, here are some recommended resources:

Read the flters reference for in-depth
documentation on flters.

How to route alerts using flters

Contents

Every alert has an ideal frst responder: a team or individual with the knowledge to triage and address
the issue.
Sensu contact routing lets you alert the right people using their preferred contact methods,
reducing mean time to response and recovery.

Prerequisites
Confguring contact routing
1. Register the has-contact flter asset
2. Create contact flters
3. Create a handler for each contact
4. Create a handler set
Testing contact routing
Managing contact labels in checks and entities

In this guide, we’ll set up alerting for two teams (ops and dev) with separate Slack channels.
Each team
wants to be alerted only for the things they care about, using their team’s Slack channel.
To achieve
this, we’ll be creating two types of Sensu resources:

Event handlers to store contact preferences for the ops team, the dev team, and a fallback option
Event flters to match contact labels to the right handler

Here’s a quick overview of the confguration we’ll need to set up contact routing.
You can see that the
check defnition includes the contacts: dev label, resulting in an alert being sent to the dev team,
but not to the ops team or to the fallback contact.

Sensu Go contact routing: Routing alerts to the ops team using a check label

Prerequisites

To complete this guide, you’ll need:

a Sensu backend
at least one Sensu agent
sensuctl, confgured to talk to the Sensu backend
curl
a Slack webhook URL and three Slack channels available to receive test alerts

To set up a quick testing environment, download and start the Sensu sandbox.

Confguring contact routing

1. Register the has-contact flter asset

Contact routing is powered by the has-contact flter asset.
To add the has-contact asset to Sensu, use
this sensuctl command, or download the latest asset defnition from Bonsai.

http://localhost:1313/images/contact-routing1.png
https://curl.haxx.se/
https://api.slack.com/incoming-webhooks
https://bonsai.sensu.io/assets/sensu/sensu-go-has-contact-filter
https://bonsai.sensu.io/assets/sensu/sensu-go-has-contact-filter

You can run sensuctl asset list --format yaml to confrm that the asset is ready to use.

2. Create contact flters

Looking at the documentation in Bonsai, we can see that the has-contact asset supports two functions:

has_contact , taking the Sensu event and the contact name as arguments
no_contact , to use as a fallback in the absence of contact labels and taking only the event as an

argument

We’ll use these functions to create flters that represent the three actions that the Sensu Slack handler
can take on an event: contact the ops team, contact the dev team, and contact the fallback option.

flter name expression description

contact_ops has_contact(event, "ops") Allow events with the entity
or check label contacts: ops

contact_dev has_contact(event, "dev") Allow events with the entity
or check label contacts: dev

contact_fallback no_contacts(event) Allow events without an entity
or check contacts label

To add these flters to Sensu, use sensuctl create :

curl https://bonsai.sensu.io/release_assets/sensu/sensu-go-has-contact-

flter/0.2.0/any/noarch/download \

| sensuctl create

echo '---

type: EventFilter

api_version: core/v2

metadata:

 name: contact_ops

spec:

 action: allow

 runtime_assets:

You can run sensuctl flter list --format yaml to confrm that the flters are ready to use.

3. Create a handler for each contact

With our contact flters in place, we’ll create a handler for each contact: ops, dev, and fallback.
If you
haven’t already, add the Slack handler asset to Sensu using sensuctl:

In each handler defnition, we’ll specify:

 - sensu-go-has-contact-flter_any_noarch

 expressions:

 - has_contact(event, "ops")

type: EventFilter

api_version: core/v2

metadata:

 name: contact_dev

spec:

 action: allow

 runtime_assets:

 - sensu-go-has-contact-flter_any_noarch

 expressions:

 - has_contact(event, "dev")

type: EventFilter

api_version: core/v2

metadata:

 name: contact_fallback

spec:

 action: allow

 runtime_assets:

 - sensu-go-has-contact-flter_any_noarch

 expressions:

 - no_contacts(event)' | sensuctl create

curl https://bonsai.sensu.io/release_assets/sensu/sensu-slack-

handler/1.0.3/linux/amd64/download \

| sensuctl create

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

a unique name: slack_ops , slack_dev , or slack_fallback
a customized command with the contact’s preferred Slack channel
the contact flter
the built-in is_incident and not_silenced flters to reduce noise and enable silences
an environment variable containing your Slack webhook URL
the sensu-slack-handler runtime asset

To create the slack_ops , slack_dev , and slack_fallback handlers, edit and run:

Edit before running:

1. Add your SLACK_WEBHOOK_URL

2. Make sure the Slack channels specifed in the

command` attributes match channels available

to receive test alerts in your Slack instance.

echo '---

type: Handler

api_version: core/v2

metadata:

 name: slack_ops

spec:

 command: sensu-slack-handler --channel "#alert-ops"

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX

 flters:

 - is_incident

 - not_silenced

 - contact_ops

 runtime_assets:

 - sensu-slack-handler_linux_amd64

 type: pipe

type: Handler

api_version: core/v2

metadata:

 name: slack_dev

spec:

 command: sensu-slack-handler --channel "#alert-dev"

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX

 flters:

 - is_incident

You can run sensuctl handler list --format yaml to confrm that the handlers are ready to use.

4. Create a handler set

To centralize contact management and simplify confguration, we’ll create a handler set that combines
our contact-specifc handlers under a single handler name.

Use sensuctl to create a slack handler set:

 - not_silenced

 - contact_dev

 runtime_assets:

 - sensu-slack-handler_linux_amd64

 type: pipe

type: Handler

api_version: core/v2

metadata:

 name: slack_fallback

spec:

 command: sensu-slack-handler --channel "#alert-all"

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX

 flters:

 - is_incident

 - not_silenced

 - contact_fallback

 runtime_assets:

 - sensu-slack-handler_linux_amd64

 type: pipe' | sensuctl create

echo '---

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 handlers:

You should see the output of sensuctl handler list update to include the slack handler set.

Testing contact routing

To make sure our contact flters are working, we’ll use the agent API to create ad-hoc events and send
them to our Slack pipeline.

First, let’s create an event without a contacts label.
You may need to modify the URL with your
Sensu agent address.

You should see a 202 response from the API and, since this event doesn’t include a contacts label,
an alert in the Slack channel specifed by the slack_fallback handler.
Behind the scenes, Sensu
uses the contact_fallback flter to match the event to the slack_fallback handler.

Now let’s create an event with a contacts label.

 - slack_ops

 - slack_dev

 - slack_fallback

 type: set' | sensuctl create

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "example-check"

 },

 "status": 1,

 "output": "You should receive this example event in the Slack channel specifed

by your slack_fallback handler.",

 "handlers": ["slack"]

 }

}' \

http://127.0.0.1:3031/events

curl -X POST \

Since this event contains the contacts: dev label, you should see an alert in the Slack channel
specifed by the slack_dev handler.

Resolve the events by sending the same API requests with status set to 0 .

Managing contact labels in checks and entities

To assign an alert to a contact, add a contacts label to the check or entity.

Checks

For example, this check defnition includes two contacts (ops and dev) and the handler slack .
To
set up the check_cpu check, see the guide to monitoring server resources.

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "example-check",

 "labels": {

 "contacts": "dev"

 }

 },

 "status": 1,

 "output": "You should receive this example event in the Slack channel specifed

by your slack_dev handler.",

 "handlers": ["slack"]

 }

}' \

http://127.0.0.1:3031/events

type: CheckConfg

api_version: core/v2

metadata:

 name: check_cpu

 labels:

When the check_cpu check generates an incident, Sensu flters the event according to the
contact_ops and contact_dev flters, resulting in an alert sent to #alert-ops and #alert-dev.

Sensu Go contact routing: Routing alerts to two contacts using a check label

Entities

You can also specify contacts using an entity label.
For more information about managing entity labels,
see the entity reference.

In the case that contact labels are present in both the check and entity, the check contacts override the

 contacts: ops, dev

spec:

 command: check-cpu.rb -w 75 -c 90

 handlers:

 - slack

 interval: 10

 publish: true

 subscriptions:

 - system

 runtime-assets:

 - sensu-plugins-cpu-checks

 - sensu-ruby-runtime

http://localhost:1313/images/contact-routing2.png

entity contacts.
Here we can see that the dev label in the check confguration overrides the ops label
in the agent defnition, resulting in an alert sent to #alert-dev but not to #alert-ops or #alert-all.

Sensu Go contact routing: Check contacts take precedence over entity contacts

Next steps

Now that you’ve set up contact routing for two example teams, you can create additional flters,
handlers, and labels to represent your team’s contacts.
For more tools to reduce alert fatigue, see the
guide.

http://localhost:1313/images/contact-routing3.png

How to install plugins using assets

Contents
1. Download an asset defnition from Bonsai
2. Register the asset with Sensu
3. Create a monitoring workfow
Next steps

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
You can use
assets to provide the plugins, libraries, and runtimes you need to automate your monitoring workfows.
See the asset reference for more information about assets.

1. Download an asset defnition from Bonsai

You can discover, download, and share assets using Bonsai, the Sensu asset index.
To use an asset,
select the Download button on the asset page in Bonsai to download the asset defnition for your
Sensu backend platform and architecture.
Asset defnitions tell Sensu how to download and verify the
asset when required by a check, flter, mutator, or handler.

For example, here’s the asset defnition for version 1.1.0 of the Sensu PagerDuty handler asset for
Linux AMD64.

type: Asset

api_version: core/v2

metadata:

 name: sensu-pagerduty-handler

 namespace: default

 labels: {}

 annotations: {}

spec:

 url:

https://assets.bonsai.sensu.io/698710262d59c72ace3e31524960630dc1e4f190/sensu-

pagerduty-handler_1.1.0_linux_amd64.tar.gz

 sha512:

https://bonsai.sensu.io/
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

After downloading an asset defnition, open the fle and adjust the namespace and flters for your
Sensu instance.
Filters for check assets should match entity platforms, while flters for handler and flter
assets should match your Sensu backend platform.
If the provided flters are too restrictive for your
platform, replace os and arch with any supported entity system attributes (for example:
entity.system.platform_family == 'rhel').
You may also want to customize the asset name to

refect the supported platform (for example: sensu-pagerduty-handler-linux) and add custom
attributes using labels and annotations .

Enterprise-tier assets (like the ServiceNow and Jira event handlers) require a Sensu license. For
more information about licensed-tier features and to activate your license, see the getting started
guide.

2. Register the asset with Sensu

Once you’ve downloaded the asset defnition, you can register the asset with Sensu using sensuctl.

You can use sensuctl to verify that the asset is registered and ready to use.

3. Create a workfow

Now we can use assets in a monitoring workfow.
Depending on the asset, you may want to create
Sensu checks, flters, mutators, and handlers.
The asset details in Bonsai are the best resource for
information about asset capabilities and confguration.

For example, to use the Sensu PagerDuty handler asset, create a pagerduty handler that includes
your PagerDuty service API key in place of SECRET and sensu-pagerduty-handler as a runtime

e93ec4465af5a2057664e8c3cd68e9352457b81315b97578eaae5e21f0cf7419d4fc36feb0155eeb0dd5

a227e267307a58ee58a9f3e85bf3d44da3738bf691ca

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

sensuctl create --fle sensu-sensu-pagerduty-handler-1.1.0-linux-amd64.yml

sensuctl asset list

https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

asset.

type: Handler

api_version: core/v2

metadata:

 name: pagerduty

 namespace: default

spec:

 command: sensu-pagerduty-handler

 env_vars:

 - PAGERDUTY_TOKEN=SECRET

 flters:

 - is_incident

 runtime_assets:

 - sensu-pagerduty-handler

 timeout: 10

 type: pipe

YML

{

 "api_version": "core/v2",

 "type": "Handler",

 "metadata": {

 "namespace": "default",

 "name": "pagerduty"

 },

 "spec": {

 "type": "pipe",

 "command": "sensu-pagerduty-handler",

 "env_vars": [

 "PAGERDUTY_TOKEN=SECRET"

],

 "runtime_assets": ["sensu-pagerduty-handler"],

 "timeout": 10,

 "flters": [

 "is_incident"

]

 }

}

JSON

Save the defnition to a fle (for example: pagerduty-handler.json), and add to Sensu using
sensuctl.

Now that Sensu can create incidents in PagerDuty, we can automate this workfow by adding the
pagerduty handler to our Sensu service checks.
To get started with checks, see the guide to

monitoring server resources.

Next steps

Learn more about assets
Read the asset specifcation
Share your assets on Bonsai

sensuctl create --fle pagerduty-handler.json

How to plan maintenance windows using
silencing

Contents

What is Sensu silencing?

As check results are processed by a Sensu server, the server executes event
handlers to send alerts
to personnel or otherwise relay event data to
external services. Sensu’s built-in silencing, along with
the built-in
not_silenced flter, provides the means to suppress execution of event
handlers on an ad
hoc basis.

When to use silencing

Silencing is used to prevent handlers confgured with the not_silenced flter
from being triggered
based on the check name present in a check result or the
subscriptions associated with the entity that
published the check result. This
can be desirable in many scenarios, giving operators the ability to quiet
incoming alerts while coordinating their response.

Sensu silences make it possible to:

Silence all checks on a specifc entity
Silence a specifc check on a specifc entity
Silence all checks on entities with a specifc subscription
Silence a specifc check on entities with a specifc subscription
Silence a specifc check on every entity

Using silencing to plan maintenance

The purpose of this guide is to help you plan a maintenance window, by creating
a silenced entry for a
specifc entity named i-424242 and its check named
check-http , in order to prevent alerts as you
restart or redeploy the
services associated with this entity.

Creating the silenced entry

The frst step is to create a silenced entry that will silence the check
check-http on an entity named
i-424242 , for a planned maintenance window
that starts at 01:00, on Sunday, and ends 1 hour later.

Your
username will automatically be added as the creator of the silenced entry.

See the sensuctl documentation for the supported time formats in the
begin fag.

Validating the silenced entry

You can verify that the silenced entry against our entity, here named
i-424242 , has been properly
created, by using sensuctl .

Once the silenced entry starts to take effect, events that are silenced will be
marked as so in sensuctl

events .

WARNING: By default, a silenced event will be handled unless the handler uses
the not_silenced

flter to discard silenced events.

sensuctl silenced create \

--subscription 'entity:i-424242' \

--check 'check-http' \

--begin '2018-03-16 01:00:00 -04:00' \

--expire 3600 \

--reason 'Server upgrade'

sensuctl silenced info 'entity:i-424242:check-http'

sensuctl event list

 Entity Check Output Status Silenced Timestamp
────────────── ───────── ───────── ──────────── ──────────
───────────────────────────────

 i-424242 check-http 0 true 2018-03-16 13:22:16 -0400 EDT

Next steps

You now know how to create silenced entries to plan a maintenance and hopefully
avoid false positive.
From this point, here are some recommended resources:

Read the silencing reference for in-depth documentation on silenced entries.

How to create a read-only user with RBAC

Contents

Sensu role-based access control (RBAC) helps different teams and projects share a Sensu instance.
RBAC allows management and access of users and resources based on namespaces, groups,
roles, and bindings.

By default, Sensu includes a default namespace and an admin user with full permissions to
create, modify, and delete resources within Sensu, including RBAC resources like users and roles.
This
guide requires a running Sensu backend and a sensuctl instance confgured to connect to the backend
as the default admin user.

Why use RBAC?

RBAC allows you to exercise fne-grained control over how Sensu users interact
with Sensu resources.
Using RBAC rules, you can easily achieve multitenancy
so different projects and teams can share a
Sensu instance.

How to create a read-only user

In this section, you’ll create a user and assign them read-only access to resources within the
default namespace using a role and a role binding.

1. Create a user with the username alice and assign them to the group ops :

2. Create a read-only role with get and list permissions for all resources (*) within the
default namespace:

sensuctl user create alice --password='password' --groups=ops

3. Create an ops-read-only role binding to assign the read-only role to the ops group:

You can also use role bindings to tie roles directly to users using the --user fag.

All users in the ops group now have read-only access to all resources within the default namespace.
You can use the sensuctl user , sensuctl role , and sensuctl role-binding commands to
manage your RBAC confguration.

How to create a cluster-wide event-reader user

Now let’s say you want to create a user that has read-only access to events across all namespaces.
Since you want this role to have cluster-wide permissions, you’ll need to create a cluster role and a
cluster role binding.

1. Create a user with the username bob and assign them to the group ops :

2. Create a global-event-reader cluster role with get and list permissions for events
across all namespaces:

3. Create an ops-event-reader cluster role binding to assign the global-event-reader role to
the ops group:

sensuctl role create read-only --verb=get,list --resource=* --namespace=default

sensuctl role-binding create ops-read-only --role=read-only --group=ops

sensuctl user create bob --password='password' --groups=ops

sensuctl cluster-role create global-event-reader --verb=get,list --

resource=events

sensuctl cluster-role-binding create ops-event-reader --cluster-role=global-

event-reader --group=ops

All users in the ops group now have read-only access to events across all namespaces.

Next steps

You now know how to create a user, create a role, and create a role binding to assign a role to a user.
From this point, here are some recommended resources:

Read the RBAC reference for in-depth documentation on role-based access control, examples, and
information about cluster-wide permissions.

Planning your Sensu Go deployment

Contents

This guide describes various deployment considerations and recommendations, including details
related to communication security and common deployment architectures.

What is etcd?
Hardware sizing
Communications security
Common Sensu architectures
Single backend using embedded etcd
Clustered backend with embedded etcd

What is etcd?

etcd is a key-value store which is used by applications of varying complexity, from simple web apps to
Kubernetes. The Sensu backend uses an embedded etcd instance for storing both confguration and
event data, so you can get Sensu up and running without external dependencies.

By building atop etcd, Sensu’s backend inherits a number of characteristics that should be considered
when planning for a Sensu deployment.

Hardware sizing

Because etcd’s design prioritizes consistency across a cluster, the speed with which write operations
can be completed is very important to the performance of a Sensu cluster.

This means that Sensu backend infrastructure should be provisioned to provide sustained IO
operations per second (IOPS) appropriate for the rate of monitoring events the system will be required
to process.

For more detail, our hardware requirements document describes the minimum and recommended
hardware specifcations for running the Sensu backend.

Communications security

Whether using a single or multiple Sensu backends in a cluster, communication with the backend’s
various network ports (web UI, HTTP API, websocket API, etcd client & peer) occurs in cleartext by
default. Encrypting network communications via TLS is highly recommended, and requires both some
planning and explicit confguration.

Planning TLS for etcd

The URLs for each member of an etcd cluster are persisted to the database after initialization. As a
result, moving a cluster from cleartext to encrypted communications requires resetting the cluster,
which destroys all confguration and event data in the database. Therefore, we recommend planning
for encryption before initiating a clustered Sensu backend deployment.

WARNING: Reconfguring a Sensu cluster for TLS post-deployment will require resetting all etcd
cluster members, resulting in the loss of all data.

As described in our guide for securing Sensu, the backend uses a shared certifcate and key for web
UI and agent communications. Communications with etcd can be secured using the same certifcate
and key; the certifcate’s common name or subject alternate names must include the network
interfaces and DNS names that will point to those systems.

See our clustering guide and the etcd docs for more info on setup and confguration, including a walk-
through for generating TLS certifcates for your cluster.

Common Sensu architectures

Depending on your infrastructure and the type of environments you’ll be monitoring, you may use one
or a combination of these architectures to best ft your needs.

Single backend using embedded etcd

This architecture requires minimal resources, but provides no redundancy in the event of failure.

https://etcd.io/docs/

Sensu standalone architecture with embedded etcd

A single backend can later be reconfgured as a member of a cluster, but this operation is destructive –
meaning that it requires destroying the existing database.

Use cases

The simplicity of this architecture may make it a good ft for small to medium-sized deployments, such
as monitoring a remote offce or datacenter, deploying alongside individual auto-scaling groups or in
various segments of a logical environment spanning multiple cloud providers.

For example, in environments with unreliable WAN connectivity, having agents connect to a local
backend may be more reliable than having those agents connect over WAN or VPN tunnel to a
backend running in a central location.

NOTE: Multiple Sensu backends can relay their events to a central backend using the sensu-relay-
handler.

Clustered backend with embedded etcd

The embedded etcd databases of multiple Sensu backend instances can be joined together in a
cluster, providing increased availability and replication of both confguration and data. Please see our
clustering guide for more information.

https://bonsai.sensu.io/assets/sensu/sensu-relay-handler
https://bonsai.sensu.io/assets/sensu/sensu-relay-handler

Sensu clustered architecture with embedded etcd

Clustering requires an odd number of backend instances. While larger clusters provide better fault
tolerance, write performance suffers because data must be replicated across more machines.
Following on the advice of the etcd maintainers, clusters of 3, 5 or 7 backends are the only
recommended sizes. See the etcd docs for more info.

Cluster creation and maintenance

Sensu’s embedded etcd supports initial cluster creation via a static list of peer URLs. Once the cluster

https://etcd.io/docs/

is created, members can be added or removed using etcdctl tooling. See our clustering guide and the
etcd docs for more info.

Networking considerations

Clustered deployments beneft from a fast and reliable network. Ideally they should be co-located in
the same network segment with as low latency as possible between all the nodes. Clustering backends
across disparate subnets or WAN connections is not recommended.

While a 1GbE is suffcient for common deployments, larger deployments will beneft from 10GbE
network allowing for a reduced mean time to recovery.

As the number of agents connected to a backend cluster grows, so will the communication between
members of the cluster required for data replication. With this in mind, it is recommended that clusters
with a thousand or more agents use a discrete network interface for peer communication.

Load balancing

Although each Sensu agent can be confgured with the URLs for multiple backend instances, we
recommend that agents be confgured for connecting to a load balancer. This approach provides
operators with greater control over agent connection distribution and makes it possible to replace
members of the backend cluster without requiring updates to agent confguration.

Conversely, the sensuctl command-line utility cannot be confgured with multiple backend URLs. Under
normal conditions it is desirable for both sensuctl communications and browser access to the web UI to
be routed via a load balancer as well.

https://etcd.io/docs/

How to run a Sensu cluster

Contents
What is a Sensu cluster?
Why use clustering?
Confguring a cluster
Adding sensu agents to the cluster
Cluster health
Managing cluster members
Security
Client-to-server transport security with HTTPS
Client-to-server authentication with HTTPS client certifcates
Peer communication authentication with HTTPS client certifcates
Sensu agent with HTTPS
Using an external etcd cluster
Troubleshooting

What is a Sensu cluster?

A Sensu cluster is a group of at least three sensu-backend nodes, each connected to a shared etcd
cluster, using Sensu’s embedded etcd or an external etcd cluster. Creating a Sensu cluster ultimately
confgures an etcd cluster.

Why use clustering?

Clustering is important to make Sensu more highly available, reliable, and durable. It will help you cope
with the loss of a backend node, prevent data loss, and distribute the network load of agents.

NOTE: We recommend using a load balancer to evenly distribute agent connections across the
cluster.

Confguring a cluster

https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/clustering/

The sensu-backend arguments for its store mirror the etcd confguration fags, however the Sensu
fags are prefxed with etcd . For more detailed descriptions of the different arguments, you can refer
to the etcd docs or the Sensu backend reference.

You can confgure a Sensu cluster in a couple different ways (we’ll show you a few below) but it’s
recommended to adhere to some etcd cluster guidelines as well.

The recommended etcd cluster size is 3, 5 or 7, which is decided by the fault tolerance
requirement. A 7-member cluster can provide enough fault tolerance in most cases.
While a larger cluster provides better fault tolerance, the write performance reduces
since data needs to be replicated to more machines. It is recommended to have an odd
number of members in a cluster. Having an odd cluster size doesn’t change the number
needed for majority, but you gain a higher tolerance for failure by adding the extra
member (Core OS).

We also recommend using stable platforms to support your etcd instances (see etcd’s supported
platforms).

Docker

If you’d prefer to stand up your Sensu cluster within Docker containers, check out the Sensu Go
docker confguration. This confguration defnes three sensu-backend containers and three sensu-
agent containers.

Traditional computer instance

NOTE: The remainder of this guide uses on disk confguration. If you are using an ephemeral
computer instance, you can use sensu-backend start --help to see examples of etcd command
line fags. The confguration fle entries below translate to sensu-backend fags.

Sensu backend confguration

Below are example confguration snippets from /etc/sensu/backend.yml using a three node cluster.
The nodes are named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1 ,
10.0.0.2 and 10.0.0.3 , respectively.

NOTE: This backend confguration assumes you have set up and installed the sensu-backend on all
the nodes used in your cluster. You can use our installation and confguration guide guide if you have
not done so.

https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/
https://etcd.io/docs/v3.4.0/platforms/
https://etcd.io/docs/v3.4.0/platforms/
https://github.com/sensu/sensu-go/blob/master/docker-compose.yaml

backend-1

backend-2

backend-3

##

store confguration for backend-1/10.0.0.1

##

etcd-advertise-client-urls: "http://10.0.0.1:2379"

etcd-listen-client-urls: "http://10.0.0.1:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.1:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-1"

##

store confguration for backend-2/10.0.0.2

##

etcd-advertise-client-urls: "http://10.0.0.2:2379"

etcd-listen-client-urls: "http://10.0.0.2:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.2:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-2"

##

store confguration for backend-3/10.0.0.3

##

etcd-advertise-client-urls: "http://10.0.0.3:2379"

etcd-listen-client-urls: "http://10.0.0.3:2379"

Once each node has the confguration described above, start each sensu-backend:

Adding sensu agents to the cluster

Each Sensu agent should have the following entries in /etc/sensu/agent.yml to ensure they are
aware of all cluster members. This allows the agent to reconnect to a working backend if the backend it
is currently connected to goes into an unhealthy state.

You should now have a highly available Sensu cluster! You can verify its health and try other cluster
management commands using sensuctl.

Sensuctl

Sensuctl has several commands to help you manage and monitor your cluster. See sensuctl

cluster -h for additional help usage.

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.3:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-3"

sudo systemctl start sensu-backend

##

backend-url confguration for all agents connecting to cluster over ws

##

backend-url:

 - "ws://10.0.0.1:8081"

 - "ws://10.0.0.2:8081"

 - "ws://10.0.0.3:8081"

Cluster health

Get cluster health status and etcd alarm information.

Add a cluster member

Add a new member node to an existing cluster.

List cluster members

List the ID, name, peer urls, and client urls of all nodes in a cluster.

sensuctl cluster health

 ID Name Error Healthy
────────────────── ─────────── ───
─────────

a32e8f613b529ad4 backend-1 true

c3d9f4b8d0dd1ac9 backend-2 dial tcp 10.0.0.2:2379: connect: connection refused false

c8f63ae435a5e6bf backend-3 true

sensuctl cluster member-add backend-4 https://10.0.0.4:2380

added member 2f7ae42c315f8c2d to cluster

ETCD_NAME="backend-4"

ETCD_INITIAL_CLUSTER="backend-4=https://10.0.0.4:2380,backend-

1=https://10.0.0.1:2380,backend-2=https://10.0.0.2:2380,backend-

3=https://10.0.0.3:2380"

ETCD_INITIAL_CLUSTER_STATE="existing"

sensuctl cluster member-list

 ID Name Peer URLs Client URLs

Remove a cluster member

Remove a faulty or decommissioned member node from a cluster.

Replace a faulty cluster member

Here’s how to replace a faulty cluster member to restore a cluster’s health.

First, run sensuctl cluster health to identify the faulty cluster member.
For a faulty cluster
member, the Error column will include an error message and the Healthy column will list false .

In this example, cluster member backend-4 is faulty:

Second, delete the faulty cluster member. To continue this example, you will delete cluster member
backend-4 using its ID feld:

────────────────── ─────────── ───────────────────────── ─────────────────────────

a32e8f613b529ad4 backend-1 https://10.0.0.1:2380 https://10.0.0.1:2379

c3d9f4b8d0dd1ac9 backend-2 https://10.0.0.2:2380 https://10.0.0.2:2379

c8f63ae435a5e6bf backend-3 https://10.0.0.3:2380 https://10.0.0.3:2379

2f7ae42c315f8c2d backend-4 https://10.0.0.4:2380 https://10.0.0.4:2379

sensuctl cluster member-remove 2f7ae42c315f8c2d

Removed member 2f7ae42c315f8c2d from cluster

sensuctl cluster health

 ID Name Error Healthy
────────────────── ─────────── ───
─────────

a32e8f613b529ad4 backend-1 true

c3d9f4b8d0dd1ac9 backend-2 true

c8f63ae435a5e6bf backend-3 true

2f7ae42c315f8c2d backend-4 dial tcp 10.0.0.4:2379: connect: connection refused false

Third, add a newly created member to the cluster. You can use the same name and IP address as the
faulty member you deleted, with one change to the confguration: specify the etcd-initial-cluster-
state as existing .

If replacing the faulty cluster member does not resolve the problem, please see the etcd operations
guide for more information.

Update a cluster member

Update the peer URLs of a member in a cluster.

Security

sensuctl cluster member-remove 2f7ae42c315f8c2d

Removed member 2f7ae42c315f8c2d from cluster

etcd-advertise-client-urls: "http://10.0.0.4:2379"

etcd-listen-client-urls: "http://10.0.0.4:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380,backend-

4=http://10.0.0.4:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.4:2380"

etcd-initial-cluster-state: "existing"

etcd-initial-cluster-token: ""

etcd-name: "backend-4"

sensuctl cluster member-update c8f63ae435a5e6bf https://10.0.0.4:2380

Updated member with ID c8f63ae435a5e6bf in cluster

https://etcd.io/docs/v3.4.0/op-guide/
https://etcd.io/docs/v3.4.0/op-guide/

Creating self-signed certifcates

We will use the cfssl tool to generate our self-signed certifcates.

The frst step is to create a Certifcate Authority (CA). In order to keep things simple, we will generate
all our clients and peer certifcates using this CA, but you might eventually want to create distinct CA.

Then, using that CA, we can generate certifcates and keys for each peer (backend server) by
specifying their Common Name (CN) and their hosts. A *.pem , *.csr and *.pem will be created
for each backend.

We will also create generate a client certifcate that can be used by clients to connect to the etcd client
URL. This time, we don’t need to specify an address but simply a Common Name (CN) (here
client). The fles client-key.pem , client.csr and client.pem will be created.

echo '{"CN":"CA","key":{"algo":"rsa","size":2048}}' | cfssl gencert -initca - |

cfssljson -bare ca -

echo '{"signing":{"default":{"expiry":"43800h","usages":["signing","key

encipherment","server auth","client auth"]}}}' > ca-confg.json

export ADDRESS=10.0.0.1,backend-1

export NAME=backend-1

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="$ADDRESS" -

profle=peer - | cfssljson -bare $NAME

export ADDRESS=10.0.0.2,backend-2

export NAME=backend-2

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="$ADDRESS" -

profle=peer - | cfssljson -bare $NAME

export ADDRESS=10.0.0.3,backend-3

export NAME=backend-3

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="$ADDRESS" -

profle=peer - | cfssljson -bare $NAME

https://github.com/cloudflare/cfssl

See etcd’s guide to generating self signed certifcates for detailed instructions.

Once done, you should have the following fles created. The *.csr fles will not be used in this guide.

Client-to-server transport security with HTTPS

Below are example confguration snippets from /etc/sensu/backend.yml on three Sensu backends
named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1 , 10.0.0.2 and
10.0.0.3 respectively.
This confguration assumes that your client certifcates are in
/etc/sensu/certs/ and your CA certifcate is in /usr/local/share/ca-certifcates/sensu/ .

export NAME=client

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="" -

profle=client - | cfssljson -bare $NAME

backend-1-key.pem

backend-1.csr

backend-1.pem

backend-2-key.pem

backend-2.csr

backend-2.pem

backend-3-key.pem

backend-3.csr

backend-3.pem

ca-confg.json

ca-key.pem

ca.csr

ca.pem

client-key.pem

client.csr

client.pem

##

etcd peer ssl confguration for backend-1/10.0.0.1

##

https://etcd.io/docs/v3.4.0/op-guide/clustering/#self-signed-certificates

Validating with curl:

Client-to-server authentication with HTTPS client certifcates

Below are example confguration snippets from /etc/sensu/backend.yml on three Sensu backends
named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1 , 10.0.0.2 and
10.0.0.3 respectively.
This confguration assumes your client certifcates are in /etc/sensu/certs/

and your CA certifcate is in /usr/local/share/ca-certifcates/sensu/ .

etcd-peer-cert-fle: "/etc/sensu/certs/backend-1.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-1-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

##

etcd peer ssl confguration for backend-2/10.0.0.2

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-2.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-2-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

##

etcd peer ssl confguration for backend-3/10.0.0.3

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-3.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-3-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

curl --cacert /usr/local/share/ca-certifcates/sensu/ca.pem \

https://127.0.0.1:2379/v2/keys/foo -XPUT -d value=bar

##

etcd peer ssl confguration for backend-1/10.0.0.1

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-1.pem"

Validating with curl, with a different certifcate and key:

Peer communication authentication with HTTPS client certifcates

Below are example confguration snippets from /etc/sensu/backend.yml on three Sensu backends
named backend-1 , backend-2 and backend-3 with IP addresses 10.0.0.1 , 10.0.0.2 and
10.0.0.3 respectively.

NOTE: If you ran through the frst part of the guide, you will need to update the store confguration for
all backends to use https instead of http.

etcd-peer-key-fle: "/etc/sensu/certs/backend-1-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-client-cert-auth: true

##

etcd peer ssl confguration for backend-2/10.0.0.2

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-2.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-2-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-client-cert-auth: true

##

etcd peer ssl confguration for backend-3/10.0.0.3

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-3.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-3-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-client-cert-auth: true

curl --cacert /usr/local/share/ca-certifcates/sensu/ca.pem \

--cert /etc/sensu/certs/client.pem \

--key /etc/sensu/certs/client-key.pem \

-L https://127.0.0.1:2379/v2/keys/foo -XPUT -d value=bar

backend-1

backend-2

##

store confguration for backend-1/10.0.0.1

##

etcd-listen-client-urls: "https://10.0.0.1:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=https://10.0.0.1:2380,backend-

2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.1:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "sensu"

etcd-name: "backend-1"

##

etcd peer ssl confguration for backend-1/10.0.0.1

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-1.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-1-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-peer-client-cert-auth: true

##

store confguration for backend-2/10.0.0.2

##

etcd-listen-client-urls: "https://10.0.0.2:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=https://10.0.0.1:2380,backend-

2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.2:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "sensu"

etcd-name: "backend-2"

backend-3

Sensu agent with HTTPS

Below is a sample confguration for an agent that would connect to the cluster using wss from
/etc/sensu/agent.yml .

##

etcd peer ssl confguration for backend-2/10.0.0.2

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-2.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-2-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-peer-client-cert-auth: true

##

store confguration for backend-3/10.0.0.3

##

etcd-listen-client-urls: "https://10.0.0.3:2379"

etcd-listen-peer-urls: "https://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=https://10.0.0.1:2380,backend-

2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "https://10.0.0.3:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: "sensu"

etcd-name: "backend-3"

##

etcd peer ssl confguration for backend-3/10.0.0.3

##

etcd-peer-cert-fle: "/etc/sensu/certs/backend-3.pem"

etcd-peer-key-fle: "/etc/sensu/certs/backend-3-key.pem"

etcd-peer-trusted-ca-fle: "/usr/local/share/ca-certifcates/sensu/ca.pem"

etcd-peer-client-cert-auth: true

Using an external etcd cluster

Using Sensu with an external etcd cluster requires etcd 3.3.2 or newer. To stand up an external etcd
cluster, you can follow etcd’s clustering guide using the same store confguration.

In this example, we will enable client-to-server and peer communication authentication using self-
signed TLS certifcates. Below is how you would start etcd for backend-1 from our three node
confguration example above.

##

backend-url confguration for all agents connecting to cluster over wss

##

backend-url:

 - "wss://10.0.0.1:8081"

 - "wss://10.0.0.2:8081"

 - "wss://10.0.0.3:8081"

etcd \

--listen-client-urls "https://10.0.0.1:2379" \

--advertise-client-urls "https://10.0.0.1:2379" \

--listen-peer-urls "https://10.0.0.1:2380" \

--initial-cluster "backend-1=https://10.0.0.1:2380,backend-

2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380" \

--initial-advertise-peer-urls "https://10.0.0.1:2380" \

--initial-cluster-state "new" \

--name "backend-1" \

--trusted-ca-fle=./ca.pem \

--cert-fle=./backend-1.pem \

--key-fle=./backend-1-key.pem \

--client-cert-auth \

--peer-trusted-ca-fle=./ca.pem \

--peer-cert-fle=./backend-1.pem \

--peer-key-fle=./backend-1-key.pem \

--peer-client-cert-auth \

--auto-compaction-mode revision \

--auto-compaction-retention 2

https://etcd.io/docs/v3.4.0/op-guide/clustering/

NOTE: The auto-compaction-mode and auto-compaction-retention fags are of particular
signifcance. Without these settings your database may quickly reach etcd’s maximum database size
limit.

In order to inform Sensu that you’d like to use this external etcd data source, add the sensu-backend
fag --no-embed-etcd to the original confguration, along with the path to a client certifcate created
using our CA.

Troubleshooting

Failures modes

See the etcd failure modes documentation for more information.

Disaster recovery

See the etcd recovery guide for more information.

sensu-backend start \

--etcd-trusted-ca-fle=./ca.pem \

--etcd-cert-fle=./client.pem \

--etcd-key-fle=./client-key.pem \

--etcd-advertise-client-

urls=https://10.0.0.1:2379,https://10.0.0.2:2379,https://10.0.0.3:2379 \

--no-embed-etcd

https://etcd.io/docs/v3.4.0/op-guide/failures/
https://etcd.io/docs/v3.4.0/op-guide/recovery/

Securing Sensu

Contents

As with any piece of software, it is critical to minimize any attack surface exposed by the software.
Sensu is no different. The following component pieces need to be secured in order for Sensu to be
considered production ready:

etcd peer communication
API and dashboard
Sensu agent to server communication

We’ll cover securing each one of those pieces, starting with etcd peer communication.

Securing etcd peer communication

Let’s start by covering how to secure etcd peer communication via the confguration at
/etc/sensu/backend.yml . Let’s look at the parameters you’ll need to confgure:

##

backend store confguration

##

etcd-listen-client-urls: "https://localhost:2379"

etcd-listen-peer-urls: "https://localhost:2380"

etcd-initial-advertise-peer-urls: "https://localhost:2380"

etcd-cert-fle: "/path/to/your/cert"

etcd-key-fle: "/path/to/your/key"

etcd-trusted-ca-fle: "/path/to/your/ca/fle"

etcd-peer-cert-fle: "/path/to/your/peer/cert"

etcd-peer-key-fle: "/path/to/your/peer/key"

etcd-peer-client-cert-auth: "true"

etcd-peer-trusted-ca-fle: "/path/to/your/peer/ca/fle"

Securing the API and the dashboard

Let’s go over how to secure the API and dashboard. Please note that by changing the parameters
below, the server will now communicate over TLS and expect agents connecting to it to use the
WebSocket secure protocol. In order for communication to continue, both this section and the following
section must be completed.

Both the Sensu Go API and the dashboard use a common stanza in /etc/sensu/backend.yml to
provide the certifcate, key, and CA fle needed to provide secure communication. Let’s look at the
attributes you’ll need to confgure:

Providing the above cert-fle and key-fle parameters will cause the API to serve HTTP requests over
SSL/TLS (https). As a result, you will also need to specify https:// schema
for the api-url

parameter:

You can also specify a certifcate and key for the dashboard separately from the API using the
dashboard-cert-fle and dashboard-key-fle parameters as shown in the following example.

##

backend ssl confguration

##

cert-fle: "/path/to/ssl/cert.pem"

key-fle: "/path/to/ssl/key.pem"

trusted-ca-fle: "/path/to/trusted-certifcate-authorities.pem"

insecure-skip-tls-verify: false

##

backend api confguration

##

api-url: "https://localhost:8080"

##

backend ssl confguration

##

cert-fle: "/path/to/ssl/cert.pem"

key-fle: "/path/to/ssl/key.pem"

trusted-ca-fle: "/path/to/trusted-certifcate-authorities.pem"

In the example above, we provide the path to the cert, key and CA fle. After restarting the sensu-

backend service, the parameters are loaded and you are able to access the dashboard at
https://localhost:3000. Confguring these attributes will also ensure that agents are able to
communicate securely. Let’s move on to securing agent to server communication.

Securing Sensu agent to server communication

We’ll now discuss securing agent to server communication. Please note: by changing the agent
confguration to communicate via WebSocket Secure protocol, the agent will no longer communicate
over a plaintext connection. If the server is not secured as described in the section above,
communication between the agent and server will not function.

By default, an agent uses the insecure ws:// transport. Let’s look at the example from
/etc/sensu/agent.yml :

In order to use WebSockets over SSL/TLS (wss), change the backend-url value to the wss://
schema:

insecure-skip-tls-verify: false

dashboard-cert-fle: "/path/to/ssl/cert.pem"

dashboard-key-fle: "/path/to/ssl/key.pem"

##

agent confguration

##

backend-url:

 - "ws://127.0.0.1:8081"

##

agent confguration

##

backend-url:

 - "wss://127.0.0.1:8081"

https://localhost:3000/

The agent will then connect Sensu servers over wss. Do note that by changing the confguration to
wss, plaintext communication will not be possible.

It is also possible to provide a trusted CA as part of the agent confguration by passing --trusted-

ca-fle if starting the agent via sensu-agent start .

You may include it as part of the agent confguration in /etc/sensu/agent.yml as:

NOTE: If creating a Sensu cluster, every cluster member needs to be present in the confguration. See
the Sensu Go clustering guide for more information on how to confgure agents for a clustered
confguration.

Hopefully you’ve found this useful! If you fnd any issues or have any questions, feel free to reach out
in our Community Slack, or open an issue on Github.

trusted-ca-fle: "/path/to/trusted-certifcate-authorities.pem"

https://slack.sensu.io/
https://github.com/sensu/sensu-docs/issues/new

Troubleshooting

Contents
Service logging
Log levels
Log fle locations
Sensu backend startup errors
Permission issues
Handlers and flters

Service logging

Logs produced by Sensu services – i.e. sensu-backend and sensu-agent – are
often the best place to
start when troubleshooting a variety of issues.

Log levels

Each log message is associated with a log level, indicative of the relative severity of the event being
logged:

Log level Description

panic Severe errors causing the service to shut down in an unexpected state

fatal Fatal errors causing the service to shut down (status 0)

error Non-fatal service error messages

warn Warning messages indicating potential issues

info Informational messages representing service actions

debug Detailed service operation messages to help troubleshoot issues

These log levels can be confgured by specifying the desired log level as the
value of log-level in the
service confguration fle (e.g. agent.yml or
backend.yml confguration fles), or as an argument to
the --log-level
command line fag:

Changes to log level via confguration fle or command line arguments require
restarting the service. For
guidance on restarting a service, please
consult the Operating section of the agent or
backend
reference, respectively.

Log fle locations

Linux

Sensu services print structured log messages to standard output.
In order to capture these log
messages to disk or another logging facility, Sensu services
make use of capabilities provided by the
underlying operating system’s service
management. For example, logs are sent to the journald when
systemd is the service manager,
whereas log messages are redirected to /var/log/sensu when
running under sysv
init schemes. If you are running systemd as your service manager and would rather
have logs written to /var/log/sensu/ , see the guide to forwarding logs from journald to syslog.

In the table below, the common targets for logging and example commands for
following those logs are
described. The name of the desired service, e.g.
backend or agent may be substituted for
${service} variable.

Platform Versio
n

Targ
et

Command to follow log

RHEL/Centos >= 7 journal
d

RHEL/Centos <= 6 log fle

sensu-agent start --log-level debug

journalctl --follow --unit

sensu-${service}

tail --follow

/var/log/sensu/sensu-${service}

https://dzone.com/articles/what-is-structured-logging

Ubuntu >=
15.04

journal
d

Ubuntu <=
14.10

log fle

Debian >= 8 journal
d

Debian <= 7 log fle

NOTE: Platform versions described above are for reference only and do not
supercede the documented
supported platforms.

Windows

The Sensu agent stores service logs to the location specifed by the log-fle confguration fag
(default: %ALLUSERSPROFILE%\sensu\log\sensu-agent.log , C:\ProgramData\sensu\log\sensu-
agent.log on standard Windows installations).
For more information about managing the Sensu agent
for Windows, see the agent reference.
You can also view agent events using the Windows Event
Viewer, under Windows Logs, as events with source SensuAgent.

If you’re running a binary-only distribution of the Sensu agent for Windows, you can follow the service
log printed to standard output using the following command.

Sensu backend startup errors

journalctl --follow --unit

sensu-${service}

tail --follow

/var/log/sensu/sensu-${service}

journalctl --follow --unit

sensu-${service}

tail --follow

/var/log/sensu/sensu-${service}

Get-Content - Path "C:\scripts\test.txt" -Wait

The following errors are expected when starting up a Sensu backend with the default confguration.

The serving insecure client requests error is an expected warning from etcd.
TLS confguration
is recommended but not required. For more information, see etcd security documentation.

