
Sensu Go

Contents
Release Notes

Get Started with Sensu

Platforms and Distributions

Commercial Features

Operations
Deploy Sensu

Hardware Requirements
Install Sensu
Deployment Architecture
Confguration Management
Generate Certifcates
Secure Sensu
Run a Sensu Cluster
Reach Multi-cluster Visibility
Scale with Enterprise Datastore
Install Plugins

Control Access
Authenticate with AD
Authenticate with LDAP
Authenticate with OIDC
Use API Keys
Create a Read-only User

Maintain Sensu
Upgrade Sensu
Migrate from Sensu Core
Troubleshoot

Monitor Sensu
Log Sensu Services
Monitor Sensu with Sensu

Manage Secrets
Use Secrets Management

Guides
Monitor Server Resources

Monitor External Resources
Collect Service Metrics
Augment Event Data
Aggregate StatsD Metrics
Populate Metrics in InfuxDB
Send Slack Alerts
Send Email Alerts
Create Handler Templates
Install Plugins with Assets
Reduce Alert Fatigue
Route Alerts
Plan Maintenance Windows

Sensuctl CLI
Create and Manage Resources
Back Up and Recover Resources
Filter Responses
Set Environment Variables
Use sensuctl with Bonsai

Web UI
View and Manage Resources
Build Filtered Views
Confgure the Web UI

API
APIKeys API
Assets API
Authentication API
Authentication Providers API
Checks API
Cluster API
Cluster Role Bindings API
Cluster Roles API
Datastore API
Entities API
Events API
Federation API
Filters API
Handlers API
Health API
Hooks API
License API
Metrics API
Mutators API
Namespaces API

Prune API
Role Bindings API
Roles API
Searches API
Secrets API
Silencing API
Tessen API
Users API
Version API
Web UI Confguration API

Reference
Sensu Agent
Sensu Backend
API Keys
Assets
Checks
Datastore
Entities
Etcd Replicators
Events
Filters
Handlers
Health
Hooks
License
Mutators
RBAC
Searches
Secrets
Secrets Providers
Sensu Query Expressions
Silencing
Tessen
Tokens
Web UI Confguration

Learn Sensu
Glossary
Interactive tutorials
Live demo
Sandbox

| Learn about licensing

Sensu is the industry-leading solution for multi-cloud monitoring at scale.
The Sensu monitoring event

https://docs.sensu.io/sensu-go/latest/commercial/

pipeline empowers businesses to automate their monitoring workfows and gain deep visibility into their
multi-cloud environments.
Founded in 2017, Sensu offers a comprehensive monitoring solution for
enterprises, providing complete visibility across every system, every protocol, every time — from
Kubernetes to bare metal.
Get started now and feel the #monitoringlove: Learn Sensu Go.

Sensu Go is the latest version of Sensu, designed to be more portable, easier and faster to deploy,
and (even more) friendly to containerized and ephemeral environments.
Learn about support packages
and commercial features designed for monitoring at scale.

Automate your monitoring workfows: Limitless pipelines let you validate and correlate events,
mutate data formats, send alerts, manage incidents, collect and store metrics, and more.

Reduce alert fatigue: Sensu gives you full control over your alerts with fexible flters, context-rich
notifcations, reporting, event handling, and auto-remediation.

Integrate anywhere: Sensu’s open architecture makes it easy to integrate monitoring with tools you
already use like Nagios plugins, Chef, Graphite, InfuxDB, and PagerDuty.

Listen to Sensu Inc. CEO Caleb Hailey explain the Sensu monitoring event pipeline.

Monitoring for your infrastructure

Monitoring is the action of observing and checking the behaviors and outputs of a system
and its components over time. - Greg Poirier, Monitorama 2016

https://sensu.io/support
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler/
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler/
https://www.youtube.com/watch?v=jUW4rAqazwA
https://vimeo.com/173610062

Sensu is an agent-based monitoring tool that you install on your organization’s infrastructure.
The
Sensu agent gives you visibility into everything you care about.
The Sensu backend gives you fexible,
automated workfows to route metrics and alerts.