Permission issues

Files and folders within /var/cache/sensu/ and /var/lib/sensu/ need to be owned by the sensu
user and group. You will see a logged error similar to the following if there is a permission issue with
either the sensu-backend or the sensu-agent:

You can use a recursive chown to resolve permission issues with the sensu-backend:

or the sensu-agent:

{"component":"etcd","level":"warning","msg":"simple token is not cryptographically

signed","pkg":"auth","time":"2019-11-04T10:26:31-05:00"}

{"component":"etcd","level":"warning","msg":"set the initial cluster version to

3.3","pkg":"etcdserver/membership","time":"2019-11-04T10:26:31-05:00"}

{"component":"etcd","level":"warning","msg":"serving insecure client requests on

127.0.0.1:2379, this is strongly discouraged!","pkg":"embed","time":"2019-11-

04T10:26:33-05:00"}

{"component":"agent","error":"open /var/cache/sensu/sensu-agent/assets.db:

permission denied","level":"fatal","msg":"error executing sensu-agent","time":"2019-

02-21T22:01:04Z"}

{"component":"backend","level":"fatal","msg":"error starting etcd: mkdir

/var/lib/sensu: permission denied","time":"2019-03-05T20:24:01Z"}

sudo chown -R sensu:sensu /var/cache/sensu/sensu-backend

sudo chown -R sensu:sensu /var/cache/sensu/sensu-agent

https://etcd.io/docs/v3.4.0/op-guide/security/

Troubleshooting handlers and flters

Whether implementing new workfows or modifying existing ones, its sometimes necessary to
troubleshoot various stages of the event pipeline. In many cases generating events using the agent
API will save you time and effort over modifying existing check confgurations.

Here’s an example using curl with the API of a local sensu-agent process to generate test-event check
results:

Additionally, it’s frequently helpful to see the full event object being passed to your workfows. We
recommend using a debug handler like this one to write an event to disk as JSON data:

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "test-event",

 "namespace": "default"

 },

 "status": 2,

 "output": "this is a test event targeting the email_ops handler",

 "handlers": ["email_ops"]

 }

}' \

http://127.0.0.1:3031/events

type: Handler

api_version: core/v2

metadata:

 name: debug

 namespace: default

spec:

 type: pipe

 command: cat > /var/log/sensu/debug-event.json

 timeout: 2

YML

With this handler defnition installed in your Sensu backend, you can add the debug to the list of
handlers in your test event:

The event data should be written to /var/log/sensu/debug-event.json for inspection. The
contents of this fle will be overwritten by every event sent to the debug handler.

NOTE: When multiple Sensu backends are confgured in a cluster, event processing is distributed
across all members. You may need to check the flesystem of each Sensu backend to locate the

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "debug"

 },

 "spec": {

 "type": "pipe",

 "command": "cat > /var/log/sensu/debug-event.json",

 "timeout": 2

 }

}

JSON

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "test-event"

 },

 "status": 2,

 "output": "this is a test event targeting the email_ops handler",

 "handlers": ["email_ops", "debug"]

 }

}' \

http://127.0.0.1:3031/events

debug output for your test event.

Dashboard overview

Contents
Accessing the dashboard
Signing in
Namespaces
Managing checks
Managing entities
Themes

The Sensu backend includes the Sensu dashboard:
a unifed view of your events, entities, and checks
with user-friendly tools to reduce alert fatigue.

Sensu dashboard homepage

Accessing the dashboard

After starting the Sensu backend, you can access the dashboard in your browser
by visiting
http://localhost:3000. You may need to replace localhost with the
hostname or IP address where the
Sensu backend is running.

Signing in

Sign in to the dashboard with your sensuctl username and password.
See the role-based access control
reference for default user credentials and instructions for creating new users.

Namespaces

The dashboard displays events, entities, checks, and silences for a single namespace at a time.
By
default, the dashboard displays the default namespace.
To switch namespaces, select the menu
icon in the upper-left corner, and choose a namespace from the dropdown.

Sensu dashboard namespace switcher

Managing checks

LICENSED TIER: Unlock check management in the Sensu Go dashboard with a Sensu license. To
activate your license, see the getting started guide.

You can create, edit, and delete Sensu checks using the dashboard checks page.

Managing entities

LICENSED TIER: Unlock entity management in the Sensu Go dashboard with a Sensu license. To
activate your license, see the getting started guide.

http://localhost:3000/

You can delete Sensu entities using the dashboard entities page.

Themes

Use the preferences menu to change the theme or switch to the dark theme.

Dashboard fltering

Contents
Events page fltering
Entities page fltering
Checks page fltering
Silences page fltering
Arrays
Regular expressions

The Sensu dashboard supports fltering on the events, entities, checks, and silences pages.
Dashboard
fltering uses Sensu query expression syntax (for example: entity.entity_class === "proxy")
depending on the scope of the page.

Syntax quick reference

operator description

=== / !== Identity operator / Nonidentity operator

== / != Equality operator / Inequality operator

&& / || Logical AND / Logical OR

< / > Less than / Greater than

<= / >= Less than or equal to / Greater than or equal to

Events page fltering

Filtering on the events page supports all entity and check attributes present in the event data, prefxed
with entity. or check. respectively.

To show only events for the entity hostname server1 :

To show only events with a warning or critical status produced by the check named check_http :

Entities page fltering

Filtering on the entities page assumes the entity scope and supports all entity attributes.

To show only entities of entity class proxy :

To show only entities running on Linux or Windows:

Checks page fltering

Filtering on the check page assumes the check scope and supports all check attributes.

To show only the check named check_cpu :

To show only checks with the publish attribute set to false :

entity.system.hostname === "server1"

check.status > 0 && check.name === "check_http"

entity_class === "proxy"

system.os === "linux" || system.os === "windows"

name === "check_cpu"

!publish

Silences page fltering

Filtering on the silences page assumes the silences scope and supports all silencing entry attributes.

To show only silences with the creator admin :

To show only silences applied to the check check_cpu :

Arrays

To flter based on an attribute that contains an array of elements, use the .indexOf method.

On the checks page, to show only checks with the handler slack :

Regular expressions

The Sensu dashboard supports fltering with regular expressions using the .match syntax.

On the checks page, to show only checks with names prefxed with metric- :

creator === "admin"

check === "check_cpu"

handlers.indexOf("slack") >= 0

!!name.match(/^metric-/)

API overview

Contents
URL format
Data format
Versioning
Access control
Pagination
Filtering
Request size

Sensu Go 5.8 includes API v2.

The Sensu backend REST API provides access to Sensu workfow confgurations and monitoring
event data.
For the Sensu agent API, see the agent reference.

URL format

Sensu API endpoints use the standard URL format
/api/{group}/{version}/namespaces/{namespace} where:

{group} is the API group. All currently existing Sensu API endpoints are of group core .
{version} is the API version. Sensu Go 5.8 uses API v2.
{namespace} is the namespace name. The examples in these API docs use the default

namespace. The Sensu API requires that the authenticated user have the correct access permissions
for the namespace specifed in the URL. If the authenticated user has the correct cluster-wide
permissions, you can leave out the /namespaces/{namespace} portion of the URL to access Sensu
resources across namespaces. See the RBAC reference for more information about confguring Sensu
users and access controls.

Data format

The API uses JSON formatted requests and responses.
In terms of sensuctl output types, the Sensu
API uses the json format, not wrapped-json .

Versioning

The Sensu Go API is versioned according to the format v{majorVersion}{stabilityLevel}

{iterationNumber} , in which v2 is stable version 2.
The Sensu API guarantees backward
compatibility for stable versions of the API.

Sensu makes no guarantee that an alpha or beta API will be maintained for any period of time.
Alpha
versions should be considered under active development and may not be published for every release.
Beta APIs, while more stable than alpha versions, offer similarly short-lived lifespans and also provide
no guarantee of programmatic conversions when the API is updated.

Access control

With the exception of the health and metrics APIs, the Sensu API requires authentication using a JWT
access token.
You can generate access tokens and refresh tokens using the authentication API and
your Sensu username and password.
These docs use $SENSU_TOKEN to represent a valid access
token in API requests.

Authentication quick start

To set up a local API testing environment, save your Sensu credentials and token as environment
variables:

Basic authentication using the authentication API

The /auth API endpoint lets you generate short-lived API tokens using your Sensu username and
password.

1. Retrieve an access token for your user.
For example, to generate an access token using the
default admin credentials:

Requires curl and jq

export SENSU_USER=admin && SENSU_PASS=P@ssw0rd!

export SENSU_TOKEN=`curl -XGET -u "$SENSU_USER:$SENSU_PASS" -s

http://localhost:8080/auth | jq -r ".access_token"`

The access token should be included in the output, along with a refresh token:

2. Copy the access token into the authentication header of the API request.
For example:

3. Access tokens last for around 15 minutes.
When your token expires, you should see a 401
Unauthorized response from the API.
To generate a new access token, use the /auth/token

API endpoint, including the expired access token in the authorization header and the refresh
token in the request body:

The new access token should be included in the output:

Generating an API token using sensuctl

curl -u 'admin:P@ssw0rd!' http://localhost:8080/auth

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

-H 'Content-Type: application/json' \

-d '{"refresh_token": "eyJhbGciOiJIUzI1NiIs..."}' \

http://127.0.0.1:8080/auth/token

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1561055277,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

You can also generate an API access token using the sensuctl command-line tool.
The user credentials
that you use to log in to sensuctl determine your permissions to get, list, create, update, and delete
resources using the Sensu API.

1. Install and log in to sensuctl.

2. Retrieve an access token for your user:

The access token should be included in the output:

3. Copy the access token into the authentication header of the API request. For example:

4. Access tokens last for around 15 minutes.
If your token expires, you should see a 401
Unauthorized response from the API.
To regenerate a valid access token, frst run any sensuctl
command (like sensuctl event list) then repeat step 2.

Filtering

LICENSED TIER: Unlock API fltering in Sensu Go with a Sensu license. To activate your license, see
the getting started guide.

The Sensu API supports fltering for all GET endpoints that return an array. You can flter resources
based on their labels with a label selector using the labelSelector query parameter and on certain
pre-determined felds with a feld selector using the feldSelector query parameter.

For example, the following request flters the response to only include resources that have a label entry
region with the value us-west-1 . We will use the fag --data-urlencode in curl so it encodes

the query parameter for us, in conjunction with the -G fag so it appends the data to the URL.

cat ~/.confg/sensu/sensuctl/cluster|grep access_token

"access_token": "eyJhbGciOiJIUzI1NiIs...",

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

Label selector

A label selector can use any label attributes to group a set of resources. All resources support labels
within the metadata object. For example, see entities metadata attributes.

Field selector

A feld selector can use certain felds of resources to organize and select subsets of resources. Here’s
the list of available felds.

Resource Fields

Asset asset.name asset.namespace asset.flters

Check check.name check.namespace check.handlers check.publish
check.round_robin check.runtime_assets check.subscriptions

ClusterRole clusterrole.name

ClusterRoleBinding clusterrolebinding.name clusterrolebinding.role_ref.name
clusterrolebinding.role_ref.type

Entity entity.name entity.namespace entity.deregister
entity.entity_class entity.subscriptions

Event event.name event.namespace event.check.handlers
event.check.publish event.check.round_robin
event.check.runtime_assets event.check.status
event.check.subscriptions event.entity.deregister
event.entity.entity_class event.entity.subscriptions

Extension extension.name extension.namespace

Filter flter.name flter.namespace flter.action
flter.runtime_assets

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'labelSelector=region == "us-west-1"'

Handler handler.name handler.namespace handler.flters
handler.handlers handler.mutator handler.type

Hook hook.name hook.namespace

Mutator mutator.name mutator.namespace mutator.runtime_assets

Namespace namespace.name

Role role.name role.namespace

RoleBinding rolebinding.name rolebinding.namespace
rolebinding.role_ref.name rolebinding.role_ref.type

Silenced silenced.name silenced.namespace silenced.check
silenced.creator silenced.expire_on_resolve
silenced.subscription

User user.username user.disabled user.groups

Supported operators

There are two equality-based operators supported, == (equality) and != (inequality). For example,
the following statements are possible:

Additionally, there are two set-based operators to deal with lists of values, in and notin . For
example, the following statements are possible:

Combining selectors and statements

check.publish == true

check.namespace != "default"

linux in check.subscriptions

slack notin check.handlers

check.namespace in [dev,production]

A feld or label selector can be made of multiple statements which are separated with the logical
operator && (AND). For example, the following curl request looks up checks that are confgured to be
published and have the slack handler:

In addition to selectors with multiple statements, both feld and label selectors can be used at the same
time:

Request size

API request bodies are limited to 0.512 MB in size.

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=check.publish == true && slack in check.handlers'

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=slack in check.handlers' \

--data-urlencode 'labelSelector=region != "us-west-1"'

Assets API

Contents
The /assets API endpoint
/assets (GET)
/assets (POST)

The /assets/:asset API endpoint
/assets/:asset (GET)
/assets/:asset (PUT)

The /assets API endpoint

/assets (GET)

The /assets API endpoint provides HTTP GET access to asset data.

EXAMPLE

The following example demonstrates a request to the /assets API, resulting in
a JSON Array
containing asset defnitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/assets -H "Authorization:

Bearer $SENSU_TOKEN"

[

 {

 "url": "http://example.com/asset1.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a

87450576b2c58ad9ab40c9e2edc31b288d066b195b21b",

 "metadata": {

 "name": "check_script1",

 "namespace": "default",

 "labels": null,

API Specifcation

/assets (GET)

description Returns the list of assets.

example url http://hostname:8080/api/core/v2/namespaces/default/assets

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 "annotations": null

 }

 }

]

[

 {

 "url": "http://example.com/asset1.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a

3ef3c2e8d154812246e5dda4a87450576b2c58ad9ab40c9e2edc31b288d

066b195b21b",

 "metadata": {

 "name": "check_script1",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 },

 {

 "url": "http://example.com/asset2.tar.gz",

 "sha512":

"37c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a84f926bf4328fb

http://hostname:8080/api/core/v2/namespaces/default/assets

/assets (POST)

/assets (POST)

description Create a Sensu asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

ad2b9cac873d11450576b2c58ad9ab40c9e2edc31b288d066b195b21b7f

771914f4b87",

 "metadata": {

 "name": "check_script2",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

]

{

 "url": "http://example.com/asset1.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a

3ef3c2e8d154812246e5dda4a87450576b2c58ad9ab40c9e2edc31b288d

066b195b21b",

 "metadata": {

 "name": "check_script1",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

http://hostname:8080/api/core/v2/namespaces/default/assets

The /assets/:asset API endpoint

/assets/:asset (GET)

The /assets/:asset API endpoint provides HTTP GET access to asset data for specifc :asset
defnitions, by asset name .

EXAMPLE

In the following example, querying the /assets/:asset API returns a JSON Map
containing the
requested :asset defnition (in this example: for the :asset named
check_script).

API Specifcation

/assets/:asset
(GET)

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/check_script -H

"Authorization: Bearer $SENSU_TOKEN"

{

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a

87450576b2c58ad9ab40c9e2edc31b288d066b195b21b",

 "flters": [

 "system.os == 'linux'",

 "system.arch == 'amd64'"

],

 "metadata": {

 "name": "check_script",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

description Returns an asset.

example url http://hostname:8080/api/core/v2/namespaces/default/assets/check_scri
pt

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/assets/:asset (PUT)

API Specifcation

/assets/:asset
(PUT)

{

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a

3ef3c2e8d154812246e5dda4a87450576b2c58ad9ab40c9e2edc31b288d

066b195b21b",

 "flters": [

 "system.os == 'linux'",

 "system.arch == 'amd64'"

],

 "metadata": {

 "name": "check_script",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

http://hostname:8080/api/core/v2/namespaces/default/assets/check_script
http://hostname:8080/api/core/v2/namespaces/default/assets/check_script

description Create or update a Sensu asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets/check_scri
pt

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

{

 "url": "http://example.com/asset1.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a

3ef3c2e8d154812246e5dda4a87450576b2c58ad9ab40c9e2edc31b288d

066b195b21b",

 "metadata": {

 "name": "check_script1",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

http://hostname:8080/api/core/v2/namespaces/default/assets/check_script
http://hostname:8080/api/core/v2/namespaces/default/assets/check_script

Authentication API

Contents
The /auth API endpoint
/auth (GET)

The /auth/test API endpoint
/auth/test (GET)

The /auth/token API endpoint
/auth/token (POST)

The /auth API endpoint

/auth (GET)

The /auth API endpoint provides HTTP GET access to create an access token using basic
authentication.

EXAMPLE

In the following example, querying the /auth API with a given username and password returns a 200
OK response, indicating that the credentials are valid, along with an access and a refresh token.

curl -u myusername:mypassword http://127.0.0.1:8080/auth

HTTP/1.1 200 OK

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

API Specifcation

/auth (GET)

description Generates an access token to the API using basic authentication. Access
tokens last for around 15 minutes. When your token expires, you should
see a 401 Unauthorized response from the API. To generate a new
access token, use the /auth/token API endpoint.

example url http://hostname:8080/api/core/v2/auth

output

response codes Valid credentials: 200 (OK)
Invalid credentials: 401 (Unauthorized)
Error: 500 (Internal Server Error)

The /auth/test API endpoint

/auth/test (GET)

The /auth/test API endpoint provides HTTP GET access to test user credentials.

EXAMPLE

In the following example, querying the /auth/test API with a given username and password returns
a 200 OK response, indicating that the credentials are valid.

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

curl -u myusername:mypassword http://127.0.0.1:8080/auth/test

http://hostname:8080/api/core/v2/auth

API Specifcation

/auth/test (GET)

description Tests a given username and password.

example url http://hostname:8080/api/core/v2/auth/test

response codes Valid credentials: 200 (OK)
Invalid credentials: 401 (Unauthorized)
Error: 500 (Internal Server Error)

The /auth/token API endpoint

/auth/token (POST)

The /auth/test API endpoint provides HTTP POST access to renew an access token.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /auth/token API to generate a
valid access token. The request includes the refresh token in the request body and returns a
successful HTTP 200 OK response along with the new access token.

HTTP/1.1 200 OK

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

-H 'Content-Type: application/json' \

-d '{"refresh_token": "eyJhbGciOiJIUzI1NiIs..."}' \

http://127.0.0.1:8080/auth/token

HTTP/1.1 200 OK

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

http://hostname:8080/api/core/v2/auth/test

API Specifcation

/auth/token
(POST)

description Generates a new access token using a refresh token and an expired
access token

example url http://hostname:8080/api/core/v2/auth

example payload

output

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

{

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

http://hostname:8080/api/core/v2/auth

Authentication providers API

Contents
The authproviders API endpoints (licensed tier)
/authproviders (GET)

The authproviders/:name API endpoints (licensed tier)
authproviders/:name (GET)
authproviders/:name (PUT)
authproviders/:name (DELETE)

LICENSED TIER: Unlock authentication providers in Sensu Go with a Sensu license. To activate your
license, see the getting started guide.

The /authproviders API endpoints

/authproviders (GET)

The /authproviders API endpoint provides HTTP GET access to authentication provider
confguration in Sensu.

API Specifcation

/authproviders
(GET)

description Returns the list of active authentication providers.

example url http://hostname:8080/api/enterprise/authentication/v2/authproviders

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

http://hostname:8080/api/enterprise/authentication/v2/authproviders

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

The /authproviders/:name API endpoints

/authproviders/:name (GET)

The /authproviders/:name API endpoint provides HTTP GET access to authentication provider
confguration for a specifc :name .

[

 {

 "Type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "P@ssw0rd!"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

 }

]

API Specifcation

/authproviders/:na
me (GET)

description Returns the confguration for an authentication provider given the
confgured provider name.

example url http://hostname:8080/api/enterprise/authentication/v2/authproviders/open
ldap

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output
{

 "Type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "P@ssw0rd!"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap
http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap

/authproviders/:name (PUT)

The /authproviders/:name API endpoint provides HTTP PUT access to create or update an
authentication provider confguration given :name .

API Specifcation

/authproviders/:na
me (PUT)

description Create or update an authentication provider confguration given the
name. See the authentication guide for more information about
supported providers.

example url http://hostname:8080/api/enterprise/authentication/v2/authproviders/open
ldap

payload

}

{

 "Type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "P@ssw0rd!"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap
http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap

payload parameters All attributes shown in the example payload are required. For more
information about confguring authentication providers, see the
authentication guide.

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/authproviders/:name (DELETE)

The /authproviders/:name API endpoint provides HTTP DELETE access to delete an
authentication provider confguration from Sensu given the :name .

EXAMPLE

The following example shows a request to delete the confguration for the authentication provider
openldap , resulting in a successful HTTP 204 No Content response.

API Specifcation

/authproviders/:na
me (DELETE)

]

 },

 "metadata": {

 "name": "openldap"

 }

}

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/authproviders/openldap

HTTP/1.1 204 No Content

description Deletes an authentication provide confguration from Sensu given the
name.

example url http://hostname:8080/api/enterprise/authentication/v2/authproviders/open
ldap

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap
http://hostname:8080/api/enterprise/authentication/v2/authproviders/openldap

Checks API

Contents
The /checks API endpoint
/checks (GET)
/checks (POST)

The /checks/:check API endpoint
/checks/:check (GET)
/checks/:check (PUT)
/checks/:check (DELETE)

The /checks/:check/execute API endpoint
/checks/:check/execute (POST)

The /checks/:check/hooks/:type API endpoint
/checks/:check/hooks/:type (PUT)

The /checks/:check/hooks/:type/hook/:hook API endpoint
/checks/:check/hooks/:type/hook/:hook (DELETE)

The /checks API endpoint

/checks (GET)

The /checks API endpoint provides HTTP GET access to check data.

EXAMPLE

The following example demonstrates a request to the /checks API, resulting in
a JSON Array
containing check defnitions.

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

HTTP/1.1 200 OK

[

API Specifcation

/checks (GET)

description Returns the list of checks.

example url http://hostname:8080/api/core/v2/namespaces/default/checks

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 {

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

 }

]

[

 {

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

http://hostname:8080/api/core/v2/namespaces/default/checks

/checks (POST)

EXAMPLE

In the following example, an HTTP POST request is submitted to the /checks API to create a
check-cpu check.
The request includes the check defnition in the request body and returns a

successful HTTP 200 OK response and the created check defnition.

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

 },

 {

 "command": "http_check.sh https://sensu.io",

 "handlers": [

 "slack"

],

 "interval": 15,

 "proxy_entity_name": "sensu.io",

 "publish": true,

 "subscriptions": [

 "site"

],

 "metadata": {

 "name": "check-sensu-site",

 "namespace": "default"

 }

 }

]

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

API Specifcation

/checks (POST)

description Create a Sensu check.

-H 'Content-Type: application/json' \

-d '{

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": [

 "linux"

],

 "interval": 60,

 "publish": true,

 "handlers": [

 "slack"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

HTTP/1.1 200 OK

{

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": [

 "linux"

],

 "interval": 60,

 "publish": true,

 "handlers": [

 "slack"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

example URL http://hostname:8080/api/core/v2/namespaces/default/checks

example payload

payload parameters Required check attributes: interval (integer) or cron (string), and a
metadata scope containing name (string) and namespace (string).

For more information about creating checks, see the check reference.

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /checks/:check API endpoint

/checks/:check (GET)

The /checks/:check API endpoint provides HTTP GET access to check data for specifc :check
defnitions, by check name .

EXAMPLE

{

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": [

 "linux"

],

 "interval": 60,

 "publish": true,

 "handlers": [

 "slack"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

http://hostname:8080/api/core/v2/namespaces/default/checks

In the following example, querying the /checks/:check API returns a JSON Map
containing the
requested :check defnition (in this example: for the :check named
check-cpu).

API Specifcation

/checks/:check
(GET)

description Returns a check.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 200 OK

{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

/checks/:check (PUT)

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /checks/:check API to update
the check-cpu check, resulting in a 200 (OK) HTTP response code and the updated check defnition.

{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

API Specifcation

/checks/:check
(PUT)

description Create or update a Sensu check given the name of the check as a URL
parameter.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

payload

payload parameters Required check attributes: interval (integer) or cron (string), and a
metadata scope containing name (string) and namespace (string).

For more information about creating checks, see the check reference.

response codes Success: 200 (OK)

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 200 OK

{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/checks/:check (DELETE)

The /checks/:check API endpoint provides HTTP DELETE access to delete a check from Sensu
given the check name.

EXAMPLE

The following example shows a request to delete the check named check-cpu , resulting in a
successful HTTP 204 No Content response.

API Specifcation

/checks/:check
(DELETE)

description Removes a check from Sensu given the check name.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /checks/:check/execute API endpoint

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

/checks/:check/execute (POST)

The /checks/:check/execute API endpoint provides HTTP POST access to create an ad-hoc check
execution request, allowing you to execute a check on demand.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /checks/:check/execute API
to execute the check-sensu-site check.
The request includes the check name in the request body
and returns a successful HTTP 202 Accepted response and an issued timestamp.

PRO TIP: Include the subscriptions attribute with the request body to override the subscriptions
confgured in the check defnition. This gives you the fexibility to execute a check on any Sensu entity
or group of entities on demand.

API Specifcation

/checks/:check/ex
ecute (POST)

description Creates an adhoc request to execute a check given the check name.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check-
sensu-site/execute

payload

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{"check": "check-sensu-site"}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-sensu-site/execute

HTTP/1.1 202 Accepted

{"issued":1543861798}

{

 "check": "check-sensu-site",

 "subscriptions": [

http://hostname:8080/api/core/v2/namespaces/default/checks/check-sensu-site/execute
http://hostname:8080/api/core/v2/namespaces/default/checks/check-sensu-site/execute

payload parameters check (required): the name of the check to execute, and
subscriptions (optional): an array of subscriptions to publish the

check request to. When provided with the request, the subscriptions
attribute overrides any subscriptions confgured in the check defnition.

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /checks/:check/hooks/:type API endpoint

/checks/:check/hooks/:type (PUT)

The /checks/:check/hooks/:type API endpoint provides HTTP PUT access to assign a hook to a
check.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /checks/:check/hooks/:type

API,
assigning the process_tree hook to the check-cpu check in the event of a critical type
check result, resulting in a successful 204 (No Content) HTTP response code.

 "entity:i-424242"

]

}

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "critical": [

 "process_tree"

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical

API Specifcation

checks/:check/hoo
ks/:type (PUT)

description Assigns a hook to a check given the check name and check response
type.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check-
cpu/hooks/critical

example payload

payload parameters This endpoint requires a JSON map of check response types (for
example: critical , warning), each containing an array of hook
names.

response codes Success: 204 (No Content)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /checks/:check/hooks/:type/hook/:hook API endpoint

/checks/:check/hooks/:type/hook/:hook (DELETE)

This endpoint provides HTTP DELETE access to a remove a hook from a check.

HTTP/1.1 204 No Content

{

 "critical": [

 "example-hook1",

 "example-hook2"

]

}

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical
http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical

EXAMPLE

The following example shows a request to remove the process_tree hook from the check-cpu
check, resulting in a successful 204 (No Content) HTTP response code.

API Specifcation

/checks/:check/ho
oks/
:type/hook/:hook
(DELETE)

description Removes a single hook from a check given the check name, check
response type, and hook name. See the checks reference for available
types.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-
cpu/hooks/critical/hook/process_tree

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-

cpu/hooks/critical/hook/process_tree

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical/hook/process_tree
http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical/hook/process_tree

Cluster API

Contents
The /cluster/members API endpoint
/cluster/members (GET)
/cluster/members (POST)

The /cluster/members/:member API endpoint
/cluster/members/:member (PUT)
/cluster/members/:member (DELETE)

The /cluster/members API endpoint

/cluster/members (GET)

The /cluster/members API endpoint provides HTTP GET access to Sensu cluster data.

EXAMPLE

The following example demonstrates a request to the /cluster/members API, resulting in
a JSON
Map containing a Sensu cluster defnition.

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/cluster/members

HTTP/1.1 200 OK

{

 "header": {

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 2

 },

 "members": [

 {

API Specifcation

/cluster/members
(GET)

description Returns the cluster defnition.

example url http://hostname:8080/api/core/v2/cluster/members

response type Map

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

example output

 "ID": 9882886658148554927,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://127.0.0.1:2379"

]

 }

]

}

{

 "header": {

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148554927,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

http://hostname:8080/api/core/v2/cluster/members

/cluster/members (POST)

The /cluster/members API endpoint provides HTTP POST access to create a Sensu cluster
member.

EXAMPLE

 "clientURLs": [

 "http://127.0.0.1:2379"

]

 }

]

}

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380

HTTP/1.1 200 OK

{

 "header": {

 "cluster_id": 4255616304056077000,

 "member_id": 9882886658148555000,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148555000,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://localhost:2379"

]

 }

]

}

API Specifcation

/cluster/members/:
member (POST)

description Creates a cluster member.

example url http://hostname:8080/api/core/v2/cluster/members?peer-
addrs=http://127.0.0.1:2380

query parameters peer-addrs (required): A comma-delimited list of peer addresses

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /cluster/members/:member API endpoint

/cluster/members/:member (PUT)

EXAMPLE

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/cluster/members/8927110dc66458af?peer-

addrs=http://127.0.0.1:2380

HTTP/1.1 200 OK

{

 "header": {

 "cluster_id": 4255616304056077000,

 "member_id": 9882886658148555000,

 "raft_term": 2

 },

http://hostname:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380
http://hostname:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380

API Specifcation

/cluster/members/:
member (PUT)

description Creates a cluster member.

example url http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af?
peer-addrs=http://127.0.0.1:2380

url parameters 8927110dc66458af (required): Required hex-encoded uint64 cluster
member ID generated using sensuctl cluster member-list

query parameters peer-addrs (required): A comma-delimited list of peer addresses

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

/cluster/members/:member (DELETE)

The /cluster/members/:member API endpoint provides HTTP DELETE access to remove a Sensu
cluster member.

 "members": [

 {

 "ID": 9882886658148555000,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://localhost:2379"

]

 }

]

}

http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af?peer-addrs=http://127.0.0.1:2380
http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af?peer-addrs=http://127.0.0.1:2380

EXAMPLE

The following example shows a request to remove the Sensu cluster member with the ID
8927110dc66458af , resulting in a successful HTTP 204 No Content response.

API Specifcation

/cluster/
members/:member
(DELETE)

description Removes a member from a Sensu cluster given the member ID.

example url http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af

url parameters 8927110dc66458af (required): Required hex-encoded uint64 cluster
member ID generated using sensuctl cluster member-list

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/cluster/members/8927110dc66458a

f

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af

Cluster role bindings API

Contents
The /clusterrolebindings API endpoint
/clusterrolebindings (GET)
/clusterrolebindings (POST)

The /clusterrolebindings/:clusterrolebinding API endpoint
/clusterrolebindings/:clusterrolebinding (GET)
/clusterrolebindings/:clusterrolebinding (PUT)
/clusterrolebindings/:clusterrolebinding (DELETE)

The /clusterrolebindings API endpoint

/clusterrolebindings (GET)

The /clusterrolebindings API endpoint provides HTTP GET access to cluster role binding data.

EXAMPLE

The following example demonstrates a request to the /clusterrolebindings API, resulting in
a
JSON Array containing cluster role binding defnitions.

curl http://127.0.0.1:8080/api/core/v2/clusterrolebindings -H "Authorization: Bearer

$SENSU_TOKEN"

HTTP/1.1 200 OK

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "cluster-admins"

 }

API Specifcation

/clusterrolebinding
s (GET)

description Returns the list of cluster role bindings.

example url http://hostname:8080/api/core/v2/clusterrolebindings

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "cluster-admin"

 }

 },

 {

 "subjects": [

 {

 "type": "Group",

 "name": "system:agents"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "system:agent"

 },

 "metadata": {

 "name": "system:agent"

 }

 }

]

http://hostname:8080/api/core/v2/clusterrolebindings

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

/clusterrolebindings (POST)

The /clusterrolebindings API endpoint provides HTTP POST access to create a cluster role
binding.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /clusterrolebindings API to
create a cluster role binding that assigns the cluster-admin cluster role to the user bob .
The
request includes the cluster role binding defnition in the request body and returns a successful HTTP
200 OK response and the created cluster role binding defnition.

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "cluster-admins"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "cluster-admin"

 }

 }

]

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

API Specifcation

/clusterrolebinding
s (POST)

description Create a Sensu cluster role binding.

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}' \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

example URL http://hostname:8080/api/core/v2/clusterrolebindings

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /clusterrolebindings/:clusterrolebinding API endpoint

/clusterrolebindings/:clusterrolebinding (GET)

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP GET access to
cluster role binding data for specifc :clusterrolebinding defnitions, by cluster role binding name .

EXAMPLE

In the following example, querying the /clusterrolebindings/:clusterrolebinding API returns a
JSON Map
containing the requested :clusterrolebinding defnition (in this example: for the
:clusterrolebinding named
bob-binder).

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

http://hostname:8080/api/core/v2/clusterrolebindings

API Specifcation

/clusterrolebinding
s/:clusterrolebindin
g (GET)

description Returns a cluster role binding.

example url http://hostname:8080/api/core/v2/clusterrolebindings/bob-binder

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

curl http://127.0.0.1:8080/api/core/v2/clusterrolebindings/bob-binder -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

{

 "subjects": [

 {

http://hostname:8080/api/core/v2/clusterrolebindings/bob-binder

/clusterrolebindings/:clusterrolebinding (PUT)

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP PUT access to
create or update a cluster role binding, by cluster role binding name .

EXAMPLE

In the following example, an HTTP PUT request is submitted to the
/clusterrolebindings/:clusterrolebinding API to create a cluster role binding that assigns the
cluster-admin cluster role to users in the group ops .
The request includes the cluster role binding

defnition in the request body and returns a successful HTTP 200 OK response and the created cluster
role binding defnition.

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "subjects": [

 {

 "type": "Group",

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

API Specifcation

/clusterrolebinding
s/:clusterrolebindin
g (PUT)

description Create or update a Sensu cluster role binding.

example URL http://hostname:8080/api/core/v2/clusterrolebindings/ops-group-binder

payload

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "ops-group-binder"

 }

}' \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-group-binder

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "Group",

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "ops-group-binder"

 }

}

{

 "subjects": [

 {

 "type": "Group",

http://hostname:8080/api/core/v2/clusterrolebindings/ops-group-binder

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/clusterrolebindings/:clusterrolebinding (DELETE)

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP DELETE access to
delete a cluster role binding from Sensu given the cluster role binding name.

EXAMPLE

The following example shows a request to delete the cluster role binding ops-binding , resulting in a
successful HTTP 204 No Content response.

API Specifcation

/clusterrolebinding

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "ops-group-binder"

 }

}

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-binding

HTTP/1.1 204 No Content

s/:clusterrolebindin
g (DELETE)

description Removes a cluster role binding from Sensu given the cluster role binding
name.

example url http://hostname:8080/api/core/v2/clusterrolebindings/ops-binding

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/clusterrolebindings/ops-binding

Cluster roles API

Contents
The /clusterroles API endpoint
/clusterroles (GET)
/clusterroles (POST)

The /clusterroles/:clusterrole API endpoint
/clusterroles/:clusterrole (GET)
/clusterroles/:clusterrole (PUT)
/clusterroles/:clusterrole (DELETE)

The /clusterroles API endpoint

/clusterroles (GET)

The /clusterroles API endpoint provides HTTP GET access to cluster role data.

EXAMPLE

The following example demonstrates a request to the /clusterroles API, resulting in
a JSON Array
containing cluster role defnitions.

curl http://127.0.0.1:8080/api/core/v2/clusterroles -H "Authorization: Bearer

$SENSU_TOKEN"

HTTP/1.1 200 OK

[

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "assets",

 "checks",

 "entities",

 "extensions",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "silenced",

 "roles",

 "rolebindings"

],

 "resource_names": null

 },

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "namespaces"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

API Specifcation

/clusterroles (GET)

description Returns the list of cluster roles.

example url http://hostname:8080/api/core/v2/clusterroles

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

],

 "metadata": {

 "name": "cluster-admin"

 }

 }

]

[

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "cluster-admin"

 }

http://hostname:8080/api/core/v2/clusterroles

/clusterroles (POST)

/clusterroles
(POST)

description Create a Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

 }

]

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

http://hostname:8080/api/core/v2/clusterroles

The /clusterroles/:clusterrole API endpoint

/clusterroles/:clusterrole (GET)

The /clusterroles/:clusterrole API endpoint provides HTTP GET access to cluster role data for
specifc :clusterrole defnitions, by cluster role name .

EXAMPLE

In the following example, querying the /clusterroles/:clusterrole API returns a JSON Map
containing the requested :clusterrole defnition (in this example: for the :clusterrole named
global-event-reader).

API Specifcation

curl http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

/clusterroles/:clust
errole (GET)

description Returns a cluster role.

example url http://hostname:8080/api/core/v2/clusterroles/global-event-reader

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/clusterroles/:clusterrole (PUT)

API Specifcation

/clusterroles/:clust
errole (PUT)

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

http://hostname:8080/api/core/v2/clusterroles/global-event-reader

description Create or update a Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles/global-event-reader

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/clusterroles/:clusterrole (DELETE)

The /clusterroles/:clusterrole API endpoint provides HTTP DELETE access to delete a cluster
role from Sensu given the cluster role name.

EXAMPLE

The following example shows a request to delete the cluster role global-event-reader , resulting in
a successful HTTP 204 No Content response.

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

http://hostname:8080/api/core/v2/clusterroles/global-event-reader

API Specifcation

/clusterroles/:clust
errole (DELETE)

description Removes a cluster role from Sensu given the cluster role name.

example url http://hostname:8080/api/core/v2/clusterroles/global-event-reader

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/clusterroles/global-event-reader

Entities API

Contents
The /entities API endpoint
/entities (GET)
/entities (POST)

The /entities/:entity API endpoint
/entities/:entity (GET)
/entities/:entity (PUT)
/entities/:entity (DELETE)

The /entities API endpoint

/entities (GET)

The /entities API endpoint provides HTTP GET access to entity data.

EXAMPLE

The following example demonstrates a request to the /entities API, resulting in
a JSON Array
containing entity defnitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/entities -H

"Authorization: Bearer $SENSU_TOKEN"

[

 {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

API Specifcation

/entities (GET)

description Returns the list of entities.

example url http://hostname:8080/api/core/v2/namespaces/default/entities

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

]

[

 {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

http://hostname:8080/api/core/v2/namespaces/default/entities

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

/entities (POST)

/entities (POST)

description Create a Sensu entity.

example URL http://hostname:8080/api/core/v2/namespaces/default/entities

payload

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

]

{

 "entity_class": "proxy",

 "subscriptions": [

 "web"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

http://hostname:8080/api/core/v2/namespaces/default/entities

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /entities/:entity API endpoint

/entities/:entity (GET)

The /entities/:entity API endpoint provides HTTP GET access to entity data for specifc
:entity defnitions, by entity name .

EXAMPLE

In the following example, querying the /entities/:entity API returns a JSON Map
containing the
requested :entity defnition (in this example: for the :entity named
sensu-centos).

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/sensu-centos -H

"Authorization: Bearer $SENSU_TOKEN"

{

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

API Specifcation

/entities/:entity
(GET)

description Returns a entity.

example url http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

}

{

 "entity_class": "agent",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos
http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

/entities/:entity (PUT)

API Specifcation

/entities/:entity
(PUT)

description Create or update a Sensu entity.

example URL http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/entities/:entity (DELETE)

The /entities/:entity API endpoint provides HTTP DELETE access to delete an entity from
Sensu given the entity name.

{

 "entity_class": "proxy",

 "subscriptions": [

 "web"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos
http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-centos

EXAMPLE

The following example shows a request to delete the entity server1 , resulting in a successful HTTP
204 No Content response.

API Specifcation

/entities/:entity
(DELETE)

description Removes a entity from Sensu given the entity name.

example url http://hostname:8080/api/core/v2/namespaces/default/entities/server1

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/server1

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/default/entities/server1

Events API

Contents
The /events API endpoint
/events (GET)
/events (POST)

The /events/:entity API endpoint
/events/:entity (GET)

The /events/:entity/:check API endpoint
/events/:entity/:check (GET)
/events/:entity/:check (PUT)
/events/:entity/:check (DELETE)

The /events API endpoint

/events (GET)

The /events API endpoint provides HTTP GET access to event data.

EXAMPLE

The following example demonstrates a request to the /events API, resulting in
a JSON Array
containing event defnitions.

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

HTTP/1.1 200 OK

[

 {

 "timestamp": 1542667666,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "testing",

 "entity:webserver01"

],

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 },

 "check": {

 "check_hooks": null,

 "duration": 2.033888684,

 "command": "http_check.sh http://localhost:80",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 20,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [],

 "subscriptions": [

 "testing"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

 "duration": 0.010849143,

 "output": "",

 "state": "failing",

 "status": 1,

 "total_state_change": 0,

 "last_ok": 0,

API Specifcation

/events (GET)

description Returns the list of events.

example url http://hostname:8080/api/core/v2/namespaces/default/events

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

 "output_metric_handlers": [],

 "env_vars": null,

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

 }

]

[

 {

 "timestamp": 1542667666,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

http://hostname:8080/api/core/v2/namespaces/default/events

 "arch": "amd64"

 },

 "subscriptions": [

 "testing",

 "entity:webserver01"

],

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 },

 "check": {

 "check_hooks": null,

 "duration": 2.033888684,

 "command": "http_check.sh http://localhost:80",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 20,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [],

 "subscriptions": [

 "testing"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

 "duration": 0.010849143,

 "output": "",

 "state": "failing",

 "status": 1,

 "total_state_change": 0,

 "last_ok": 0,

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

/events (POST)

The /events API endpoint provides HTTP POST access to create an event and send it to the Sensu
pipeline.

EXAMPLE

In the following example, an HTTP POST request is submitted to the /events API to create an event.
The request includes information about the check and entity represented by the event and returns a
successful HTTP 200 OK response and the event defnition.

 "output_metric_handlers": [],

 "env_vars": null,

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

 }

 }

]

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "state": "failing",

 "status": 2,

API Specifcation

/events (POST)

description Create a Sensu event for a new entity and check combination. To create
an event for an existing entity and check combination or to update an
existing event, use the /events/:entity/:check PUT endpoint.

example URL http://hostname:8080/api/core/v2/namespaces/default/events

payload

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

HTTP/1.1 200 OK

{"timestamp":1552582569,"entity":{"entity_class":"proxy","system":{"network":{"inter

faces":null}},"subscriptions":null,"last_seen":0,"deregister":false,"deregistration"

:{},"metadata":{"name":"server1","namespace":"default"}},"check":{"handlers":["slack

"],"high_fap_threshold":0,"interval":60,"low_fap_threshold":0,"publish":false,"runti

me_assets":null,"subscriptions":[],"proxy_entity_name":"","check_hooks":null,"stdin"

:false,"subdue":null,"ttl":0,"timeout":0,"round_robin":false,"executed":0,"history":

null,"issued":0,"output":"Server

error","state":"failing","status":2,"total_state_change":0,"last_ok":0,"occurrences"

:0,"occurrences_watermark":0,"output_metric_format":"","output_metric_handlers":null

,"env_vars":null,"metadata":{"name":"server-health"}},"metadata":{}}

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

http://hostname:8080/api/core/v2/namespaces/default/events

payload parameters See the payload parameters section for the /events/:entity/:check
PUT endpoint.

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Confict: 409 (Event already exists for the entity and check)
Error: 500 (Internal Server Error)

The /events/:entity API endpoint

/events/:entity (GET)

The /events/:entity API endpoint provides HTTP GET access to event data specifc to an
:entity , by entity name .

EXAMPLE

In the following example, querying the /events/:entity API returns a list of Sensu events for the
sensu-go-sandbox entity and a successful HTTP 200 OK response.

 "check": {

 "output": "Server error",

 "state": "failing",

 "status": 2,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox

HTTP/1.1 200 OK

[

 {

 "timestamp": 1543871497,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543858763,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 }

 },

 "check": {

 "command": "check-cpu.sh -w 75 -c 90",

 "duration": 1.054253257,

 "executed": 1543871496,

 "history": [

 {

 "status": 0,

 "executed": 1543870296

 }

],

 "issued": 1543871496,

 "output": "CPU OK - Usage:.50\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871497,

 "occurrences": 1,

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

 },

 "metadata": {

 "namespace": "default"

 }

 },

 {

 "timestamp": 1543871524,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543871523,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 }

 },

 "check": {

 "handlers": [

 "keepalive"

],

 "executed": 1543871524,

 "history": [

 {

 "status": 0,

 "executed": 1543871124

 }

],

 "issued": 1543871524,

 "output": "",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871524,

 "occurrences": 1,

 "metadata": {

API Specifcation

/events/:entity
(GET)

description Returns a list of events for the specifed entity.

example url http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-
sandbox

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

 "name": "keepalive",

 "namespace": "default"

 }

 },

 "metadata": {}

 }

]

[

 {

 "timestamp": 1543871524,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox
http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox

The /events/:entity/:check API endpoint

/events/:entity/:check (GET)

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543871523,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 }

 },

 "check": {

 "handlers": [

 "keepalive"

],

 "executed": 1543871524,

 "history": [

 {

 "status": 0,

 "executed": 1543871124

 }

],

 "issued": 1543871524,

 "output": "",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871524,

 "occurrences": 1,

 "metadata": {

 "name": "keepalive",

 "namespace": "default"

 }

 },

 "metadata": {}

 }

]

API Specifcation

/events/:entity/:che
ck (GET)

description Returns an event for a given entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-
sandbox/check-cpu

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output
{

 "timestamp": 1543871524,

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543871523,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 }

 },

 "check": {

 "handlers": [

 "keepalive"

],

http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu

/events/:entity/:check (PUT)

The /events/:entity/:check API endpoint provides HTTP PUT access to create or update an
event and send it to the Sensu pipeline.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /events/:entity/:check API to
create an event for the server1 entity and the server-health check and process it using the
slack event handler.
The event includes a status code of 1 , indicating a warning, and an output

message of “Server error”.

 "executed": 1543871524,

 "history": [

 {

 "status": 0,

 "executed": 1543871124

 }

],

 "issued": 1543871524,

 "output": "",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871524,

 "occurrences": 1,

 "metadata": {

 "name": "keepalive",

 "namespace": "default"

 }

 },

 "metadata": {}

}

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

The request returns a 200 (OK) HTTP response code and the resulting event defnition.

You can use sensuctl or the Sensu dashboard to see the event.

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

HTTP/1.1 200 OK

{"timestamp":1552582569,"entity":{"entity_class":"proxy","system":{"network":{"inter

faces":null}},"subscriptions":null,"last_seen":0,"deregister":false,"deregistration"

:{},"metadata":{"name":"server1","namespace":"default"}},"check":{"handlers":["slack

"],"high_fap_threshold":0,"interval":60,"low_fap_threshold":0,"publish":false,"runti

me_assets":null,"subscriptions":[],"proxy_entity_name":"","check_hooks":null,"stdin"

:false,"subdue":null,"ttl":0,"timeout":0,"round_robin":false,"executed":0,"history":

null,"issued":0,"output":"Server

error","status":1,"total_state_change":0,"last_ok":0,"occurrences":0,"occurrences_wa

termark":0,"output_metric_format":"","output_metric_handlers":null,"env_vars":null,"

metadata":{"name":"server-health"}},"metadata":{}}

sensuctl event list

You should see the event with the status and output specifed in the request.

API Specifcation

/events/:entity/:che
ck (PUT)

description Creates an event for a given entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/server1/ser
ver-health

payload

payload parameters See the payload parameters section below.

 Entity Check Output Status Silenced Timestamp
────────────── ───────────── ─────────────────────────────────── ──────── ──────────
───────────────────────────────

 server1 server-health Server error 1 false 2019-03-14 16:56:09 +0000 UTC

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}

http://hostname:8080/api/core/v2/namespaces/default/events/server1/server-health
http://hostname:8080/api/core/v2/namespaces/default/events/server1/server-health

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

Payload parameters

The /events/:entity/:check PUT endpoint requires a request payload containing an entity

scope and a check scope.
The entity scope contains information about the component of your
infrastructure represented by the event.
At a minimum, Sensu requires the entity scope to contain
the entity_class (agent or proxy) and the entity name and namespace within a metadata
scope.
For more information about entity attributes, see the entity specifcation.

The check scope contains information about the event status and how the event was created.
At a
minimum, Sensu requires the check scope to contain a name within a metadata scope and either
an interval or cron attribute.
For more information about check attributes, see the check
specifcation.

Example request with minimum required event attributes

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

The minimum required attributes shown above let you create an event using the
/events/:entity/:check PUT endpoint, however the request can include any attributes defned in

the event specifcation.
To create useful, actionable events, we recommend adding check attributes
such as the event status (0 for OK, 1 for warning, 2 for critical), an output message, and
one or more event handlers .
For more information about these attributes and their available values,
see the event specifcation.

Example request with minimum recommended event attributes

Creating metric events

In addition to the entity and check scopes, Sensu events can include a metrics scope
containing metrics in Sensu metric format.
See the events reference and for more information about
Sensu metric format.

Example request including metrics

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "status": 0,

 "output_metric_handlers": ["infuxdb"],

 "interval": 60,

 "metadata": {

 "name": "server-metrics"

 }

 },

 "metrics": {

 "handlers": [

 "infuxdb"

],

 "points": [

 {

 "name": "server1.server-metrics.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "server1.server-metrics.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-metrics

/events/:entity/:check (DELETE)

EXAMPLE

The following example shows a request to delete the event produced by the sensu-go-sandbox
entity and check-cpu check, resulting in a successful HTTP 204 No Content response.

API Specifcation

/events/:entity/:che
ck (DELETE)

description Deletes the event created by the specifed entity using the specifed
check

example url http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-
sandbox/check-cpu

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-

cpu

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-cpu

Filters API

Contents
The /flters API endpoint
/flters (GET)
/flters (POST)

The /flters/:flter API endpoint
/flters/:flter (GET)
/flters/:flter (PUT)
/flters/:flter (DELETE)

The /flters API endpoint

/flters (GET)

The /flters API endpoint provides HTTP GET access to flter data.

EXAMPLE

The following example demonstrates a request to the /flters API, resulting in
a JSON Array
containing flter defnitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/flters -H "Authorization:

Bearer $TOKEN"

[

 {

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "allow",

API Specifcation

/flters (GET)

description Returns the list of flters.

example url http://hostname:8080/api/core/v2/namespaces/default/flters

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

 }

]

[

 {

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

 },

 {

 "metadata": {

http://hostname:8080/api/core/v2/namespaces/default/filters

/flters (POST)

/flters (POST)

description Create a Sensu flter.

example URL http://hostname:8080/api/core/v2/namespaces/default/flters

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'production'"

],

 "runtime_assets": []

 }

]

{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'production'"

],

 "runtime_assets": []

}

http://hostname:8080/api/core/v2/namespaces/default/filters

Error: 500 (Internal Server Error)

The /flters/:flter API endpoint

/flters/:flter (GET)

The /flters/:flter API endpoint provides HTTP GET access to flter data for specifc :flter
defnitions, by flter name .

EXAMPLE

In the following example, querying the /flters/:flter API returns a JSON Map
containing the
requested :flter defnition (in this example: for the :flter named
state_change_only).

API Specifcation

/flters/:flter (GET)

description Returns a flter.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/state_change_only -

H "Authorization: Bearer $TOKEN"

{

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

}

example url http://hostname:8080/api/core/v2/namespaces/default/flters/state_chang
e_only

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/flters/:flter (PUT)

API Specifcation

/flters/:flter (PUT)

description Create or update a Sensu flter.

example URL http://hostname:8080/api/core/v2/namespaces/default/flters/developmen
t_flter

payload

{

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

}

{

 "metadata": {

http://hostname:8080/api/core/v2/namespaces/default/filters/state_change_only
http://hostname:8080/api/core/v2/namespaces/default/filters/state_change_only
http://hostname:8080/api/core/v2/namespaces/default/filters/development_filter
http://hostname:8080/api/core/v2/namespaces/default/filters/development_filter

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/flters/:flter (DELETE)

The /flters/:flter API endpoint provides HTTP DELETE access to delete a flter from Sensu
given the flter name.

EXAMPLE

The following example shows a request to delete the flter production-only , resulting in a
successful HTTP 204 No Content response.

API Specifcation

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'production'"

],

 "runtime_assets": []

}

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/production-only

HTTP/1.1 204 No Content

/flters/:flter
(DELETE)

description Removes a flter from Sensu given the flter name.

example url http://hostname:8080/api/core/v2/namespaces/default/flters/production-
only

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/namespaces/default/filters/production-only
http://hostname:8080/api/core/v2/namespaces/default/filters/production-only

Handlers API

Contents
The /handlers API endpoint
/handlers (GET)
/handlers (POST)

The /handlers/:handler API endpoint
/handlers/:handler (GET)
/handlers/:handler (PUT)
/handlers/:handler (DELETE)

The /handlers API endpoint

/handlers (GET)

The /handlers API endpoint provides HTTP GET access to handler data.

EXAMPLE

The following example demonstrates a request to the /handlers API, resulting in
a JSON Array
containing handler defnitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers -H

"Authorization: Bearer $SENSU_TOKEN"

[

 {

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-slack-handler --channel '#monitoring'",

API Specifcation

/handlers (GET)

description Returns the list of handlers.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

]

[

 {

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "labels": null,

 "annotations": null

http://hostname:8080/api/core/v2/namespaces/default/handlers

 },

 "command": "sensu-slack-handler --channel

'#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T000000

00/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 },

 {

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:808

6",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

]

/handlers (POST)

/handlers (POST)

description Create a Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /handlers/:handler API endpoint

{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:808

6",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

http://hostname:8080/api/core/v2/namespaces/default/handlers

/handlers/:handler (GET)

The /handlers/:handler API endpoint provides HTTP GET access to handler data for specifc
:handler defnitions, by handler name .

EXAMPLE

In the following example, querying the /handlers/:handler API returns a JSON Map
containing the
requested :handler defnition (in this example: for the :handler named
slack).

API Specifcation

/handlers/:handler

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack -H

"Authorization: Bearer $SENSU_TOKEN"

{

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

(GET)

description Returns a handler.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/handlers/:handler (PUT)

API Specifcation

{

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T000000

00/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

/handlers/:handler
(PUT)

description Create or update a Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers/infux-db

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/handlers/:handler (DELETE)

The /handlers/:handler API endpoint provides HTTP DELETE access to delete a handler from
Sensu given the handler name.

{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:808

6",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

http://hostname:8080/api/core/v2/namespaces/default/handlers/influx-db

EXAMPLE

The following example shows a request to delete the handler slack , resulting in a successful HTTP
204 No Content response.

API Specifcation

/handlers/:handler
(DELETE)

description Removes a handler from Sensu given the handler name.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

Health API

Contents

The /health API endpoint

/health (GET)

The /health API endpoint provides HTTP GET access to health data for your Sensu instance.

EXAMPLE

The following example demonstrates a request to the /health API, resulting in
a JSON map
containing Sensu health data.

curl http://127.0.0.1:8080/health

HTTP/1.1 200 OK

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 9882886658148554927,

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 26

 }

API Specifcation

/health (GET)

description Returns health information about the Sensu instance

example url http://hostname:8080/health

response type Map

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

}

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 9882886658148554927,

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 26

 }

}

http://hostname:8080/health

Hooks API

Contents
The /hooks API endpoint
/hooks (GET)
/hooks (POST)

The /hooks/:hook API endpoint
/hooks/:hook (GET)
/hooks/:hook (PUT)
/hooks/:hook (DELETE)

The /hooks API endpoint

/hooks (GET)

The /hooks API endpoint provides HTTP GET access to hook data.

EXAMPLE

The following example demonstrates a request to the /hooks API, resulting in
a JSON Array
containing hook defnitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks -H "Authorization:

Bearer $SENSU_TOKEN"

[

 {

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

API Specifcation

/hooks (GET)

description Returns the list of hooks.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 "timeout": 10,

 "stdin": false

 }

]

[

 {

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

 },

 {

 "metadata": {

 "name": "nginx-log",

 "namespace": "default",

 "labels": null,

 "annotations": null

http://hostname:8080/api/core/v2/namespaces/default/hooks

/hooks (POST)

/hooks (POST)

description Create a Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /hooks/:hook API endpoint

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

 "timeout": 10,

 "stdin": false

 }

]

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

http://hostname:8080/api/core/v2/namespaces/default/hooks

/hooks/:hook (GET)

The /hooks/:hook API endpoint provides HTTP GET access to hook data for specifc :hook
defnitions, by hook name .

EXAMPLE

In the following example, querying the /hooks/:hook API returns a JSON Map
containing the
requested :hook defnition (in this example: for the :hook named
process-tree).

API Specifcation

/hooks/:hook
(GET)

description Returns a hook.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree -H

"Authorization: Bearer $SENSU_TOKEN"

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree

Error: 500 (Internal Server Error)

output

/hooks/:hook (PUT)

API Specifcation

/hooks/:hook
(PUT)

description Create or update a Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

payload

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/hooks/:hook (DELETE)

The /hooks/:hook API endpoint provides HTTP DELETE access to delete a check hook from Sensu
given the hook name.

EXAMPLE

The following example shows a request to delete the hook process-tree , resulting in a successful
HTTP 204 No Content response.

API Specifcation

/hooks/:hook
(DELETE)

description Removes a hook from Sensu given the hook name.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

}

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree
http://hostname:8080/api/core/v2/namespaces/default/hooks/process-tree

License management API

Contents
The /license API endpoints
/license (GET)
/license (PUT)

The /license API endpoints

For more information about license-activated features designed for enterprises, see the getting started
guide.

/license (GET)

The /license API endpoint provides HTTP GET access to the active license confguration.

API Specifcation

/license (GET)

description Returns the active enterprise license confguration. To download your
license, log in to your Sensu account or contact the Sensu sales team for
a free trial.

example url http://hostname:8080/api/enterprise/licensing/v2/license

response type Map

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

/license

https://account.sensu.io/
https://sensu.io/sales
https://sensu.io/sales
http://hostname:8080/api/enterprise/licensing/v2/license

 (PUT)

The /license API endpoint provides HTTP PUT access to activate an enterprise license.

API Specifcation

/license (PUT)

description Activates an enterprise license, or updates an existing license
confguration. To download your license, log in to your Sensu account or
contact the Sensu sales team for a free trial.

example url http://hostname:8080/api/enterprise/licensing/v2/license

payload License defnition

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

https://account.sensu.io/
https://sensu.io/sales
http://hostname:8080/api/enterprise/licensing/v2/license

Metrics API

Contents

The /metrics API endpoint

/metrics (GET)

The /metrics API endpoint provides HTTP GET access to internal Sensu metrics in Prometheus
format, including embedded etcd, memory usage, garbage collection, and gRPC metrics.

EXAMPLE

The following example demonstrates a request to the /metrics API, resulting in
plaintext output
containing internal Sensu metrics.

API Specifcation

curl http://127.0.0.1:8080/metrics

HTTP/1.1 200 OK

HELP etcd_debugging_mvcc_db_compaction_keys_total Total number of db keys

compacted.

TYPE etcd_debugging_mvcc_db_compaction_keys_total counter

etcd_debugging_mvcc_db_compaction_keys_total 2386

HELP etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds Bucketed

histogram of db compaction pause duration.

TYPE etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds histogram

etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds_bucket{le="1"} 0

etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds_bucket{le="2"} 0

...

https://prometheus.io/docs/concepts/data_model/

/metrics (GET)

description Returns internal Sensu metrics in Prometheus format, including
embedded etcd, memory usage, garbage collection, and gRPC metrics.

example url http://hostname:8080/metrics

response type Prometheus-formatted plaintext

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output
HELP etcd_debugging_mvcc_db_compaction_keys_total Total

number of db keys compacted.

TYPE etcd_debugging_mvcc_db_compaction_keys_total counter

etcd_debugging_mvcc_db_compaction_keys_total 2386

HELP

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds Bucketed histogram of db compaction pause duration.

TYPE

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds histogram

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds_bucket{le="1"} 0

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds_bucket{le="2"} 0

...

http://hostname:8080/metrics
https://prometheus.io/docs/concepts/data_model/

Mutators API

Contents
The /mutators API endpoint
/mutators (GET)
/mutators (POST)

The /mutators/:mutator API endpoint
/mutators/:mutator (GET)
/mutators/:mutator (PUT)
/mutators/:mutator (DELETE)

The /mutators API endpoint

/mutators (GET)

The /mutators API endpoint provides HTTP GET access to mutator data.

EXAMPLE

The following example demonstrates a request to the /mutators API, resulting in
a JSON Array
containing mutator defnitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators -H

"Authorization: Bearer $SENSU_TOKEN"

[

 {

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

API Specifcation

/mutators (GET)

description Returns the list of mutators.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

 }

]

[

 {

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

 }

]

http://hostname:8080/api/core/v2/namespaces/default/mutators

/mutators (POST)

/mutators (POST)

description Create a Sensu mutator.

example URL http://hostname:8080/api/core/v2/namespaces/default/mutators

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /mutators/:mutator API endpoint

/mutators/:mutator (GET)

The /mutators/:mutator API endpoint provides HTTP GET access to mutator data for specifc
:mutator defnitions, by mutator name .

EXAMPLE

In the following example, querying the /mutators/:mutator API returns a JSON Map
containing the

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

http://hostname:8080/api/core/v2/namespaces/default/mutators

requested :mutator defnition (in this example: for the :mutator named
example-mutator).

API Specifcation

/mutators/:mutator
(GET)

description Returns a mutator.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-
name

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator -

H "Authorization: Bearer $SENSU_TOKEN"

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-name
http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-name

/mutators/:mutator (PUT)

API Specifcation

/mutators/:mutator
(PUT)

description Create or update a Sensu mutator.

example URL http://hostname:8080/api/core/v2/namespaces/default/mutators/example-
mutator

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator
http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator

/mutators/:mutator (DELETE)

The /mutators/:mutator API endpoint provides HTTP DELETE access to delete a mutator from
Sensu given the mutator name.

EXAMPLE

The following example shows a request to delete the mutator example-mutator , resulting in a
successful HTTP 204 No Content response.

API Specifcation

/mutators/:mutator
(DELETE)

description Removes a mutator from Sensu given the mutator name.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators/example-
mutator

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator
http://hostname:8080/api/core/v2/namespaces/default/mutators/example-mutator

Namespaces API

Contents
The /namespaces API endpoint
/namespaces (GET)
/namespaces (POST)

The /namespaces/:namespace API endpoint
/namespaces/:namespace (PUT)
/namespaces/:namespace (DELETE)

The /namespaces API endpoint

/namespaces (GET)

The /namespaces API endpoint provides HTTP GET access to namespace data.

EXAMPLE

The following example demonstrates a request to the /namespaces API, resulting in
a JSON Array
containing namespace defnitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces -H "Authorization: Bearer

$SENSU_TOKEN"

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

API Specifcation

/namespaces
(GET)

description Returns the list of namespaces.

example url http://hostname:8080/api/core/v2/namespaces

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

/namespaces (POST)

/namespaces
(POST)

description Create a Sensu namespace.

example URL http://hostname:8080/api/core/v2/namespaces

payload

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

{

http://hostname:8080/api/core/v2/namespaces
http://hostname:8080/api/core/v2/namespaces

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /namespaces/:namespace API endpoint

/namespaces/:namespace (PUT)

API Specifcation

/namespaces/:na
mespace (PUT)

description Create or update a Sensu namespace.

example URL http://hostname:8080/api/core/v2/namespaces/development

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/namespaces/:namespace (DELETE)

The /namespaces/:namespace API endpoint provides HTTP DELETE access to delete a namespace
from Sensu given the namespace name.

 "name": "development"

}

{

 "name": "development"

}

http://hostname:8080/api/core/v2/namespaces/development

EXAMPLE

The following example shows a request to delete the namespace development , resulting in a
successful HTTP 204 No Content response.

API Specifcation

/namespaces/:na
mespace
(DELETE)

description Removes a namespace from Sensu given the namespace name.

example url http://hostname:8080/api/core/v2/namespaces/development

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/development

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/development

Role bindings API

Contents
The /rolebindings API endpoint
/rolebindings (GET)
/rolebindings (POST)

The /rolebindings/:rolebinding API endpoint
/rolebindings/:rolebinding (GET)
/rolebindings/:rolebinding (PUT)
/rolebindings/:rolebinding (DELETE)

The /rolebindings API endpoint

/rolebindings (GET)

The /rolebindings API endpoint provides HTTP GET access to role binding data.

EXAMPLE

The following example demonstrates a request to the /rolebindings API, resulting in
a JSON Array
containing role binding defnitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

API Specifcation

/rolebindings
(GET)

description Returns the list of role bindings.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

 }

]

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

http://hostname:8080/api/core/v2/namespaces/default/rolebindings

/rolebindings (POST)

/rolebindings
(POST)

description Create a Sensu role binding.

example URL http://hostname:8080/api/core/v2/namespaces/default/rolebindings

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

 }

]

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

}

http://hostname:8080/api/core/v2/namespaces/default/rolebindings

Error: 500 (Internal Server Error)

The /rolebindings/:rolebinding API endpoint

/rolebindings/:rolebinding (GET)

The /rolebindings/:rolebinding API endpoint provides HTTP GET access to role binding data for
specifc :rolebinding defnitions, by role binding name .

EXAMPLE

In the following example, querying the /rolebindings/:rolebinding API returns a JSON Map
containing the requested :rolebinding defnition (in this example: for the :rolebinding named
readers-group-binding).

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/readers-

group-binding -H "Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

}

API Specifcation

/rolebindings/:role
binding (GET)

description Returns a role binding.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings/reade
rs-group-binding

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/rolebindings/:rolebinding (PUT)

API Specifcation

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

}

http://hostname:8080/api/core/v2/namespaces/default/rolebindings/readers-group-binding
http://hostname:8080/api/core/v2/namespaces/default/rolebindings/readers-group-binding

/rolebindings/:role
binding (PUT)

description Create or update a Sensu role binding.

example URL http://hostname:8080/api/core/v2/namespaces/default/rolebindings/reade
rs-group-binding

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/rolebindings/:rolebinding (DELETE)

The /rolebindings/:rolebinding API endpoint provides HTTP DELETE access to delete a role
binding from Sensu given the role binding name.

EXAMPLE

The following example shows a request to delete the role binding dev-binding , resulting in a

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

}

http://hostname:8080/api/core/v2/namespaces/default/rolebindings/readers-group-binding
http://hostname:8080/api/core/v2/namespaces/default/rolebindings/readers-group-binding

successful HTTP 204 No Content response.

API Specifcation

/rolebindings/:role
binding (DELETE)

description Removes a role binding from Sensu given the role binding name.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings/dev-
binding

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/dev-binding

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/default/rolebindings/dev-binding
http://hostname:8080/api/core/v2/namespaces/default/rolebindings/dev-binding

Roles API

Contents
The /roles API endpoint
/roles (GET)
/roles (POST)

The /roles/:role API endpoint
/roles/:role (GET)
/roles/:role (PUT)
/roles/:role (DELETE)

The /roles API endpoint

/roles (GET)

The /roles API endpoint provides HTTP GET access to role data.

EXAMPLE

The following example demonstrates a request to the /roles API, resulting in
a JSON Array
containing role defnitions.

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/roles -H "Authorization:

Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

[

 {

 "rules": [

 {

 "verbs": [

 "read"

],

API Specifcation

/roles (GET)

description Returns the list of roles.

example url http://hostname:8080/api/core/v2/namespaces/default/roles

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

 }

]

[

 {

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

http://hostname:8080/api/core/v2/namespaces/default/roles

/roles (POST)

/roles (POST)

description Create a Sensu role.

example URL http://hostname:8080/api/core/v2/namespaces/default/roles

payload

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

 }

]

{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": []

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default"

 }

}

http://hostname:8080/api/core/v2/namespaces/default/roles

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /roles/:role API endpoint

/roles/:role (GET)

The /roles/:role API endpoint provides HTTP GET access to role data for specifc :role
defnitions, by role name .

EXAMPLE

In the following example, querying the /roles/:role API returns a JSON Map
containing the
requested :role defnition (in this example: for the :role named
read-only).

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/read-only -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

}

API Specifcation

/roles/:role (GET)

description Returns a role.

example url http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/roles/:role (PUT)

API Specifcation

{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

}

http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

/roles/:role (PUT)

description Create or update a Sensu role.

example URL http://hostname:8080/api/core/v2/namespaces/default/roles/event-reader

payload

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/roles/:role (DELETE)

The /roles/:role API endpoint provides HTTP DELETE access to delete a role from Sensu given
the role name.

EXAMPLE

{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": []

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default"

 }

}

http://hostname:8080/api/core/v2/namespaces/default/roles/event-reader

The following example shows a request to delete the role read-only , resulting in a successful HTTP
204 No Content response.

API Specifcation

/roles/:role
(DELETE)

description Removes a role from Sensu given the role name.

example url http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/read-only

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

Silencing API

Contents
The /silenced API endpoint
/silenced (GET)
/silenced (POST)

The /silenced/:silenced API endpoint
/silenced/:silenced (GET)
/silenced/:silenced (PUT)
/silenced/:silenced (DELETE)

The /silenced/subscriptions/:subscription API endpoint
/silenced/subscriptions/:subscription (GET)

The /silenced/checks/:check API endpoint
/silenced/checks/:check (GET)

The /silenced API endpoint

/silenced (GET)

The /silenced API endpoint provides HTTP GET access to silencing entry data.

EXAMPLE

The following example demonstrates a request to the /silenced API, resulting in
a JSON Array
containing silencing entry defnitions.

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced

HTTP/1.1 200 OK

[

 {

 "metadata": {

API Specifcation

/silenced (GET)

description Returns the list of silences.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

 }

]

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

http://hostname:8080/api/core/v2/namespaces/default/silenced

/silenced (POST)

/silenced (POST)

description Create a Sensu silencing entry.

example URL http://hostname:8080/api/core/v2/namespaces/default/silenced

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /silenced/:silenced API endpoint

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

 }

]

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

}

http://hostname:8080/api/core/v2/namespaces/default/silenced

/silenced/:silenced (GET)

The /silenced/:silenced API endpoint provides HTTP GET access to silencing entry data for
specifc :silenced defnitions, by silencing entry name .

EXAMPLE

In the following example, querying the /silenced/:silenced API returns a JSON Map
containing the
requested silencing entry defnition (in this example: for the silencing entry named
linux:check-cpu).
Silencing entry names are generated from the combination of a subscription name and check name.

API Specifcation

/silenced/:silenced
(GET)

description Returns a silencing entry.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:che
ck-cpu

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

}

http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu
http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

/silenced/:silenced (PUT)

API Specifcation

/silenced/:silenced
(PUT)

description Create or update a Sensu silencing entry.

example URL http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:che
ck-cpu

payload

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

}

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu
http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

response codes Success: 201 (Created)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/silenced/:silenced (DELETE)

The /silenced/:silenced API endpoint provides HTTP DELETE access to delete a silencing entry
by silencing entry name .

EXAMPLE

In the following example, querying the /silenced/:silenced API to delete the the silencing entry
named
linux:check-cpu results in a successful 204 No Content response.

API Specifcation

/silenced/:silenced
(DELETE)

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

}

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

HTTP/1.1 204 No Content

description Removes a silencing entry from Sensu given the silencing entry name.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:che
ck-cpu

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /silenced/subscriptions/:subscription API endpoint

/silenced/subscriptions/:subscription (GET)

The /silenced/subscriptions/:subscription API endpoint provides HTTP GET access to
silencing entry data by subscription name .

EXAMPLE

In the following example, querying the silenced/subscriptions/:subscription API returns a
JSON Array
containing the requested silences for the given subscription (in this example: for the
linux subscription).

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/subscriptions/linux

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu
http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

API Specifcation

/silenced/
subscriptions/
:subscription
(GET)

description Returns all silences for the specifed subscription.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/subscripti
ons/linux

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

 "subscription": "linux",

 "begin": 1542671205

 }

]

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "subscription": "linux",

 "begin": 1542671205

http://hostname:8080/api/core/v2/namespaces/default/silenced/subscriptions/linux
http://hostname:8080/api/core/v2/namespaces/default/silenced/subscriptions/linux

The /silenced/checks/:check API endpoint

/silenced/checks/:check (GET)

The /silenced/checks/:check API endpoint provides HTTP GET access to silencing entry data by
check name .

EXAMPLE

In the following example, querying the silenced/checks/:check API returns a JSON Array
containing
the requested silences for the given check (in this example: for the check-cpu check).

 }

]

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/checks/check-cpu

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "check": "linux",

 "begin": 1542671205

 }

]

API Specifcation

/silenced/checks/
:check (GET)

description Returns all silences for the specifed check.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/checks/c
heck-cpu

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output
[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "check": "linux",

 "begin": 1542671205

 }

]

http://hostname:8080/api/core/v2/namespaces/default/silenced/checks/check-cpu
http://hostname:8080/api/core/v2/namespaces/default/silenced/checks/check-cpu

Tessen API

Contents
The /tessen API endpoints
/tessen (GET)
/tessen (PUT)

The /tessen API endpoints

The Tessen API provides HTTP access to manage Tessen confguration.
Access to the Tessen API is
restricted to the default admin user.

/tessen (GET)

The /tessen API endpoint provides HTTP GET access to Tessen confguration.

EXAMPLE

The following example demonstrates an HTTP GET request to the /tessen API.

The request returns a 200 (OK) HTTP response code and a JSON map containing Tessen
confguration, indicating that Tessen is enabled.

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/tessen

HTTP/1.1 200 OK

{"opt_out": false}

API Specifcation

/tessen (GET)

description Returns the active Tessen confguration. A response of "opt_out":

false indicates that Tessen is enabled; a response of "opt_out":

true indicates that Tessen is disabled.

example url http://hostname:8080/api/core/v2/tessen

response type Map

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

example output

/tessen (PUT)

The /tessen API endpoint provides HTTP PUT access to opt in to or opt out of Tessen.
Tessen is
enabled by default on Sensu backends and required for licensed Sensu instances.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /tessen API to opt in to Tessen
using the opt_out attribute.

The request returns a 200 (OK) HTTP response code and the resulting Tessen confguration.

{"opt_out": false}

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{"opt_out": false}' \

http://127.0.0.1:8080/api/core/v2/tessen

http://hostname:8080/api/core/v2/tessen

API Specifcation

/tessen (PUT)

description Updates Tessen confguration. Licensed Sensu instances override the
opt_out attribute to false at runtime.

example url http://hostname:8080/api/core/v2/tessen

request parameters opt_out (required): Set to false to enable Tessen; set to true to
opt out of Tessen.

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

HTTP/1.1 200 OK

{"opt_out": false}

http://hostname:8080/api/core/v2/tessen

Users API

Contents
The /users API endpoint
/users (GET)
/users (POST)

The /users/:user API endpoint
/users/:user (GET)
/users/:user (PUT)
/users/:user (DELETE)

The /users/:user/password API endpoint
/users/:user/password (PUT)

The /users/:user/reinstate API endpoint
/users/:user/reinstate (PUT)

The /users/:user/groups API endpoint
/users/:user/groups (DELETE)

The /users/:user/groups/:group API endpoints
/users/:user/groups/:group (PUT)
/users/:user/groups/:group (DELETE)

The /users API endpoint

/users (GET)

The /users API endpoint provides HTTP GET access to user data.

EXAMPLE

The following example demonstrates a request to the /users API, resulting in
a JSON Array
containing user defnitions.

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users

API Specifcation

/users (GET)

description Returns the list of users.

example url http://hostname:8080/api/core/v2/users

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

output

HTTP/1.1 200 OK

[

 {

 "username": "admin",

 "groups": [

 "cluster-admins"

],

 "disabled": false

 },

 {

 "username": "agent",

 "groups": [

 "system:agents"

],

 "disabled": false

 }

]

[

 {

 "username": "admin",

 "groups": [

 "cluster-admins"

http://hostname:8080/api/core/v2/users

/users (POST)

The /users API endpoint provides HTTP POST access to create a user.

EXAMPLE

The following example demonstrates a POST request to the /users API to create the user alice ,
resulting in an HTTP 200 response and the created user defnition.

],

 "disabled": false

 },

 {

 "username": "agent",

 "groups": [

 "system:agents"

],

 "disabled": false

 }

]

curl -X POST \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "temporary",

 "disabled": false

}' \

http://127.0.0.1:8080/api/core/v2/users

HTTP/1.1 200 OK

{

 "username": "alice",

API Specifcation

/users (POST)

description Create a Sensu user.

example URL http://hostname:8080/api/core/v2/users

payload

payload parameters username (string, required)
password (string, required): Must have at least eight characters
groups (array): Sets of shared permissions applicable to this user
disabled : When set to true , invalidates user credentials and

permissions

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /users/:user API endpoint

 "groups": [

 "ops"

],

 "disabled": false

}

{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "temporary",

 "disabled": false

}

http://hostname:8080/api/core/v2/users

/users/:user (GET)

The /users/:user API endpoint provides HTTP GET access to user data for a specifc user by
username .

EXAMPLE

In the following example, querying the /users/:user API returns a JSON Map
containing the
requested :user defnition (in this example: for the alice user).

API Specifcation

/users/:user (GET)

description Returns a user given the username as a URL parameter.

example url http://hostname:8080/api/core/v2/users/alice

response type Map

response codes Success: 200 (OK)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

output

curl -H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users/alice

HTTP/1.1 200 OK

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

{

http://hostname:8080/api/core/v2/users/alice

/users/:user (PUT)

EXAMPLE

The following example demonstrates a PUT request to the /users API to update the user alice , in
this case to reset their password, resulting in an HTTP 200 response and the updated user defnition.

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "reset-password",

 "disabled": false

}' \

http://127.0.0.1:8080/api/core/v2/users/alice

HTTP/1.1 200 OK

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

API Specifcation

/users/:user (PUT)

description Create or update a Sensu user given the username.

example URL http://hostname:8080/api/core/v2/users/alice

payload

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/users/:user (DELETE)

EXAMPLE

In the following example, an HTTP DELETE request is submitted to the /users/:user API to disable
the user alice , resulting in a successful 204 (No Content) HTTP response code.

{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "reset-password",

 "disabled": false

}

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users/alice

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/users/alice

API Specifcation

/users/:user
(DELETE)

description Disables a user given the username as a URL parameter.

example url http://hostname:8080/api/core/v2/users/alice

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /users/:user/password API endpoint

/users/:user/password (PUT)

The /users/:user/password API endpoint provides HTTP PUT access to update a user’s
password.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /users/:user/password API to
update the password for the user alice , resulting in a 200 (OK) HTTP response code.

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "password": "newpassword"

}' \

http://127.0.0.1:8080/api/core/v2/users/alice/password

HTTP/1.1 200 OK

http://hostname:8080/api/core/v2/users/alice

API Specifcation

/users/:user/passw
ord (PUT)

description Update the password for a Sensu user.

example URL http://hostname:8080/api/core/v2/users/alice/password

payload

payload parameters username (string, required): the username for the Sensu user
password (string, required): the user’s new password

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /users/:user/reinstate API endpoint

/users/:user/reinstate (PUT)

The /users/:user/reinstate API endpoint provides HTTP PUT access to re-enable a disabled
user.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /users/:user/reinstate API to
enable the disabled user alice , resulting in a 200 (OK) HTTP response code.

{

 "username": "admin",

 "password": "newpassword"

}

http://hostname:8080/api/core/v2/users/alice/password

API Specifcation

/users/:user/reinst
ate (PUT)

description Reinstate a disabled user.

example URL http://hostname:8080/api/core/v2/users/alice/reinstate

response codes Success: 200 (OK)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

The /users/:user/groups API endpoint

/users/:user/groups (DELETE)

The /users/:user/groups API endpoint provides HTTP DELETE access to remove a user from all
groups.

EXAMPLE

In the following example, an HTTP DELETE request is submitted to the /users/:user/groups API
to remove the user alice from all groups within Sensu, resulting in a successful 204 (No Content)
HTTP response code.

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

-H 'Content-Type: application/json' \

http://127.0.0.1:8080/api/core/v2/users/alice/reinstate

HTTP/1.1 200 OK

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://hostname:8080/api/core/v2/users/alice/reinstate

API Specifcation

/users/:user/group
s (DELETE)

description Removes a user from all groups.

example url http://hostname:8080/api/core/v2/users/alice/groups

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

The /users/:user/groups/:group API endpoints

/users/:user/groups/:group (PUT)

The /users/:user/groups/:group API endpoint provides HTTP PUT access to assign a user to a
group.

EXAMPLE

In the following example, an HTTP PUT request is submitted to the /users/:user/groups/:group

API to add the user alice to the group ops , resulting in a successful 204 (No Content) HTTP
response code.

http://127.0.0.1:8080/api/core/v2/users/alice/groups

HTTP/1.1 204 No Content

curl -X PUT \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups/ops

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/users/alice/groups

API Specifcation

/users/:user/group
s/:group (PUT)

description Add a user to a group.

example URL http://hostname:8080/api/core/v2/users/alice/groups/ops

payload

response codes Success: 204 (No Content)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/users/:user/groups/:group (DELETE)

The /users/:user/groups/:group API endpoint provides HTTP DELETE access to remove a user
from a group.

EXAMPLE

In the following example, an HTTP DELETE request is submitted to the
/users/:user/groups/:group API to remove the user alice from the group ops , resulting in a

successful 204 (No Content) HTTP response code.

API Specifcation

curl -X DELETE \

-H "Authorization: Bearer $SENSU_TOKEN" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups/ops

HTTP/1.1 204 No Content

http://hostname:8080/api/core/v2/users/alice/groups/ops

/users/:user/group
s/:group
(DELETE)

description Removes a user from a group.

example url http://hostname:8080/api/core/v2/users/alice/groups/ops

response codes Success: 204 (No Content)
Missing: 404 (Not Found)
Error: 500 (Internal Server Error)

http://hostname:8080/api/core/v2/users/alice/groups/ops

Version API

Contents

The /version API endpoint

/version (GET)

The /version API endpoint provides HTTP GET access to the Sensu backend and etcd versions for
your Sensu instance.

EXAMPLE

The following example demonstrates a request to the /version API, resulting in
a JSON map
containing Sensu version data.

API Specifcation

/version (GET)

curl http://127.0.0.1:8080/version

HTTP/1.1 200 OK

{

 "Etcd": {

 "etcdserver": "3.3.2",

 "etcdcluster": "3.3.0"

 },

 "SensuBackend": "5.8.0#xxxxxxx"

}

description Returns the Sensu backend and etcd version for your Sensu instance

example url http://hostname:8080/version

response type Map

response codes Success: 200 (OK)
Error: 500 (Internal Server Error)

response parameters Etcd.etcdserver (string, required): etcd server version
Etcd.etcdcluster (string, optional): etcd cluster version for Sensu

instances with the default embedded etcd; not required to match the etcd
server version or the cluster versions of other backends in the cluster

SensuBackend (string, required): Sensu backend version in the
format x.x.x#yyyyyyy where x.x.x is the Sensu version and yyyyyyy is the
release SHA

output
{

 "Etcd": {

 "etcdserver": "3.3.2",

 "etcdcluster": "3.3.0"

 },

 "SensuBackend": "5.8.0#xxxxxxx"

}

http://hostname:8080/version

Sensuctl quick reference

Contents

Quick reference

Confgure and log in with defaults

sensuctl confgure

? Sensu Backend URL: http://127.0.0.1:8080

? Username: admin

? Password: P@ssw0rd!

Create resources from a fle containing JSON resource defnitions

sensuctl create --fle flename.json

See monitored entities

sensuctl entity list

See monitoring events

sensuctl event list

Edit a check named check-cpu

sensuctl edit check check-cpu

See the JSON confguration for a check named check-cpu

sensuctl check info check-cpu --format wrapped-json

Sensuctl

Contents
First-time setup
Managing sensuctl
Creating resources
Updating resources
Managing resources
Filtering (licensed tier)
Time formats
Shell auto-completion
Confg fles

Sensuctl is a command line tool for managing resources within Sensu. It works by
calling Sensu’s
underlying API to create, read, update, and delete resources,
events, and entities. Sensuctl is available
for Linux, macOS, and Windows.
See the installation guide to install and confgure sensuctl.

Getting help

Sensuctl supports a --help fag for each command and subcommand.

First-time setup

To set up sensuctl, run sensuctl confgure to log in to sensuctl and connect to the Sensu backend.

See command and global fags

sensuctl --help

See subcommands and fags

sensuctl check --help

See usage and fags

sensuctl check delete --help

When prompted, input the Sensu backend URL and your Sensu access credentials.

Sensu backend URL

The HTTP or HTTPS URL where sensuctl can connect to the Sensu backend server, defaulting to
http://127.0.0.1:8080 .
When connecting to a Sensu cluster, connect sensuctl to any single

backend in the cluster.
For more information on confguring the Sensu backend URL, see the backend
reference.

Username | password | namespace

By default, Sensu includes a user named admin with password P@ssw0rd! and a default
namespace.
Your ability to get, list, create, update, and delete resources with sensuctl depends on the
permissions assigned to your Sensu user.
For more information about confguring Sensu access
control, see the RBAC reference.

Preferred output format

Sensuctl supports the following output formats:

tabular : user-friendly, columnar format
wrapped-json : accepted format for use with sensuctl create
yaml : accepted format for use with sensuctl create
json : format used by the Sensu API

Once logged in, you can change the output format using sensuctl confg set-format or set it per

sensuctl confgure

? Sensu Backend URL: http://127.0.0.1:8080

? Username: admin

? Password: P@ssw0rd!

? Namespace: default

? Preferred output format: tabular

command using the --format fag.

Non-interactive

You can run sensuctl confgure non-interactively using the -n (--non-interactive) fag.

Managing sensuctl

The sencutl confg command lets you view the current sensuctl confguration and set the
namespace and output format.

View sensuctl confg

To view the active confguration for sensuctl:

Sensuctl confguration includes the Sensu backend url, default output format for the current user, and
default namespace for the current user.

Set output format

You can use the set-format command to change the default output format for the current user.
For
example, to change the output format to tabular :

sensuctl confgure -n --url http://127.0.0.1:8080 --username admin --password

P@ssw0rd! --format tabular

sensuctl confg view

api-url: http://127.0.0.1:8080

format: wrapped-json

namespace: default

Set namespace

You can use the set-namespace command to change the default namespace for the current user.
For
more information about confguring Sensu access control, see the RBAC reference.
For example, to
change the default namespace to development :

Log out of sensuctl

To log out of sensuctl:

To log back in:

View the sensuctl version number

To display the current version of sensuctl:

Global fags

Global fags modify settings specifc to sensuctl, such as the Sensu backend URL and namespace.
You

sensuctl confg set-format tabular

sensuctl confg set-namespace development

sensuctl logout

sensuctl confgure

sensuctl version

can use global fags with most sensuctl commands.

Additionally, these fags can be set permanently by editing .confg/sensu/sensuctl/{cluster,

profle} .

Creating resources

The sensuctl create command allows you to create or update resources by reading from STDIN or
a fag confgured fle (-f).
The create command accepts Sensu resource defnitions in wrapped-
json and yaml .
Both JSON and YAML resource defnitions wrap the contents of the resource in
spec and identify the resource type (see below for an example, and this table for a list of

supported types).
See the reference docs for information about creating resource defnitions.

wrapped-json format

The following fle my-resources.json specifes two resources: a marketing-site check and a
slack handler, separated without a comma.

--api-url string host URL of Sensu installation

--cache-dir string path to directory containing cache & temporary fles

--confg-dir string path to directory containing confguration fles

--insecure-skip-tls-verify skip TLS certifcate verifcation (not recommended!)

--namespace string namespace in which we perform actions

--trusted-ca-fle string TLS CA certifcate bundle in PEM format

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata" : {

 "name": "marketing-site",

 "namespace": "default"

 },

 "spec": {

 "command": "check-http.rb -u https://sensu.io",

 "subscriptions": ["demo"],

 "interval": 15,

 "handlers": ["slack"]

To create all resources from my-resources.json using sensuctl create :

Or:

yaml format

 }

}

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

sensuctl create --fle my-resources.json

cat my-resources.json | sensuctl create

The following fle my-resources.yml specifes two resources: a marketing-site check and a
slack handler, separated with three dashes (---).

To create all resources from my-resources.yml using sensuctl create :

Or:

type: CheckConfg

api_version: core/v2

metadata:

 name: marketing-site

 namespace: default

spec:

 command: check-http.rb -u https://sensu.io

 subscriptions:

 - demo

 interval: 15

 handlers:

 - slack

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 flters:

 - is_incident

 - not_silenced

 type: pipe

sensuctl create --fle my-resources.yml

sensuctl create resource types

sensuctl create
types

AdhocRequest adhoc_request Asset asset

CheckConfg check_confg ClusterRole cluster_role

ClusterRoleBindin

g

cluster_role_binding Entity entity

Event event EventFilter event_flter

Handler handler Hook hook

HookConfg hook_confg Mutator mutator

Namespace namespace Role role

RoleBinding role_binding Silenced silenced

ldap ad TessenConfg

Updating resources

Sensuctl allows you to update resource defnitions using a text editor.
To use sensuctl edit , specify
the resource type and resource name.

For example, to edit a handler named slack using sensuctl edit :

cat my-resources.yml | sensuctl create

sensuctl edit handler slack

sensuctl edit resource types

sensuctl edit types

asset check cluster cluster-role

cluster-role-

binding

entity event flter

handler hook mutator namespace

role role-binding silenced user

auth

Managing resources

Sensuctl provides the following commands to manage Sensu resources.

sensuctl asset

sensuctl auth (licensed tier)
sensuctl check

sensuctl cluster

sensuctl cluster-role

sensuctl cluster-role-binding

sensuctl entity

sensuctl event

sensuctl flter

sensuctl handler

sensuctl hook

sensuctl license (licensed tier)
sensuctl mutator

sensuctl namespace

sensuctl role

sensuctl role-binding

sensuctl silenced

sensuctl tessen

sensuctl user

Subcommands

Sensuctl provides a standard set of list, info, and delete operations for most resource types.

For example, to list all monitoring checks:

To list checks from all namespaces:

To write all checks to my-resources.json in wrapped-json format:

To see the defnition for a check named check-cpu in wrapped-json format:

In addition to the standard operations, commands may support subcommands or fags that allow you
to take special action based on the resource type; the following sections call out those resource-
specifc operations.
For a list of subcommands specifc to a resource, run sensuctl TYPE --help .