Monitor containers, instances, applications, and on-premises infrastructure

Sensu is designed to monitor everything from the server closet to the cloud.
Install the Sensu agent on
the hosts you want to monitor, integrate with the Sensu API, or take advantage of proxy entities to
monitor anything on your network.
Sensu agents automatically register and de-register themselves with
the Sensu backend, so you can monitor ephemeral infrastructure without getting overloaded with
alerts.

Better incident response with flterable, context-rich alerts

Get meaningful alerts when and where you need them.
Use event flters to reduce noise and check
hooks to add context and speed up incident response.
Sensu integrates with the tools and services your
organization already uses like PagerDuty, Slack, and more.
Check out Bonsai, the Sensu asset hub, or
write your own Sensu plugins in any language.

Collect and store metrics with built-in support for industry-standard tools

Know what’s going on everywhere in your system.
Sensu supports industry-standard metric formats like
Nagios performance data, Graphite plaintext protocol, InfuxDB line protocol, OpenTSDB data
specifcation, and StatsD metrics.
Use the Sensu agent to collect metrics alongside check results, then

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler/
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler/
https://bonsai.sensu.io/

use the event pipeline to route the data to a time series database like InfuxDB.

Intuitive API and web UI interfaces

Sensu includes a web UI to provide a unifed view of your entities, checks, and events, as well as a
user-friendly silencing tool.
The Sensu API and the sensuctl command-line tool allow you (and your
internal customers) to create checks, register entities, manage confguration, and more.

Open core software backed by Sensu Inc.

Sensu Go’s core is open source software, freely available under a permissive MIT License and publicly
available on GitHub.
Learn about support packages and commercial features designed for monitoring a
scale.

https://www.influxdata.com/
https://www.github.com/sensu/sensu-go/blob/master/LICENSE/
https://www.github.com/sensu/sensu-go/
https://sensu.io/support

Sensu Go release notes
5.20.2 release notes

5.20.1 release notes

5.20.0 release notes

5.19.3 release notes

5.19.2 release notes

5.19.1 release notes

5.19.0 release notes

5.18.1 release notes

5.18.0 release notes

5.17.2 release notes

5.17.1 release notes

5.17.0 release notes

5.16.1 release notes

5.16.0 release notes

5.15.0 release notes

5.14.2 release notes

5.14.1 release notes

5.14.0 release notes

5.13.2 release notes

5.13.1 release notes

5.13.0 release notes

5.12.0 release notes

5.11.1 release notes

5.11.0 release notes

5.10.2 release notes

Versioning

Sensu Go adheres to semantic versioning using MAJOR.MINOR.PATCH release numbers, starting at
5.0.0.
MAJOR version changes indicate incompatible API changes.
MINOR versions add backward-
compatible functionality.
PATCH versions include backward-compatible bug fxes.

Upgrading

Read the upgrade guide for information about upgrading to the latest version of Sensu Go.

5.20.2 release notes

May 26, 2020 — The latest release of Sensu Go, version 5.20.2, is now available for download.

5.10.1 release notes

5.10.0 release notes

5.9.0 release notes

5.8.0 release notes

5.7.0 release notes

5.6.0 release notes

5.5.1 release notes

5.5.0 release notes

5.4.0 release notes

5.3.0 release notes

5.2.1 release notes

5.2.0 release notes

5.1.1 release notes

5.1.0 release notes

5.0.1 release notes

5.0.0 release notes

https://semver.org/spec/v2.0.0.html
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

This patch release adds username to the API request log to help operators with troubleshooting and
user activity reporting, as well as validation for subjects in role-based access control (RBAC) role
binding and cluster role binding.
Release 5.20.2 also temporarily disables process discovery so we can
investigate and resolve its performance impact on the backend (increased CPU and memory usage).

See the upgrade guide to upgrade Sensu to version 5.20.2.

NEW FEATURES:

FIXES:

5.20.1 release notes

May 15, 2020 — The latest release of Sensu Go, version 5.20.1, is now available for download.

This patch release includes a bug fx that affects the web UI federated homepage gauges when using
the PostgreSQL datastore and several fxes for the data displayed in the web UI entity details.