Handling large datasets

When querying sensuctl for large datasets, you can use the --chunk-size fag with any list

list list resources

info NAME show detailed resource information given resource name

delete NAME delete resource given resource name

sensuctl check list

sensuctl check list --all-namespaces

sensuctl check list --format wrapped-json > my-resources.json

sensuctl check info check-cpu --format wrapped-json

command to avoid timeouts and improve performance.
For example, the following command returns the
same output as sensuctl event list but makes multiple API queries (each for the number of
objects specifed by --chunk-size) instead of one API query for the complete dataset.

sensuctl check

In addition to the standard subcommands, sensuctl provides a command to execute a check on
demand, given the check name.

For example, the following command executes the check-cpu check with an attached message:

You can also use the --subscriptions fag to override the subscriptions in the check defnition:

sensuctl cluster

The sensuctl cluster command lets you manage a Sensu cluster using the following
subcommands.

sensuctl event list --chunk-size 500

sensuctl check execute NAME

sensuctl check execute check-cpu --reason "giving a sensuctl demo"

sensuctl check execute check-cpu --subscriptions demo,webserver

health get sensu health status

member-add add cluster member to an existing cluster, with comma-separated

peer addresses

member-list list cluster members

member-remove remove cluster member by ID

member-update update cluster member by ID with comma-separated peer addresses

To view cluster members:

To see the health of your Sensu cluster:

sensuctl event

In addition to the standard subcommands, sensuctl provides a command to resolve an event.

For example, the following command manually resolves an event created by the entity webserver1
and the check check-http :

sensuctl namespace

See the RBAC reference for information about using access control with namespaces.

sensuctl user

See the RBAC reference for information about local user management with sensuctl.

Filtering

sensuctl cluster member-list

sensuctl cluster health

sensuctl event resolve ENTITY CHECK

sensuctl event resolve webserver1 check-http

LICENSED TIER: Unlock sensuctl fltering with a Sensu license. To activate your license, see the
getting started guide.

Sensuctl supports fltering for all list commands using the --label-selector and --feld-
selector fags.
For information about the operators and felds available to use in flters, see the API
docs.

Filtering syntax quick reference

operator description example

== Equality check.publish == true

!= Inequality check.namespace != "default"

in Included in linux in check.subscriptions

notin Not included
in

slack notin check.handlers

&& Logical AND check.publish == true && slack in

check.handlers

Filtering with labels

You can use the --label-selector fag to flter using custom labels.
For example, the following
command returns entities with the proxy_type label set to switch .

Filtering with resource attributes

You can use the --feld-selector fag to flter using selected resource attributes.
To see the resource
attributes available to use in flter statements, see the API docs.

For example, the following command returns entities with the switches subscription.

sensuctl entity list --label-selector 'proxy_type == switch'

You can also combine the --label-selector and --feld-selector fags.
For example, the
following command returns checks with the region label set to us-west-1 and the slack
handler.

Time formats

Sensuctl supports multiple time formats depending on the manipulated resource.
Supported canonical
time zone IDs are defned in the tz database.

WARNING: Canonical zone IDs (i.e. America/Vancouver) are not supported on
Windows.

Dates with time

Full dates with time are used to specify an exact point in time, which can be
used with silences, for
example. The following formats are supported:

RFC3339 with numeric zone offset: 2018-05-10T07:04:00-08:00 or
2018-05-10T15:04:00Z
RFC3339 with space delimiters and numeric zone offset: 2018-05-10 07:04:00
-08:00

Sensu alpha legacy format with canonical zone ID: May 10 2018 7:04AM
America/Vancouver

Shell auto-completion

Installation (Bash Shell)

Make sure bash completion is installed. If you use a current Linux
in a non-minimal installation, bash
completion should be available.
On macOS, install with:

sensuctl entity list --feld-selector 'switches in entity.subscriptions'

sensuctl check list --label-selector 'region == "us-west-1"' --feld-selector 'slack

in check.handlers'

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Then add the following to your ~/.bash_profle :

Once bash-completion is available, add the following to your ~/.bash_profle :

You can now source your ~/.bash_profle or launch a new terminal to utilize completion.

Installation (ZSH)

Add the following to your ~/.zshrc :

You can now source your ~/.zshrc or launch a new terminal to utilize completion.

Usage

sensuctl Tab

brew install bash-completion

if [-f $(brew --prefx)/etc/bash_completion]; then

. $(brew --prefx)/etc/bash_completion

f

source <(sensuctl completion bash)

source ~/.bash_profle

source <(sensuctl completion zsh)

source ~/.zshrc

sensuctl check Tab

Confguration fles

During confguration, sensuctl creates confguration fles that contain information for connecting to your
Sensu Go deployment. You can fnd them at $HOME/.confg/sensu/sensuctl/profle and
$HOME/.confg/sensu/sensuctl/cluster . For example:

These are useful if you want to know what cluster you’re connecting to, or what namespace you’re
currently confgured to use.

check confgure event user

asset completion entity handler

create delete import list

cat .confg/sensu/sensuctl/profle

{

 "format": "tabular",

 "namespace": "demo"

}

cat .confg/sensu/sensuctl/cluster

{

 "api-url": "http://localhost:8080",

 "trusted-ca-fle": "",

 "insecure-skip-tls-verify": false,

 "access_token": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "expires_at": 1550082282,

 "refresh_token": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

}

Sensu agent

Contents
Installation
Creating events using service checks
Creating events using the agent API
Creating events using the StatsD listener
Creating events using the agent TCP and UDP sockets (deprecated)
Keepalive monitoring
Service management
Starting and stopping the service
Registration and deregistration
Clustering
Time synchronization
Confguration
API confguration
Ephemeral agent confguration
Keepalive confguration
Security confguration
Socket confguration
StatsD confguration
Example

The Sensu agent is a lightweight client that runs on the infrastructure components you want to monitor.
Agents register with the Sensu backend as monitoring entities with type: "agent" .
Agent entities are
responsible for creating check and metrics events to send to the backend event pipeline.
The Sensu
agent is available for Linux, macOS, and Windows.
See the installation guide to install the agent.

Creating monitoring events using service checks

Sensu’s use of the publish/subscribe pattern of communication allows for automated registration and
deregistration of ephemeral systems.
At the core of this model are Sensu agent subscriptions.

Each Sensu agent has a defned set of subscriptions , a list of roles and responsibilities assigned to
the system (for example: a webserver or database).
These subscriptions determine which monitoring
checks are executed by the agent.
Agent subscriptions allow Sensu to request check executions on a

http://localhost:1313/sensu-go/5.8/files/agent.yml
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

group of systems at a time, instead of a traditional 1:1 mapping of confgured hosts to monitoring
checks.
In order for an agent to execute a service check, you must specify the same subscription in the
agent confguration and the check defnition.

After receiving a check request from the Sensu backend, the agent:

1. Applies any tokens matching attribute values in the check defnition.
2. Fetches assets and stores them in its local cache. By default, agents cache asset data at

/var/cache/sensu/sensu-agent (C:\ProgramData\sensu\cache\sensu-agent on Windows
systems) or as specifed by the the cache-dir fag.

3. Executes the check command .
4. Executes any hooks specifed by the check based on the exit status.
5. Creates an event containing information about the applicable entity, check, and metric.

Subscription confguration

To confgure subscriptions for an agent, set the subscriptions fag.
To confgure subscriptions for a
check, set the check defnition attribute subscriptions .

In addition to the subscriptions defned in the agent confguration, Sensu agent entities also subscribe
automatically to a subscription matching their entity name .
For example, an agent entity with the
name: "i-424242" subscribes to check requests with the subscription entity:i-424242 .
This

makes it possible to generate ad-hoc check requests targeting specifc entities via the API.

Proxy entities

Sensu proxy entities allow Sensu to monitor external resources on systems or devices where a Sensu
agent cannot be installed (such a network switch).
Unlike agent entities, proxy entity defnitions are
stored by the Sensu backend.
When the backend requests a check that includes a
proxy_entity_name , the agent includes the provided entity information in the event data in place of

the agent entity data.
See the entity reference and the guide to monitoring external resources for more
information about monitoring proxy entities.

Creating monitoring events using the agent API

The Sensu agent API allows external sources to send monitoring data to Sensu without needing to
know anything about Sensu’s internal implementation.
The agent API listens on the address and port
specifed by the API confguration fags; only unsecured HTTP (no HTTPS) is supported at this time.
Any requests for unknown endpoints result in a 404 Not Found response.

/events (POST)

The /events API provides HTTP POST access to publish monitoring events to the Sensu backend
pipeline via the agent API.
The agent places events created via the /events POST endpoint into a
queue stored on disk.
In the event of a loss of connection with the backend or agent shutdown, queued
event data is preserved, and the agent sends queued events to the backend once a connection is
reestablished.

The /events API uses a confgurable burst limit and rate limit for relaying events to the backend.
See
the API confguration fags to confgure the events-burst-limit and events-rate-limit fags.

Example

In the following example, an HTTP POST is submitted to the /events API, creating an event for a
check named check-mysql-status with the output could not connect to mysql and a status of
1 (warning).
The agent responds with a 202 (Accepted) response code to indicate that the event has

been added to the queue to be sent to the backend.

PRO TIP: You can use the agent API /events endpoint to create proxy entities by including a
proxy_entity_name attribute within the check scope.

Detecting silent failures

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "check-mysql-status"

 },

 "status": 1,

 "output": "could not connect to mysql"

 }

}' \

http://127.0.0.1:3031/events

HTTP/1.1 202 Accepted

You can use the Sensu agent API in combination with the check time-to-live attribute (TTL) to detect
silent failures, creating what’s commonly referred to as a “dead man’s switch” (source: Wikipedia).
By
using check TTLs, Sensu is able to set an expectation that a Sensu agent will publish additional events
for a check within the period of time specifed by the TTL attribute.
If a Sensu agent fails to publish an
event before the check TTL expires, the Sensu backend creates an event with a status of 1 (warning)
to indicate the expected event was not received.
For more information on check TTLs, see the the
check reference.

A great use case for the Sensu agent API is to enable tasks which run outside of Sensu’s check
scheduling to emit events. Using the check TTL attribute, these events create a dead man’s switch,
ensuring that if the task fails for any reason, the lack of an “all clear” event from the task notifes
operators of a silent failure which might otherwise be missed.
If an external source sends a Sensu event
with a check TTL to the Sensu agent API, Sensu expects another event from the same external source
before the TTL expires.

The following is an example of external event input via the Sensu agent API using a check TTL to
create a dead man’s switch for MySQL backups.
If we assume that a MySQL backup script runs
periodically and that we expect the job to take a little less than 7 hours to complete, in the case where
the job completes successfully, we’d like a record of it but don’t need to be alerted. If the job fails for
some reason, or continues running past the expected 7 hours, we’d like to be alerted. In the following
example, the script sends an event which tells the Sensu backend to expect an additional event with
the same name within 7 hours of the frst event.

With this initial event submitted to the agent API, we have recorded in the Sensu backend that our
script started, and we’ve confgured the dead man’s switch so that we’ll be alerted if the job fails or
runs too long. Although it is possible for our script to handle errors gracefully and emit additional
monitoring events, this approach allows us to worry less about handling every possible error case, as

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "mysql-backup-job"

 },

 "status": 0,

 "output": "mysql backup initiated",

 "ttl": 25200

 }

}' \

http://127.0.0.1:3031/events

http://en.wikipedia.org/wiki/Dead_man%27s_switch

the lack of additional events before the 7 hour period elapses results in an alert.

If our backup script runs successfully, we can send an additional event without the TTL attribute, which
removes the dead man’s switch:

By omitting the TTL attribute from this event, the dead man’s switch being monitored by the Sensu
backend is also removed, effectively sounding the “all clear” for this iteration of the task.

API specifcation

/events (POST)

description Accepts JSON event data and passes the event to the Sensu backend
event pipeline for processing

example url http://hostname:3031/events

payload example

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "mysql-backup-job"

 },

 "status": 0,

 "output": "mysql backup ran successfully!"

 }

}' \

http://127.0.0.1:3031/events

{

 "check": {

 "metadata": {

 "name": "check-mysql-status"

 },

 "status": 1,

 "output": "could not connect to mysql"

 }

http://hostname:3031/events

payload attributes check (required): All check data must be within the check scope.
metadata (required): The check scope must contain a metadata

scope.
name (required): The metadata scope must contain the name

attribute with a string representing the name of the monitoring check.
Any other attributes supported by the Sensu check specifcation
(optional)

response codes Success: 202 (Accepted)
Malformed: 400 (Bad Request)
Error: 500 (Internal Server Error)

/healthz (GET)

The /healthz API provides HTTP GET access to the status of the Sensu agent via the agent API.

Example

In the following example, an HTTP GET is submitted to the /healthz API:

Resulting in a healthy response:

API specifcation

/healthz (GET)

description Returns ok if the agent is active and connected to a Sensu backend;

}

curl http://127.0.0.1:3031/healthz

ok

returns sensu backend unavailable if the agent is unable to connect
to a backend.

example url http://hostname:3031/healthz

Creating monitoring events using the StatsD listener

Sensu agents include a listener to send StatsD metrics to the event pipeline.
By default, Sensu agents
listen on UDP socket 8125 (TCP on Windows systems) for messages that follow the StatsD line
protocol and send metric events for handling by the Sensu backend.

For example, you can use the Netcat utility to send metrics to the StatsD listener:

Metrics received through the StatsD listener are not stored by Sensu, so
it’s important to confgure event
handlers.

StatsD line protocol

The Sensu StatsD listener accepts messages formatted according to the StatsD line protocol:

For more information, see the StatsD documentation.

Confguring the StatsD listener

To confgure the StatsD listener, specify the statsd-event-handlers confguration fag in the agent
confguration, and start the agent.

echo 'abc.def.g:10|c' | nc -w1 -u localhost 8125

<metricname>:<value>|<type>

Start an agent that sends StatsD metrics to InfuxDB

sensu-agent --statsd-event-handlers infux-db

http://hostname:3031/healthz
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd
https://github.com/etsy/statsd

You can use the StatsD confguration fags to change the default settings for the StatsD listener
address, port, and fush interval.

Creating monitoring events using the agent TCP and UDP
sockets

NOTE: The agent TCP and UDP sockets are deprecated in favor of the agent API.

Sensu agents listen for external monitoring data using TCP and UDP sockets.
The agent sockets accept
JSON event data and pass the event to the Sensu backend event pipeline for processing.
The TCP and
UDP sockets listen on the address and port specifed by the socket confguration fags.

Using the TCP socket

The following is an example demonstrating external monitoring data input via the Sensu agent TCP
socket.
The example uses Bash’s built-in /dev/tcp fle to communicate with the Sensu agent socket.

You can also use the Netcat utility to send monitoring data to the agent socket:

Using the UDP socket

Start an agent with a customized address and fush interval

sensu-agent --statsd-event-handlers infux-db --statsd-fush-interval 1 --statsd-

metrics-host 123.4.5.8 --statsd-metrics-port 8125

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' >

/dev/tcp/localhost/3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' | nc

localhost 3030

https://github.com/etsy/statsd#key-concepts
http://nc110.sourceforge.net/

The following is an example demonstrating external monitoring data input via the Sensu agent UDP
socket.
The example uses Bash’s built-in /dev/udp fle to communicate with the Sensu agent socket.

You can also use the Netcat utility to send monitoring data to the agent socket:

Socket event format

The agent TCP and UDP sockets use a special event data format designed for backwards
compatibility with Sensu 1.x check results.
Attributes specifed in socket events appear in the resulting
event data passed to the Sensu backend.

Example socket input: Minimum required attributes

Example socket input: All attributes

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' >

/dev/udp/127.0.0.1/3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' | nc -u -v

127.0.0.1 3030

{

 "name": "check-mysql-status",

 "status": 1,

 "output": "error!"

}

{

 "name": "check-http",

 "status": 1,

 "output": "404",

 "source": "sensu-docs-site",

 "executed": 1550013435,

 "duration": 1.903135228,

http://nc110.sourceforge.net/
http://localhost:1313/sensu-core/latest/reference/checks/#check-result-specification

Socket event specifcation

The Sensu agent socket ignores any attributes not included in this specifcation.

name

description The check name

required true

type String

example

status

description The check execution exit status code. An exit status code of 0 (zero)
indicates OK , 1 indicates WARNING , and 2 indicates CRITICAL ;
exit status codes other than 0 , 1 , or 2 indicate an UNKNOWN or
custom status.

required true

type Integer

example

output

description The output produced by the check command .

 "handlers": ["slack", "infuxdb"]

}

"name": "check-mysql-status"

"status": 0

required true

type String

example

source

description The name of the Sensu entity associated with the event. Use this
attribute to tie the event to a proxy entity. If no matching entity exists,
Sensu creates a proxy entity with the name provided by the source
attribute.

required false

default The agent entity receiving the event data

type String

example

client

description NOTE: The client attribute is deprecated in favor of the source
attribute (see above). The name of the Sensu entity associated with the
event. Use this attribute to tie the event to a proxy entity. If no matching
entity exists, Sensu creates a proxy entity with the name provided by the
client attribute.

required false

default The agent entity receiving the event data

type String

example

"output": "CheckHttp OK: 200, 78572 bytes"

"source": "sensu-docs-site"

"client": "sensu-docs-site"

executed

description The time the check was executed, in seconds since the Unix epoch.

required false

default The time the event was received by the agent

type Integer

example

duration

description The amount of time (in seconds) it took to execute the check.

required false

type Float

example

command

description The command executed to produce the event. You can use this attribute
to add context to the event data; Sensu does not execute the command
included in this attribute.

required false

type String

example

"executed": 1458934742

"duration": 1.903135228

"command": "check-http.rb -u https://sensuapp.org"

interval

description The interval used to produce the event. You can use this attribute to add
context to the event data; Sensu does not act on the value provided in
this attribute.

required false

default 1

type Integer

example

handlers

description An array of Sensu handler names to use for handling the event. Each
handler name in the array must be a string.

required false

type Array

example

Keepalive monitoring

Sensu keepalives are the heartbeat mechanism used to ensure that all registered agents are
operational and able to reach the Sensu backend.
Sensu agents publish keepalive events containing
entity confguration data to the Sensu backend according to the interval specifed by the keepalive-
interval fag.
If a Sensu agent fails to send keepalive events over the period specifed by the
keepalive-timeout fag, the Sensu backend creates a keepalive alert in the Sensu dashboard.
You

"interval": 60

"handlers": ["slack", "infuxdb"]

can use keepalives to identify unhealthy systems and network partitions, send notifcations, trigger
auto-remediation, and other useful actions.

NOTE: Keepalive monitoring is not supported for proxy entities, as they are inherently unable to run a
Sensu agent.

Handling keepalive events

You can connect keepalive events to your monitoring workfows using a keepalive handler.
Sensu looks
for an event handler named keepalive and automatically uses it to process keepalive events.

Let’s say you want to receive Slack notifcations for keepalive alerts, and you already have a Slack
handler set up to process events.
To process keepalive events using the Slack pipeline, create a
handler set named keepalive and add the slack handler to the handlers array.
The resulting
keepalive handler set confguration looks like this:

type: Handler

api_version: core/v2

metadata:

 name: keepalive

 namespace: default

spec:

 handlers:

 - slack

 type: set

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "keepalive",

 "namespace": "default"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "slack"

JSON

Operation

Starting the service

Use the sensu-agent tool to start the agent and apply confguration fags.

Linux

To start the agent with confguration fags:

To see available confguration fags and defaults:

To start the agent using a service manager:

If no confguration fags are provided, the agent loads confguration from the location specifed by the
confg-fle attribute (default: /etc/sensu/agent.yml).

Windows

Run the following command as an admin to install and start the agent.

]

 }

}

sensu-agent start --subscriptions disk-checks --log-level debug

sensu-agent start --help

sudo service sensu-agent start

By default, the agent loads confguration from %ALLUSERSPROFILE%\sensu\confg\agent.yml (for
example: C:\ProgramData\sensu\confg\agent.yml) and stores service logs to
%ALLUSERSPROFILE%\sensu\log\sensu-agent.log (for example:
C:\ProgramData\sensu\log\sensu-agent.log).

You can confgure the confguration fle and log fle locations using the confg-fle and log-fle
fags.

Stopping the service

To stop the agent service using a service manager:

Linux

Windows

Restarting the service

You must restart the agent to implement any confguration updates.

To restart the agent using a service manager:

Linux

sensu-agent service install

sensu-agent service install --confg-fle 'C:\\monitoring\\sensu\\confg\\agent.yml' --

log-fle 'C:\\monitoring\\sensu\\log\\sensu-agent.log'

sudo service sensu-agent stop

sc.exe stop SensuAgent

Windows

Enabling on boot

To enable the agent to start on system boot:

Linux

To disable the agent from starting on system boot:

NOTE: On older distributions of Linux, use sudo chkconfg sensu-agent on to enable the agent and
sudo chkconfg sensu-agent off to disable.

Windows

The service is confgured to start automatically on boot by default.

Getting service status

To see the status of the agent service using a service manager:

Linux

sudo service sensu-agent restart

sc.exe stop SensuAgent

sc.exe start SensuAgent

sudo systemctl enable sensu-agent

sudo systemctl disable sensu-agent

Windows

Getting service version

To get the current agent version using the sensu-agent tool:

Uninstalling the service

Windows

Getting help

The sensu-agent tool provides general and command-specifc help fags:

Clustering

service sensu-agent status

sc.exe query SensuAgent

sensu-agent version

sensu-agent service uninstall

Show sensu-agent commands

sensu-agent help

Show options for the sensu-agent start subcommand

sensu-agent start --help

Agents can connect to a Sensu cluster by specifying any Sensu backend URL in the cluster in the
backend-url confguration fag. For more information about clustering, see Sensu backend datastore

confguration fags and the guide to running a Sensu cluster.

Time synchronization

System clocks between agents and the backend should be synchronized to a central NTP server. Out
of sync system time may cause issues with keepalive, metric, and check alerts.

Registration

In practice, agent registration happens when a Sensu backend processes an agent keepalive event for
an agent that is not already registered in the Sensu agent registry (based on the confgured agent
name).
This agent registry is stored in the Sensu backend, and is accessible via sensuctl entity
list .

All Sensu agent data provided in keepalive events gets stored in the agent registry and used to add
context to Sensu events and detect Sensu agents in an unhealthy state.

Registration events

If a Sensu event handler named registration is confgured, the Sensu backend creates and
process an event for agent registration, applying any confgured flters and mutators before executing
the confgured handler.

PRO TIP: Use a handler set to execute multiple handlers in response to registration events.

Registration events are useful for executing one-time handlers for new Sensu agents.
For example,
registration event handlers can be used to update external confguration management databases
(CMDBs) such as ServiceNow.

To confgure a registration event handler, please refer to the Sensu event handler documentation for
instructions on creating a handler named registration .

WARNING: Registration events are not stored in the event registry, so they are not accessible via the
Sensu API; however, all registration events are logged in the Sensu backend log.

https://en.wikipedia.org/wiki/Configuration_management_database
https://en.wikipedia.org/wiki/Configuration_management_database
https://www.servicenow.com/products/it-operations-management.html

Deregistration events

Similarly to registration events, the Sensu backend can create and process a deregistration event
when the Sensu agent process stops.
You can use deregistration events to trigger a handler that
updates external CMDBs or performs an action to update ephemeral infrastructures.
To enable
deregistration events, use the deregister fag and specify the event handler using the
deregistration-handler fag.
You can specify a deregistration handler per agent using the
deregistration-handler agent fag or by setting a default for all agents using the
deregistration-handler backend confguration fag.

Confguration

The agent loads confguration upon startup, so you must restart the agent for any confguration
updates to take effect.

Linux

You can specify the agent confguration using a .yml fle or using sensu-agent start command-
line fags.
Confguration provided via command-line fags overrides attributes specifed in a confguration
fle.

See the example confg fle provided with Sensu packages at /usr/share/doc/sensu-go-agent-
5.8.0/agent.yml.example or available here.

Confguration summary

$ sensu-agent start --help

start the sensu agent

Usage:

 sensu-agent start [fags]

Flags:

 --annotations stringToString entity annotations map (default [])

 --api-host string address to bind the Sensu client HTTP API to

(default "127.0.0.1")

 --api-port int port the Sensu client HTTP API listens on

(default 3031)

http://localhost:1313/sensu-go/5.8/files/agent.yml

 --backend-url strings ws/wss URL of Sensu backend server (to

specify multiple backends use this fag multiple times) (default

[ws://127.0.0.1:8081])

 --cache-dir string path to store cached data (default

"/var/cache/sensu/sensu-agent")

 -c, --confg-fle string path to sensu-agent confg fle

 --deregister ephemeral agent

 --deregistration-handler string deregistration handler that should process

the entity deregistration event.

 --disable-api disable the Agent HTTP API

 --disable-sockets disable the Agent TCP and UDP event sockets

 --events-burst-limit /events api burst limit

 --events-rate-limit maximum number of events transmitted to the

backend through the /events api

 -h, --help help for start

 --insecure-skip-tls-verify skip ssl verifcation

 --keepalive-interval int number of seconds to send between keepalive

events (default 20)

 --keepalive-timeout uint32 number of seconds until agent is considered

dead by backend (default 120)

 --labels stringToString entity labels map (default [])

 --log-level string logging level [panic, fatal, error, warn,

info, debug] (default "warn")

 --name string agent name (defaults to hostname) (default

"sensu-go-sandbox")

 --namespace string agent namespace (default "default")

 --password string agent password (default "P@ssw0rd!")

 --redact string comma-delimited customized list of felds to

redact

 --socket-host string address to bind the Sensu client socket to

(default "127.0.0.1")

 --socket-port int port the Sensu client socket listens on

(default 3030)

 --statsd-disable disables the statsd listener and metrics

server

 --statsd-event-handlers strings comma-delimited list of event handlers for

statsd metrics

 --statsd-fush-interval int number of seconds between statsd fush

(default 10)

 --statsd-metrics-host string address used for the statsd metrics server

(default "127.0.0.1")

 --statsd-metrics-port int port used for the statsd metrics server

Windows

You can specify the agent confguration using a .yml fle.
See the example confg fle provided with
Sensu packages at %ALLUSERSPROFILE%\sensu\confg\agent.yml.example (default:
C:\ProgramData\sensu\confg\agent.yml.example) or available here.

General confguration fags

annotations

description Non-identifying metadata to include with event data, which can be
accessed using flters and tokens. You can use annotations to add data
that’s meaningful to people or external tools interacting with Sensu.

In contrast to labels, annotations cannot be used in API fltering or
sensuctl fltering and do not impact Sensu’s internal performance.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

(default 8125)

 --subscriptions string comma-delimited list of agent subscriptions

 --trusted-ca-fle string tls certifcate authority

 --user string agent user (default "agent")

Command line examples

sensu-agent start --annotations

sensu.io/plugins/slack/confg/webhook-

url=https://hooks.slack.com/services/T00000000/B00000000/XX

XXXXXXXXXXXXXXXXXXXXXX

sensu-agent start --annotations example-key="example value"

--annotations example-key2="example value"

/etc/sensu/agent.yml example

annotations:

 sensu.io/plugins/slack/confg/webhook-url:

http://localhost:1313/sensu-go/5.8/files/windows/agent.yml

backend-url

description ws or wss URL of the Sensu backend server. To specify multiple
backends using sensu-agent start , use this fag multiple times.

type List

default ws://127.0.0.1:8081

example

cache-dir

description Path to store cached data

type String

default Linux: /var/cache/sensu/sensu-agent
Windows: C:\ProgramData\sensu\cache\sensu-agent

example

"https://hooks.slack.com/services/T00000000/B00000000/XXXXX

XXXXXXXXXXXXXXXXXXX"

Command line examples

sensu-agent start --backend-url ws://0.0.0.0:8081

sensu-agent start --backend-url ws://0.0.0.0:8081 --

backend-url ws://0.0.0.0:8082

/etc/sensu/agent.yml example

backend-url:

 - "ws://0.0.0.0:8081"

 - "ws://0.0.0.0:8082"

Command line example

sensu-agent start --cache-dir /cache/sensu-agent

/etc/sensu/agent.yml example

confg-fle

description Path to Sensu agent confg fle

type String

default Linux: /etc/sensu/agent.yml
FreeBSD: /usr/local/etc/sensu/agent.yml
Windows: C:\ProgramData\sensu\confg\agent.yml

example

labels

description Custom attributes to include with event data, which can be accessed
using flters and tokens.

In contrast to annotations, you can use labels to create meaningful
collections that can be selected with API fltering and sensuctl fltering.
Overusing labels can impact Sensu’s internal performance, so we
recommend moving complex, non-identifying metadata to annotations.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

cache-dir: "/cache/sensu-agent"

Command line example

sensu-agent start --confg-fle /sensu/agent.yml

sensu-agent start -c /sensu/agent.yml

/etc/sensu/agent.yml example

confg-fle: "/sensu/agent.yml"

example

name

description Entity name assigned to the agent entity

type String

default Defaults to hostname, for example: sensu-centos

example

log-level

description Logging level: panic , fatal , error , warn , info , or debug

type String

default warn

example

Command line examples

sensu-agent start --labels proxy_type=website

sensu-agent start --labels example_key1="example value"

example_key2="example value"

/etc/sensu/agent.yml example

labels:

 proxy_type: "website"

Command line example

sensu-agent start --name agent-01

/etc/sensu/agent.yml example

name: "agent-01"

Command line example

sensu-agent start --log-level debug

/etc/sensu/agent.yml example

subscriptions

description An array of agent subscriptions which determine which monitoring
checks are executed by the agent. The subscriptions array items must be
strings.

type List

example

API confguration fags

api-host

description Bind address for the Sensu agent HTTP API

type String

default 127.0.0.1

example

log-level: "debug"

Command line examples

sensu-agent start --subscriptions disk-checks,process-

checks

sensu-agent start --subscriptions disk-checks --

subscriptions process-checks

/etc/sensu/agent.yml example

subscriptions:

 - disk-checks

 - process-checks

Command line example

sensu-agent start --api-host 0.0.0.0

/etc/sensu/agent.yml example

api-port

description Listening port for the Sensu agent HTTP API

type Integer

default 3031

example

disable-api

description Disable the agent HTTP API

type Boolean

default false

example

events-burst-limit

description The maximum amount of burst allowed in a rate interval for the agent
events API.

api-host: "0.0.0.0"

Command line example

sensu-agent start --api-port 4041

/etc/sensu/agent.yml example

api-port: 4041

Command line example

sensu-agent start --disable-api

/etc/sensu/agent.yml example

disable-api: true

type Integer

default 10

example

events-rate-limit

description The maximum number of events per second that can be transmitted to
the backend using the agent events API

type Float

default 10.0

example

Ephemeral agent confguration fags

deregister

description Indicates whether a deregistration event should be created upon Sensu
agent process stop

type Boolean

default false

Command line example

sensu-agent start --events-burst-limit 20

/etc/sensu/agent.yml example

events-burst-limit: 20

Command line example

sensu-agent start --events-rate-limit 20.0

/etc/sensu/agent.yml example

events-rate-limit: 20.0

example

deregistration-
handler

description The name of a deregistration handler that processes agent deregistration
events. This fag overrides any handlers applied by the
deregistration-handler backend confguration fag.

type String

example

Keepalive confguration fags

keepalive-interval

description Number of seconds between keepalive events

type Integer

default 20

example

Command line example

sensu-agent start --deregister

/etc/sensu/agent.yml example

deregister: true

Command line example

sensu-agent start --deregistration-handler deregister

/etc/sensu/agent.yml example

deregistration-handler: "deregister"

Command line example

sensu-agent start --keepalive-interval 30

keepalive-timeout

description Number of seconds after a missing keepalive event until the agent is
considered unresponsive by the Sensu backend

type Integer

default 120

example

Security confguration fags

namespace

description Agent namespace NOTE: Agents are represented in the backend as a
class of entity. Entities can only belong to a single namespace.

type String

default default

example

/etc/sensu/agent.yml example

keepalive-interval: 30

Command line example

sensu-agent start --keepalive-timeout 300

/etc/sensu/agent.yml example

keepalive-timeout: 300

Command line example

sensu-agent start --namespace ops

/etc/sensu/agent.yml example

namespace: "ops"

user

description Sensu RBAC username used by the agent. Agents require get, list,
create, update, and delete permissions for events across all
namespaces.

type String

default agent

example

password

description Sensu RBAC password used by the agent

type String

default P@ssw0rd!

example

redact

description List of felds to redact when logging and sending keepalives

Command line example

sensu-agent start --user agent-01

/etc/sensu/agent.yml example

user: "agent-01"

Command line example

sensu-agent start --password secure-password

/etc/sensu/agent.yml example

password: "secure-password"

type List

default By default, Sensu redacts the following felds: password , passwd ,
pass , api_key , api_token , access_key , secret_key ,
private_key , secret

example

trusted-ca-fle

description SSL/TLS certifcate authority

type String

default ""

example

insecure-skip-tls-
verify

description Skip SSL verifcation. WARNING: This confguration fag is intended for
use in development systems only. Do not use this fag in production.

Command line example

sensu-agent start --redact secret,ec2_access_key

/etc/sensu/agent.yml example

redact:

 - secret

 - ec2_access_key

Command line example

sensu-agent start --trusted-ca-fle /path/to/trusted-

certifcate-authorities.pem

/etc/sensu/agent.yml example

trusted-ca-fle: "/path/to/trusted-certifcate-

authorities.pem"

type Boolean

default false

example

Socket confguration fags

socket-host

description Address to bind the Sensu agent socket to

type String

default 127.0.0.1

example

socket-port

description Port the Sensu agent socket listens on

type Integer

default 3030

example

Command line example

sensu-agent start --insecure-skip-tls-verify

/etc/sensu/agent.yml example

insecure-skip-tls-verify: true

Command line example

sensu-agent start --socket-host 0.0.0.0

/etc/sensu/agent.yml example

socket-host: "0.0.0.0"

Command line example

disable-sockets

description Disable the agent TCP and UDP event sockets

type Boolean

default false

example

StatsD confguration fags

statsd-disable

description Disables the StatsD listener and metrics server

type Boolean

default false

example

sensu-agent start --socket-port 4030

/etc/sensu/agent.yml example

socket-port: 4030

Command line example

sensu-agent start --disable-sockets

/etc/sensu/agent.yml example

disable-sockets: true

Command line example

sensu-agent start --statsd-disable

/etc/sensu/agent.yml example

statsd-disable: true

https://github.com/etsy/statsd

statsd-event-
handlers

description List of event handlers for StatsD metrics

type List

example

statsd-fush-
interval

description Number of seconds between StatsD fush

type Integer

default 10

example

statsd-metrics-
host

Command line examples

sensu-agent start --statsd-event-handlers infuxdb,opentsdb

sensu-agent start --statsd-event-handlers infuxdb --statsd-

event-handlers opentsdb

/etc/sensu/agent.yml example

statsd-event-handlers:

 - infuxdb

 - opentsdb

Command line example

sensu-agent start --statsd-fush-interval 30

/etc/sensu/agent.yml example

statsd-fush-interval: 30

https://github.com/etsy/statsd#key-concepts

description Address used for the StatsD metrics server

type String

default 127.0.0.1

example

statsd-metrics-port

description Port used for the StatsD metrics server

type Integer

default 8125

example

Command line example

sensu-agent start --statsd-metrics-host 0.0.0.0

/etc/sensu/agent.yml example

statsd-metrics-host: "0.0.0.0"

Command line example

sensu-agent start --statsd-metrics-port 6125

/etc/sensu/agent.yml example

statsd-metrics-port: 6125

Sensu backend

Contents
Installation
Creating event pipelines
Check scheduling
Operation and service management
Starting and stopping the service
Clustering
Time synchronization
Confguration
General confguration
Agent communication confguration
Security confguration
Dashboard confguration
Datastore and cluster confguration
Example (download)

The Sensu backend is a service that manages check requests and event data.
Every Sensu backend
includes an integrated transport for scheduling checks using subscriptions, an event processing
pipeline that applies flters, mutators, and handlers, an embedded etcd datastore for storing
confguration and state, a Sensu API, Sensu dashboard, and sensu-backend command-line tool.
The
Sensu backend is available for Ubuntu/Debian and RHEL/CentOS distributions of Linux.
See the
installation guide to install the backend.

Event pipeline

The backend processes event data and executes flters, mutators, and handlers.
These pipelines are
powerful tools to automate your monitoring workfows.
To learn more about flters, mutators, and
handlers, see:

Guide to sending Slack alerts with handlers
Guide to reducing alerting fatigue with flters
Filters reference documentation
Mutators reference documentation
Handlers reference documentation

http://localhost:1313/sensu-go/5.8/files/backend.yml
https://github.com/etcd-io/etcd/blob/master/Documentation/docs.md

Check scheduling

The backend is responsible for storing check defnitions and scheduling check requests.
Check
scheduling is subscription-based; the backend sends check requests to subscriptions where they’re
picked up by subscribing agents.

For information about creating and managing checks, see:

Guide to monitoring server resources with checks
Guide to collecting metrics with checks
Checks reference documentation

Operation and service management

NOTE: Commands in this section may require administrative privileges.

Starting the service

Use the sensu-backend tool to start the backend and apply confguration fags.

To start the backend with confguration fags:

To see available confguration fags and defaults:

If no confguration fags are provided, the backend loads confguration from
/etc/sensu/backend.yml by default.

To start the backend using a service manager:

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug

sensu-backend start --help

service sensu-backend start

Stopping the service

To stop the backend service using a service manager:

Restarting the service

You must restart the backend to implement any confguration updates.

To restart the backend using a service manager:

Enabling on boot

To enable the backend to start on system boot:

To disable the backend from starting on system boot:

NOTE: On older distributions of Linux, use sudo chkconfg sensu-server on to enable the backend
and sudo chkconfg sensu-server off to disable.

Getting service status

service sensu-backend stop

service sensu-backend restart

systemctl enable sensu-backend

systemctl disable sensu-backend

To see the status of the backend service using a service manager:

Getting service version

To get the current backend version using the sensu-backend tool:

Getting help

The sensu-backend tool provides general and command-specifc help fags:

Clustering

You can run the backend as a standalone service, but running a cluster of backends makes Sensu
more highly available, reliable, and durable.
Sensu backend clusters build on the clustering system used
by etcd.
Clustering lets you synchronize data between backends and get the benefts of a highly
available confguration.
To confgure a cluster, see:

Datastore confguration fags
Guide to running a Sensu cluster

Time synchronization

service sensu-backend status

sensu-backend version

Show sensu-backend commands

sensu-backend help

Show options for the sensu-backend start subcommand

sensu-backend start --help

https://github.com/etcd-io/etcd/blob/master/Documentation/docs.md

System clocks between agents and the backend should be synchronized to a central NTP server. Out
of sync system time may cause issues with keepalive, metric, and check alerts.

Confguration

You can specify the backend confguration using a /etc/sensu/backend.yml fle or using sensu-
backend start confguration fags.
The backend requires that the state-dir fag be set before
starting; all other required fags have default values.
See the example confg fle provided with Sensu
packages at /usr/share/doc/sensu-go-backend-5.8.0/backend.yml.example or available here.
The backend loads confguration upon startup, so you must restart the backend for any confguration
updates to take effect.

Confguration summary

$ sensu-backend start --help

start the sensu backend

Usage:

 sensu-backend start [fags]

General Flags:

 --agent-host string agent listener host (default "[::]")

 --agent-port int agent listener port (default 8081)

 --api-listen-address string address to listen on for api traffc (default

"[::]:8080")

 --api-url string url of the api to connect to (default

"http://localhost:8080")

 --cache-dir string path to store cached data (default

"/var/cache/sensu/sensu-backend")

 --cert-fle string TLS certifcate in PEM format

 -c, --confg-fle string path to sensu-backend confg fle

 --dashboard-cert-fle string dashboard TLS certifcate in PEM format

 --dashboard-key-fle string dashboard TLS certifcate key in PEM format

 --dashboard-host string dashboard listener host (default "[::]")

 --dashboard-port int dashboard listener port (default 3000)

 --debug enable debugging and profling features

 --deregistration-handler string default deregistration handler

 -h, --help help for start

 --insecure-skip-tls-verify skip TLS verifcation (not recommended!)

http://localhost:1313/sensu-go/5.8/files/backend.yml

 --key-fle string TLS certifcate key in PEM format

 --log-level string logging level [panic, fatal, error, warn,

info, debug] (default "warn")

 -d, --state-dir string path to sensu state storage (default

"/var/lib/sensu/sensu-backend")

 --trusted-ca-fle string TLS CA certifcate bundle in PEM format used

for etcd client (mutual TLS)

Store Flags:

 --etcd-advertise-client-urls strings list of this member's client URLs

to advertise to the rest of the cluster. (default [http://localhost:2379])

 --etcd-cert-fle string path to the client server TLS cert

fle

 --etcd-client-cert-auth enable client cert authentication

 --etcd-initial-advertise-peer-urls strings list of this member's peer URLs

to advertise to the rest of the cluster (default [http://127.0.0.1:2380])

 --etcd-initial-cluster string initial cluster confguration for

bootstrapping (default "default=http://127.0.0.1:2380")

 --etcd-initial-cluster-state string initial cluster state ("new" or

"existing") (default "new")

 --etcd-initial-cluster-token string initial cluster token for the

etcd cluster during bootstrap

 --etcd-key-fle string path to the client server TLS key

fle

 --etcd-listen-client-urls strings list of URLs to listen on for

client traffc (default [http://127.0.0.1:2379])

 --etcd-listen-peer-urls strings list of URLs to listen on for

peer traffc (default [http://127.0.0.1:2380])

 --etcd-name string human-readable name for this

member (default "default")

 --etcd-peer-cert-fle string path to the peer server TLS cert

fle

 --etcd-peer-client-cert-auth enable peer client cert

authentication

 --etcd-peer-key-fle string path to the peer server TLS key

fle

 --etcd-peer-trusted-ca-fle string path to the peer server TLS

trusted CA fle

 --etcd-trusted-ca-fle string path to the client server TLS

trusted CA cert fle

 --no-embed-etcd don't embed etcd, use external

etcd instead

General confguration fags

cache-dir

description Path to store cached data

type String

default /var/cache/sensu/sensu-backend

example

confg-fle

description Path to Sensu backend confg fle

type String

default /etc/sensu/backend.yml

example

 --etcd-cipher-suites list of ciphers to use for etcd

TLS confguration

 --etcd-max-request-bytes maximum etcd request size in

bytes (use with caution)

 --etcd-quota-backend-bytes maximum etcd database size in

bytes (use with caution)

Command line example

sensu-backend start --cache-dir /cache/sensu-backend

/etc/sensu/backend.yml example

cache-dir: "/cache/sensu-backend"

Command line example

sensu-backend start --confg-fle /etc/sensu/backend.yml

sensu-backend start -c /etc/sensu/backend.yml

/etc/sensu/backend.yml example

debug

description Enable debugging and profling features

type Boolean

default false

example

deregistration-
handler

description Default event handler to use when processing agent deregistration
events.

type String

default ""

example

log-level

confg-fle: "/etc/sensu/backend.yml"

Command line example

sensu-backend start --debug

/etc/sensu/backend.yml example

debug: true

Command line example

sensu-backend start --deregistration-handler

/path/to/handler.sh

/etc/sensu/backend.yml example

deregistration-handler: "/path/to/handler.sh"

description Logging level: panic , fatal , error , warn , info , or debug

type String

default warn

example

state-dir

description Path to Sensu state storage: /var/lib/sensu/sensu-backend .

type String

required true

example

api-listen-address

description Address the API daemon will listen for requests on

type String

default [::]:8080

Command line example

sensu-backend start --log-level debug

/etc/sensu/backend.yml example

log-level: "debug"

Command line example

sensu-backend start --state-dir /var/lib/sensu/sensu-

backend

sensu-backend start -d /var/lib/sensu/sensu-backend

/etc/sensu/backend.yml example

state-dir: "/var/lib/sensu/sensu-backend"

example

api-url

description URL used to connect to the API

type String

default http://localhost:8080

example

Agent communication confguration fags

agent-host

description agent listener host, listens on all IPv4 and IPv6 addresses by default

type String

default [::]

example

Command line example

sensu-backend start --api-listen-address [::]:8080

/etc/sensu/backend.yml example

api-listen-address: "[::]:8080"

Command line example

sensu-backend start --api-url http://localhost:8080

/etc/sensu/backend.yml example

api-url: "http://localhost:8080"

Command line example

sensu-backend start --agent-host 127.0.0.1

/etc/sensu/backend.yml example

agent-port

description agent listener port

type Integer

default 8081

example

Security confguration fags

cert-fle

description Path to the primary backend certifcate fle, as well as specifes a fallback
SSL/TLS certifcate if the fag dashboard-cert-fle is not use. This
certifcate secures communications between Sensu Dashboard and end
user web browsers, as well as communication between sensuctl and
the Sensu API.

type String

default ""

example

agent-host: "127.0.0.1"

Command line example

sensu-backend start --agent-port 8081

/etc/sensu/backend.yml example

agent-port: 8081

Command line example

sensu-backend start --cert-fle /path/to/ssl/cert.pem

/etc/sensu/backend.yml example

cert-fle: "/path/to/ssl/cert.pem"

key-fle

description Path to the primary backend key fle, as well as specifes a fallback
SSL/TLS key if the fag dashboard-key-fle is not use. This key
secures communication between Sensu Dashboard and end user web
browsers, as well as communication between sensuctl and the Sensu
API.

type String

default ""

example

trusted-ca-fle

description Path to the primary backend CA fle, as well as specifes a fallback
SSL/TLS certifcate authority in PEM format used for etcd client (mutual
TLS) communication if the etcd-trusted-ca-fle is not used. This CA
fle is used in communication between Sensu Dashboard and end user
web browsers, as well as communication between sensuctl and
the Sensu API.

type String

default ""

example

Command line example

sensu-backend start --key-fle /path/to/ssl/key.pem

/etc/sensu/backend.yml example

key-fle: "/path/to/ssl/key.pem"

Command line example

sensu-backend start --trusted-ca-fle /path/to/trusted-

certifcate-authorities.pem

/etc/sensu/backend.yml example

insecure-skip-tls-
verify

description Skip SSL verifcation. WARNING: This confguration fag is intended for
use in development systems only. Do not use this fag in production.

type Boolean

default false

example

Dashboard confguration fags

dashboard-cert-fle

description Dashboard TLS certifcate in PEM format. This certifcate secures
communication with the Sensu Dashboard. If the dashboard-cert-fle
is not provided in the backend confguration, Sensu uses the certifcate
specifed in the cert-fle fag for the dashboard.

type String

default ""

example

trusted-ca-fle: "/path/to/trusted-certifcate-

authorities.pem"

Command line example

sensu-backend start --insecure-skip-tls-verify

/etc/sensu/backend.yml example

insecure-skip-tls-verify: true

Command line example

sensu-backend start --dashboard-cert-fle

/path/to/tls/cert.pem

dashboard-key-fle

description Dashboard TLS certifcate key in PEM format. This key secures
communication with the Sensu Dashboard. If the dashboard-key-fle
is not provided in the backend confguration, Sensu uses the key
specifed in the key-fle fag for the dashboard.

type String

default ""

example

dashboard-host

description Dashboard listener host

type String

default [::]

example

/etc/sensu/backend.yml example

dashboard-cert-fle: "/path/to/tls/cert.pem"

Command line example

sensu-backend start --dashboard-key-fle

/path/to/tls/key.pem

/etc/sensu/backend.yml example

dashboard-key-fle: "/path/to/tls/key.pem"

Command line example

sensu-backend start --dashboard-host 127.0.0.1

/etc/sensu/backend.yml example

dashboard-host: "127.0.0.1"

dashboard-port

description Dashboard listener port

type Integer

default 3000

example

Datastore and cluster confguration fags

etcd-advertise-
client-urls

description List of this member’s client URLs to advertise to the rest of the cluster.

type List

default http://localhost:2379

example

Command line example

sensu-backend start --dashboard-port 4000

/etc/sensu/backend.yml example

dashboard-port: 4000

Command line examples

sensu-backend start --etcd-advertise-client-urls

http://localhost:2378,http://localhost:2379

sensu-backend start --etcd-advertise-client-urls

http://localhost:2378 --etcd-advertise-client-urls

http://localhost:2379

/etc/sensu/backend.yml example

etcd-advertise-client-urls:

 - http://localhost:2378

 - http://localhost:2379

etcd-cert-fle

description Path to the etcd client API TLS cert fle. Secures communication between
the embedded etcd client API and any etcd clients.

type String

default ""

example

etcd-client-cert-
auth

description Enable client cert authentication

type Boolean

default false

example

etcd-initial-
advertise-peer-urls

description List of this member’s peer URLs to advertise to the rest of the cluster

Command line example

sensu-backend start --etcd-cert-fle ./client.pem

/etc/sensu/backend.yml example

etcd-cert-fle: "./client.pem"

Command line example

sensu-backend start --etcd-client-cert-auth

/etc/sensu/backend.yml example

etcd-client-cert-auth: true

type List

default http://127.0.0.1:2380

example

etcd-initial-cluster

description Initial cluster confguration for bootstrapping

type String

default default=http://127.0.0.1:2380

example

etcd-initial-cluster-

Command line examples

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380,https://10.1.0.1:2380

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380 --etcd-listen-peer-urls

https://10.1.0.1:2380

/etc/sensu/backend.yml example

etcd-listen-peer-urls:

 - https://10.0.0.1:2380

 - https://10.1.0.1:2380

Command line example

sensu-backend start --etcd-initial-cluster backend-

0=https://10.0.0.1:2380,backend-

1=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380

/etc/sensu/backend.yml example

etcd-initial-cluster: "backend-

0=https://10.0.0.1:2380,backend-

1=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380"

state

description Initial cluster state (new or existing)

type String

default new

example

etcd-initial-cluster-
token

description Initial cluster token for the etcd cluster during bootstrap

type String

default ""

example

etcd-key-fle

description Path to the etcd client API TLS key fle. Secures communication between
the embedded etcd client API and any etcd clients.

type String

Command line example

sensu-backend start --etcd-initial-cluster-state existing

/etc/sensu/backend.yml example

etcd-initial-cluster-state: "existing"

Command line example

sensu-backend start --etcd-initial-cluster-token sensu

/etc/sensu/backend.yml example

etcd-initial-cluster-token: "sensu"

example

etcd-listen-client-
urls

description List of URLs to listen on for client traffc

type List

default http://127.0.0.1:2379

example

etcd-listen-peer-
urls

description List of URLs to listen on for peer traffc

type List

default http://127.0.0.1:2380

Command line example

sensu-backend start --etcd-key-fle ./client-key.pem

/etc/sensu/backend.yml example

etcd-key-fle: "./client-key.pem"

Command line examples

sensu-backend start --etcd-listen-client-urls

https://10.0.0.1:2379,https://10.1.0.1:2379

sensu-backend start --etcd-listen-client-urls

https://10.0.0.1:2379 --etcd-listen-client-urls

https://10.1.0.1:2379

/etc/sensu/backend.yml example

etcd-listen-client-urls:

 - https://10.0.0.1:2379

 - https://10.1.0.1:2379

example

etcd-name

description Human-readable name for this member

type String

default default

example

etcd-peer-cert-fle

description Path to the peer server TLS cert fle

type String

example

Command line examples

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380,https://10.1.0.1:2380

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380 --etcd-listen-peer-urls

https://10.1.0.1:2380

/etc/sensu/backend.yml example

etcd-listen-peer-urls:

 - https://10.0.0.1:2380

 - https://10.1.0.1:2380

Command line example

sensu-backend start --etcd-name backend-0

/etc/sensu/backend.yml example

etcd-name: "backend-0"

Command line example

sensu-backend start --etcd-peer-cert-fle ./backend-0.pem

etcd-peer-client-
cert-auth

description Enable peer client cert authentication

type Boolean

default false

example

etcd-peer-key-fle

description Path to the etcd peer API TLS key fle. Secures communication between
etcd cluster members.

type String

example

etcd-peer-trusted-
ca-fle

/etc/sensu/backend.yml example

etcd-peer-cert-fle: "./backend-0.pem"

Command line example

sensu-backend start --etcd-peer-client-cert-auth

/etc/sensu/backend.yml example

etcd-peer-client-cert-auth: true

Command line example

sensu-backend start --etcd-peer-key-fle ./backend-0-key.pem

/etc/sensu/backend.yml example

etcd-peer-key-fle: "./backend-0-key.pem"

description Path to the etcd peer API server TLS trusted CA fle. This certifcate
secures communication between etcd cluster members.

type String

example

etcd-trusted-ca-fle

description Path to the client server TLS trusted CA cert fle. Secures communication
with the etcd client server.

type String

default ""

example

no-embed-etcd

description Don’t embed etcd, use external etcd instead

type Boolean

default false

example

Command line example

sensu-backend start --etcd-peer-trusted-ca-fle ./ca.pem

/etc/sensu/backend.yml example

etcd-peer-trusted-ca-fle: "./ca.pem"

Command line example

sensu-backend start --etcd-trusted-ca-fle ./ca.pem

/etc/sensu/backend.yml example

etcd-trusted-ca-fle: "./ca.pem"

Command line example

sensu-backend start --no-embed-etcd

etcd-cipher-suites

description List of allowed cipher suites for etcd TLS confguration. Sensu supports
TLS 1.0-1.2 cipher suites as listed in the Go TLS documentation. You
can use this attribute to defend your TLS servers from attacks on weak
TLS ciphers. The default cipher suites are determined by Go, based on
the hardware used. NOTE: To use TLS 1.3, add the following
environment variable: GODEBUG="tls13=1" .

recommended

type List

example

/etc/sensu/backend.yml example

no-embed-etcd: true

etcd-cipher-suites:

 - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305

 - TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305

Command line examples

sensu-backend start --etcd-cipher-suites

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AE

S_256_GCM_SHA384

sensu-backend start --etcd-cipher-suites

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 --etcd-cipher-suites

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

/etc/sensu/backend.yml example

etcd-cipher-suites:

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

https://golang.org/pkg/crypto/tls/#pkg-constants

Advanced confguration options

etcd-max-request-
bytes

description Maximum etcd request size in bytes that can be sent to an etcd server by
a client. Increasing this value allows etcd to process events with large
outputs at the cost of overall latency. WARNING: Use with caution. This
confguration option requires familiarity with etcd. Improper use of this
option can result in a non-functioning Sensu instance.

type Integer

default 1572864

example

etcd-quota-
backend-bytes

description Maximum etcd database size in bytes. Increasing this value allows for a
larger etcd database at the cost of performance. WARNING: Use with
caution. This confguration option requires familiarity with etcd. Improper
use of this option can result in a non-functioning Sensu instance.

type Integer

default 4294967296

example

Command line example

sensu-backend start --etcd-max-request-bytes 1572864

/etc/sensu/backend.yml example

etcd-max-request-bytes: 1572864

Command line example

sensu-backend start --etcd-quota-backend-bytes 4294967296

/etc/sensu/backend.yml example

etcd-quota-backend-bytes: 4294967296

Assets

Contents
What is an asset?
How do assets work?
Asset format specifcation
Asset specifcation
Examples
Sharing an asset on Bonsai

You can discover, download, and share assets using Bonsai, the Sensu asset index.
Read the guide to
using assets to get started.

What is an asset?

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
You can use
assets to provide the plugins, libraries, and runtimes you need to automate your monitoring workfows.
Sensu supports runtime assets for checks, flters, mutators, and handlers.

NOTE: Assets are not required to use Sensu Go in production. Sensu plugins can still be installed
using the sensu-install tool or a confguration management solution.

How do assets work?

Assets can be executed by the backend (for handler, flter, and mutator assets), or
by the agent (for
check assets).
At runtime, the backend or agent sequentially fetches assets that appear in the
runtime_assets attribute of the handler, flter, mutator or check being executed, verifes the sha512

checksum, and unpacks them into the backend or agent’s local cache directory.
The directory path of
each asset defned in runtime_assets is then injected into the PATH before the handler, flter,
mutator or check command is executed.
Subsequent handler, flter, mutator or check executions look
for the asset in the local cache and ensure the contents match the confgured checksum.
The backend
or agent’s local cache path can be set using the --cache-dir fag.

You can fnd a use case using a Sensu resource (a check) and an asset in this example asset with a

https://bonsai.sensu.io/
http://localhost:1313/plugins/latest/reference

check.

Asset format specifcation

Sensu expects an asset to be a tar archive (optionally gzipped) containing one or more executables
within a bin folder.
Any scripts or executables should be within a bin/ folder within in the archive.
See
the Sensu Go Plugin template for an example asset and Bonsai confguration.

The following are injected into the execution context:

{PATH_TO_ASSET}/bin is injected into the PATH environment variable.
{PATH_TO_ASSET}/lib is injected into the LD_LIBRARY_PATH environment
variable.
{PATH_TO_ASSET}/include is injected into the CPATH environment variable.

NOTE: If you have used previous versions of Sensu and are familiar with plugins from the Sensu
Plugins community, it is not possible to create an asset by creating an archive of an existing project.
You must follow the steps outlined in this Sensu discourse guide. For further examples of Sensu users
who have added the capability for a community plugin to be used as an asset, see this post.

Default cache directory

system sensu-backend sensu-agent

Linux /var/cache/sensu/sensu-

backend

/var/cache/sensu/sensu-agent

Windows N/A C:\ProgramData\sensu\cache\sens

u-agent

If the requested asset is not in the local cache, it is downloaded from the asset
URL. The Sensu
backend does not currently provide any storage for assets; they
are expected to be retrieved over HTTP
or HTTPS.

Example structure

sensu-example-handler_1.0.0_linux_amd64
├── CHANGELOG.md

https://github.com/sensu/sensu-go-plugin
https://github.com/sensu-plugins
https://github.com/sensu-plugins
https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165
https://discourse.sensu.io/t/how-to-use-the-sensu-plugins-kubernetes-plugin/1286

Asset specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Assets should always be of type Asset .

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
assets in Sensu backend version 5.8, this attribute should always be
core/v2 .

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

├── LICENSE
├── README.md
└── bin

 └── my-check.sh
└── lib
└── include

"type": "Asset"

"api_version": "core/v2"

metadata

description Top-level collection of metadata about the asset, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the asset defnition. This

means that in wrapped-json and yaml formats, the metadata
scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the asset spec attributes.

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

"metadata": {

 "name": "check_script",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

"spec": {

 "url": "http://example.com/asset.tar.gz",

Spec attributes

url

description The URL location of the asset.

required true

type String

example

sha512

description The checksum of the asset.

required true

type String

example

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a

3ef3c2e8d154812246e5dda4a87450576b2c58ad9ab40c9e2edc31b288d

066b195b21b",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

}

"url": "http://example.com/asset.tar.gz"

"sha512": "4f926bf4328..."

flters

description A set of Sensu query expressions used to determine if the asset should
be installed. If multiple expressions are included, each expression must
return true in order for Sensu to install the asset.

Filters for check assets should match agent entity platforms, while flters
for handler and flter assets should match your Sensu backend platform.
You can create asset flter expressions using any supported entity
system attributes, including os , arch , platform , and
platform_family . PRO TIP: Asset flters let you reuse checks across

platforms safely. Assign assets for multiple platforms to a single check,
and rely on asset flters to ensure that only the appropriate asset is
installed on each agent.

required false

type Array

example

Metadata attributes

name

description The unique name of the asset, validated with Go regex \A[\w\.\-
]+\z .

required true

type String

example

namespace

"flters": ["entity.system.os=='linux'",

"entity.system.arch=='amd64'"]

"name": "check_script"

https://regex101.com/r/zo9mQU/2
https://regex101.com/r/zo9mQU/2

description The Sensu RBAC namespace that this asset belongs to.

required false

type String

default default

example

labels

description Custom attributes you can use to create meaningful collections that can
be selected with API fltering and sensuctl fltering. Overusing labels can
impact Sensu’s internal performance, so we recommend moving
complex, non-identifying metadata to annotations.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata that’s meaningful to people interacting with
Sensu.

In contrast to labels, annotations cannot be used in API fltering or

"namespace": "production"

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

sensuctl fltering and do not impact Sensu’s internal performance.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Examples

Minimum required asset attributes

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

type: Asset

api_version: core/v2

metadata:

 name: check_script

 namespace: default

spec:

 sha512:

4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a8

7450576b2c58ad9ab40c9e2edc31b288d066b195b21b

 url: http://example.com/asset.tar.gz

YML

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_script",

 "namespace": "default"

JSON

Asset defnition

 },

 "spec": {

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a

87450576b2c58ad9ab40c9e2edc31b288d066b195b21b"

 }

}

type: Asset

api_version: core/v2

metadata:

 annotations:

 slack-channel: '#monitoring'

 labels:

 region: us-west-1

 name: check_script

 namespace: default

spec:

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 sha512:

4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a8

7450576b2c58ad9ab40c9e2edc31b288d066b195b21b

 url: http://example.com/asset.tar.gz

YML

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_script",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

JSON

Example asset with a check

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

 },

 "spec": {

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a

87450576b2c58ad9ab40c9e2edc31b288d066b195b21b",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

 }

}

type: Asset

api_version: core/v2

metadata:

 name: sensu-prometheus-collector_linux_amd64

spec:

 url:

https://assets.bonsai.sensu.io/ef812286f59de36a40e51178024b81c69666e1b7/sensu-

prometheus-collector_1.1.6_linux_amd64.tar.gz

 sha512:

a70056ca02662fbf2999460f6be93f174c7e09c5a8b12efc7cc42ce1ccb5570ee0f328a2dd8223f506df

3b5972f7f521728f7bdd6abf9f6ca2234d690aeb3808

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

type: CheckConfg

api_version: core/v2

metadata:

 name: prometheus_collector

 namespace: default

YML

spec:

 command: "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-query

up"

 interval: 10

 publish: true

 output_metric_handlers:

 - infuxdb

 output_metric_format: infuxdb_line

 runtime_assets:

 - sensu-prometheus-collector_linux_amd64

 subscriptions:

 - system

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-email-handler_linux_amd64"

 },

 "spec": {

 "url":

"https://assets.bonsai.sensu.io/45eaac0851501a19475a94016a4f8f9688a280f6/sensu-

email-handler_0.2.0_linux_amd64.tar.gz",

 "sha512":

"d69df76612b74acd64aef8eed2ae10d985f6073f9b014c8115b7896ed86786128c20249fd370f30672b

f9a11b041a99adb05e3a23342d3ad80d0c346ec23a946",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

 }

}

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "prometheus_collector",

 "namespace": "default"

 },

WRAPPED-JSON

Sharing an asset on Bonsai

Share your open-source assets on Bonsai and connect with the Sensu Community.
Bonsai supports
assets hosted on GitHub and released using GitHub releases.
For more information about creating
Sensu Plugins, see the Sensu Plugin specifcation.

Bonsai requires a bonsai.yml confguration fle in the root directory of your repository that includes
the project description, platforms, asset flenames, and SHA-512 checksums.
For a Bonsai-compatible
asset template using Go and GoReleaser, see the Sensu Go plugin skeleton.

To share your asset on Bonsai, log in to Bonsai with your GitHub account and authorize Sensu.
Once
logged in, you can register your asset on Bonsai by adding the GitHub repository, description, and tags.
Make sure to provide a helpful README for your asset with confguration examples.

bonsai.yml example

 "spec": {

 "command": "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-

query up",

 "handlers": [

 "infuxdb"

],

 "interval": 10,

 "publish": true,

 "output_metric_format": "infuxdb_line",

 "runtime_assets": [

 "sensu-prometheus-collector_linux_amd64"

],

 "subscriptions": [

 "system"

]

 }

}

description: "#{repo}"

builds:

- platform: "linux"

https://bonsai.sensu.io/
https://github.com/
https://help.github.com/articles/about-releases/
http://localhost:1313/plugins/latest/reference/
https://goreleaser.com/
https://github.com/sensu/sensu-go-plugin
https://bonsai.sensu.io/sign-in
https://bonsai.sensu.io/new

bonsai.yml specifcation

description

description The project description

required true

type String

example

builds

description An array of asset details per platform

required true

type Array

example

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

- platform: "Windows"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_windows_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'windows'"

 - "entity.system.arch == 'amd64'"

description: "#{repo}"

builds:

Builds specifcation

platform

description The platform supported by the asset

required true

type String

example

arch

description The architecture supported by the asset

required true

type String

example

asset_flename

description The flename of the archive containing the asset

- platform: "linux"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

- platform: "linux"

 arch: "amd64"

required true

type String

example

sha_flename

description The SHA-512 checksum for the asset archive

required true

type String

example

flter

description Filter expressions describing the operating system and architecture
supported by the asset

required false

type Array

example

asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

Checks

Contents
Check commands
Check result specifcation
Check scheduling
Subscriptions
Scheduling
Proxy checks
Check token substitution
Check hooks
Check specifcation
Top-level attributes
Spec attributes
Metadata attributes
Proxy requests attributes
Check output truncation attributes
Examples

Checks work with Sensu agents to produce monitoring events automatically.
You can use checks to
monitor server resources, services, and application health as well as collect and analyze metrics.
Read
the guide to monitoring server resources to get started.
You can discover, download, and share Sensu
check assets using Bonsai, the Sensu asset index.

Check commands

Each Sensu check defnition specifes a command and the schedule at which it should be executed.
Check commands are executable commands that are executed by a Sensu agent.

A command may include command line arguments for controlling the behavior of the command
executable.
Many common checks are available as assets from Bonsai and support command line
arguments so different check defnitions can use the same executable.

Sensu advises against requiring root privileges to execute check commands or scripts.
The Sensu user
is not permitted to kill timed out processes invoked by the root user, which could result in zombie
processes.

https://bonsai.sensu.io/
https://bonsai.sensu.io/

How and where are check commands executed?

All check commands are executed by Sensu agents as the sensu user. Commands
must be
executable fles that are discoverable on the Sensu agent system (for example:
installed in a system
$PATH directory).

Check result specifcation

Although Sensu agents attempt to execute any
command defned for a check, successful processing of
check results requires
adherence to a simple specifcation.

Result data is output to STDOUT or STDERR
For service checks, this output is typically a human-readable message.
For metric checks, this output contains the measurements gathered by the
check.
Exit status code indicates state
0 indicates “OK”
1 indicates “WARNING”
2 indicates “CRITICAL”

Exit status codes other than 0 , 1 , or 2 indicate an “UNKNOWN” or
custom status

PRO TIP: Those familiar with the Nagios monitoring
system may recognize this specifcation, as it is the
same one used by Nagios
plugins. As a result, Nagios plugins can be used with Sensu without any
modifcation.

At every execution of a check command – regardless of success or failure – the
Sensu agent publishes
the check’s result for eventual handling by the event
processor (the Sensu backend).

Check scheduling

Checks are scheduled by the Sensu backend, which
publishes check execution requests to entities via
a publish-subscribe
model .

Subscriptions

Checks have a defned set of subscriptions, transport
topics to which the Sensu backend publishes
check requests. Sensu entities become
subscribers to these topics (called subscriptions) via their

https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

individual
subscriptions attribute. In practice, subscriptions typically correspond to
a specifc role or
responsibility (for example: a webserver or database).

Subscriptions are powerful primitives in the monitoring context because they
allow you to effectively
monitor for specifc behaviors or characteristics
corresponding to the function being provided by a
particular system. For
example, disk capacity thresholds might be more important (or at least
different) on
a database server as opposed to a webserver; conversely, CPU
or memory usage thresholds might be
more important on a caching system than
on a fle server. Subscriptions also allow you to confgure
check requests for
an entire group or subgroup of systems rather than requiring a traditional one-to-one
mapping.

To confgure subscriptions for a check, use the subscriptions attribute to specify an array of one or
more subscription names.
Sensu schedules checks once per interval for each agent with a matching
subscription.
For example, if we have three agents confgured with the system subscription, a check
confgured with the system subscription results in three monitoring events per interval: one check
execution per agent per interval.
In order for Sensu to execute a check, the check defnition must
include a subscription that matches the subscription of at least one Sensu agent.

Round-robin checks

By default, Sensu schedules checks once per interval for each agent with a matching subscription: one
check execution per agent per interval.
Sensu also supports deduplicated check execution when
confgured with the round_robin check attribute.
For checks with round_robin set to true , Sensu
executes the check once per interval, cycling through the available agents alphabetically according to
agent name.

For example, for three agents confgured with the system subscription (agents A, B, and C), a check
confgured with the system subscription and round_robin set to true results in one monitoring
event per interval, with the agent creating the event following the pattern A -> B -> C -> A -> B -> C for
the frst six intervals.

In the diagram above, the standard check is executed by agents A, B, and C every 60 seconds, while
the round-robin check cycles through the available agents, resulting in each agent executing the check
every 180 seconds.

To use check ttl and round_robin together, your check confguration must also specify a
proxy_entity_name . If you do not specify a proxy_entity_name when using check ttl and
round_robin together, your check will stop executing.

PRO TIP: Use round robin to distribute check execution workload across multiple agents when using
proxy checks.

Scheduling

You can schedule checks using the interval , cron , and publish attributes.
Sensu requires that
checks include either an interval attribute (interval scheduling) or a cron attribute (cron
scheduling).

Interval scheduling

You can schedule a check to be executed at regular intervals using the interval and publish
check attributes.
For example, to schedule a check to execute every 60 seconds, set the interval
attribute to 60 and the publish attribute to true .

NOTE: When creating an interval check, Sensu calculates an initial offset to splay the check’s
frst
scheduled request.
This helps to balance the load of both the backend and the agent, and may result in
a delay before initial check execution.

Example interval check

Cron scheduling

You can also schedule checks using cron syntax.
For example, to schedule a check to execute once a

type: CheckConfg

api_version: core/v2

metadata:

 name: interval_check

 namespace: default

spec:

 command: check-cpu.sh -w 75 -c 90

 handlers:

 - slack

 interval: 60

 publish: true

 subscriptions:

 - system

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "interval_check",

 "namespace": "default"

 },

 "spec": {

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true

 }

}

JSON

https://en.wikipedia.org/wiki/Cron#CRON_expression

minute at the start of the minute, set the cron attribute to * * * * * and the publish attribute to
true .

Example cron check

Ad-hoc scheduling

type: CheckConfg

api_version: core/v2

metadata:

 name: cron_check

 namespace: default

spec:

 command: check-cpu.sh -w 75 -c 90

 cron: '* * * * *'

 handlers:

 - slack

 publish: true

 subscriptions:

 - system

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "cron_check",

 "namespace": "default"

 },

 "spec": {

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "cron": "* * * * *",

 "publish": true

 }

}

JSON

In addition to automatic execution, you can create checks to be scheduled manually using the checks
API.
To create a check with ad-hoc scheduling, set the publish attribute to false in addition to an
interval or cron schedule.

Example ad-hoc check

type: CheckConfg

api_version: core/v2

metadata:

 name: ad_hoc_check

 namespace: default

spec:

 command: check-cpu.sh -w 75 -c 90

 handlers:

 - slack

 interval: 60

 publish: false

 subscriptions:

 - system

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "ad_hoc_check",

 "namespace": "default"

 },

 "spec": {

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": false

 }

}

JSON

Proxy checks

Sensu supports running proxy checks where the results are considered to be for an
entity that isn’t
actually the one executing the check, regardless of whether
that entity is a Sensu agent entity or a proxy
entity.
Proxy entities allow Sensu to monitor external resources
on systems or devices where a Sensu
agent cannot be installed, like a
network switch or a website.
You can create a proxy check using the
proxy_entity_name attribute or the proxy_requests attributes.

Using a proxy check to monitor a proxy entity

When executing checks that include a proxy_entity_name , Sensu agents report the resulting events
under the specifed proxy entity instead of the agent entity.
If the proxy entity doesn’t exist, Sensu
creates the proxy entity when the event is received by the backend.
To avoid duplicate events, we
recommend using the round_robin attribute with proxy checks.

Example proxy check using a proxy_entity_name

The following proxy check runs every 60 seconds, cycling through the agents with the proxy
subscription alphabetically according to the agent name, for the proxy entity sensu-site .

type: CheckConfg

api_version: core/v2

metadata:

 name: proxy_check

 namespace: default

spec:

 command: http_check.sh https://sensu.io

 handlers:

 - slack

 interval: 60

 proxy_entity_name: sensu-site

 publish: true

 round_robin: true

 subscriptions:

 - proxy

YML

JSON

Using a proxy check to monitor multiple proxy entities

The proxy_requests check attributes allow Sensu to run a check for each entity that matches the
defnitions specifed in the entity_attributes , resulting in monitoring events that represents each
matching proxy entity.
The entity attributes must match exactly as stated; no variables or directives have
any special meaning, but you can still use Sensu query expressions to perform more complicated
fltering on the available value, such as fnding entities with particular subscriptions.

The proxy_requests attributes are a great way to monitor multiple entities using a single check
defnition when combined with token substitution.
Since checks including proxy_requests attributes
need to be executed for each matching entity, we recommend using the round_robin attribute to
distribute the check execution workload evenly across your Sensu agents.

Example proxy check using proxy_requests

The following proxy check runs every 60 seconds, cycling through the agents with the proxy
subscription alphabetically according to the agent name, for all existing proxy entities with the custom
label proxy_type set to website .

This check uses token substitution to import the value of the custom entity label url to complete the
check command.
See the entity reference for information about using custom labels.

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "proxy_check",

 "namespace": "default"

 },

 "spec": {

 "command": "http_check.sh https://sensu.io",

 "subscriptions": ["proxy"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true,

 "round_robin": true,

 "proxy_entity_name": "sensu-site"

 }

}

YML

type: CheckConfg

api_version: core/v2

metadata:

 name: proxy_check_proxy_requests

 namespace: default

spec:

 command: http_check.sh {{ .labels.url }}

 handlers:

 - slack

 interval: 60

 proxy_requests:

 entity_attributes:

 - entity.labels.proxy_type == 'website'

 publish: true

 round_robin: true

 subscriptions:

 - proxy

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "proxy_check_proxy_requests",

 "namespace": "default"

 },

 "spec": {

 "command": "http_check.sh {{ .labels.url }}",

 "subscriptions": ["proxy"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true,

 "proxy_requests": {

 "entity_attributes": [

 "entity.labels.proxy_type == 'website'"

]

 },

 "round_robin": true

 }

}

JSON

Fine-tuning proxy check scheduling with splay

Sensu supports distributing proxy check executions across an interval using the splay and
splay_coverage attributes.
For example, if we assume that the proxy_check_proxy_requests

check in the example above matches three proxy entities, we’d expect to see a burst of three events
every 60 seconds.
If we add the splay attribute (set to true) and the splay_coverage attribute
(set to 90) to the proxy_requests scope, Sensu distributes the three check executions over 90% of
the 60-second interval, resulting in three events splayed evenly across a 54-second period.

Check token substitution

Sensu check defnitions may include attributes that you may wish to override on
an entity-by-entity
basis. For example, check commands – which may include
command line arguments for controlling the
behavior of the check command – may
beneft from entity-specifc thresholds, etc. Sensu check tokens
are check
defnition placeholders that will be replaced by the Sensu agent with the
corresponding entity
defnition attributes values (including custom attributes).

Learn how to use check tokens with the Sensu tokens reference
documentation .

NOTE: Check tokens are processed before check execution, therefore token substitutions
will not apply
to check data delivered via the local agent socket input.

Check hooks

Check hooks are commands run by the Sensu agent in response to the result of
check command
execution. The Sensu agent will execute the appropriate confgured
hook command, depending on the
check execution status (ex: 0, 1, 2).

Learn how to use check hooks with the Sensu hooks reference
documentation .

Check specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Checks should always be of type CheckConfg .

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
checks in Sensu backend version 5.4, this attribute should always be
core/v2 .

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the check, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the check defnition. This

means that in wrapped-json and yaml formats, the metadata
scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

"type": "CheckConfg"

"api_version": "core/v2"

type Map of key-value pairs

example

spec

description Top-level map that includes the check spec attributes.

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Spec attributes

command

"metadata": {

 "name": "collect-metrics",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

"spec": {

 "command": "/etc/sensu/plugins/check-chef-client.go",

 "interval": 10,

 "publish": true,

 "subscriptions": [

 "production"

]

}

description The check command to be executed.

required true

type String

example

subscriptions

description An array of Sensu entity subscriptions that check requests will be sent to.
The array cannot be empty and its items must each be a string.

required true

type Array

example

handlers

description An array of Sensu event handlers (names) to use for events created by
the check. Each array item must be a string.

required false

type Array

example

interval

description How often the check is executed, in seconds

"command": "/etc/sensu/plugins/check-chef-client.go"

"subscriptions": ["production"]

"handlers": ["pagerduty", "email"]

required true (unless cron is confgured)

type Integer

example

cron

description When the check should be executed, using cron syntax or these
predefned schedules.

required true (unless interval is confgured)

type String

example

publish

description If check requests are published for the check.

required false

default false

type Boolean

example

timeout

description The check execution duration timeout in seconds (hard stop).

"interval": 60

"cron": "0 0 * * *"

"publish": false

https://en.wikipedia.org/wiki/Cron#CRON_expression
https://godoc.org/github.com/robfig/cron#hdr-Predefined_schedules
https://godoc.org/github.com/robfig/cron#hdr-Predefined_schedules

required false

type Integer

example

ttl

description The time to live (TTL) in seconds until check results are considered stale.
If an agent stops publishing results for the check, and the TTL expires,
an event will be created for the agent’s entity.

The check ttl must be greater than the check interval and should
allow enough time for the check execution and result processing to
complete. For example, for a check that has an interval of 60
(seconds) and a timeout of 30 (seconds), the appropriate ttl is at
least 90 (seconds).

To use check ttl and round_robin together, your check
confguration must also specify a proxy_entity_name . If you do not
specify a proxy_entity_name when using check ttl and
round_robin together, your check will stop executing. NOTE: Adding

TTLs to checks adds overhead, so use the ttl attribute sparingly.

required false

type Integer

example

stdin

description If the Sensu agent writes JSON serialized Sensu entity and check data to
the command process’ STDIN. The command must expect the JSON
data via STDIN, read it, and close STDIN. This attribute cannot be used
with existing Sensu check plugins, nor Nagios plugins etc, as Sensu
agent will wait indefnitely for the check process to read and close

"timeout": 30

"ttl": 100

STDIN.

required false

type Boolean

default false

example

low_fap_threshold

description The fap detection low threshold (% state change) for the check. Sensu
uses the same fap detection algorithm as Nagios.

required false

type Integer

example

high_fap_threshol
d

description The fap detection high threshold (% state change) for the check. Sensu
uses the same fap detection algorithm as Nagios.

required true (if low_fap_threshold is confgured)

type Integer

example

"stdin": true

"low_fap_threshold": 20

"high_fap_threshold": 60

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html
https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html

runtime_assets

description An array of Sensu assets (names), required at runtime for the execution
of the command

required false

type Array

example

check_hooks

description An array of check response types with respective arrays of Sensu hook
names. Sensu hooks are commands run by the Sensu agent in response
to the result of the check command execution. Hooks are executed, in
order of precedence, based on their severity type: 1 to 255 , ok ,
warning , critical , unknown , and fnally non-zero .

required false

type Array

example

"runtime_assets": ["ruby-2.5.0"]

"check_hooks": [

 {

 "0": [

 "passing-hook","always-run-this-hook"

]

 },

 {

 "critical": [

 "failing-hook","collect-diagnostics","always-run-

this-hook"

]

 }

]

proxy_entity_nam
e

description The entity name, used to create a proxy entity for an external resource
(i.e., a network switch).

required false

type String

validated \A[\w\.\-]+\z

example

proxy_requests

description Sensu proxy request attributes allow you to assign the check to run for
multiple entities according to their entity_attributes . In the example
below, the check executes for all entities with entity class proxy and
the custom proxy type label website . Proxy requests are a great way
to reuse check defnitions for a group of entities. For more information,
see the proxy requests specifcation and the guide to monitoring external
resources.

required false

type Hash

example

"proxy_entity_name": "switch-dc-01"

"proxy_requests": {

 "entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

],

 "splay": true,

 "splay_coverage": 90

}

https://regex101.com/r/zo9mQU/2

silenced

description The silences that apply to this check.

type Array

example

env_vars

description An array of environment variables to use with command execution.
NOTE: To add env_vars to a check, use sensuctl create .

required false

type Array

example

output_metric_for
mat

description The metric format generated by the check command. Sensu supports the
following metric formats:
nagios_perfdata (Nagios Performance Data)
graphite_plaintext (Graphite Plaintext Protocol)
infuxdb_line (InfuxDB Line Protocol)
opentsdb_line (OpenTSDB Data Specifcation)

When a check includes an output_metric_format , Sensu will extract
the metrics from the check output and add them to the event data in
Sensu metric format. For more information about extracting metrics using
Sensu, see the guide.

required false

"silenced": ["*:routers"]

"env_vars": ["RUBY_VERSION=2.5.0",

"CHECK_HOST=my.host.internal"]

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://docs.influxdata.com/influxdb/v1.4/write_protocols/line_protocol_tutorial/#measurement
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#data-specification

type String

example

output_metric_han
dlers

description An array of Sensu handlers to use for events created by the check. Each
array item must be a string. output_metric_handlers should be used
in place of the handlers attribute if output_metric_format is
confgured. Metric handlers must be able to process Sensu metric
format. For an example, see the Sensu InfuxDB handler.

required false

type Array

example

round_robin

description When set to true , Sensu executes the check once per interval, cycling
through each subscribing agent in turn. See round-robin checks for more
information.

Use the round_robin attribute with proxy checks to avoid duplicate
events and distribute proxy check executions evenly across multiple
agents. See proxy checks for more information.

To use check ttl and round_robin together, your check
confguration must also specify a proxy_entity_name . If you do not
specify a proxy_entity_name when using check ttl and
round_robin together, your check will stop executing.

required false

"output_metric_format": "graphite_plaintext"

"output_metric_handlers": ["infux-db"]

https://github.com/sensu/sensu-influxdb-handler

type Boolean

example

subdue

description Check subdues are not yet implemented in Sensu Go. Although the
subdue attribute appears in check defnitions by default, it is a

placeholder and should not be modifed.

example

Metadata attributes

name

description A unique string used to identify the check. Check names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each check must have a unique name within its namespace.

required true

type String

example

namespace

description The Sensu RBAC namespace that this check belongs to.

required false

"round_robin": true

"subdue": null

"name": "check-cpu"

https://regex101.com/r/zo9mQU/2

type String

default default

example

labels

description Custom attributes to include with event data, which can be accessed
using event flters.

In contrast to annotations, you can use labels to create meaningful
collections that can be selected with API fltering and sensuctl fltering.
Overusing labels can impact Sensu’s internal performance, so we
recommend moving complex, non-identifying metadata to annotations.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata to include with event data, which can be
accessed using event flters. You can use annotations to add data that’s
meaningful to people or external tools interacting with Sensu.

In contrast to labels, annotations cannot be used in API fltering or
sensuctl fltering and do not impact Sensu’s internal performance.

"namespace": "production"

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Proxy requests attributes

entity_attributes

description Sensu entity attributes to match entities in the registry, using Sensu
query expressions

required false

type Array

example

splay

description If proxy check requests should be splayed, published evenly over a
window of time, determined by the check interval and a confgurable
splay coverage percentage. For example, if a check has an interval of
60 seconds and a confgured splay coverage of 90 %, its proxy check

requests would be splayed evenly over a time window of 60 seconds *
90 %, 54 seconds, leaving 6 s for the last proxy check execution

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

"entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

]

before the the next round of proxy check requests for the same check.

required false

type Boolean

default false

example

splay_coverage

description The percentage of the check interval over which Sensu can execute the
check for all applicable entities, as defned in the entity attributes. Sensu
uses the splay coverage attribute to determine the amount of time check
requests can be published over (before the next check interval).

required required if splay attribute is set to true

type Integer

example

Check output truncation attributes

max_output_size

description Maximum size, in bytes, of stored check outputs. When this attribute is
set to a non-zero value, the Sensu backend truncates check outputs
larger than this value before storing to etcd. max_output_size does not
affect data sent to Sensu flters, mutators, and handlers.

required false

type Integer

"splay": true

"splay_coverage": 90

example

discard_output

description Discard check output after extracting metrics. No check output will be
sent to the Sensu backend.

required false

type Boolean

example

Examples

Minimum recommended check attributes

NOTE: The attribute interval is not required if a valid cron schedule is defned.

"max_output_size": 1024

"discard_output": true

type: CheckConfg

api_version: core/v2

metadata:

 name: check_minimum

 namespace: default

spec:

 command: collect.sh

 handlers:

 - slack

 interval: 10

 publish: true

 subscriptions:

 - system

YML

Metric check

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default",

 "name": "check_minimum"

 },

 "spec": {

 "command": "collect.sh",

 "subscriptions": [

 "system"

],

 "handlers": [

 "slack"

],

 "interval": 10,

 "publish": true

 }

}

JSON

type: CheckConfg

api_version: core/v2

metadata:

 annotations:

 slack-channel: '#monitoring'

 labels:

 region: us-west-1

 name: collect-metrics

 namespace: default

spec:

 check_hooks: null

 command: collect.sh

 discard_output: true

 env_vars: null

YML

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: graphite_plaintext

 output_metric_handlers:

 - infux-db

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: null

 stdin: false

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

 },

 "spec": {

 "command": "collect.sh",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": null,

 "subscriptions": [

 "system"

JSON

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

 "env_vars": null,

 "discard_output": true

 }

}

Entities

Contents
What is an entity?
How do entities work?
Usage limits
Proxy entities
Managing entity labels
Proxy entity labels
Agent entity labels
Entities specifcation
Top-level attributes
Spec attributes
Metadata attributes
System attributes
Network attributes
NetworkInterface attributes
Deregistration attributes
Examples

What is an entity?

An entity represents anything (such as a server, container, or network switch) that needs to be
monitored, including the full range of infrastructure, runtime and application types that compose a
complete monitoring environment (from server hardware to serverless functions).
We call these
monitored parts of an infrastructure “entities.”

An entity not only provides context to event data (what/where the event is from) but an event’s
uniqueness is determined by the check name and the name of the entity upon which the check ran.
In
addition, an entity can contain system information such as the hostname, OS, platform, and version.

How do entities work?

Agent entities are monitoring agents that are installed and run on every system that needs to be

monitored.
The entity is responsible for registering the system with the Sensu backend service, sending
keepalive messages (the Sensu heartbeat mechanism), and executing monitoring checks.
Each entity is
a member of one or more subscriptions : a list of roles and/or responsibilities assigned to the agent
entity (e.g. a webserver or a database).
Sensu entities will “subscribe” to (or watch for) check requests
published by the Sensu backend (via the Sensu Transport), execute the corresponding requests
locally, and publish the results of the check back to the transport (to be processed by a Sensu
backend).

Proxy entities are dynamically created entities that are added to the entity store if an entity does not
already exist for a check result.
Proxy entities allow Sensu to monitor external resources on systems
where a Sensu agent cannot be installed (like a network switch or website) using the defned check
ProxyEntityName to create a proxy entity for the external resource.

Usage limits

Sensu Go 5.8 has no functional limitations based on entity count. If your Sensu instance includes over
1,000 entities, contact us to learn about license-activated features designed for monitoring at scale.
See Discourse for more information about our usage policy.

Proxy entities

Proxy entities (formerly known as proxy clients, “Just-in-time” or “JIT” clients) are dynamically created
entities, added to the entity store if an entity does not already exist for a check result. Proxy entity
registration differs from keepalive-based registration because the registration event happens while
processing a check result (not a keepalive message). Sensu proxy entities allow Sensu to monitor
external resources on systems and/or devices where a sensu-agent cannot be installed (such a
network switch) using the defned check ProxyEntityName to create a proxy entity for the external
resource.

Managing entity labels

Labels are custom attributes that Sensu includes with event data, which can be accessed using flters
and tokens.
In contrast to annotations, you can use labels to create meaningful collections that can be
selected with API fltering and sensuctl fltering.
Overusing labels can impact Sensu’s internal
performance, so we recommend moving complex, non-identifying metadata to annotations.

Proxy entity labels

https://discourse.sensu.io/t/introducing-usage-limits-in-the-sensu-go-free-tier/1156

For entities with class proxy , you can create and manage labels using sensuctl.
For example, to
create a proxy entity with a url label using sensuctl create , create a fle called example.json
with an entity defnition that includes labels .

type: Entity

api_version: core/v2

metadata:

 labels:

 url: docs.sensu.io

 name: sensu-docs

 namespace: default

spec:

 deregister: false

 deregistration: {}

 entity_class: proxy

 last_seen: 0

 subscriptions: []

 system:

 network:

 interfaces: null

YML

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs",

 "namespace": "default",

 "labels": {

 "url": "docs.sensu.io"

 }

 },

 "spec": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "proxy",

 "last_seen": 0,

 "subscriptions": [],

JSON

Then run sensuctl create to create the entity based on the defnition.

To add a label to an existing entity, you can use sensuctl edit .
For example, run sensuctl edit to
add a url label to a sensu-docs entity.

And update the metadata scope to include labels .

 "system": {

 "network": {

 "interfaces": null

 }

 }

 }

}

sensuctl create --fle entity.json

sensuctl edit entity sensu-docs

type: Entity

api_version: core/v2

metadata:

 labels:

 url: docs.sensu.io

 name: sensu-docs

 namespace: default

spec:

 '...': '...'

YML

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

JSON

Proxy entity checks

Proxy entities allow Sensu to monitor external resources on systems or devices where a Sensu agent
cannot be installed, like a network switch, website, or API endpoint. You can confgure a check with a
proxy entity name to associate the check results with that proxy entity. On the frst check result, if the
proxy entity does not exist, Sensu will create the entity as a proxy entity.

After you create a proxy entity check, defne which agents will run the check by confguring a
subscription. See proxy requests for details on creating a proxy check for a proxy entity.

Agent entity labels

For entities with class agent , you can defne entity attributes in the /etc/sensu/agent.yml
confguration fle.
For example, to add a url label, open /etc/sensu/agent.yml and add
confguration for labels .

Or using sensu-agent start confguration fags.

 "name": "sensu-docs",

 "namespace": "default",

 "labels": {

 "url": "docs.sensu.io"

 }

 },

 "spec": {

 "...": "..."

 }

}

labels:

 url: sensu.docs.io

sensu-agent start --labels url=sensu.docs.io

Entities specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Entities should always be of type Entity .