See the upgrade guide to upgrade Sensu to version 5.20.1.

FIXES:

The API request log now includes the username.

(Commercial feature) Process discovery in the agent is temporarily disabled.

The system’s libc_type attribute is now properly populated for Ubuntu entities.

Single-letter subscriptions are now allowed.

Subjects are now validated in RBAC role binding and cluster role binding.

Sensuctl command assets can now be retrieved and installed from Bonsai.

(Commercial feature) Fixes a bug that prevented the federated homepage in the web UI from
retrieving the keepalive and event gauges when PostgreSQL was confgured as the event
datastore.

(Commercial feature) The memory_percent and cpu_percent processes attributes are now
properly displayed in the web UI.

In the web UI, the entity details page no longer displays foat type (which applies only for MIPS
architectures). Also on entity details pages, the system’s libc type is now listed and process

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

5.20.0 release notes

May 12, 2020 — The latest release of Sensu Go, version 5.20.0, is now available for download.

This release delivers several new features, substantial improvements, and important fxes. One
exciting new feature is agent local process discovery to further enrich entities and their events with
valuable context. Other additions include a web UI federation view that provides a single pane of glass
for all of your Sensu Go clusters and token substitution for assets. And Windows users rejoice! This
release includes many Windows agent fxes, as well as agent log rotation capabilities!

See the upgrade guide to upgrade Sensu to version 5.20.0.

NEW FEATURES:

names are no longer capitalized.

(Commercial feature) Added a processes feld to the system type to store agent local
processes for entities and events and a discover-processes fag to the agent confguration
fags to populate the processes feld in entity.system if enabled.

(Commercial feature) Added a new resource, GlobalConfg , that you can use to customize
your web UI confguration.

(Commercial feature) Added metricsd to collect metrics for the web UI.

(Commercial feature) Added process and additional system information to the entity details
view in the web UI.

(Commercial feature) Added a PostgreSQL metrics suite so metricsd can collect metrics about
events stored in PostgreSQL.

(Commercial feature) Added entity class limits to the license.

Added check hook output to event details page in the web UI.

Added the sensuctl describe-type command to list all resource types.

Added annotations and labels as backend confguration options.

Added token substitution for assets.

Added event.is_silenced and event.check.is_silenced feld selectors.

Added Edition and GoVersion felds to version information. In commercial distributions,
the Edition version attribute is set to enterprise

Added ability to confgure the Resty HTTP timeout. Also, sensuctl now suppresses messages

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

IMPROVEMENTS:

FIXES:

5.19.3 release notes

May 4, 2020 — The latest release of Sensu Go, version 5.19.3, is now available for download.
This is a
patch release with many improvements and bug fxes, including a fx to close the event store when the
backend restarts, a global rate limit for fetching assets, and fxes for goroutine leaks. Sensu Go 5.19.3

from the Resty library.

(Commercial feature) The web UI homepage is now a federated view.

You can now increment the log level by sending SIGUSR1 to the sensu-backend or sensu-
agent process.

License metadata now includes the current entity count and license entity limit.

In the web UI, users will see a notifcation when they try to delete an event without appropriate
authorization.

The Windows agent now has log rotation capabilities.

Notepad is now the default editor on Windows rather than vi.

(Commercial feature) Database connections no longer leak after queries to the cluster health
API.

In the web UI, any leading and trailing whitespace is now trimmed from the username when
authenticating.

The web UI preferences dialog now displays only the frst fve groups a user belongs to, which
makes the sign-out button more accessible.

In the web UI, the deregistration handler no longer appears as undefned on the entity details
page.

You can now escape quotes to express quoted strings in token substitution templates.

The Windows agent now accepts and remembers arguments passed to service run and
service install .

The Windows agent now synchronizes writes to its log fle, so the fle size will update with every
log line written.

The Windows agent now logs to both console and log fle when you use service run .

also includes several web UI updates, from fxes to prevent crashes to new color-blindness modes.

See the upgrade guide to upgrade Sensu to version 5.19.3.