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
entities in Sensu backend version 5.8, this attribute should always be
core/v2 .

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the entity, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the entity defnition. This

means that in wrapped-json and yaml formats, the metadata

"type": "Entity"

"api_version": "core/v2"

scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the entity spec attributes.

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

"metadata": {

 "name": "webserver01",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

"spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu2-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:webserver01"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

Spec attributes

entity_class

description The entity type, validated with go regex \A[\w\.\-]+\z . Class names
have special meaning. An entity that runs an agent is of class agent

and is reserved. Setting the value of entity_class to proxy creates
a proxy entity. For other types of entities, the entity_class attribute
isn’t required, and you can use it to indicate an arbitrary type of entity
(like lambda or switch).

required true

type string

example

subscriptions

description A list of subscription names for the entity. The entity by default has an
entity-specifc subscription, in the format of entity:{name} where
name is the entity’s hostname.

required false

type array

default The entity-specifc subscription.

example

 "secret"

]

 }

"entity_class": "agent"

"subscriptions": ["web", "prod", "entity:example-entity"]

https://regex101.com/r/zo9mQU/2

system

description System information about the entity, such as operating system and
platform. See the system attributes for more information.

required false

type map

example
system:

 arch: amd64

 hostname: example-hostname

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 93.184.216.34/24

 - 2606:2800:220:1:248:1893:25c8:1946/10

 mac: 52:54:00:20:1b:3c

 name: eth0

 os: linux

 platform: ubuntu

 platform_family: debian

 platform_version: "16.04"

YML

{

 "system": {

 "hostname": "example-hostname",

 "os": "linux",

 "platform": "ubuntu",

 "platform_family": "debian",

 "platform_version": "16.04",

 "network": {

 "interfaces": [

 {

JSON

last_seen

description Timestamp the entity was last seen, in seconds since the Unix epoch.

required false

type integer

example

deregister

description If the entity should be removed when it stops sending keepalive
messages.

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

 },

 "arch": "amd64"

 }

}

"last_seen": 1522798317

required false

type boolean

default false

example

deregistration

description A map containing a handler name, for use when an entity is deregistered.
See the deregistration attributes for more information.

required false

type map

example

redact

description List of items to redact from log messages. If a value is provided, it
overwrites the default list of items to be redacted.

required false

"deregister": false

deregistration:

 handler: email-handler

YML

{

 "deregistration": {

 "handler": "email-handler"

 }

}

JSON

type array

default [“password”, “passwd”, “pass”, “api_key”, “api_token”, “access_key”,
“secret_key”, “private_key”, “secret”]

example

user

description Sensu RBAC username used by the entity. Agent entities require get,
list, create, update, and delete permissions for events across all
namespaces.

type String

default agent

example

Metadata attributes

name

description The unique name of the entity, validated with Go regex \A[\w\.\-

redact:

- extra_secret_tokens

YML

{

 "redact": [

 "extra_secret_tokens"

]

}

JSON

"user": "agent"

]+\z .

required true

type String

example

namespace

description The Sensu RBAC namespace that this entity belongs to.

required false

type String

default default

example

labels

description Custom attributes to include with event data, which can be accessed
using flters and tokens.

In contrast to annotations, you can use labels to create meaningful
collections that can be selected with API fltering and sensuctl fltering.
Overusing labels can impact Sensu’s internal performance, so we
recommend moving complex, non-identifying metadata to annotations.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

"name": "example-hostname"

"namespace": "production"

example

annotations

description Non-identifying metadata to include with event data, which can be
accessed using flters and tokens. You can use annotations to add data
that’s meaningful to people or external tools interacting with Sensu.

In contrast to labels, annotations cannot be used in API fltering or
sensuctl fltering and do not impact Sensu’s internal performance.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

System attributes

hostname

description The hostname of the entity.

required false

type string

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

example

os

description The entity’s operating system.

required false

type string

example

platform

description The entity’s operating system distribution.

required false

type string

example

platform_family

description The entity’s operating system family.

required false

type string

example

"hostname": "example-hostname"

"os": "linux"

"platform": "ubuntu"

"platform_family": "debian"

platform_version

description The entity’s operating system version.

required false

type string

example

network

description The entity’s network interface list. See the network attributes for more
information.

required false

type map

example

"platform_version": "16.04"

network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 93.184.216.34/24

 - 2606:2800:220:1:248:1893:25c8:1946/10

 mac: 52:54:00:20:1b:3c

 name: eth0

YML

{

 "network": {

 "interfaces": [

JSON

arch

description The entity’s system architecture. This value is determined by the Go
binary architecture, as a function of runtime.GOARCH. An amd system
running a 386 binary will report the arch as 386 .

required false

type string

example

Network attributes

network_interface

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

 }

}

"arch": "amd64"

description The list of network interfaces available on the entity, with their associated
MAC and IP addresses.

required false

type array NetworkInterface

example
interfaces:

- addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

- addresses:

 - 93.184.216.34/24

 - 2606:2800:220:1:248:1893:25c8:1946/10

 mac: 52:54:00:20:1b:3c

 name: eth0

YML

{

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

}

JSON

NetworkInterface attributes

name

description The network interface name.

required false

type string

example

mac

description The network interface’s MAC address.

required false

type string

example

addresses

description The list of IP addresses for the interface.

required false

type array

example

"name": "eth0"

"mac": "52:54:00:20:1b:3c"

 "addresses": ["93.184.216.34/24",

"2606:2800:220:1:248:1893:25c8:1946/10"]

Deregistration attributes

handler

description The name of the handler to be called when an entity is deregistered.

required false

type string

example

Examples

Entity defnition

"handler": "email-handler"

type: Entity

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: webserver01

 namespace: default

spec:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1542667231

 redact:

 - password

 - passwd

 - pass

YML

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:webserver01

 system:

 arch: amd64

 hostname: sensu2-centos

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::26a5:54ec:cf0d:9704/64

 mac: 08:00:27:11:ad:d2

 name: enp0s3

 - addresses:

 - 172.28.128.3/24

 - fe80::a00:27ff:febc:be60/64

 mac: 08:00:27:bc:be:60

 name: enp0s8

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.4.1708

 user: agent

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "webserver01",

 "namespace": "default",

 "labels": null,

JSON

 "annotations": null

 },

 "spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu2-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:webserver01"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

}

Events

Contents
How do events work?
Creating events using the Sensu agent
Creating events using the events API
Managing events
Deleting events
Resolving events
Event format
Using event data
Events specifcation
Top-level attributes
Spec attributes
Check attributes
Metric attributes
Examples

How do events work?

An event is a generic container used by Sensu to provide context to checks
and/or metrics. The context,
called “event data,” contains information about the
originating entity and the corresponding check/metric
result. An event must
contain a check or metrics, and in certain cases, an event can contain both.
These
generic containers allow Sensu to handle different types of events in the
pipeline. Since events are
polymorphic in nature, it is important to never
assume their contents, or lack-thereof.

Check-only events

A Sensu event is created every time a check result is processed by the Sensu
server, regardless of the
status indicated by the check result. An event is
created by the agent on receipt of the check execution
result. The agent will
execute any confgured hooks the check might have. From there, it is
forwarded to
the Sensu backend for processing. Potentially noteworthy events may
be processed by one or more
event handlers to do things such as send an email or
invoke an automated action.

Metric-only events

Sensu events can also be created when the agent receives metrics through the
Statsd listener. The
agent will translate the statsd metrics to Sensu
Metric Format, and place them inside an event. These
events, since they do not
contain checks, bypass the store, and are sent off to the event pipeline and
corresponding event handlers.

Check and metric events

Events that contain both a check and metrics, most likely originated from
check output metric
extraction. If a check is confgured for metric
extraction, the agent will parse the check output and
transform it to Sensu
Metric Format. Both the check results, and resulting (extracted) metrics are
stored
inside the event. Event handlers from event.Check.Handlers and
event.Metrics.Handlers will
be invoked.

Creating events using the Sensu agent

The Sensu agent is a powerful event producer and monitoring automation tool.
You can use Sensu
agents to produce events automatically using service checks and metric checks.
Sensu agents can also
act as a collector for metrics throughout your infrastructure.

Creating events using service checks
Creating events using metric checks
Creating events using the agent API
Creating events using the agent TCP and UDP sockets
Creating events using the StatsD listener

Creating events using the events API

You can send events directly to the Sensu pipeline using the events API.
To create an event, send a
JSON event defnition to the events API PUT endpoint.

Managing events

You can manage event using the Sensu dashboard, events API, and the sensuctl command line tool.

Viewing events

To list all events:

To show event details in the default output format:

With both the list and info commands, you can specify an output format using the --format
fag:

yaml or wrapped-json formats for use with sensuctl create
json format for use with the events API

Deleting events

To delete an event:

You can use the --skip-confrm fag to skip the confrmation step.

You should see a confrmation message on success.

sensuctl event list

sensuctl event info entity-name check-name

sensuctl event info entity-name check-name --format yaml

sensuctl event delete entity-name check-name

sensuctl event delete entity-name check-name --skip-confrm

Deleted

Resolving events

You can use sensuctl to change the status of an event to 0 (OK).
Events resolved by sensuctl include
the output message: “Resolved manually by sensuctl”.

You should see a confrmation message on success.

Event format

Sensu events contain:

entity scope (required)
Information about the source of the event, including any attributes defned in the entity specifcation
check scope (optional if the metrics scope is present)

Information about how the event was created, including any attributes defned in the check
specifcation
Information about the event and its history, including any check attributes defned in the event
specifcation on this page
metrics scope (optional if the check scope is present)

Metric points in Sensu metric format
timestamp

Time that the event occurred in seconds since the Unix epoch

Using event data

Event data is powerful tool for automating monitoring workfows.
For example, see the guide to reducing
alert fatigue by fltering events based on the event occurrences attribute.

sensuctl event resolve entity-name check-name

Resolved

Events specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Events should always be of type Event .

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type String

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
events in Sensu backend version 5.8, this attribute should always be
core/v2 .

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type String

example

metadata

description Top-level scope containing the event namespace . The metadata map
is always at the top level of the check defnition. This means that in
wrapped-json and yaml formats, the metadata scope occurs

"type": "Event"

"api_version": "core/v2"

outside the spec scope. See the metadata attributes reference for
details.

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the event spec attributes.

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

"metadata": {

 "namespace": "default"

}

"spec": {

 "check": {

 "check_hooks": null,

 "command": "/opt/sensu-plugins-

ruby/embedded/bin/metrics-curl.rb -u \"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "sensu-go-sandbox.curl_timings.time_total

0.005 1552506033\nsensu-go-

sandbox.curl_timings.time_namelookup 0.004",

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

Metadata attributes

namespace

description The Sensu RBAC namespace that this event belongs to.

required false

type String

default default

example

 "user": "agent"

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-

sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552506033

}

"namespace": "production"

Spec attributes

timestamp

description Time that the event occurred in seconds since the Unix epoch

required false

type Integer

default Time that the event occurred

example

entity

description The entity attributes from the originating entity (agent or proxy).

type Map

required true

example

"timestamp": 1522099512

"entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

 "user": "agent"

}

check

description The check defnition used to create the event and information about the
status and history of the event. The check scope includes attributes
described in the event specifcation and the check specifcation.

type Map

required true

example
"check": {

 "check_hooks": null,

 "command": "/opt/sensu-plugins-ruby/embedded/bin/metrics-

curl.rb -u \"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "sensu-go-sandbox.curl_timings.time_total

0.005",

 "output_metric_format": "graphite_plaintext",

metrics

description The metrics collected by the entity in Sensu metric format. See the
metrics attributes.

type Map

required false

example

 "output_metric_handlers": [

 "infux-db"

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

}

"metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

Check attributes

Sensu events include a check scope containing information about how the event was created,
including any attributes defned in the check specifcation, and information about the event and its
history, including the attributes defned below.

duration

description Command execution time in seconds

required false

type Float

example

executed

description Time that the check request was executed

required false

type Integer

example

 {

 "name": "sensu-go-

sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

}

"duration": 1.903135228

"executed": 1522100915

history

description Check status history for the last 21 check executions. See the history
attributes.

required false

type Array

example

issued

description Time that the check request was issued in seconds since the Unix epoch

required false

type Integer

example

last_ok

description The last time that the check returned an OK status (0) in seconds
since the Unix epoch

"history": [

 {

 "executed": 1552505983,

 "status": 0

 },

 {

 "executed": 1552505993,

 "status": 0

 }

]

"issued": 1552506033

required false

type Integer

example

occurrences

description The number of times an event with the same status has occurred for the
given entity and check

required false

type Integer

example

occurrences_wate
rmark

description The highest number of occurrences for the given entity and check at the
current status

required false

type Integer

example

output

description The output from the execution of the check command

"last_ok": 1552506033

"occurrences": 1

"occurrences_watermark": 1

required false

type String

example

state

description The state of the check: passing (status 0), failing (status other
than 0), or fapping . You can use the low_fap_threshold and
high_fap_threshold check attributes to confgure fapping state

detection.

required false

type String

example

status

description Exit status code produced by the check
0 indicates “OK”
1 indicates “WARNING”
2 indicates “CRITICAL”

exit status codes other than 0 , 1 , or 2 indicate an “UNKNOWN”
or custom status

required false

type Integer

example

"output": "sensu-go-sandbox.curl_timings.time_total 0.005"

"state": "passing"

"status": 0

total_state_chang
e

description The total state change percentage for the check’s history

required false

type Integer

example

History attributes

executed

description Time that the check request was executed in seconds since the Unix
epoch

required false

type Integer

example

status

description Exit status code produced by the check
0 indicates “OK”
1 indicates “WARNING”
2 indicates “CRITICAL”

exit status codes other than 0 , 1 , or 2 indicate an “UNKNOWN”
or custom status

required false

"total_state_change": 0

"executed": 1522100915

type Integer

example

Metric attributes

handlers

description An array of Sensu handlers to use for events created by the check. Each
array item must be a string.

required false

type Array

example

points

description Metric data points including a name, timestamp, value, and tags. See the
points attributes.

required false

type Array

example

"status": 0

"handlers": [

 "infux-db"

]

"points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [

 {

 "name": "response_time_in_ms",

Points attributes

name

description The metric name in the format $entity.$check.$metric where
$entity is the entity name, $check is the check name, and
$metric is the metric name.

required false

type String

example

tags

 "value": "101"

 }

],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-

sandbox.curl_timings.time_namelookup",

 "tags": [

 {

 "name": "namelookup_time_in_ms",

 "value": "57"

 }

],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

"name": "sensu-go-sandbox.curl_timings.time_total"

description Optional tags to include with the metric. Each element of the array must
be a hash containing two key value pairs, one being the name of the tag
and the other describing the value . Both values of the pairs must be
strings.

required false

type Array

example

timestamp

description Time that the metric was collected in seconds since the Unix epoch

required false

type Integer

example

value

description The metric value

required false

type Float

example

"tags": [

 {

 "name": "response_time_in_ms",

 "value": "101"

 }

]

"timestamp": 1552506033

"value": 0.005

Examples

Example check-only event data

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 check:

 check_hooks: null

 command: check-cpu.sh -w 75 -c 90

 duration: 1.07055808

 env_vars: null

 executed: 1552594757

 handlers: []

 high_fap_threshold: 0

 history:

 - executed: 1552594757

 status: 0

 interval: 60

 issued: 1552594757

 last_ok: 1552594758

 low_fap_threshold: 0

 metadata:

 name: check-cpu

 namespace: default

 occurrences: 1

 occurrences_watermark: 1

 output: |

 CPU OK - Usage:3.96

 output_metric_format: ""

 output_metric_handlers: []

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: []

YML

 state: passing

 status: 0

 stdin: false

 subdue: null

 subscriptions:

 - linux

 timeout: 0

 total_state_change: 0

 ttl: 0

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1552594641

 metadata:

 name: sensu-centos

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - linux

 - entity:sensu-centos

 system:

 arch: amd64

 hostname: sensu-centos

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::9688:67ca:3d78:ced9/64

 mac: 08:00:27:11:ad:d2

 name: enp0s3

 - addresses:

 - 172.28.128.3/24

 - fe80::a00:27ff:fe6b:c1e9/64

 mac: 08:00:27:6b:c1:e9

 name: enp0s8

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.4.1708

 user: agent

 timestamp: 1552594758

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "check-cpu.sh -w 75 -c 90",

 "duration": 1.07055808,

 "env_vars": null,

 "executed": 1552594757,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552594757,

 "status": 0

 }

],

 "interval": 60,

 "issued": 1552594757,

 "last_ok": 1552594758,

 "low_fap_threshold": 0,

 "metadata": {

JSON

 "name": "check-cpu",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "CPU OK - Usage:3.96\n",

 "output_metric_format": "",

 "output_metric_handlers": [],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "linux"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552594641,

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "linux",

 "entity:sensu-centos"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-centos",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::9688:67ca:3d78:ced9/64"

],

 "mac": "08:00:27:11:ad:d2",

 "name": "enp0s3"

 },

 {

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe6b:c1e9/64"

],

 "mac": "08:00:27:6b:c1:e9",

 "name": "enp0s8"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708"

 },

 "user": "agent"

 },

Example event with check and metric data

 "timestamp": 1552594758

 }

}

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 check:

 check_hooks: null

 command: /opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u

"http://localhost"

 duration: 0.060790838

 env_vars: null

 executed: 1552506033

 handlers: []

 high_fap_threshold: 0

 history:

 - executed: 1552505833

 status: 0

 - executed: 1552505843

 status: 0

 interval: 10

 issued: 1552506033

 last_ok: 1552506033

 low_fap_threshold: 0

 metadata:

 name: curl_timings

 namespace: default

 occurrences: 1

 occurrences_watermark: 1

 output: |-

 sensu-go-sandbox.curl_timings.time_total 0.005 1552506033

 sensu-go-sandbox.curl_timings.time_namelookup 0.004

 output_metric_format: graphite_plaintext

 output_metric_handlers:

 - infux-db

YML

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: []

 state: passing

 status: 0

 stdin: false

 subdue: null

 subscriptions:

 - entity:sensu-go-sandbox

 timeout: 0

 total_state_change: 0

 ttl: 0

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1552495139

 metadata:

 name: sensu-go-sandbox

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:sensu-go-sandbox

 system:

 arch: amd64

 hostname: sensu-go-sandbox

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::5a94:f67a:1bfc:a579/64

 mac: 08:00:27:8b:c9:3f

 name: eth0

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.5.1804

 user: agent

 metrics:

 handlers:

 - infux-db

 points:

 - name: sensu-go-sandbox.curl_timings.time_total

 tags: []

 timestamp: 1552506033

 value: 0.005

 - name: sensu-go-sandbox.curl_timings.time_namelookup

 tags: []

 timestamp: 1552506033

 value: 0.004

 timestamp: 1552506033

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "/opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u

\"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

JSON

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "sensu-go-sandbox.curl_timings.time_total 0.005 1552506033\nsensu-

go-sandbox.curl_timings.time_namelookup 0.004",

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

Example metric-only event

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

 "user": "agent"

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552506033

 }

}

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 entity:

YML

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1552495139

 metadata:

 name: sensu-go-sandbox

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:sensu-go-sandbox

 system:

 arch: amd64

 hostname: sensu-go-sandbox

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::5a94:f67a:1bfc:a579/64

 mac: 08:00:27:8b:c9:3f

 name: eth0

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.5.1804

 user: agent

 metrics:

 handlers:

 - infux-db

 points:

 - name: sensu-go-sandbox.curl_timings.time_total

 tags: []

 timestamp: 1552506033

 value: 0.005

 - name: sensu-go-sandbox.curl_timings.time_namelookup

 tags: []

 timestamp: 1552506033

 value: 0.004

 timestamp: 1552506033

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

JSON

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

 "user": "agent"

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552506033

 }

}

Filters

Contents
Built-in flters
Building flter expressions
Specifcation
Examples
Handling production events
Handling non-production events
Handling state change only
Handling repeated events
Handling events during offce hours only

How do Sensu flters work?

Sensu flters are applied when event handlers are confgured to use one or
more flters. Prior to
executing a handler, the Sensu server will apply any
flters confgured for the handler to the event data.
If the event is not
removed by the flter(s), the handler will be executed. The
flter analysis fow performs
these steps:

When the Sensu server is processing an event, it will check for the defnition
of a handler (or
handlers). Prior to executing each handler, the Sensu
server will frst apply any confgured flters

for the handler.
If multiple flters are confgured for a handler, they are executed
sequentially.
Filter expressions are compared with event data.
Filters can be inclusive (only matching events are handled) or exclusive
(matching events are not
handled).
As soon as a flter removes an event, no further
analysis is performed and the event handler will not be
executed.

NOTE: Filters specifed in a handler set defnition have no effect. Filters must
be specifed in individual
handler defnitions.

Inclusive and exclusive fltering

Filters can be inclusive "action": "allow" (replaces "negate": false in
Sensu 1) or exclusive
"action": "deny" (replaces "negate": true in Sensu
1). Confguring a handler to use multiple

inclusive flters is the equivalent
of using an AND query operator (only handle events if they match
inclusive flter x AND y AND z). Confguring a handler to use multiple
exclusive flters is the equivalent
of using an OR operator (only
handle events if they don’t match x OR y OR z).

Inclusive fltering: by setting the flter defnition attribute "action":
"allow" , only events that match
the defned flter expressions are handled.
Exclusive fltering: by setting the flter defnition attribute "action":
"deny" , events are only handled
if they do not match the defned flter
expressions.

Filter expression comparison

Filter expressions are compared directly with their event data counterparts. For
inclusive flter defnitions
(like "action": "allow"), matching expressions
will result in the flter returning a true value; for
exclusive flter
defnitions (like "action": "deny"), matching expressions will result in the
flter
returning a false value, and the event will not pass through the
flter. Filters that return a true value
will continue to be processed via
additional flters (if defned), mutators (if defned), and handlers.

Filter expression evaluation

When more complex conditional logic is needed than direct flter expression
comparison, Sensu flters
provide support for expression evaluation using
Otto. Otto is an ECMAScript 5 (JavaScript) VM,
and
evaluates javascript expressions that are provided in the flter.
There are some caveats to using Otto;
most notably, the regular expressions
specifed in ECMAScript 5 do not all work. See the Otto README
for more details.

Filter assets

Sensu flters can have assets that are included in their execution context.
When valid assets are
associated with a flter, Sensu evaluates any
fles it fnds that have a “.js” extension before executing a
flter. The
result of evaluating the scripts is cached for a given asset set, for the
sake of performance. For
an example of how to implement a flter as an asset, see the guide on reducing alert fatigue.

Built-in flters

Sensu includes built-in flters to help you customize event pipelines for metrics and alerts.
To start using
built-in flters, see the guides to sending Slack alerts and planning maintenances.

https://github.com/robertkrimen/otto

Built-in flter: only incidents

The incidents flter is included in every installation of the Sensu backend.
You can use the incidents flter
to allow only high priority events through a Sensu pipeline.
For example, you can use the incidents flter
to reduce noise when sending notifcations to Slack.
When applied to a handler, the incidents flter
allows only warning ("status": 1), critical ("status": 2), and resolution events to be processed.

To use the incidents flter, include the is_incident flter in the handler confguration flters array:

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 flters:

 - is_incident

 handlers: []

 runtime_assets: []

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

JSON

The is_incident flter applies the following fltering logic:

status allow discard

0

1

2

other

1 –> 0 or 2 –> 0
(resolution event)

Built-in flter: allow silencing

Sensu silencing lets you suppress execution of event handlers on an on-demand basis, giving you the
ability to quiet incoming alerts and plan maintenances.

To allow silencing for an event handler, add the not_silenced flter to the handler confguration
flters array:

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

YML

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 flters:

 - is_incident

 - not_silenced

 handlers: []

 runtime_assets: []

 timeout: 0

 type: pipe

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

JSON

When applied to a handler confguration, the not_silenced flter silences events that include the
silenced attribute. The handler in the example above uses both the silencing and incidents flters,

preventing low priority and silenced events from being sent to Slack.

Built-in flter: has metrics

The metrics flter is included in every installation of the Sensu backend.
When applied to a handler, the
metrics flter allows only events containing Sensu metrics to be processed.
You can use the metrics flter
to prevent handlers that require metrics from failing in case of an error in metric collection.

To use the metrics flter, include the has_metrics flter in the handler confguration flters array:

 "timeout": 0,

 "type": "pipe"

 }

}

type: Handler

api_version: core/v2

metadata:

 name: infux-db

 namespace: default

spec:

 command: sensu-infuxdb-handler -d sensu

 env_vars:

 - INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086

 - INFLUXDB_USER=sensu

 - INFLUXDB_PASSWORD=password

 flters:

 - has_metrics

 handlers: []

 runtime_assets: []

 timeout: 0

 type: pipe

YML

JSON

When applied to a handler confguration, the has_metrics flter allows only events that include a
metrics scope.

Building flter expressions

You can write custom flter expressions as Sensu query expressions using the event data attributes
described in this section.
For more information about event attributes, see the event reference.

Syntax quick reference

operator description

=== / !== Identity operator / Nonidentity operator

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "infux-db",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [

 "has_metrics"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

== / != Equality operator / Inequality operator

&& / || Logical AND / Logical OR

< / > Less than / Greater than

<= / >= Less than or equal to / Greater than or equal to

Event attributes available to flters

attribute t
y
p
e

description

event.has_check b
o
ol
e
a
n

Returns true if the event contains check data

event.has_metric

s

b
o
ol
e
a
n

Returns true if the event contains metrics

event.is_inciden

t

b
o
ol
e
a
n

Returns true for critical alerts (status 2), warnings (status 1),
and resolution events (status 0 transitioning from status 1 or
2)

event.is_resoluti

on

b
o
ol
e
a

Returns true if the event status is OK (0) and the previous event
was of a non-zero status

n

event.is_silence

d

b
o
ol
e
a
n

Returns true if the event matches an active silencing entry

event.timestamp in
te
g
er

Time that the event occurred in seconds since the Unix epoch

Check attributes available to flters

attribute t
y
p
e

description

event.check.annot

ations

m
a
p

Custom annotations applied to the check

event.check.comma

nd

st
ri
n
g

The command executed by the check

event.check.cron st
ri
n
g

Check execution schedule using cron syntax

event.check.disca

rd_output

b
o
ol
e
a
n

If the check is confgured to discard check output from event data

event.check.durat

ion

f
o
at

Command execution time in seconds

event.check.env_v

ars

a
rr
a
y

Environment variables used with command execution

event.check.execu

ted

in
te
g
e
r

Time that the check was executed in seconds since the Unix epoch

event.check.handl

ers

a
rr
a
y

Sensu event handlers assigned to the check

event.check.high_

fap_threshold

in
te
g
e
r

The check’s fap detection high threshold in percent state change

event.check.histo

ry

a
rr
a
y

Check status history for the last 21 check executions

event.check.hook

s

a
rr
a
y

Check hook execution data

event.check.inter

val

in
te
g
e
r

The check execution frequency in seconds

event.check.issue

d

in
te

Time that the check request was issued in seconds since the Unix
epoch

g
e
r

event.check.label

s

m
a
p

Custom labels applied to the check

event.check.last_

ok

in
te
g
e
r

The last time that the check returned an OK status (0) in seconds
since the Unix epoch

event.check.low_f

ap_threshold

in
te
g
e
r

The check’s fap detection low threshold in percent state change

event.check.max_o

utput_size

in
te
g
e
r

Maximum size, in bytes, of stored check outputs

event.check.name st
ri
n
g

Check name

event.check.occur

rences

in
te
g
e
r

The number of times an event with the same status has occurred
for the given entity and check

event.check.occur

rences_watermark

in
te
g
e
r

The highest number of occurrences for the given entity and check
at the current status

event.check.outpu st The output from the execution of the check command

t ri
n
g

event.check.outpu

t_metric_format

st
ri
n
g

The metric format generated by the check command:
nagios_perfdata , graphite_plaintext , infuxdb_line , or
opentsdb_line

event.check.outpu

t_metric_handlers

a
rr
a
y

Sensu metric handlers assigned to the check

event.check.proxy

_entity_name

st
ri
n
g

The entity name, used to create a proxy entity for an external
resource

event.check.proxy

_requests

m
a
p

Proxy request confguration

event.check.publi

sh

b
o
ol
e
a
n

If the check is scheduled automatically

event.check.round

_robin

b
o
ol
e
a
n

If the check is confgured to be executed in a round-robin style

event.check.runti

me_assets

a
rr
a
y

Sensu assets used by the check

event.check.stat

e

st
ri

The state of the check: passing (status 0), failing (status
other than 0), or fapping

n
g

event.check.statu

s

in
te
g
e
r

Exit status code produced by the check: 0 (OK), 1 (warning),
2 (critical), or other status (unknown or custom status)

event.check.stdi

n

b
o
ol
e
a
n

If the Sensu agent writes JSON-serialized entity and check data to
the command process’ STDIN

event.check.subsc

riptions

a
rr
a
y

Subscriptions that the check belongs to

event.check.timeo

ut

in
te
g
e
r

The check execution duration timeout in seconds

event.check.total

_state_change

in
te
g
e
r

The total state change percentage for the check’s history

event.check.ttl in
te
g
e
r

The time to live (TTL) in seconds until the event is considered stale

event.metrics.han

dlers

a
rr
a
y

Sensu metric handlers assigned to the check

event.metrics.poi

nts

a
rr
a
y

Metric data points including a name, timestamp, value, and tags

Entity attributes available to flters

attribute type description

event.entity.anno

tations

map Custom annotations assigned to the entity

event.entity.dere

gister

bool
ean

If the agent entity should be removed when it stops sending
keepalive messages

event.entity.dere

gistration

map A map containing a handler name, for use when an entity is
deregistered

event.entity.enti

ty_class

strin
g

The entity type: usually agent or proxy

event.entity.labe

ls

map Custom labels assigned to the entity

event.entity.last

_seen

integ
er

Timestamp the entity was last seen, in seconds since the Unix
epoch

event.entity.nam

e

strin
g

Entity name

event.entity.reda

ct

array List of items to redact from log messages

event.entity.subs

criptions

array List of subscriptions assigned to the entity

event.entity.syst

em

map Information about the entity’s system

event.entity.syst

em.arch

strin
g

The entity’s system architecture

event.entity.syst

em.hostname

strin
g

The entity’s hostname

event.entity.syst

em.network

map The entity’s network interface list

event.entity.syst

em.os

strin
g

The entity’s operating system

event.entity.syst

em.platform

strin
g

The entity’s operating system distribution

event.entity.syst

em.platform_famil

y

strin
g

The entity’s operating system family

event.entity.syst

em.platform_versio

n

strin
g

The entity’s operating system version

event.entity.use

r

strin
g

Sensu RBAC username used by the agent entity

Filter specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Filters should always be of type EventFilter .

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example
"type": "EventFilter"

api_version

description Top-level attribute specifying the Sensu API group and version. For flters
in Sensu backend version 5.8, this attribute should always be core/v2 .

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the flter, including the name and
namespace as well as custom labels and annotations . The
metadata map is always at the top level of the flter defnition. This

means that in wrapped-json and yaml formats, the metadata
scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

"api_version": "core/v2"

"metadata": {

 "name": "flter-weekdays-only",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

spec

description Top-level map that includes the flter spec attributes.

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

Spec attributes

action

description Action to take with the event if the flter expressions match. NOTE: see
Inclusive and exclusive fltering for more information.

required true

type String

allowed values allow , deny

example

expressions

"spec": {

 "action": "allow",

 "expressions": [

 "event.entity.namespace == 'production'"

],

 "runtime_assets": []

}

"action": "allow"

description Filter expressions to be compared with event data. Note that event
metadata can be referenced without including the metadata scope, for
example: event.entity.namespace .

required true

type Array

example

runtime_assets

description Assets to be applied to the flter’s execution context. JavaScript fles in
the lib directory of the asset will be evaluated.

required false

type Array of String

default []

example

Metadata attributes

name

description A unique string used to identify the flter. Filter names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each flter must have a unique name within its namespace.

required true

"expressions": [

 "event.check.team == 'ops'"

]

"runtime_assets": ["underscore"]

https://regex101.com/r/zo9mQU/2

type String

example

namespace

description The Sensu RBAC namespace that this flter belongs to.

required false

type String

default default

example

labels

description Custom attributes you can use to create meaningful collections that can
be selected with API fltering and sensuctl fltering. Overusing labels can
impact Sensu’s internal performance, so we recommend moving
complex, non-identifying metadata to annotations.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

"name": "flter-weekdays-only"

"namespace": "production"

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

annotations

description Non-identifying metadata that’s meaningful to people or external tools
interacting with Sensu.

In contrast to labels, annotations cannot be used in API fltering or
sensuctl fltering and do not impact Sensu’s internal performance.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Filter Examples

Minimum required flter attributes

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

type: EventFilter

api_version: core/v2

metadata:

 name: flter_minimum

 namespace: default

spec:

 action: allow

 expressions:

 - event.check.occurrences == 1

YML

JSON

Handling production events

The following flter allows only events with a custom entity label "environment": "production" to
be handled.

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_minimum",

 "namespace": "default"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

]

 }

}

type: EventFilter

api_version: core/v2

metadata:

 name: production_flter

 namespace: default

spec:

 action: allow

 expressions:

 - event.entity.labels.environment == 'production'

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "production_flter",

JSON

Handling non-production events

The following flter discards events with a custom entity label "environment": "production" ,
allowing only events without an environment label or events with environment set to something
other than production to be handled.
Note that action is deny , making this an exclusive flter; if
evaluation
returns false, the event is handled.

 "namespace": "default"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.entity.labels.environment == 'production'"

]

 }

}

type: EventFilter

api_version: core/v2

metadata:

 name: not_production

 namespace: default

spec:

 action: deny

 expressions:

 - event.entity.labels.environment == 'production'

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "not_production",

 "namespace": "default"

 },

 "spec": {

 "action": "deny",

JSON

Handling state change only

Some teams migrating to Sensu have asked about reproducing the behavior of their
old monitoring
system which alerts only on state change. This
state_change_only inclusive flter provides such.

 "expressions": [

 "event.entity.labels.environment == 'production'"

]

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: state_change_only

 namespace: default

spec:

 action: allow

 expressions:

 - event.check.occurrences == 1

 runtime_assets: []

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "allow",

 "expressions": [

JSON

Handling repeated events

The following example flter defnition, entitled flter_interval_60_hourly ,
will match event data with
a check interval of 60 seconds, and an
occurrences value of 1 (the frst occurrence) -OR-
any occurrences
value that is evenly divisible by 60 via a modulo
operator calculation
(calculating the
remainder after dividing occurrences by 60).

 "event.check.occurrences == 1"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: flter_interval_60_hourly

 namespace: default

spec:

 action: allow

 expressions:

 - event.check.interval == 60

 - event.check.occurrences == 1 || event.check.occurrences % 60 == 0

 runtime_assets: []

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_interval_60_hourly",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

JSON

https://en.wikipedia.org/wiki/Modulo_operation

The next example will apply the same logic as the previous example, but for
checks with a 30 second
interval .

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.interval == 60",

 "event.check.occurrences == 1 || event.check.occurrences % 60 == 0"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: flter_interval_30_hourly

 namespace: default

spec:

 action: allow

 expressions:

 - event.check.interval == 30

 - event.check.occurrences == 1 || event.check.occurrences % 120 == 0

 runtime_assets: []

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_interval_30_hourly",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

JSON

Handling events during offce hours only

This flter evaluates the event timestamp to determine if the event occurred
between 9 AM and 5 PM
UTC on a weekday. Remember that action is equal to
allow , so this is an inclusive flter. If
evaluation returns false, the event
will not be handled.

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.interval == 30",

 "event.check.occurrences == 1 || event.check.occurrences % 120 == 0"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: nine_to_fver

 namespace: default

spec:

 action: allow

 expressions:

 - weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5

 - hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17

 runtime_assets: []

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "nine_to_fver",

 "namespace": "default",

JSON

Using JavaScript libraries with Sensu flters

You can include JavaScript libraries in their flter execution context with
assets. For instance, assuming
you’ve packaged underscore.js into a Sensu
asset, you could then use functions from the underscore
library for flter
expressions.

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5",

 "hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: deny_if_failure_in_history

 namespace: default

spec:

 action: deny

 expressions:

 - _.reduce(event.check.history, function(memo, h) { return (memo || h.status !=

 0); })

 runtime_assets:

 - underscore

YML

{

 "type": "EventFilter",

JSON

 "api_version": "core/v2",

 "metadata": {

 "name": "deny_if_failure_in_history",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "deny",

 "expressions": [

 "_.reduce(event.check.history, function(memo, h) { return (memo || h.status !=

0); })"

],

 "runtime_assets": ["underscore"]

 }

}

Handlers

Contents
How do Sensu handlers work?
Pipe handlers
TCP/UDP handlers
Handler sets
Handling keepalive events
Specifcation
Top-level attributes
Spec attributes
Metadata attributes
socket attributes

Examples

Discover, download, and share Sensu handlers assets using Bonsai, the Sensu asset index.
Read the
guide to installing plugins using assets to get started.

How do Sensu handlers work?

Handlers actions are executed by the Sensu backend on events, and there are
several types of
handlers available. The most common handler type is the pipe
handler, which works very similarly to
how checks work, enabling Sensu to
interact with almost any computer program via standard streams.

Pipe handlers. Pipe handlers pipe event data into arbitrary commands via
STDIN .
TCP/UDP handlers. TCP and UDP handlers send event data to a remote socket.
Handler sets. Handler sets (also called “set handlers”) are used to group
event handlers, making it
easy to manage groups of actions that should be
executed for certain types of events.

Pipe handlers

Pipe handlers are external commands that can consume event data via STDIN.

Pipe handler command

https://bonsai.sensu.io/
https://en.wikipedia.org/wiki/Standard_streams

Pipe handler defnitions include a command attribute, which is a command to be
executed by the Sensu
backend.

Pipe handler command arguments

Pipe handler command attributes may include command line arguments for
controlling the behavior of
the command executable.

TCP/UDP handlers

TCP and UDP handlers enable Sensu to forward event data to arbitrary TCP or UDP
sockets for
external services to consume.

Handler sets

Handler set defnitions allow groups of handlers (individual collections
of actions to take on event data)
to be referenced via a single named handler
set.

NOTE: Attributes defned on handler sets do not apply to the handlers they
include. For example,
flters , and mutator attributes defned
in a handler set will have no effect.

Handling keepalive events

Sensu keepalives are the heartbeat mechanism used to ensure that all registered Sensu agents are
operational and able to reach the Sensu backend.
You can connect keepalive events to your monitoring
workfows using a keepalive handler.
Sensu looks for an event handler named keepalive and
automatically uses it to process keepalive events.

Let’s say you want to receive Slack notifcations for keepalive alerts, and you already have a Slack
handler set up to process events.
To process keepalive events using the Slack pipeline, create a
handler set named keepalive and add the slack handler to the handlers array.
The resulting
keepalive handler set confguration looks like this:

type: Handler

api_version: core/v2

metadata:

YML

Handler specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Handlers should always be of type Handler .

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

 name: keepalive

 namespace: default

spec:

 handlers:

 - slack

 type: set

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "keepalive",

 "namespace": "default"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "slack"

]

 }

}

JSON

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
handlers in Sensu backend version 5.8, this attribute should always be
core/v2 .

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the handler, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the handler defnition. This

means that in wrapped-json and yaml formats, the metadata
scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

"type": "Handler"

"api_version": "core/v2"

"metadata": {

 "name": "handler-slack",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

spec

description Top-level map that includes the handler spec attributes.

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Spec attributes

type

description The handler type.

required true

type String

allowed values pipe , tcp , udp & set

 "slack-channel" : "#monitoring"

 }

}

"spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 },

 "metadata" : {

 "name": "tcp_handler",

 "namespace": "default"

 }

}

example

flters

description An array of Sensu event flters (names) to use when fltering events for
the handler. Each array item must be a string.

required false

type Array

example

mutator

description The Sensu event mutator (name) to use to mutate event data for the
handler.

required false

type String

example

timeout

description The handler execution duration timeout in seconds (hard stop). Only
used by pipe , tcp , and udp handler types.

required false

type Integer

"type": "pipe"

"flters": ["occurrences", "production"]

"mutator": "only_check_output"

default 60 (for tcp and udp handlers)

example

command

description The handler command to be executed. The event data is passed to the
process via STDIN .NOTE: the command attribute is only supported for
Pipe handlers (i.e. handlers confgured with "type": "pipe").

required true (if type equals pipe)

type String

example

env_vars

description An array of environment variables to use with command
execution.NOTE: the env_vars attribute is only supported for Pipe
handlers (i.e. handlers confgured with "type": "pipe").

required false

type Array

example

socket

description The socket defnition scope, used to confgure the TCP/UDP handler
socket.NOTE: the socket attribute is only supported for TCP/UDP

"timeout": 30

"command": "/etc/sensu/plugins/pagerduty.go"

"env_vars":

["API_KEY=0428d6b8nb51an4d95nbe28nf90865a66af5"]

handlers (i.e. handlers confgured with "type": "tcp" or "type":
"udp").

required true (if type equals tcp or udp)

type Hash

example

handlers

description An array of Sensu event handlers (names) to use for events using the
handler set. Each array item must be a string.NOTE: the handlers
attribute is only supported for handler sets (i.e. handlers confgured with
"type": "set").

required true (if type equals set)

type Array

example

runtime_assets

description An array of Sensu assets (names), required at runtime for the execution
of the command

required false

type Array

example

"socket": {}

"handlers": ["pagerduty", "email", "ec2"]

"runtime_assets": ["ruby-2.5.0"]

Metadata attributes

name

description A unique string used to identify the handler. Handler names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z). Each handler must have a unique name within its

namespace.

required true

type String

example

namespace

description The Sensu RBAC namespace that this handler belongs to.

required false

type String

default default

example

labels

description Custom attributes you can use to create meaningful collections that can
be selected with API fltering and sensuctl fltering. Overusing labels can
impact Sensu’s internal performance, so we recommend moving
complex, non-identifying metadata to annotations.

required false

"name": "handler-slack"

"namespace": "production"

https://regex101.com/r/zo9mQU/2

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata that’s meaningful to people or external tools
interacting with Sensu.

In contrast to labels, annotations cannot be used in API fltering or
sensuctl fltering and do not impact Sensu’s internal performance.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

socket attributes

host

description The socket host address (IP or hostname) to connect to.

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

required true

type String

example

port

description The socket port to connect to.

required true

type Integer

example

Handler examples

Minimum required pipe handler attributes

"host": "8.8.8.8"

"port": 4242

type: Handler

api_version: core/v2

metadata:

 name: pipe_handler_minimum

 namespace: default

spec:

 command: command-example

 type: pipe

YML

{

 "type": "Handler",

JSON

Minimum required TCP/UDP handler attributes

This is an example of a tcp type handler. Changing the type from tcp to udp gives you the
minimum confguration for a udp type handler.

 "api_version": "core/v2",

 "metadata": {

 "name": "pipe_handler_minimum",

 "namespace": "default"

 },

 "spec": {

 "command": "command-example",

 "type": "pipe"

 }

}

type: Handler

api_version: core/v2

metadata:

 name: tcp_udp_handler_minimum

 namespace: default

spec:

 socket:

 host: 10.0.1.99

 port: 4444

 type: tcp

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "tcp_udp_handler_minimum",

 "namespace": "default"

 },

 "spec": {

 "type": "tcp",

JSON

Sending slack alerts

This handler will send alerts to a channel named monitoring with the
confgured webhook URL, using
the handler-slack executable command.

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 }

 }

}

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 flters:

 - is_incident

 - not_silenced

 handlers: []

 runtime_assets: []

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

JSON

Sending event data to a TCP socket

This handler will forward event data to a TCP socket (10.0.1.99:4444) and
will timeout if an
acknowledgement (ACK) is not received within 30 seconds.

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

type: Handler

api_version: core/v2

metadata:

 name: tcp_handler

 namespace: default

spec:

 socket:

 host: 10.0.1.99

 port: 4444

 type: tcp

YML

JSON

Sending event data to a UDP socket

The following example will also forward event data but to UDP socket instead
(ex: 10.0.1.99:4444).

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "tcp_handler",

 "namespace": "default"

 },

 "spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 }

 }

}

type: Handler

api_version: core/v2

metadata:

 name: udp_handler

 namespace: default

spec:

 socket:

 host: 10.0.1.99

 port: 4444

 type: udp

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "udp_handler",

JSON

Executing multiple handlers

The following example handler will execute three handlers: slack ,
tcp_handler , and
udp_handler .

 "namespace": "default"

 },

 "spec": {

 "type": "udp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 }

 }

}

type: Handler

api_version: core/v2

metadata:

 name: notify_all_the_things

 namespace: default

spec:

 handlers:

 - slack

 - tcp_handler

 - udp_handler

 type: set

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "notify_all_the_things",

 "namespace": "default"

 },

 "spec": {

JSON

 "type": "set",

 "handlers": [

 "slack",

 "tcp_handler",

 "udp_handler"

]

 }

}

Hooks

Contents
Specifcation
Examples

How do hooks work?

Hooks are executed in response to the result of a check command execution
and based on the exit
status code of that command (ex: 1).
Hook commands can optionally receive JSON serialized Sensu
client data via
STDIN.
You can create, manage, and reuse hooks independently of checks.