FIXES:

IMPROVEMENTS:

The event store now closes when the backend restarts, which fxes a bug that allowed
Postgres connections to linger after the backend restarted interally.

The etcd event store now returns exact matches when retrieving events by entity (rather than
prefxed matches).

sensu-backend init now logs any TLS failures encountered during initialization.

sensuctl logout now resets the TLS confguration.

env_vars values can now include the equal sign.

Error logs now include underlying errors encountered when fetching an asset.

The log level is now WARNING when an asset is not installed because none of the flters
match.

Fixes a bug in the web UI that could cause labels with links to result in a crash.

Fixes a bug in the web UI that could cause the web UI to crash when using an unregistered
theme.

Fixes a bug that could cause the backend to crash.

Fixes a bug in multi-line metric extraction that appeared in Windows agents.

Fixes an authentication bug that restarted the sensu-backend when agents disconnected.

Fixes a bug that meant check state and last_ok were not computed until the second
instance of the event.

Fixes a bug that caused messages like “unary invoker failed” to appear in the logs.

Fixes several goroutine leaks.

Fixes a bug that caused the backend to crash when the etcd client received the error
“etcdserver: too many requests.”

In the web UI, color-blindness modes are now available.

In the web UI, labels and annotations with links to images will now be displayed inline.

Adds a global rate limit for fetching assets to prevent abusive asset retries, which you can

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/

5.19.2 release notes

April 27, 2020 — The latest release of Sensu Go, version 5.19.2, is now available for download.
This
patch release adds two database connection pool parameters for PostgreSQL so you can confgure
the maximum time a connection can persist before being destroyed and the maximum number of idle
connections to retain.
The release also includes packages for Ubuntu 19.10 and 20.04.

See the upgrade guide to upgrade Sensu to version 5.19.2.

FIXES:

IMPROVEMENTS:

5.19.1 release notes

April 13, 2020 — The latest release of Sensu Go, version 5.19.1, is now available for download.
This is
a patch release with a number of bug fxes, including several that affect keepalive events, as well as an
addition to the help response for sensu-backend start and sensu-agent start : the default path
for the confguration fle.

See the upgrade guide to upgrade Sensu to version 5.19.1.

FIXES:

confgure with the --assets-rate-limit and --assets-burst-limit fags for the agent
and backend.

Adds support for restarting the backend via SIGHUP.

Adds a timeout fag to sensu-backend init .

Deprecated fags for sensuctl silenced update subcommand have been removed.

(Commercial feature) Adds SQL database connection pool parameters max_conn_lifetime

and max_idle_conns to store/v1.PostgresConfg.

Sensu packages are now available for Ubuntu 19.10 (Eoan Ermine) and 20.04 (Focal Fossa).
See the supported platforms page for a complete list of Sensu’s supported platforms and the
installation guide to install Sensu packages for Ubuntu.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.19/reference/agent/#configuration-via-flags
http://localhost:1313/sensu-go/5.19/reference/backend/#configuration
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/platforms/
http://localhost:1313/sensu-go/5.19/operations/deploy-sensu/install-sensu/

5.19.0 release notes

March 30, 2020 — The latest release of Sensu Go, version 5.19.0, is now available for download.
This
release is packed with new features, improvements, and fxes, including our frst alpha feature:
declarative confguration pruning to help keep your Sensu instance in sync with Infrastructure as Code
workfows.
Other exciting additions include the ability to save and share your fltered searches in the
web UI, plus a new matches substring match operator that you can use to refne your fltering results!
Improvements include a new created_by feld in resource metadata and a foat_type feld that
stores whether your system uses hard foat or soft foat.
We’ve also added agent and sensuctl builds for
MIPS architectures, moved Bonsai logs to the debug level, and added PostgreSQL health
information to the health API payload.

See the upgrade guide to upgrade Sensu to version 5.19.0.

NEW FEATURES:

(Commercial feature) Fixed a bug that caused the PostgreSQL store to be enabled too late
upon startup, which caused keepalive bugs and possibly other undiscovered bugs.

Keepalives now fre correctly when using the PostgreSQL event store.