Check response types

Each type of response (ex: non-zero) can contain one or more hooks, and
correspond to one or more
exit status code. Hooks are executed, in order of
precedence, based on their type:

1. 1 to 255
2. ok

3. warning

4. critical

5. unknown

6. non-zero

You can assign one or more hooks to a check in the check defnition.
See the check specifcation to
confgure the check_hooks attribute.

Check hooks

The hook command output, status, executed timestamp and duration are captured
and published in the
resulting event.

You can use sensuctl to view this data:

Hooks specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Hooks should always be of type HookConfg .

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

sensuctl event info entity_name check_name --format yaml

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 check:

 ...

 hooks:

 - command: df -hT / | grep '/'

 duration: 0.002904412

 executed: 1559948435

 issued: 0

 metadata:

 name: root_disk

 namespace: default

 output: "/dev/mapper/centos-root xfs 41G 1.6G 40G 4% /\n"

 status: 0

 stdin: false

 timeout: 60

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
hooks in Sensu backend version 5.8, this attribute should always be
core/v2 .

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the hook, including the name and
namespace as well as custom labels and annotations . The
metadata map is always at the top level of the hook defnition. This

means that in wrapped-json and yaml formats, the metadata
scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

"type": "HookConfg"

"api_version": "core/v2"

"metadata": {

 "name": "process_tree",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

spec

description Top-level map that includes the hook spec attributes.

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

Spec attributes

command

description The hook command to be executed.

required true

type String

example

timeout

 "slack-channel" : "#monitoring"

 }

}

"spec": {

 "command": "ps aux",

 "timeout": 60,

 "stdin": false

}

"command": "sudo /etc/init.d/nginx start"

description The hook execution duration timeout in seconds (hard stop).

required false

type Integer

default 60

example

stdin

description If the Sensu agent writes JSON serialized Sensu entity and check data to
the command process’ STDIN. The command must expect the JSON
data via STDIN, read it, and close STDIN. This attribute cannot be used
with existing Sensu check plugins, nor Nagios plugins etc, as Sensu
agent will wait indefnitely for the hook process to read and close STDIN.

required false

type Boolean

default false

example

Metadata attributes

name

description A unique string used to identify the hook. Hook names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each hook must have a unique name within its namespace.

required true

"timeout": 30

"stdin": true

https://regex101.com/r/zo9mQU/2

type String

example

namespace

description The Sensu RBAC namespace that this hook belongs to.

required false

type String

default default

example

labels

description Custom attributes to include with event data, which can be accessed
using event flters.

In contrast to annotations, you can use labels to create meaningful
collections that can be selected with API fltering and sensuctl fltering.
Overusing labels can impact Sensu’s internal performance, so we
recommend moving complex, non-identifying metadata to annotations.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

"name": "process_tree"

"namespace": "production"

"labels": {

 "environment": "development",

annotations

description Non-identifying metadata to include with event data, which can be
accessed using event flters. You can use annotations to add data that’s
meaningful to people or external tools interacting with Sensu.

In contrast to labels, annotations cannot be used in API fltering or
sensuctl fltering and do not impact Sensu’s internal performance.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Examples

Rudimentary auto-remediation

Hooks can be used for rudimentary auto-remediation tasks, for example, starting
a process that is no
longer running.

NOTE: Using hooks for auto-remediation should be approached
carefully, as they run without regard to
the number of event
occurrences.

 "region": "us-west-2"

}

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

YML

Capture the process tree

Hooks can also be used for automated data gathering for incident triage, for
example, a check hook
could be used to capture the process tree when a process
has been determined to be not running etc.

type: HookConfg

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: restart_nginx

 namespace: default

spec:

 command: sudo systemctl start nginx

 stdin: false

 timeout: 60

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "restart_nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "sudo systemctl start nginx",

 "timeout": 60,

 "stdin": false

 }

}

JSON

type: HookConfg

api_version: core/v2

metadata:

YML

 annotations: null

 labels: null

 name: process_tree

 namespace: default

spec:

 command: ps aux

 stdin: false

 timeout: 60

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "process_tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "ps aux",

 "timeout": 60,

 "stdin": false

 }

}

JSON

Mutators

Contents
Built-in mutators
Specifcation
Examples

How do mutators work?

A handler can specify a mutator to transform event data. Mutators are executed
prior to the execution of
a handler. If the mutator executes successfully, the modifed event
data is returned to the handler, and
the handler is then executed. If the mutator
fails to execute, an error will be logged, and the handler will
not be executed.

When Sensu server processes an event, it will check the handler for the
presence of a mutator, and
execute that mutator before executing the handler.
If the mutator executes successfully (it returns an exit status code of 0), modifed
event data is provided
to the handler, and the handler is executed.
If the mutator fails to execute (it returns a non-zero exit status code, or
fails to complete within its
confgured timeout), an error will be logged and
the handler will not execute.

Mutator specifcation
Accepts input/data via STDIN
Able to parse JSON event data
Outputs JSON data (modifed event data) to STDOUT or STDERR
Produces an exit status code to indicate state:
0 indicates OK status

exit codes other than 0 indicate failure

Commands

Each Sensu mutator defnition defnes a command to be executed. Mutator commands are executable

commands which will be executed on a Sensu server, run as the sensu user . Most mutator
commands are provided by Sensu Plugins.

Sensu mutator command attributes may include command line arguments for
controlling the behavior of
the command executable. Many Sensu mutator plugins
provide support for command line arguments
for reusability.

How and where are mutator commands executed?

As mentioned above, all mutator commands are executed by a Sensu server as the sensu user.
Commands must be executable fles that are discoverable on the Sensu server system (installed in a
system $PATH directory).

NOTE: By default, the Sensu installer packages will modify the system $PATH for the Sensu
processes to include /etc/sensu/plugins . As a result, executable scripts (like plugins) located in
/etc/sensu/plugins will be valid commands. This allows command attributes to use “relative paths”

for Sensu plugin commands, for example: "command": "check-http.go -u
https://sensuapp.org" .

Built-in mutators

Sensu includes built-in mutators to help you customize event pipelines for metrics and alerts.

Built-in mutator: only check output

To process an event, some handlers require only the check output, not the entire event defnition. For
example, when sending metrics to Graphite using a TCP handler, Graphite expects data that follows
the Graphite plaintext protocol. By using the built-in only_check_output mutator, Sensu reduces the
event to only the check output, so it can be accepted by Graphite.

To use the only check output mutator, include the only_check_output mutator in the handler
confguration mutator string:

type: Handler

api_version: core/v2

metadata:

 name: graphite

YML

Mutators specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Mutators should always be of type Mutator .

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

 namespace: default

spec:

 mutator: only_check_output

 socket:

 host: 10.0.1.99

 port: 2003

 type: tcp

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "graphite",

 "namespace": "default"

 },

 "spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 2003

 },

 "mutator": "only_check_output"

 }

}

JSON

type String

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
mutators in Sensu backend version 5.8, this attribute should always be
core/v2 .

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the mutator, including the name

and namespace as well as custom labels and annotations . The
metadata map is always at the top level of the mutator defnition. This

means that in wrapped-json and yaml formats, the metadata
scope occurs outside the spec scope. See the metadata attributes
reference for details.

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

"type": "Mutator"

"api_version": "core/v2"

"metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": {

spec

description Top-level map that includes the mutator spec attributes.

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Spec attributes

command

description The mutator command to be executed by Sensu server.

required true

type String

example

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

"spec": {

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

"command": "/etc/sensu/plugins/mutated.go"

env_vars

description An array of environment variables to use with command execution.

required false

type Array

example

timeout

description The mutator execution duration timeout in seconds (hard stop).

required false

type integer

example

runtime_assets

description An array of Sensu assets (names), required at runtime for the execution
of the command

required false

type Array

example

"env_vars": ["RUBY_VERSION=2.5.0"]

"timeout": 30

"runtime_assets": ["ruby-2.5.0"]

Metadata attributes

name

description A unique string used to identify the mutator. Mutator names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z). Each mutator must have a unique name within its

namespace.

required true

type String

example

namespace

description The Sensu RBAC namespace that this mutator belongs to.

required false

type String

default default

example

labels

description Custom attributes you can use to create meaningful collections that can
be selected with API fltering and sensuctl fltering. Overusing labels can
impact Sensu’s internal performance, so we recommend moving
complex, non-identifying metadata to annotations.

required false

"name": "example-mutator"

"namespace": "production"

https://regex101.com/r/zo9mQU/2

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata that’s meaningful to people or external tools
interacting with Sensu.

In contrast to labels, annotations cannot be used in API fltering or
sensuctl fltering and do not impact Sensu’s internal performance.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Examples

The following Sensu mutator defnition uses an imaginary Sensu plugin called example_mutator.go
to modify event data prior to handling the event.

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

Mutator defnition

Minimum required mutator attributes

type: Mutator

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: example-mutator

 namespace: default

spec:

 command: example_mutator.go

 env_vars: []

 runtime_assets: []

 timeout: 0

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

 }

}

JSON

type: Mutator

api_version: core/v2

YML

metadata:

 name: mutator_minimum

 namespace: default

spec:

 command: example_mutator.go

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "mutator_minimum",

 "namespace": "default"

 },

 "spec": {

 "command": "example_mutator.go"

 }

}

JSON

Role-based access control

Contents
Namespaces: Managing namespaces | Specifcation | Examples
Resources: Namespaced resource types | Cluster-wide resource types
Users: Managing users | Specifcation | Examples | Groups
Roles and cluster roles: Managing roles | Specifcation | Examples
Role bindings and cluster role bindings: Managing role bindings | Specifcation | Examples
Example workfows

Sensu role-based access control (RBAC) helps different teams and projects share a Sensu instance.
RBAC allows management and access of users and resources based on namespaces, groups,
roles, and bindings.

Namespaces partition resources within Sensu. Sensu entities, checks, handlers, and other
namespaced resources belong to a single namespace.
Roles create sets of permissions (get, delete, etc.) tied to resource types. Cluster roles apply
permissions across namespaces and include access to cluster-wide resources like users and
namespaces.
Users represent a person or agent that interacts with Sensu. Users can belong to one or more
groups.
Role bindings assign a role to a set of users and groups within a namespace; cluster role bindings
assign a cluster role to a set of users and groups cluster-wide.

Sensu access controls apply to sensuctl, the Sensu API, and the Sensu dashboard.
In addition to built-
in RBAC, Sensu includes license-activated support for authentication using external authentication
providers.

Namespaces

Namespaces help teams use different resources (entities, checks, handlers, etc.) within Sensu and
impose their own controls on those resources.
A Sensu instance can have multiple namespaces, each
with their own set of managed resources.
Resource names need to be unique within a namespace, but
not across namespaces.

To create and manage namespaces, confgure sensuctl as the default admin user or create a cluster

role with namespaces permissions.

Default namespace

Every Sensu backend includes a default namespace.
All resources created without a specifed
namespace are created within the default namespace.

Viewing namespaces

You can use sensuctl to view all namespaces within Sensu:

Creating a namespace

You can use sensuctl to create a namespace.
For example, the following command creates a
namespace called production :

Namespace names can contain alphanumeric characters and hyphens, but must begin and end with
an alphanumeric character.

Managing namespaces

You can use sensuctl to view, create, and delete namespaces.

To delete a namespace:

To get help managing namespaces with sensuctl:

sensuctl namespace list

sensuctl namespace create production

sensuctl namespace delete [NAMESPACE-NAME]

Assigning a resource to a namespace

You can assign a resource to a namespace in the resource defnition.
Only resources belonging to a
namespaced resource type (like checks, flters, and handlers) can be assigned to a namespace.

For example, to assign a check called check-cpu to the production namespace, include the
namespace attribute in the check defnition:

sensuctl namespace help

type: CheckConfg

api_version: core/v2

metadata:

 name: check-cpu

 namespace: production

spec:

 check_hooks: null

 command: check-cpu.sh -w 75 -c 90

 handlers:

 - slack

 interval: 30

 subscriptions:

 - system

 timeout: 0

 ttl: 0

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-cpu",

 "namespace": "production"

 },

 "spec": {

 "check_hooks": null,

JSON

See the reference docs for the corresponding resource type to create resource defnitions.

Namespace specifcation

Attributes

name

description The name of the namespace. Names can contain alphanumeric
characters and hyphens, but must begin and end with an alphanumeric
character.

required true

type String

example

Namespace example

The following examples are in yml and wrapped-json formats for use with sensuctl create .

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": ["slack"],

 "interval": 30,

 "subscriptions": ["system"],

 "timeout": 0,

 "ttl": 0

 }

}

"name": "production"

type: Namespace

api_version: core/v2

YML

Resources

Permissions within Sensu are scoped to resource types, like checks, handlers, and users.
You can use
resource types to confgure permissions in Sensu roles and cluster roles.

Namespaced resource types

Namespaced resources must belong to a single namespace and can be accessed by roles and cluster
roles.

Type Description

assets Asset resources within a namespace

checks Check resources within a namespace

entities Entity resources within a namespace

events Event resources within a namespace

extensions Placeholder type

flters Filter resources within a namespace

metadata: {}

spec:

 name: default

{

 "type": "Namespace",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "name": "default"

 }

}

JSON

handlers Handler resources within a namespace

hooks Hook resources within a namespace

mutators Mutator resources within a namespace

rolebindings Namespace-specifc role assigners

roles Namespace-specifc permission sets

silenced Silencing resources within a namespace

Cluster-wide resource types

Cluster-wide resources cannot be assigned to a namespace and can only be accessed by cluster
roles.

Type Description

cluster Sensu clusters running multiple Sensu backends

clusterrolebindin

gs

Cluster-wide role assigners

clusterroles Cluster-wide permission sets

namespaces Resource partitions within a Sensu instance

users People or agents interacting with Sensu

authproviders Authentication provider confguration (licensed tier)

Special resource types

Special resources types can be accessed by both roles and cluster roles.

Type Description

* All resources within Sensu. The * type takes precedence over other

rules within the same role. If you wish to deny a certain type, you can’t
use the * type and must explicitly allow every type required. When
applied to a role, the * type applies only to namespaced resource
types. When applied to a cluster role, the * type applies to both
namespaced resource types and cluster-wide resource types.

Users

A user represents a person or an agent which interacts with Sensu.
Users and groups can be assigned
one or more roles and inherit all permissions from each role assigned to them.

You can use your Sensu username and password to confgure sensuctl or log in to the dashboard.

Default user

By default, Sensu includes a global admin user that you can use to manage Sensu and create new
users.

attribute value

username admin

password P@ssw0rd!

groups cluster-admins

cluster role cluster-admin

cluster role binding cluster-admin

We strongly recommended changing the default password for the admin user immediately.
Once
authenticated, you can change the password using the change-password command.

Sensu also includes an agent user that is used internally by the Sensu agent.
You can confgure an
agent’s user credentials using the user and password agent confguration fags.

sensuctl user change-password

Viewing users

You can use sensuctl to see a list of all users within Sensu.
The following example returns a list of users
in yaml format for use with sensuctl create .

Creating a user

You can use sensuctl to create a user.
For example, the following command creates a user with the
username alice , creates a password, and assigns the user to the ops and dev groups.
Passwords must have at least eight characters.

Assigning user permissions

To assign permissions to a user:

1. Create the user.
2. Create a role or (for cluster-wide access) a cluster role.
3. Create a role binding (or cluster role binding) to assign the role to the user.

Managing users

To test the password for a user:

An empty response indicates valid credentials; a request-unauthorized response indicates invalid
credentials.

sensuctl user list --format yaml

sensuctl user create alice --password='password' --groups=ops,dev

sensuctl user test-creds USERNAME --password 'password'

To change the password for a user:

To disable a user:

To re-enable a disabled user:

User specifcation

Attributes

username

description The name of the user. Cannot contain special characters.

required true

type String

example

password

description The user’s password. Passwords must have at least eight characters.

sensuctl user change-password USERNAME --current-password CURRENT_PASSWORD --new-

password NEW_PASSWORD

sensuctl user disable USERNAME

sensuctl user reinstate USERNAME

"username": "alice"

required true

type String

example

groups

description Groups to which the user belongs.

required false

type Array

example

disabled

description The state of the user’s account.

required false

type Boolean

default false

example

User example

The following examples are in yml and wrapped-json formats for use with sensuctl create .

"password": "P@ssw0rd!"

"groups": ["dev", "ops"]

"disabled": false

YML

Groups

A group is a set of users within Sensu.
Groups can be assigned one or more roles and inherit all
permissions from each role assigned to them.
Users can be assigned to one or more groups.
Groups are
not a resource type within Sensu; you can create and manage groups only within user defnitions.

Default group

Sensu includes a default cluster-admins group that contains the default admin user and a
system:agents group used internally by Sensu agents.

type: User

api_version: core/v2

metadata: {}

spec:

 disabled: false

 groups:

 - ops

 - dev

 password: P@ssw0rd!

 username: alice

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "username": "alice",

 "password": "P@ssw0rd!",

 "disabled": false,

 "groups": ["ops", "dev"]

 }

}

JSON

Assigning a user to a group

Groups are created and managed within user defnitions.
You can use sensuctl to add users to groups.

To add a user to a group:

To set the groups for a user:

Removing a user from a group

You can use sensuctl to remove users from groups.

To remove a user from a group:

To remove a user from all groups:

Roles and cluster roles

A role is a set of permissions controlling access to Sensu resources.
Roles specify permissions for
resources within a namespace while cluster roles can include permissions for cluster-wide resources.
You can use role bindings to assign roles to user and groups.
To avoid re-creating commonly used roles
in each namespace, create a cluster role and use a role binding (not a cluster role binding) to restrict
permissions within a specifc namespace.

sensuctl user add-group USERNAME GROUP

sensuctl user set-groups USERNAME GROUP1[,GROUP2, ...[,GROUPN]]

sensuctl user remove-group USERNAME GROUP

sensuctl user remove-groups USERNAME

To create and manage roles cluster-wide, confgure sensuctl as the default admin user or create a
cluster role with roles permissions.
To create and manage roles within a namespace, create a role
with roles permissions within that namespace.

Cluster roles

Cluster roles can specify access permissions for cluster-wide resources like users and namespaces as
well as namespaced resources like checks and handlers. They can also be used to grant access to
namespaced resources across all namespaces (needed to run sensuctl check list --all-
namespaces , for example) when used in conjunction with cluster role bindings.
Cluster roles use the
same specifcation as roles and can be managed using the same sensuctl commands with cluster-
role substituted for role .

To create and manage cluster roles, confgure sensuctl as the default admin user or create a cluster
role with permissions for clusterroles .

Default roles

Every Sensu backend includes:

Role name T
y
p
e

Description

cluster-admin C

lu

st

er

Ro

l

e

Full access to all resource types across namespaces, including
access to cluster-wide resource types.

admin C

lu

st

er

Ro

l

e

Full access to all resource types. You can apply this cluster role
within a namespace by using a role binding (not a cluster role
binding).

edit C

lu

st

er

Ro

l

e

Read and write access to most resources with the exception of
roles and role bindings. You can apply this cluster role within a
namespace by using a role binding (not a cluster role binding).

view C

lu

st

er

Ro

l

e

Read-only permission to most resource types with the exception
of roles and role bindings. You can apply this cluster role within a
namespace by using a role binding (not a cluster role binding).

system:agent C

lu

st

er

Ro

l

e

Used internally by Sensu agents. You can confgure an agent’s
user credentials using the user and password agent
confguration fags.

Viewing roles

You can use sensuctl to see a list of roles within Sensu:

To see the permissions and scope for a specifc role:

To view cluster roles, use the cluster-role command:

sensuctl role list

sensuctl role info admin

Creating a role

You can use sensuctl to create a role.
For example, the following command creates an admin role
restricted to the production namespace.

Once you’ve create the role, create a role binding (or cluster role binding) to assign the role to users
and groups.
For example, to assign the prod-admin role created above to the oncall group, create
the following role binding.

Creating a cluster-wide role

You can use sensuctl to create a cluster role.
For example, the following command creates a global
event reader role that can read only events across all namespaces within Sensu.

Managing roles

You can use sensuctl to view, create, edit, and delete roles.
To use any of these commands with cluster
roles, substitute the cluster-role command for the role command.

To edit a role:

sensuctl cluster-role list

sensuctl role create prod-admin --verb get,list,create,update,delete --resource * --

namespace production

sensuctl role-binding create prod-admin-oncall --role=prod-admin --group=oncall

sensuctl cluster-role create global-event-reader --verb get,list --resource events

sensuctl edit roles [ROLE-NAME] [fags]

To delete a role:

To get help managing roles with sensuctl:

Role and cluster role specifcation

Role attributes

name

description Name of the role

required true

type String

example

namespace

description Namespace the role is restricted to. This attribute is not available for
cluster roles.

required false

type String

example

sensuctl role delete [ROLE-NAME]

sensuctl role help

"name": "admin"

"namespace": "production"

rules

description The rulesets that a role applies.

required true

type Array

example

Rule attributes

A rule is an explicit statement which grants a particular permission to a resource.

verbs

description The permissions to be applied by the rule: get , list , create ,
update , or delete .

required true

type Array

example

resources

"rules": [

 {

 "verbs": ["get", "list"],

 "resources": ["checks"],

 "resource_names": [""]

 }

]

"verbs": ["get", "list"]

description The type of resource that the rule has permission to access. Roles can
only access namespaced resource types while cluster roles can access
namespaced and cluster-wide resource types. See resource types for
available types.

required true

type Array

example

resource_names

description Specifc resource names that the rule has permission to access.
Resource name permissions are only taken into account for requests
using get , update , and delete verbs.

required false

type Array

example

Role example

The following examples are in yml and wrapped-json formats for use with sensuctl create .

"resources": ["checks"]

"resource_names": ["check-cpu"]

type: Role

api_version: core/v2

metadata:

 name: namespaced-resources-all-verbs

 namespace: default

spec:

 rules:

YML

 - resource_names: []

 resources:

 - assets

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - rolebindings

 - roles

 - silenced

 verbs:

 - get

 - list

 - create

 - update

 - delete

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "namespaced-resources-all-verbs",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

JSON

Cluster role example

The following examples are in yml and wrapped-json formats for use with sensuctl create .

}

type: ClusterRole

api_version: core/v2

metadata:

 name: all-resources-all-verbs

spec:

 rules:

 - resource_names: []

 resources:

 - assets

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - rolebindings

 - roles

 - silenced

 - cluster

 - clusterrolebindings

 - clusterroles

 - namespaces

 - users

 - authproviders

 verbs:

 - get

 - list

 - create

 - update

 - delete

YML

Role bindings and cluster role bindings

A role binding assigns a role or cluster role to users and groups within a namesapce.
A cluster role
binding assigns a cluster role to users and groups across namespaces and resource types.

To create and manage role bindings within a namespace, create a role with rolebindings
permissions within that namespace, and log in by confguring sensuctl.

Cluster role bindings

Cluster role bindings can assign a cluster role to users and groups.
Cluster role bindings use the same
specifcation as role bindings and can be managed using the same sensuctl commands with
cluster-role-binding substituted for role-binding .

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "all-resources-all-verbs"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced",

 "cluster", "clusterrolebindings", "clusterroles",

 "namespaces", "users", "authproviders"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

JSON

To create and manage cluster role bindings, confgure sensuctl as the default admin user or create a
cluster role with permissions for clusterrolebindings .

Viewing role bindings

You can use sensuctl to see a list of role bindings within Sensu:

To see the details for a specifc role binding:

To see a list of cluster role bindings:

Creating a role binding

You can use sensuctl to see a create a role binding that assigns a role:

Or a role binding that assigns a cluster role:

To create a cluster role binding:

sensuctl role-binding list

sensuctl role-binding info [BINDING-NAME]

sensuctl cluster-role-binding list

sensuctl role-binding create [NAME] --role=NAME [--user=username] [--

group=groupname]

sensuctl role-binding create [NAME] --cluster-role=NAME [--user=username] [--

group=groupname]

Managing role bindings

You can use sensuctl to see a list, create, and delete role bindings and cluster role bindings.
To use any
of these commands with cluster roles, substitute the cluster-role-binding command for the
role-binding command.

To delete a role binding:

To get help managing role bindings with sensuctl:

Role binding and cluster role binding specifcation

roleRef

description References a role in the current namespace or a cluster role.

required true

type Hash

example

sensuctl cluster-role-binding create [NAME] --cluster-role=NAME [--user=username] [-

-group=groupname]

sensuctl role-binding delete [ROLE-NAME]

sensuctl role-binding help

"roleRef": {

 "type": "Role",

 "name": "event-reader"

}

subjects

description The users or groups being assigned.

required true

type Array

example

roleRef specifcation

type

description Role for a role binding or ClusterRole for a cluster role binding.

required true

type String

example

name

description The name of the role or cluster role being assigned.

required true

type String

"subjects": [

 {

 "type": "User",

 "name": "alice"

 }

]

"type": "Role"

example

subjects specifcation

type

description User for assigning a user or Group for assigning a group.

required true

type String

example

name

description Username or group name.

required true

type String

example

example with prefx

Role binding example

The following examples are in yml and wrapped-json formats for use with sensuctl create .

"name": "event-reader"

"type": "User"

"name": "alice"

"name": "ad:alice"

Cluster role binding example

type: RoleBinding

api_version: core/v2

metadata:

 name: event-reader-binding

 namespace: default

spec:

 role_ref:

 name: event-reader

 type: Role

 subjects:

 - name: bob

 type: User

YML

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "event-reader-binding",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "event-reader",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "bob",

 "type": "User"

 }

]

 }

}

JSON

The following examples are in yml and wrapped-json formats for use with sensuctl create .

Role and role binding examples

type: ClusterRoleBinding

api_version: core/v2

metadata:

 name: cluster-admin

spec:

 role_ref:

 name: cluster-admin

 type: ClusterRole

 subjects:

 - name: cluster-admins

 type: Group

YML

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "cluster-admin"

 },

 "spec": {

 "role_ref": {

 "name": "cluster-admin",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "cluster-admins",

 "type": "Group"

 }

]

 }

}

JSON

The following role and role binding give a dev group access to create and manage Sensu workfows
within the default namespace.

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "workfow-creator",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": ["checks", "hooks", "flters", "events", "flters", "mutators",

"handlers"],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "dev-binding",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "workfow-creator",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "dev",

 "type": "Group"

 }

]

 }

}

Role and role binding examples with a group prefx

In the following code example, if a groups prefx of ad is confgured for Active Directory
authentication, this role and role binding will give a dev group access to create and manage Sensu
workfows within the default namespace.

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "workfow-creator",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": ["checks", "hooks", "flters", "events", "flters", "mutators",

"handlers"],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "dev-binding-with-groups-prefx",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "workfow-creator",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "ad:dev",

Example workfows
Assigning user permissions within a namespace
Assigning group permissions within a namespace
Assigning group permissions across all namespaces

Assigning user permissions within a namespace

To assign permissions to a user:

1. Create the user.
2. Create a role.
3. Create a role binding to assign the role to the user.

For example, the following confguration creates a user alice , a role default-admin , and a role
binding alice-default-admin , giving alice full permissions for namespaced resource types
within the default namespace.
You can add these resources to Sensu using sensuctl create .

 "type": "Group"

 }

]

 }

}

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice"

 }

}

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin",

Assigning group permissions within a namespace

To assign permissions to group of users:

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "alice-default-admin",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "alice",

 "type": "User"

 }

]

 }

}

1. Create at least once user assigned to a group.
2. Create a role.
3. Create a role binding to assign the role to the group.

For example, the following confguration creates a user alice assigned to the group ops , a role
default-admin , and a role binding ops-default-admin , giving the ops group full permissions for

namespaced resource types within the default namespace.
You can add these resources to Sensu
using sensuctl create .

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice"

 }

}

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

PRO TIP: To avoid re-creating commonly used roles in each namespace, create a cluster role and use
a role binding to restrict permissions within a specifc namespace.

Assigning group permissions across all namespaces

To assign cluster-wide permissions to group of users:

1. Create at least once user assigned to a group.
2. Create a cluster role.
3. Create a cluster role binding) to assign the role to the group.

For example, the following confguration creates a user alice assigned to the group ops , a cluster
role default-admin , and a cluster role binding ops-default-admin , giving the ops group full
permissions for namespaced resource types and cluster-wide resource types across all namespaces.
You can add these resources to Sensu using sensuctl create .

 "metadata": {

 "name": "ops-default-admin",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice",

 "groups": ["ops"]

 }

}

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced",

 "cluster", "clusterrolebindings", "clusterroles",

 "namespaces", "users", "authproviders"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops-default-admin"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

Sensu query expressions

Contents
Specifcation
Examples

How do Sensu query expressions work?

Sensu query expressions (SQE) are based on JavaScript expressions, and
provide additional
functionalities for Sensu usage (like nested parameters and
custom functions) so Sensu resources can
be directly evaluated. SQE should
always return true or false.

Syntax quick reference

operator description

=== / !== Identity operator / Nonidentity operator

== / != Equality operator / Inequality operator

&& / || Logical AND / Logical OR

< / > Less than / Greater than

<= / >= Less than or equal to / Greater than or equal to

Sensu query expressions specifcation

Sensu query expressions are valid ECMAScript 5 (JavaScript) expressions that return
true or false.
Other values are not allowed. If other values are
returned, an error is logged and the flter evaluates to
false.

https://github.com/robertkrimen/otto

Custom functions

hour : returns the hour, in UTC and in the 24-hour time notation, of a UNIX
Epoch time.

weekday : returns a number representing the day of the week, where Sunday
equals 0 , of a UNIX
Epoch time.

Sensu query expressions examples

Evaluating an event attribute

The following example returns true if the event’s entity contains a custom
attribute named namespace

that is equal to production .

Evaluating an array

To evaluate an attribute that contains an array of elements, use the .indexOf method.
The following
example returns true if an entity includes the subscription system .

// event.timestamp equals to 1520275913, which is Monday, March 5, 2018 6:51:53 PM

UTC

// The following expression returns true

hour(event.timestamp) >= 17

// event.timestamp equals to 1520275913, which is Monday, March 5, 2018 6:51:53 PM

UTC

// The following expression returns false

weekday(event.timestamp) == 0

event.entity.namespace == 'production'

entity.subscriptions.indexOf('system') >= 0

Evaluating the day of the week

The following example returns true if the event occurred on a weekday.

Evaluating offce hours

The following example returns true if the event occurred between 9 AM and 5 PM
UTC.

weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5

hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17

Silencing

Contents
Specifcation
Examples
Silence all checks on a specifc entity
Silence a specifc check on a specifc entity
Silence all checks on entities with a specifc subscription
Silence a specifc check on entities with a specifc subscription
Silence a specifc check on every entity
Deleting silences

How does silencing work?

Silences are created on an ad-hoc basis via sensuctl . When silencing
entries are successfully
created, they are assigned a name in the format
$SUBSCRIPTION:$CHECK , where $SUBSCRIPTION is
the name of a Sensu entity
subscription and $CHECK is the name of a Sensu check. Silences can be
used to silence checks on specifc entities by taking advantage of per-entity
subscriptions, for example:
entity:$ENTITY_NAME . When the check name and/or
subscription described in a silencing entry

match an event and a handler use the
not_silenced built-in flter, this handler will not be executed.

These silences are persisted in the Sensu data store. When the Sensu
server processes subsequent
check results, matching silences are
retrieved from the store. If one or more matching entries exist, the
event is
updated with a list of silenced entry names. The presence of silences
indicates that the event is
silenced.

When creating a silencing entry, a combination of check and subscription can be
specifed, but only one
or the other is strictly required.

For example, when a silencing entry is created specifying only a check, its name
will contain an asterisk
(or wildcard) in the $SUBSCRIPTION position. This
indicates that any event with a matching check name
will be marked as silenced,
regardless of the originating entities’ subscriptions.

Conversely, a silencing entry which specifes only a subscription will have a
name with an asterisk in the
$CHECK position. This indicates that any event
where the originating entities’ subscriptions match the

subscription specifed
in the entry will be marked as silenced, regardless of the check name.

Silencing specifcation

Silenced entry names

Silences must contain either a subscription or check name, and are
identifed by the combination of
$SUBSCRIPTION:$CHECK . If a check or
subscription is not provided, it will be substituted with a wildcard

(asterisk):
$SUBSCRIPTION:* or *:$CHECK .

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Silences should always be of type Silenced .

required Required for silencing entry defnitions in wrapped-json or yaml
format for use with sensuctl create .

type String

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
silences in Sensu backend version 5.8, this attribute should always be
core/v2 .

required Required for silencing entry defnitions in wrapped-json or yaml
format for use with sensuctl create .

type String

example

"type": "Silenced"

"api_version": "core/v2"

metadata

description Top-level collection of metadata about the silencing entry, including the
name and namespace as well as custom labels and annotations .

The metadata map is always at the top level of the silencing entry
defnition. This means that in wrapped-json and yaml formats, the
metadata scope occurs outside the spec scope. See the metadata

attributes reference for details.

required Required for silencing entry defnitions in wrapped-json or yaml
format for use with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the silencing entry spec attributes.

required Required for silences in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

"metadata": {

 "name": "appserver:mysql_status",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 }

"spec": {

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": null,

Spec attributes

check

description The name of the check the entry should match

required true, unless subscription is provided

type String

example

subscription

description The name of the subscription the entry should match

required true, unless check is provided

type String

example

begin

description Time at which silence entry goes into effect, in epoch.

required false

 "check": null,

 "subscription": "entity:i-424242",

 "begin": 1542671205

}

"check": "haproxy_status"

"subscription": "entity:i-424242"

type Integer

example

expire

description Number of seconds until this entry should be deleted.

required false

type Integer

default -1

example

expire_on_resolve

description If the entry should be deleted when a check begins return OK status
(resolves).

required false

type Boolean

default false

example

creator

description Person/application/entity responsible for creating the entry.

"begin": 1512512023

"expire": 3600

"expire_on_resolve": true

required false

type String

default null

example

reason

description Explanation for the creation of this entry.

required false

type String

default null

example

Metadata attributes

name

description Silencing identifer generated from the combination of a subscription
name and check name.

required false - This value cannot be modifed.

type String

example

"creator": "Application Deploy Tool 5.0"

"reason": "rebooting the world"

"name": "appserver:mysql_status"

namespace

description The Sensu RBAC namespace that this silencing entry belongs to.

required false

type String

default default

example

labels

description Custom attributes you can use to create meaningful collections that can
be selected with API fltering and sensuctl fltering. Overusing labels can
impact Sensu’s internal performance, so we recommend moving
complex, non-identifying metadata to annotations.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores, but must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata that’s meaningful to people interacting with
Sensu.

"namespace": "production"

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

In contrast to labels, annotations cannot be used in API fltering or
sensuctl fltering and do not impact Sensu’s internal performance.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Examples

Silence all checks on a specifc entity

Assume a Sensu entity i-424242 which we wish to silence any alerts on. We’ll
do this by taking
advantage of per-entity subscriptions:

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

type: Silenced

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: entity:i-424242:*

 namespace: default

spec:

 begin: 1542671205

 check: null

 creator: admin

 expire: -1

 expire_on_resolve: false

 reason: null

YML

Silence a specifc check on a specifc entity

Following on the previous example, silence a check named check_ntp on entity
i-424242 , ensuring
the entry is deleted once the underlying issue has been
resolved:

 subscription: entity:i-424242

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "entity:i-424242:*",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": null,

 "check": null,

 "subscription": "entity:i-424242",

 "begin": 1542671205

 }

}

JSON

check: check_ntp

expire_on_resolve: true

subscription: entity:i-424242

YML

{

 "subscription": "entity:i-424242",

JSON

The optional expire_on_resolve attribute used here indicates that when the
server processes a
matching check from the specifed entity with status OK, this
silencing entry will automatically be
removed.

When used in combination with other attributes (like creator and reason), this
provides Sensu
operators with a method of acknowledging that they have received
an alert, suppressing additional
notifcations, and automatically clearing the
silencing entry when the check status returns to normal.

Silence all checks on entities with a specifc subscription

In this case, we’ll completely silence any entities subscribed to appserver .
Just as in the example of
silencing all checks on a specifc entity, we’ll
create a silencing entry specifying only the appserver

subscription:

Silence a specifc check on entities with a specifc subscription

Assume a check mysql_status which we wish to silence, running on Sensu
entities with the
subscription appserver :

 "check": "check_ntp",

 "expire_on_resolve": true

}

subscription: appserver

YML

{

 "subscription": "appserver"

}

JSON

check: mysql_status

subscription: appserver

YML

Silence a specifc check on every entity

To silence the check mysql_status on every entity in our infrastructure,
regardless of subscriptions,
we only need to provide the check name:

Deleting silences

To delete a silencing entry, you will need to provide its name. Subscription only
silencing entry names
will be similar to this:

{

 "subscription": "appserver",

 "check": "mysql_status"

}

JSON

check: mysql_status

YML

{

 "check": "mysql_status"

}

JSON

name: appserver:*

YML

{

 "name": "appserver:*"

}

JSON

Check only silencing entry names will be similar to this:

name: '*:mysql_status'

YML

{

 "name": "*:mysql_status"

}

JSON

Tessen

Contents
Confguring Tessen
Specifcation
Example
Tessen payload example

Tessen is the Sensu call-home service.
Enabled by default on Sensu backends, Tessen sends
anonymized data about Sensu instances to Sensu Inc., including the version, cluster size, number of
events processed, and number of resources created (like checks and handlers).
We rely on this data to
understand how Sensu is being used and make informed decisions about product improvements.
Read
the blog post to learn more about Tessen.

All data submissions are logged for complete transparency at the info log level and transmitted over
HTTPS.
See the troubleshooting guide to set the Sensu backend log level and view logs.

Confguring Tessen

You can use the Tessen API and sensuctl to view and manage Tessen confguration.
Tessen is enabled
by default on Sensu backends and required for licensed Sensu instances.
To manage Tessen
confguration using sensuctl, confgure sensuctl as the default admin user.

To see the status of Tessen:

To opt out of Tessen:

NOTE: Licensed Sensu instances override Tessen confguration to opt in at runtime.

sensuctl tessen info

sensuctl tessen opt-out

https://blog.sensu.io/announcing-tessen-the-sensu-call-home-service
https://blog.sensu.io/announcing-tessen-the-sensu-call-home-service

You can use the --skip-confrm fag to skip the confrmation step.

To opt in to Tessen:

Tessen specifcation

Top-level attributes

type

description Top-level attribute specifying the sensuctl create resource type.
Tessen confguration should always be of type TessenConfg .

required Required for Tessen confguration in wrapped-json or yaml format
for use with sensuctl create .

type String

example

api_version

description Top-level attribute specifying the Sensu API group and version. For
Tessen confguration in this version of Sensu, this attribute should
always be core/v2 .

required Required for Tessen confguration in wrapped-json or yaml format

sensuctl tessen opt-out --skip-confrm

sensuctl tessen opt-in

"type": "TessenConfg"

for use with sensuctl create .

type String

example

spec

description Top-level map that includes Tessen confguration spec attributes.

required Required for Tessen confguration in wrapped-json or yaml format
for use with sensuctl create .

type Map of key-value pairs

example

Spec attributes

opt_out

description Set to false to enable Tessen; set to true to opt out of Tessen.
Licensed Sensu instances override the opt_out attribute to false at
runtime.

required true

default false

type Boolean

example

"api_version": "core/v2"

"spec": {

 "opt_out": false

}

opt_out": false

Tessen confguration example

The following example is in wrapped-json format for use with sensuctl create .
To manage Tessen
using the Tessen API , use non-wrapped json format as shown in the API docs.

Tessen payload example

If opted in to Tessen, there are various metrics that get sent back to the Tessen service. In the
example payload below, you can see that the number of check hooks is sent back to the Tessen
service.

type: TessenConfg

api_version: core/v2

spec:

 opt_out: false

YML

{

 "type": "TessenConfg",

 "api_version": "core/v2",

 "spec": {

 "opt_out": false

 }

}

JSON

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "hook_count",

 "metric_value": 2,

 "msg": "collected a metric for tessen",

 "time": "2019-09-16T09:02:11Z"

There are other metrics sent on, such as the number of handlers:

Or the number of flters:

If opted into Tessen, all of the metrics and payloads sent are avaiable to view in the logs, which you
can view via journalctl -u sensu-backend.service . If you’d like to view the events on-disk,
please see the guide on confguring systemd to log to disk.

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "handler_count",

 "metric_value": 10,

 "msg": "collected a metric for tessen",

 "time": "2019-09-16T09:02:06Z"

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "flter_count",

 "metric_value": 4,

 "msg": "collected a metric for tessen",

 "time": "2019-09-16T09:02:01Z"

}

Tokens

Contents
Sensu token specifcation
Examples

Tokens are placeholders included in a check defnition that the agent replaces with entity information
before executing the check.
You can use tokens to fne-tune check attributes (like alert thresholds) on a
per-entity level while re-using the check defnition.

How do tokens work?

When a check is scheduled to be executed by an agent, it frst goes through a token substitution step.
The agent replaces any tokens with matching attributes from the entity defnition, and then the check is
executed. Invalid templates or unmatched tokens will return an error, which is logged and sent to the
Sensu backend message transport. Checks with token matching errors will not be executed.

Token substitution is supported for check defnition command attributes and hook command attributes.
Only entity attributes are available for substitution.
Available attributes will always have string values,
such as labels and annotations.

Managing entity labels

You can use token substitution with any defned entity attributes, including custom labels.
See the entity
reference for information on managing entity labels for proxy entities and agent entities.

Sensu token specifcation

Sensu Go uses the Go template package to implement token substitution.
Use double curly braces
around the token and a dot before the attribute to be substituted: {{ .system.hostname }} .

https://golang.org/pkg/text/template/

Token substitution syntax

Tokens are invoked by wrapping references to entity attributes and labels with double curly braces,
such as {{ .name }} to substitute an entity’s name. Nested Sensu entity attributes can be accessed
via dot notation (ex: system.arch).

{{ .name }} would be replaced with the entity name attribute
{{ .labels.url }} would be replaced with a custom label called url
{{ .labels.disk_warning }} would be replaced with a custom label called
disk_warning

NOTE: When an annotation or label name has a dot (e.g. cpu.threshold), the template index
function syntax must be used to ensure correct processing because the dot notation is also used for
object nesting.

Token substitution default values

In the event that an attribute is not provided by the entity, a token’s default
value will be substituted.
Token default values are separated by a pipe character and the word default (| default), and
can be used to provide a “fallback value” for entities that are missing a specifed token attribute.

{{.labels.url | default "https://sensu.io"}} would be replaced with a custom label called
url . If no such attribute called url is included in the entity defnition, the default (or fallback) value

of https://sensu.io will be used to substitute the token.

Unmatched tokens

If a token is unmatched during check preparation, the agent check handler will return an error, and the
check will not be executed. Unmatched token errors will look similar to the following:

Check confg token errors will be logged by the agent, and sent to Sensu backend message transport
as a check failure.

Token data type limitations

error: unmatched token: template: :1:22: executing "" at <.system.hostname>: map has

no entry for key "System"

As part of the substitution process, Sensu converts all tokens to strings. This means that tokens cannot
be used for bare integer values or to access individual list items.

For example, token substitution cannot be used for specifying a check interval because the interval
attribute requires an integer value. Token substitution can be used for alerting thresholds because
those values are included within the command string.

Examples

Token substitution for check thresholds

In this example check confguration, the check-disk-usage.go command accepts -w (warning)
and -c (critical)
arguments to indicate the thresholds (as percentages) for creating warning or critical
events. If no token substitutions are provided by an entity confguration, Sensu will use default values
to create a warning event at 80% disk capacity (i.e. {{ .labels.disk_warning | default 80 }}),
and a critical event at 90% capacity (i.e. {{ .labels.disk_critical | default 90 }}).

type: CheckConfg

api_version: core/v1

metadata:

 annotations: null

 labels: null

 name: check-disk-usage

 namespace: default

spec:

 check_hooks: null

 command: check-disk-usage.rb -w {{.labels.disk_warning | default 80}} -c

{{.labels.disk_critical

 | default 90}}

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 proxy_entity_name: ""

 publish: true

 runtime_assets: null

 stdin: false

YML

The following example entity would provide the necessary
attributes to override the
.labels.disk_warning and labels.disk_critical
tokens declared above.

 subscriptions:

 - staging

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v1",

 "metadata": {

 "name": "check-disk-usage",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "check-disk-usage.rb -w {{.labels.disk_warning | default 80}} -c

{{.labels.disk_critical | default 90}}",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": null,

 "subscriptions": [

 "staging"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

 "env_vars": null

 }

}

JSON

type: Entity

api_version: core/v2

metadata:

 annotations: null

 labels:

 disk_critical: "90"

 disk_warning: "80"

 name: example-hostname

 namespace: default

spec:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1542667231

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:example-hostname

 - staging

 system:

 arch: amd64

 hostname: example-hostname

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::26a5:54ec:cf0d:9704/64

 mac: 08:00:27:11:ad:d2

YML

 name: enp0s3

 - addresses:

 - 172.28.128.3/24

 - fe80::a00:27ff:febc:be60/64

 mac: 08:00:27:bc:be:60

 name: enp0s8

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.4.1708

 user: agent

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "example-hostname",

 "namespace": "default",

 "labels": {

 "disk_warning": "80",

 "disk_critical": "90"

 },

 "annotations": null

 },

 "spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "example-hostname",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

JSON

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:example-hostname",

 "staging"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

}

License management

Contents
Activating your license
Entity limit
License expiration
License management API

Quick links

Log in to your Sensu account
Confgure authentication providers
Discover enterprise assets
Guide to using assets
Contact Sensu support
Contact Sensu sales

Activating your license

If you haven’t already, install the backend, agent, and sensuctl and confgure sensuctl.