Keepalives can now be published via the HTTP API.

sensu-agent no longer allows confguring keepalive timeouts that are shorter than the
keepalive interval.

Eventd no longer mistakes keepalive events for checks with TTL.

Keepalives now generate a new event UUID for each keepalive failure event.

Agents now correctly reset keepalive switches on reconnect, which fxes a bug that allowed
older keepalive timeout settings to persist.

Token substitution templates can now express escape-quoted strings.

The REST API now uses a default timeout of 3 seconds when querying etcd health.

Pipe handlers now must include a command.

The response for sensu-backend start --help and sensu-agent start --help now
includes the confguration fle default path.

The system’s libc_type attribute is now populated on Alpine containers.

(Commercial feature) In the web UI, you can now save, recall, and delete fltered searches.

(Commercial feature) Added the matches substring matching operator for API response,

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/reference/handlers/#pipe-handler-command
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/web-ui/
http://localhost:1313/sensu-go/5.19/web-ui/filter/#save-a-filtered-search
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/api#response-filtering

IMPROVEMENTS:

FIXES:

5.18.1 release notes

March 10, 2020 — The latest release of Sensu Go, version 5.18.1, is now available for download.
This

sensuctl, and web UI fltering selectors.

(Commercial feature) Added agent and sensuctl builds for Linux architectures: mips ,
mipsle , mips64 , and mips64le (hard foat and soft foat).

(Commercial feature) Sensu now automatically applies the sensu.io/managed_by label to
resources created via sensuctl create for use in the sensuctl prune alpha feature.

(Commercial feature) The health endpoint now includes PostgreSQL health information.

Resource metadata now includes the created_by feld, which Sensu automatically populates
with the name of the user who created or last updated each resource.

The agent now discovers entity libc type, VM system, VM role, and cloud provider.

System type now includes the foat_type feld, which stores the foat type the system is using
(hard foat or soft foat).

The Bonsai client now logs at the debug level rather than the info level.

The store can now create wrapped resources.

Tessen now collects the type of store used for events (etcd or postgres) and logs
numbers of authentication providers, secrets, and secrets providers. Tessen data helps us
understand how we can improve Sensu, and all Tessen transmissions are logged locally for
complete transparency.

Fixed a bug where event.Check.State was not set for events passing through the pipeline
or written to the event log.

Fixed a bug that allowed the agent to connect to a backend using a nonexistent namespace.

Fixed a bug that allowed subscriptions to be empty strings.

Corrected the HTTP status codes for unauthenticated and permission denied errors in the
REST API.

Fixed a bug where check history was incorrectly formed when using the PostgreSQL event
store.

http://localhost:1313/sensu-go/5.19/sensuctl/filter-responses
http://localhost:1313/sensu-go/5.19/web-ui/filter/
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/sensuctl/create-manage-resources#sensuctl-prune
http://localhost:1313/sensu-go/5.19/sensuctl/create-manage-resources#sensuctl-prune
http://localhost:1313/sensu-go/5.19/commercial/
http://localhost:1313/sensu-go/5.19/reference/health/
http://localhost:1313/sensu-go/5.19/reference/tessen/

release fxes bugs that caused SQL migration failure on PostgreSQL 12, nil pointer panic due to OICD
login, and sensu-backend restart upon agent disconnection.
It also includes a reliability improvement —
a change to use the gRPC client rather than the embedded etcd client.

See the upgrade guide to upgrade Sensu to version 5.18.1.

FIXES:

5.18.0 release notes

February 25, 2020 — The latest release of Sensu Go, version 5.18.0, is now available for download.
This release delivers a number of improvements to the overall Sensu Go experience.
From automatic
proxy entity creation to unique Sensu event IDs, it’s now much easier to use and troubleshoot your
monitoring event pipelines!
If you’re working behind an HTTP proxy, you can now manage remote
Sensu Go clusters, as sensuctl now honors proxy environment variables (e.g. HTTPS_PROXY).
This
release also includes a number of fxes for usability bugs, making for the most polished release of
Sensu Go yet, so go ahead and give it a download!