Log in to your Sensu account at account.sensu.io and download your license fle using the “Download
license” link.

Sensu account: Download Sensu license.

https://account.sensu.io/
https://bonsai.sensu.io/assets?tiers%5B%5D=4
https://account.sensu.io/support
https://sensu.io/sales
https://account.sensu.io/

With the license fle downloaded, you can activate your license using sensuctl or the license API.

To activate your license using sensuctl:

You can use sensuctl to view your license details at any time.

sensuctl create --fle sensu_license.json

Active license

sensuctl license info

=== Training Team - Sensu

Account Name: Training Team - Sensu

Account ID: 123

Plan: managed

Version: 1

Features: all

EntityLimit: 0

Issuer: Sensu, Inc.

Issued: 2019-02-15 15:01:44 -0500 -0500

Valid: true

Entity limit

Your license includes the entity limit tied to your Sensu licensing package.
(An entity limit of 0 allows
unlimited entities.)
Both agent and proxy entities count towards the overall entity limit.
Contact us to
upgrade your license.

To see your current entity count, use any /api/core or /api/enterprise API request. For
example:

You should see the current entity count and limit as response headers.

License expiration

To see your license expiration date, log in to your Sensu account at account.sensu.io.

If your license is within 30 days of expiration, Sensu issues regular warnings in the Sensu backend
logs.
If your license expires, you will no longer have access to licensed-tier features.

Valid Until: 2019-03-15 00:00:00 -0800 -0800

No license found

sensuctl license info

Error: not found

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/entities -v -H

"Authorization: Bearer $SENSU_TOKEN"

HTTP/1.1 200 OK

Content-Type: application/json

Sensu-Entity-Count: 4

Sensu-Entity-Limit: 0

https://account.sensu.io/support
https://docs.sensu.io/sensu-go/5.7/api/
https://account.sensu.io/

Learn Sensu Go

Contents

In this tutorial, we’ll download the Sensu sandbox and create a monitoring workfow with Sensu.

Set up the sandbox
Lesson #1: Create a monitoring event
Lesson #2: Create an event pipeline
Lesson #3: Automate event production with the Sensu agent

In this tutorial, you’ll download the Sensu sandbox and create a monitoring workfow with Sensu.

Set up the sandbox
Lesson #1: Create a monitoring event
Lesson #2: Create an event pipeline
Lesson #3: Automate event production with the Sensu agent

Set up the sandbox

1. Install Vagrant and VirtualBox

Download Vagrant
Download VirtualBox

2. Download the sandbox

Download from GitHub or clone the repository:

NOTE: If you’ve cloned the sandbox repository before, run cd sandbox/sensu-go and git pull

git clone https://github.com/sensu/sandbox && cd sandbox/sensu-go

https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
https://github.com/sensu/sandbox/archive/master.zip

https://github.com/sensu/sandbox instead.

3. Start Vagrant

The Learn Sensu sandbox is a CentOS 7 virtual machine pre-installed with Sensu, InfuxDB, and
Grafana.
It’s intended for you to use as a learning tool — we do not recommend using it in a production
installation. To install Sensu in production, use the installation guide instead.

The sandbox startup process takes about 5 minutes.

NOTE: The sandbox confgures VirtualBox to forward TCP ports 3002 and 4002 from the sandbox
virtual machine (VM) to the localhost to make it easier for you to interact with the sandbox dashboards.
Dashboard links provided in this tutorial assume port forwarding from the VM to the host is active.

4. SSH into the sandbox

Thanks for waiting! To start shell into the sandbox:

You should be greeted with this prompt:

To exit out of the sandbox, press CTRL + D .
To erase and restart the sandbox, run vagrant destroy and then vagrant up .
To reset the sandbox’s Sensu confguration to the beginning of this tutorial, run vagrant provision .

NOTE: The sandbox pre-confgures sensuctl with the Sensu Go admin user, so you won’t have to
confgure sensuctl each time you spin up the sandbox to try out a new feature. Before installing
sensuctl outside of the sandbox, read the frst time setup reference to learn how to confgure sensuctl.

ENABLE_SENSU_SANDBOX_PORT_FORWARDING=1 vagrant up

vagrant ssh

[sensu_go_sandbox]$

Lesson #1: Create a Sensu monitoring event

First, make sure everything is working correctly using the sensuctl command line tool. Use sensuctl to
see that your Sensu backend instance has a single namespace, default , and two users: the default
admin user and the user created for a Sensu agent to use.

Sensu keeps track of monitored components as entities. Start by using sensuctl to make sure Sensu
hasn’t connected to any entities yet:

Now you can start the Sensu agent to begin monitoring the sandbox:

sensuctl namespace list

 Name
─────────

 default

sensuctl user list

 Username Groups Enabled
────────── ──────────────── ─────────

admin cluster-admins true

agent system:agents true

sensuctl entity list

 ID Class OS Subscriptions Last Seen
──── ─────── ──── ─────────────── ───────────

sudo systemctl start sensu-agent

Use sensuctl to see that Sensu is now monitoring the sandbox entity:

Sensu agents send keepalive events to help you monitor agent status. Use sensuctl to see the
keepalive events generated by the sandbox entity:

The sensu-go-sandbox keepalive event has status 0, which means the agent is in an OK state and is
able to communicate with the Sensu backend.

You can also see the event and the entity in the Sensu dashboard. Log in to the dashboard with the
default admin credentials: username admin and password P@ssw0rd! .

Lesson #2: Pipe keepalive events into Slack

Now that you know the sandbox is working properly, let’s get to the fun stuff: creating a workfow. In
this lesson, you’ll create a workfow that sends keepalive alerts to Slack.

NOTE: If you’d rather not create a Slack account, you can skip ahead to Lesson #3.

sensuctl entity list

 ID Class OS Subscriptions Last Seen
────────────────── ─────── ─────── ─────────────────────────
───────────────────────────────

sensu-go-sandbox agent linux entity:sensu-go-sandbox 2019-01-24 21:29:06 +0000 UTC

sensuctl event list

 Entity Check Output Status Silenced Timestamp
────────────────── ───────────
──
──────── ────────── ───────────────────────────────

sensu-go-sandbox keepalive Keepalive last sent from sensu-go-sandbox at 2019-01-24 21:29:06 +0000 UTC 0 false

2019-01-24 21:29:06 +0000 UTC

http://localhost:3002/

1. Get your Slack webhook URL

Create a Slack workspace (or use an existing workspace, if you’re already a Slack admin).

Then, visit YOUR-WORKSPACE-NAME.slack.com/services/new/incoming-webhook . Follow the steps
to add the Incoming WebHooks integration and save your webhook. Your webhook channel and URL
will be listed under Integration Settings — you’ll need both later in this lesson.

2. Register the Sensu Slack handler asset

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins. In this lesson,
we’ll use the Sensu Slack handler asset to power a slack handler.

Use sensuctl to register the Sensu Slack handler asset.

You should see a confrmation message from sensuctl.

The sensu-slack-handler asset is now ready to use with Sensu. Use sensuctl to see the complete
asset defnition.

PRO TIP: You can use resource defnitions to create and update resources (like assets) using
sensuctl create --fle flename.yaml . See the sensuctl docs for more information.

3. Create a Sensu Slack handler

Open the sensu-slack-handler.json handler defnition provided with the sandbox in your preferred

sensuctl asset create sensu-slack-handler --url

"https://assets.bonsai.sensu.io/3149de09525d5e042a83edbb6eb46152b02b5a65/sensu-

slack-handler_1.0.3_linux_amd64.tar.gz" --sha512

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8"

Created

sensuctl asset info sensu-slack-handler --format yaml

https://slack.com/get-started#create
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

text editor. Edit the defnition to include your Slack channel, webhook URL, and the sensu-slack-

handler asset.

NOTE: If you aren’t sure how to open the handler and edit the defnition, try these Vi/Vim gist
instructions.

Now you can create a Slack handler named keepalive to process keepalive events.

Use sensuctl to see available event handlers — in this case, you’ll only see the keepalive handler
you just created..

Sensu monitoring events should begin arriving in your Slack channel, indicating that the sandbox entity
is in an OK state.

"env_vars": [

 "KEEPALIVE_SLACK_WEBHOOK=https://hooks.slack.com/services/AAA/BBB/CCC",

 "KEEPALIVE_SLACK_CHANNEL=#monitoring"

],

"runtime_assets": ["sensu-slack-handler"]

sensuctl create --fle sensu-slack-handler.json

sensuctl handler list

 Name Type Timeout Filters Mutator Execute

Environment Variables Assets
─────────── ────── ───────── ───────── ─────────
──

──────────────────────
──

────────────── ─────────────────────

 keepalive pipe 0 RUN:  /usr/local/bin/sensu-slack-handler -c "${KEEPALIVE_SLACK_CHANNEL}" -

w "${KEEPALIVE_SLACK_WEBHOOK}"

KEEPALIVE_SLACK_WEBHOOK=https://hooks.slack.com/services/AAA/BBB/CCC,KEEPALIVE_SLACK_CHANNEL

=#monitoring sensu-slack-handler

https://gist.github.com/hillaryfraley/838a046821171b1a37d0dafb16584518
https://gist.github.com/hillaryfraley/838a046821171b1a37d0dafb16584518

4. Filter keepalive events

Now that you’re generating Slack alerts, let’s reduce the potential for alert fatigue by adding a flter that
sends only warning, critical, and resolution alerts to Slack.

To accomplish this, you’ll interactively add the built-in is_incident flter to the keepalive handler, which
will make sure you only receive alerts when the sandbox entity fails to send a keepalive event.

The frst prompt will be for environment variables. Just press return to continue. The second prompt
is for the flters selection — enter is_incident to apply the is_incident flter.

For each of the mutator, timeout, type, runtime assets, and command prompts, just press return .

Use sensuctl to confrm that the keepalive handler now includes the is_incident flter:

With the flter in place, you should no longer receive messages in your Slack channel every time the

sensuctl handler update keepalive

? Filters: is_incident

sensuctl handler info keepalive

=== keepalive

Name: keepalive

Type: pipe

Timeout: 0

Filters: is_incident

Mutator:

Execute: RUN:  sensu-slack-handler -c "${KEEPALIVE_SLACK_CHANNEL}" -w

"${KEEPALIVE_SLACK_WEBHOOK}"

Environment Variables: KEEPALIVE_SLACK_WEBHOOK=https://hooks.slack.com/services/AAA/BBB/CCC,

KEEPALIVE_SLACK_CHANNEL=#monitoring

Runtime Assets: sensu-slack-handler

sandbox entity sends a keepalive event.

Let’s stop the agent and confrm that you receive the expected warning message.

After a couple minutes, you should see a warning message in your Slack channel informing you that
the sandbox entity is no longer sending keepalive events.

Start the agent to resolve the warning.

Lesson #3: Automate event production with the Sensu agent

So far, you’ve used the Sensu agent’s built-in keepalive feature, but in this lesson, you’ll create a
check that automatically produces workload-related events. Instead of sending alerts to Slack, you’ll
store event data with InfuxDB and visualize it with Grafana.

1. Make sure the Sensu agent is running

2. Install Nginx and the Sensu HTTP Plugin

You’ll use the Sensu HTTP Plugin to monitor an Nginx server running on the sandbox.

First, install the EPEL release package:

Then, install and start Nginx:

sudo systemctl stop sensu-agent

sudo systemctl start sensu-agent

sudo systemctl restart sensu-agent

sudo yum install -y epel-release

https://www.influxdata.com/
https://grafana.com/
https://github.com/sensu-plugins/sensu-plugins-http

Make sure it’s working:

Then install the Sensu HTTP Plugin:

You’ll use the metrics-curl.rb plugin. Test its output with:

3. Create an InfuxDB pipeline

Now, let’s create the InfuxDB pipeline to store these metrics and visualize them with Grafana. To
create a pipeline to send metric events to InfuxDB, start by registering the Sensu InfuxDB handler
asset.

sudo yum install -y nginx && sudo systemctl start nginx

curl -I http://localhost:80

HTTP/1.1 200 OK

...

sudo sensu-install -p sensu-plugins-http

/opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u "http://localhost"

...

sensu-go-sandbox.curl_timings.http_code 200 1535670975

sensuctl asset create sensu-infuxdb-handler --url

"https://assets.bonsai.sensu.io/b28f8719a48aa8ea80c603f97e402975a98cea47/sensu-

infuxdb-handler_3.1.2_linux_amd64.tar.gz" --sha512

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9b

1257bb479676bc155b24e21bf93c722b812b0f15cb3bd"

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

You should see a confrmation message from sensuctl.

The sensu-infuxdb-handler asset is now ready to use with Sensu. Use sensuctl to see the
complete asset defnition.

Open the infux-handler.json handler defnition provided with the sandbox, and edit the
runtime_assets attribute to include the sensu-infuxdb-handler asset.

Now you can use sensuctl to create the infux-db handler:

Use sensuctl to confrm that the handler was created successfully.

The infux-db handler should be listed. If you completed lesson #2, you’ll also see the keepalive
handler.

4. Create a check to monitor Nginx

The curl_timings-check.json fle provided with the sandbox will create a service check that runs
the metrics-curl.rb check plugin every 10 seconds on all entities with the entity:sensu-go-
sandbox subscription and sends events to the InfuxDB pipeline. The metrics-curl.rb plugin is
already included as the value of the command feld in curl_timings-check.json &emdash; you just

Created

sensuctl asset info sensu-infuxdb-handler --format yaml

"runtime_assets": ["sensu-infuxdb-handler"]

sensuctl create --fle infux-handler.json

sensuctl handler list

need to create the fle:

This check specifes a metrics handler and metric format. In Sensu Go, metrics are a core element of
the data model: you can build pipelines to handle metrics separately from alerts. This allows you to
customize your monitoring workfows to get better visibility and reduce alert fatigue.

After about 10 seconds, you can see the event produced by the entity:

sensuctl create --fle curl_timings-check.json

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions

Handlers Assets Hooks Publish? Stdin? Metric Format Metric Handlers
──────────────
──
────────── ────── ───────── ───── ───────────────────────── ────────── ──────── ───────
────────── ──────── ──────────────────── ─────────────────

curl_timings /opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u "http://localhost" 10 0 0

entity:sensu-go-sandbox true false graphite_plaintext infux-db

sensuctl event info sensu-go-sandbox curl_timings --format json | jq .

...

 "history": [

 {

 "status": 0,

 "executed": 1556472457

 },

],

 "output": "sensu-go-sandbox.curl_timings.time_total 0.005 1556472657\n...",

 ...

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

Because the check defnition specifed a metric format of graphite_plaintext , the Sensu agent will
treat the output of the check command as Graphite-formatted metrics and translate them into a set of
Sensu-formatted metrics (not shown in the output). These metrics are then sent to the InfuxDB
handler, which reads Sensu-formatted metrics and converts them to a format InfuxDB accepts.

NOTE: Metric support isn’t limited to Graphite! The Sensu agent can extract metrics in multiple line
protocol formats, including Nagios performance data.

5. See the HTTP response code events for Nginx in Grafana.

Log in to Grafana with username: admin and password: admin . You should see a graph of live
HTTP response codes for Nginx.

Now, if you turn Nginx off, you should see the impact in Grafana:

Start Nginx:

6. Automate disk usage monitoring for the sandbox

Now that you have an entity set up, you can add more checks. For example, let’s say you want to
monitor disk usage on the sandbox.

First, install the plugin:

Test the plugin:

],

...

sudo systemctl stop nginx

sudo systemctl start nginx

sudo sensu-install -p sensu-plugins-disk-checks

http://localhost:4002/d/go01/sensu-go-sandbox

Then create the check using sensuctl and the disk_usage-check.json fle included with the
sandbox, assigning it to the entity:sensu-go-sandbox subscription and the InfuxDB pipeline:

You don’t need to make any changes to disk_usage-check.json before running sensuctl create --

fle disk_usage-check.json .

You should see the check working in the dashboard entity view and via sensuctl:

Now, you should be able to see disk usage metrics for the sandbox in Grafana: reload your Grafana
tab to show the Sensu Go Sandbox Combined.

You made it! You’re ready for the next level of Sensu-ing.

Before you move on, take a moment to remove the virtual machine and resources installed during this
sandbox lesson. Press CTRL + D to exit the sandbox. Then run:

Now you can continue exploring Sensu with a clean slate. Here are some resources to help continue
your journey:

Try another lesson in the Sensu sandbox
Install Sensu Go
Collect StatsD metrics

/opt/sensu-plugins-ruby/embedded/bin/metrics-disk-usage.rb

sensu-core-sandbox.disk_usage.root.used 2235 1534191189

sensu-core-sandbox.disk_usage.root.avail 39714 1534191189

...

sensuctl create --fle disk_usage-check.json

sensuctl event list

vagrant destroy

http://localhost:3002/#/entities
http://localhost:4002/d/go02/sensu-go-sandbox-combined
http://localhost:4002/d/go02/sensu-go-sandbox-combined

Create a read-only user

Container and application monitoring with
Sensu

Contents

In this tutorial, we’ll deploy a sample app with Kubernetes and monitor it with Sensu.
The sample app
has three endpoints: / returns the local hostname, /metrics returns Prometheus metric data,
/healthz returns the boolean health state, and POST /healthz toggles the health state.

Prerequisites
Setup
Multitenancy
Deploying Sensu agents and InfuxDB
Monitoring an app
Create a Sensu pipeline to Slack
Create a Sensu service check
Collecting app metrics
Create a Sensu pipeline to InfuxDB
Create a Sensu metric check
Visualize metrics with Grafana
Collecting Kubernetes metrics
Next steps

Prerequisites

The sample app requires Kubernetes and a Kubernetes Ingress controller.
Most hosted Kubernetes
offerings, such as GKE, include a Kubernetes Ingress controller.

In this tutorial, we’ll be using Minikube, a cross-platform application for running a local single-node
Kubernetes cluster.
After you’ve installed and started Minikube, proceed through the rest of the guide.

Setup

1. Clone the sample app.

https://kubernetes.io/docs/tasks/tools/install-minikube/

2. Create the Kubernetes ingress resources.

3. Deploy kube-state-metrics.

4. Open your /etc/hosts fle and add the following hostnames.

NOTE: Here we’ll use the IP address for the Minikube VM in our hosts fle. To view the address, use
the command minikube ip .

5. Install sensuctl.

Jump over to the sensuctl installation guide, and follow the instructions to install sensuctl on Windows,
macOS, or Linux.

git clone https://github.com/sensu/sensu-kube-demo && cd sensu-kube-demo

minikube start

kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-

nginx/master/deploy/static/mandatory.yaml

minikube addons enable ingress

kubectl create -f go/ingress-nginx/ingress/sensu-go.yaml

git clone https://github.com/kubernetes/kube-state-metrics

kubectl apply -f kube-state-metrics/kubernetes

192.168.99.100 sensu.local webui.sensu.local sensu-enterprise.local

dashboard.sensu-enterprise.local

192.168.99.100 infuxdb.local grafana.local dummy.local

6. Deploy two instances of the sample app (dummy) behind a load balancer.

We can test the dummy app using the API.

A 200 response indicates that the dummy app is working correctly.

7. Deploy the Sensu backend

Multitenancy

Use Sensu role-based access control to create a demo namespace and a demo user.

1. Confgure sensuctl to use the built-in admin user.

kubectl apply -f go/deploy/dummy.yaml

Linux/macOS

curl -i http://dummy.local

Windows

Invoke-WebRequest -Uri http://dummy.local -Method GET

kubectl create -f go/deploy/sensu-backend.yaml

sensuctl confgure

? Sensu Backend URL: http://sensu.local

? Username: admin

? Password: P@ssw0rd!

? Namespace: default

? Preferred output format: tabular

2. Create a demo namespace.

We can use sensuctl to confrm that the namespace was created successfully and set the demo

namespace as the default for our sensuctl session.

3. Create a dev user role with full-access to the demo namespace.

4. Create a dev role binding for the dev group.

5. Create a demo user that is a member of the dev group.

6. Reconfgure sensuctl to use the demo user and demo namespace.

sensuctl namespace create demo

sensuctl namespace list

sensuctl confg set-namespace demo

sensuctl role create dev \

--verb get,list,create,update,delete \

--resource * --namespace demo

sensuctl role-binding create dev --role dev --group dev

sensuctl user create demo --interactive

? Username: demo

? Password: password

? Groups: dev

sensuctl confgure

? Sensu Backend URL: http://sensu.local

Deploying Sensu agents and InfuxDB

1. Deploy InfuxDB with a Sensu agent sidecar

Create a Kubernetes ConfgMap for InfuxDB confguration.

Deploy InfuxDB with a Sensu agent sidecar.

2. Create a Sensu pipeline to store metrics with InfuxDB.

Use the fles provided with the sample app to create a Sensu asset for the Sensu InfuxDB handler and
create an infuxdb event handler.

3. Deploy Sensu agent sidecars for the dummy app instances.

? Username: demo

? Password: password

? Namespace: demo

? Preferred output format: tabular

kubectl create confgmap infuxdb-confg --from-fle go/confgmaps/infuxdb.conf

kubectl create -f go/deploy/infuxdb.sensu.yaml

sensuctl create --fle go/confg/assets/infuxdb-handler.yaml

sensuctl create --fle go/confg/handlers/infuxdb.yaml

kubectl apply -f go/deploy/dummy.sensu.yaml

https://github.com/sensu/sensu-influxdb-handler

Monitoring an app

Let’s take a look at what we’re monitoring.
We can see the Sensu agents installed on our two dummy
app instances with their last seen timestamp, as well as the Sensu agent monitoring our InfuxDB
instance.

Create a Sensu pipeline to Slack

Let’s say we want to receive a Slack alert if the dummy app returns an unhealthy response.
We can
create a Sensu pipeline to send events to Slack using the Sensu Slack plugin.
Sensu Plugins are open-
source collections of Sensu building blocks shared by the Sensu Community.

1. Create an asset to help agents fnd and install the Sensu Slack handler.

2. Get your Slack webhook URL and add it to go/confg/handlers/slack.yaml .

If you’re already an admin of a Slack, visit https://YOUR WORKSPACE NAME
HERE.slack.com/services/new/incoming-webhook and follow the steps to add the Incoming
WebHooks integration and save the settings.
(If you’re not yet a Slack admin, start here to create a new
workspace.)
After saving, you’ll see your webhook URL under Integration Settings.

Open go/confg/handlers/slack.yaml and replace SECRET in the following line with your Slack
workspace webhook URL and #demo with the Slack channel of your choice:

sensuctl entity list

 ID Class OS Subscriptions Last Seen
─────────────────────────── ─────── ───────
─── ───────────────────────────────

dummy-76d8fb7bdf-967q7 agent linux dummy,entity:dummy-76d8fb7bdf-967q7 2019-01-18 10:56:56 -0800 PST

dummy-76d8fb7bdf-knh7r agent linux dummy,entity:dummy-76d8fb7bdf-knh7r 2019-01-18 10:56:56 -0800 PST

infuxdb-64b7d5f884-f9ptg agent linux infuxdb,entity:infuxdb-64b7d5f884-f9ptg 2019-01-18 10:56:59 -0800 PST

sensuctl create --fle go/confg/assets/slack-handler.yaml

"command": "slack-handler --channel '#demo' --timeout 20 --username 'sensu' --

https://github.com/sensu/sensu-slack-handler
https://github.com/sensu/sensu-slack-handler
https://slack.com/get-started#create

So it looks something like:

3. Create a handler to send events to Slack using the slack-handler asset.

Create a Sensu service check to monitor the status of the dummy app

To automatically monitor the status of the dummy app, we’ll create an asset that lets the Sensu agents
use a Sensu HTTP plugin.

1. Create the check-plugins asset.

2. Now we can create a check to monitor the status of the dummy app that uses the check-
plugins asset and the Slack pipeline.

3. With the automated alert workfow in place, we can see the resulting events in the Sensu
dashboard.

Sign in to the Sensu dashboard with your sensuctl username (demo) and password (password).
Since we’re working within the demo namespace, select the demo namespace in the Sensu
dashboard menu.

4. Toggle the health of the dummy app to simulate a failure.

webhook-url 'SECRET'",

"command": "slack-handler --channel '#my-channel' --timeout 20 --username 'sensu' --

webhook-url 'https://hooks.slack.com/services/XXXXXXXXXXXXXXXX'",

sensuctl create --fle go/confg/handlers/slack.yaml

sensuctl create --fle go/confg/assets/check-plugins.yaml

sensuctl create --fle go/confg/checks/dummy-app-healthz.yaml

https://github.com/portertech/sensu-plugins-go
http://webui.sensu.local/signin

We should now be able to see a critical alert in the Sensu dashboard as well as by using sensuctl:

You should also see an alert in Slack.

Continue to post to /healthz until all Sensu entities return to a healthy state.

Collecting app metrics

Create a Sensu metric check to collect Prometheus metrics

To automatically collect Prometheus metrics from the dummy app, we’ll create an asset that lets the
Sensu agents use the Sensu Prometheus plugin.

1. Create the prometheus-collector asset.

Linux/macOS

curl -iXPOST http://dummy.local/healthz

Windows

Invoke-WebRequest -Uri http://dummy.local/healthz -Method POST

sensuctl event list

Linux/macOS

curl -iXPOST http://dummy.local/healthz

Windows

Invoke-WebRequest -Uri http://dummy.local/healthz -Method POST

http://webui.sensu.local/events
https://github.com/sensu/sensu-prometheus-collector

2. Now we can create a check to collect Prometheus metrics that uses the prometheus-
collector asset.

Visualize metrics with Grafana

1. Deploy Grafana with a Sensu agent sidecar.

Create Kubernetes ConfgMaps for Grafana confguration.

Deploy Grafana with a Sensu agent sidecar.

After a few minutes, we can see the Sensu agents we have installed on the dummy app, InfuxDB, and
Grafana pods.

sensuctl create --fle go/confg/assets/prometheus-collector.yaml

sensuctl create --fle go/confg/checks/dummy-app-prometheus.yaml

kubectl create confgmap grafana-provisioning-datasources --from-

fle=./go/confgmaps/grafana-provisioning-datasources.yaml

kubectl create confgmap grafana-provisioning-dashboards --from-

fle=./go/confgmaps/grafana-provisioning-dashboards.yaml

kubectl apply -f go/deploy/grafana.sensu.yaml

sensuctl entity list

 ID Class OS Subscriptions Last Seen
─────────────────────────── ─────── ───────
─── ───────────────────────────────

dummy-6c57b8f868-ft5dz agent linux dummy,entity:dummy-6c57b8f868-ft5dz 2018-11-20 18:43:15 -0800 PST

dummy-6c57b8f868-m24hw agent linux dummy,entity:dummy-6c57b8f868-m24hw 2018-11-20 18:43:15 -0800

PST

grafana-5b88f8df8d-vgjtm agent linux grafana,entity:grafana-5b88f8df8d-vgjtm 2018-11-20 18:43:14 -0800 PST

2. Log in to Grafana.

To see the metrics we’re collecting from the dummy app, log into Grafana with the username admin
and password password .

3. Create a dashboard.

Create a new dashboard using the InfuxDB datasource to see live metrics from the dummy app.

Collecting Kubernetes metrics

Now that we have a pipeline set up to send metrics, we can create a check that collects Prometheus
metrics from Kubernetes and connect it to the pipeline.

Deploy a Sensu agent as a dameonset on your Kubernetes node.

Then create a check to collect Prometheus metrics from Kubernetes using the prometheus-
collector asset and infuxdb handler.

You should now be able to access Kubernetes metric data in Grafana and see metric events in the
Sensu dashboard.

Next steps

To stop or delete the sample app, use minikube stop or minikube delete respectively.

For more information about monitoring with Sensu, check out the following resources:

infuxdb-78d64bcfd9-8km56 agent linux infuxdb,entity:infuxdb-78d64bcfd9-8km56 2018-11-20 18:43:12 -0800 PST

kubectl apply -f go/deploy/sensu-agent-daemonset.yaml

sensuctl create --fle go/confg/checks/kube-state-prometheus.yaml

http://grafana.local/login
http://grafana.local/
http://webui.sensu.local/events

Reducing alert fatigue with Sensu flters
Aggregating StatD metrics with Sensu
Aggregating Nagios metrics with Sensu

Using the Sensu Prometheus Collector

Contents
Set up
Install and confgure Prometheus
Install and confgure Sensu Go
Install and confgure InfuxDB
Install and confgure Grafana
Create a Sensu InfuxDB pipeline
Install Sensu InfuxDB handler
Create a Sensu handler
Collect Prometheus metrics with Sensu
Install Sensu Prometheus Collector
Add a Sensu check to complete the pipeline
Visualize metrics with Grafana
Confgure a dashboard in Grafana
View metrics in Grafana

What is the Sensu Prometheus Collector?

The Sensu Prometheus Collector is a check plugin that collects metrics from a Prometheus exporter or
the Prometheus query API. This allows Sensu to route the collected metrics to one or more time series
databases, such as InfuxDB or Graphite.

Why use Sensu with Prometheus?

The Prometheus ecosystem contains a number of actively maintained exporters, such as the node
exporter for reporting hardware and operating system metrics or Google’s cAdvisor exporter for
monitoring containers. These exporters expose metrics which Sensu can collect and route to one or
more time series databases, such as InfuxDB or Graphite. Both Sensu and Prometheus can run in
parallel, complementing each other and making use of environments where Prometheus is already
deployed.

https://github.com/sensu/sensu-prometheus-collector
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
https://github.com/google/cadvisor

In this guide

This guide uses CentOS 7 as the operating system with all components running on the same compute
resource. Commands and steps may change for different distributions or if components are running on
different compute resources.

At the end, you will have Prometheus scraping metrics. The Sensu Prometheus Collector will then
query the Prometheus API as a Sensu check, send those to an InfuxDB Sensu handler, which will
send metrics to an InfuxDB instance. Finally, Grafana will query InfuxDB to display those collected
metrics.

Set up

Install and confgure Prometheus

Download and extract Prometheus.

Replace the default prometheus.yml confguration fle with the following confguration.

wget https://github.com/prometheus/prometheus/releases/download/v2.6.0/prometheus-

2.6.0.linux-amd64.tar.gz

tar xvfz prometheus-*.tar.gz

cd prometheus-*

global:

 scrape_interval: 15s

 external_labels:

 monitor: 'codelab-monitor'

scrape_confgs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_confgs:

 - targets: ['localhost:9090']

Start Prometheus in the background.

Ensure Prometheus is running. The matching result will vary slightly.

Install and confgure Sensu Go

Follow the RHEL/CentOS install instructions for the Sensu backend, Sensu agent and sensuctl.

Add an app_tier subscription to /etc/sensu/agent.yml .

Restart the sensu agent to apply the confguration change.

Ensure Sensu services are running.

Install and confgure InfuxDB

nohup ./prometheus --confg.fle=prometheus.yml > prometheus.log 2>&1 &

ps -ef | grep "[p]rometheus"

vagrant 7647 3937 2 22:23 pts/0 00:00:00 ./prometheus --

confg.fle=prometheus.yml

subscriptions:

 - "app_tier"

sudo systemctl restart sensu-agent

systemctl status sensu-backend

systemctl status sensu-agent

Add InfuxDB repo.

Install InfuxDB.

Open /etc/infuxdb/infuxdb.conf and uncomment the http API line.

Start InfuxDB.

Add the Sensu user and database.

echo "[infuxdb]

name = InfuxDB Repository - RHEL \$releasever

baseurl = https://repos.infuxdata.com/rhel/\$releasever/\$basearch/stable

enabled = 1

gpgcheck = 1

gpgkey = https://repos.infuxdata.com/infuxdb.key" | sudo tee

/etc/yum.repos.d/infuxdb.repo

sudo yum -y install infuxdb

[http]

 # Determines whether HTTP endpoint is enabled.

 enabled = true

sudo systemctl start infuxdb

infux -execute "CREATE DATABASE sensu"

infux -execute "CREATE USER sensu WITH PASSWORD 'sensu'"

infux -execute "GRANT ALL ON sensu TO sensu"

Install and confgure Grafana

Install Grafana.

Change Grafana’s listen port to not confict with the Sensu Dashboard.

Create a /etc/grafana/provisioning/datasources/infuxdb.yaml fle, and add an InfuxDB data
source.

Start Grafana.

sudo yum install -y https://s3-us-west-2.amazonaws.com/grafana-

releases/release/grafana-5.1.4-1.x86_64.rpm

sudo sed -i 's/^;http_port = 3000/http_port = 4000/' /etc/grafana/grafana.ini

apiVersion: 1

deleteDatasources:

 - name: InfuxDB

 orgId: 1

datasources:

 - name: InfuxDB

 type: infuxdb

 access: proxy

 orgId: 1

 database: sensu

 user: grafana

 password: grafana

 url: http://localhost:8086

sudo systemctl start grafana-server

Create a Sensu InfuxDB pipeline

Create a Sensu InfuxDB handler asset

Put the following asset defnition in a fle called asset_infuxdb :

type: Asset

api_version: core/v2

metadata:

 name: sensu-infuxdb-handler

 namespace: default

spec:

 sha512:

612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9b1

257bb479676bc155b24e21bf93c722b812b0f15cb3bd

 url:

https://assets.bonsai.sensu.io/b28f8719a48aa8ea80c603f97e402975a98cea47/sensu-

infuxdb-handler_3.1.2_linux_amd64.tar.gz

YML

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-infuxdb-handler",

 "namespace": "default"

 },

 "spec": {

 "sha512":

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9b

1257bb479676bc155b24e21bf93c722b812b0f15cb3bd",

 "url":

"https://assets.bonsai.sensu.io/b28f8719a48aa8ea80c603f97e402975a98cea47/sensu-

infuxdb-handler_3.1.2_linux_amd64.tar.gz"

 }

}

JSON

Create a Sensu handler

Put the following handler defnition in a fle called handler :

type: Handler

api_version: core/v2

metadata:

 name: infuxdb

 namespace: default

spec:

 command: "sensu-infuxdb-handler -a 'http://127.0.0.1:8086' -d sensu -u sensu -p

sensu"

 timeout: 10

 type: pipe

 runtime_assets:

 - sensu-infuxdb-handler

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "infuxdb",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-infuxdb-handler -a 'http://127.0.0.1:8086' -d sensu -u sensu -

p sensu",

 "timeout": 10,

 "type": "pipe",

 "runtime_assets": [

 "sensu-infuxdb-handler"

]

 }

}

JSON

PRO TIP: sensuctl create -f also accepts fles containing multiple resources defnitions.

Use sensuctl to add the handler and the asset to Sensu.

Collect Prometheus metrics with Sensu

Create a Sensu Prometheus Collector asset

Put the following handler defnition in a fle called asset_prometheus :

sensuctl create --fle handler --fle asset_infuxdb

type: Asset

api_version: core/v2

metadata:

 name: sensu-prometheus-collector

 namespace: default

spec:

 url:

https://assets.bonsai.sensu.io/ef812286f59de36a40e51178024b81c69666e1b7/sensu-

prometheus-collector_1.1.6_linux_amd64.tar.gz

 sha512:

a70056ca02662fbf2999460f6be93f174c7e09c5a8b12efc7cc42ce1ccb5570ee0f328a2dd8223f506df

3b5972f7f521728f7bdd6abf9f6ca2234d690aeb3808

YML

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-prometheus-collector",

 "namespace": "default"

 },

JSON

Add a Sensu check to complete the pipeline

Given the following check defnition in a fle called check :

 "spec": {

 "url":

"https://assets.bonsai.sensu.io/ef812286f59de36a40e51178024b81c69666e1b7/sensu-

prometheus-collector_1.1.6_linux_amd64.tar.gz",

 "sha512":

"a70056ca02662fbf2999460f6be93f174c7e09c5a8b12efc7cc42ce1ccb5570ee0f328a2dd8223f506d

f3b5972f7f521728f7bdd6abf9f6ca2234d690aeb3808"

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 name: prometheus_metrics

 namespace: default

spec:

 command: "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-query

up"

 handlers:

 - infuxdb

 interval: 10

 publish: true

 output_metric_format: infuxdb_line

 output_metric_handlers: []

 subscriptions:

 - app_tier

 timeout: 0

 runtime_assets:

 - sensu-prometheus-collector

YML

{

 "type": "CheckConfg",

JSON

Use sensuctl to add the check to Sensu.

We can see the events generated by the prometheus_metrics check in the Sensu dashboard.
Visit
http://127.0.0.1:3000, and log in as the default admin user: username admin and password
P@ssw0rd! .

We can also see the metric event data using sensuctl.

 "api_version": "core/v2",

 "metadata": {

 "name": "prometheus_metrics",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-

query up",

 "handlers": [

 "infuxdb"

],

 "interval": 10,

 "publish": true,

 "output_metric_format": "infuxdb_line",

 "output_metric_handlers": [],

 "subscriptions": [

 "app_tier"

],

 "timeout": 0,

 "runtime_assets": [

 "sensu-prometheus-collector"

]

 }

}

sensuctl create --fle check --fle asset_prometheus

sensuctl event list

 Entity Check Output Status Silenced Timestamp
────────────── ────────────────────

http://127.0.0.1:3000/

Visualize metrics with Grafana

Confgure a dashboard in Grafana

Download the Grafana dashboard confguration fle from the Sensu docs.

Using the downloaded fle, add the dashboard to Grafana using an API call.

View metrics in Grafana

Confrm metrics in Grafana with admin:admin login at http://127.0.0.1:4000.

Once logged in, click on Home in the upper left corner, then below click on the Up or Down Sample 2
dashboard. Once there, you should see a graph that has started showing metrics like this

── ────────
────────── ───────────────────────────────

sensu-centos keepalive Keepalive last sent from sensu-centos at 2019-02-12 01:01:37 +0000 UTC 0 false

2019-02-12 01:01:37 +0000 UTC

sensu-centos prometheus_metrics up,instance=localhost:9090,job=prometheus value=1 1549933306 0 false

2019-02-12 01:01:46 +0000 UTC

wget https://docs.sensu.io/sensu-go/5.8/fles/up_or_down_dashboard.json

curl -XPOST -H 'Content-Type: application/json' -d@up_or_down_dashboard.json

HTTP://admin:admin@127.0.0.1:4000/api/dashboards/db

http://127.0.0.1:4000/

Conclusion

You should now have a working setup with Prometheus scraping metrics. The Sensu Prometheus
Collecting is being ran via a Sensu check and collecting those metrics from Prometheus’ API. The
metrics are then handled by the InfuxDB handler, sent to InfuxDB and then visualized by a Grafana
Dashboard.

Using this information, you can now plug the Sensu Prometheus Collector into your Sensu ecosystem
and leverage Prometheus to gather metrics and Sensu to send them to the proper fnal destination.
Prometheus has a comprehensive list of additional exporters to pull in metrics.

https://prometheus.io/docs/instrumenting/exporters/

Sensu service logging with systemd

Contents

By default, systems where systemd is the service manager do not write logs to /var/log/sensu/ for
the sensu-agent and the sensu-backend services. This guide walks you through how to add log
forwarding from journald to syslog, have rsyslog write logging data to disk, and set up log rotation of
the newly created log fles.

To confgure journald to forward logging data to syslog, modify /etc/systemd/journald.conf to
include the following line:

Next, set up rsyslog to write the logging data received from journald to
/var/log/sensu/servicename.log . In this example, the sensu-backend and sensu-agent

logging data is sent to individual fles named after the service. The sensu-backend is not required if
only setting up log forwarding for the sensu-agent service.

Restart rsyslog and journald to apply the new confguration:

ForwardToSyslog=yes

For the sensu-backend service, inside /etc/rsyslog.d/99-sensu-backend.conf

if $programname == 'sensu-backend' then {

 /var/log/sensu/sensu-backend.log

 ~

}

For the sensu-agent service, inside /etc/rsyslog.d/99-sensu-agent.conf

if $programname == 'sensu-agent' then {

 /var/log/sensu/sensu-agent.log

 ~

}

Set up log rotation for newly created log fles to ensure logging does not fll up your disk. These
examples rotate the log fles /var/log/sensu/sensu-agent.log and /var/log/sensu/sensu-
backend.log weekly, unless the size of 100M is reached frst. The last seven rotated logs are kept
and compressed, with the exception of the most recent one. After rotation, rsyslog is restarted to
ensure logging is written to a new fle and not the most recent rotated fle.

You can use the following command to see what logrotate would do if it were executed now based on
the above schedule and size threshold. The -d fag will output details, but it will not take action on
the logs or execute the postrotate script.

systemctl restart systemd-journald

systemctl restart rsyslog

Inside /etc/logrotate.d/sensu-agent.conf

/var/log/sensu/sensu-agent.log {

 daily

 rotate 7

 size 100M

 compress

 delaycompress

 postrotate

 /bin/systemctl restart rsyslog

 endscript

}

Inside /etc/logrotate.d/sensu-backend.conf

/var/log/sensu/sensu-backend.log {

 daily

 rotate 7

 size 100M

 compress

 delaycompress

 postrotate

 /bin/systemctl restart rsyslog

 endscript

}

logrotate -d /etc/logrotate.d/sensu.conf

NOTE: On Ubuntu systems, be sure to run chown -R syslog:adm /var/log/sensu so syslog can
write to that directory.

Reference
Agent

Assets

Backend

Checks

Entities

Events

Filters

Handlers

Hooks

License

Mutators

Rbac

Sensu-Query-Expressions

Silencing

Tessen

Tokens

	localhost
	Sensu Go - Sensu Docs
	Sensu Go release notes - Sensu Docs
	Get started with Sensu - Sensu Docs
	Getting started with license-activated features - Sensu Docs
	Sensu live demo - Sensu Docs
	Sensu sandbox - Sensu Docs
	Glossary of Terms - Sensu Docs
	Sensu frequently asked questions - Sensu Docs
	Sensu Go media - Sensu Docs
	Installing Sensu - Sensu Docs
	Installing Sensu Plugins - Sensu Docs
	Upgrading Sensu - Sensu Docs
	Authentication - Sensu Docs
	Hardware requirements - Sensu Docs
	Binary-only distributions - Sensu Docs
	Configuration Management - Sensu Docs
	Supported platforms - Sensu Docs
	How to monitor server resources with checks - Sensu Docs
	How to monitor external resources with proxy requests and entities - Sensu Docs
	How to collect and extract metrics using Sensu checks - Sensu Docs
	How to aggregate metrics with the Sensu StatsD listener - Sensu Docs
	How to augment event data using check hooks - Sensu Docs
	How to send alerts to Slack with handlers - Sensu Docs
	How to populate InfluxDB metrics using handlers - Sensu Docs
	How to reduce alert fatigue with filters - Sensu Docs
	How to route alerts using filters - Sensu Docs
	How to install plugins using assets - Sensu Docs
	How to plan maintenance windows using silencing - Sensu Docs
	How to create a read-only user with RBAC - Sensu Docs
	Planning your Sensu Go deployment - Sensu Docs
	How to run a Sensu cluster - Sensu Docs
	Securing Sensu - Sensu Docs
	Troubleshooting - Sensu Docs
	Dashboard overview - Sensu Docs
	Dashboard filtering - Sensu Docs
	API overview - Sensu Docs
	Assets API - Sensu Docs
	Authentication API - Sensu Docs
	Authentication providers API - Sensu Docs
	Checks API - Sensu Docs
	Cluster API - Sensu Docs
	Cluster role bindings API - Sensu Docs
	Cluster roles API - Sensu Docs
	Entities API - Sensu Docs
	Events API - Sensu Docs
	Filters API - Sensu Docs
	Handlers API - Sensu Docs
	Health API - Sensu Docs
	Hooks API - Sensu Docs
	License management API - Sensu Docs
	Metrics API - Sensu Docs
	Mutators API - Sensu Docs
	Namespaces API - Sensu Docs
	Role bindings API - Sensu Docs
	Roles API - Sensu Docs
	Silencing API - Sensu Docs
	Tessen API - Sensu Docs
	Users API - Sensu Docs
	Version API - Sensu Docs
	Sensuctl quick reference - Sensu Docs
	Sensuctl - Sensu Docs
	Sensu agent - Sensu Docs
	Sensu backend - Sensu Docs
	Assets - Sensu Docs
	Checks - Sensu Docs
	Entities - Sensu Docs
	Events - Sensu Docs
	Filters - Sensu Docs
	Handlers - Sensu Docs
	Hooks - Sensu Docs
	Mutators - Sensu Docs
	Role-based access control - Sensu Docs
	Sensu query expressions - Sensu Docs
	Silencing - Sensu Docs
	Tessen - Sensu Docs
	Tokens - Sensu Docs
	License management - Sensu Docs
	Learn Sensu Go - Sensu Docs
	Container and application monitoring with Sensu - Sensu Docs
	Using the Sensu Prometheus Collector - Sensu Docs
	Sensu service logging with systemd - Sensu Docs
	Reference - Sensu Docs