See the upgrade guide to upgrade Sensu to version 5.18.0.

IMPROVEMENTS:

(Commercial feature) Fixed a bug that caused SQL migrations to fail on PostgreSQL 12.

(Commercial feature) Fixed a bug where OIDC login could result in a nil pointer panic.

Changed to using the gRPC client (rather than the embedded etcd client) to improve reliability
and avoid nil pointer panics triggered by shutting down the embedded etcd client.

The Sensu backend no longer hangs indefnitely if a fle lock for the asset manager cannot be
obtained. Instead, the backend returns an error after 60 seconds.

Fixed a bug that caused sensu-backend to restart when agents disconnected.

Fixed a bug where the backend would panic on some 32-bit systems.

The event.entity.entity_class value now defaults to proxy for POST /events
requests.

If you use the events API to create a new event with an entity that does not already exist, the
sensu-backend will automatically create a proxy entity when the event is published.

Sensuctl now accepts Bonsai asset versions that include a prefx with the letter v (for
example, v1.2.0).

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.18/commercial/
http://localhost:1313/sensu-go/5.18/commercial/
http://localhost:1313/sensu-go/5.18/api/events#create-a-new-event
http://localhost:1313/sensu-go/5.18/api/events/

FIXES:

5.17.2 release notes

February 19, 2020 — The latest release of Sensu Go, version 5.17.2, is now available for download.
This release fxes a bug that could prevent commercial features from working after internal restart.

See the upgrade guide to upgrade Sensu to version 5.17.2.

FIXES:

5.17.1 release notes

The version API now retrieves the Sensu agent version for the Sensu instance.

Log messages now indicate which flter dropped an event.

Sensu now reads and writes initializationKey to and from EtcdRoot, with legacy support
(read-only) as a fallback.

Sensu will now check for an HTTP response other than 200 OK response when fetching
assets.

Updated Go version from 1.13.5 to 1.13.7.

(Commercial feature) Label selectors and feld selectors now accept single and double quotes
to identify strings.

Fixed a bug that prevented wrapped resources from having their namespaces set by the
default sensuctl confguration.

Fixed a bug that prevented API response fltering from working properly for the silenced API.

Improved event payload validation for the events API so that events that do not match the URL
parameters on the /events/:entity/:check endpoint are rejected.

Sensuctl now supports the http_proxy , https_proxy , and no_proxy environment
variables.

The auth/test endpoint now returns the correct error messages.

Fixed a bug that could cause commercial HTTP routes to fail to initialize after an internal
restart, preventing commercial features from working.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.18/commercial/
http://localhost:1313/sensu-go/5.18/api#label-selector
http://localhost:1313/sensu-go/5.18/api#field-selector
http://localhost:1313/sensu-go/5.18/api#response-filtering
http://localhost:1313/sensu-go/5.18/api/events/
http://localhost:1313/sensu-go/5.18/api/auth#authtest-get
http://localhost:1313/sensu-go/5.18/api/auth#authtest-get

January 31, 2020 — The latest release of Sensu Go, version 5.17.1, is now available for download.
This release fxes a web UI issue that cleared selected flters when sorting an event list and a bug that
prevented certain .tar assets from extracting.
It also includes sensuctl confguration improvements.

See the upgrade guide to upgrade Sensu to version 5.17.1.

IMPROVEMENTS:

FIXES:

5.17.0 release notes

January 28, 2020 — The latest release of Sensu Go, version 5.17.0, is now available for download.
This is a signifcant release, with new features, improvements, and fxes!
We’re ecstatic to announce the
release of secrets management, which eliminates the need to expose sensitive information in your
Sensu confguration.
When a Sensu component (e.g. check, handler, etc.) requires a secret (like a
username or password), Sensu will be able to fetch that information from one or more external secrets
providers (e.g. HashiCorp Vault) and provide it to the Sensu component via temporary environment
variables.
Secrets management allows you to move secrets out of your Sensu confguration, giving you
the ability to safely and confdently share your Sensu confgurations with your fellow Sensu users!
This
release also includes per-entity keepalive event handler confguration, a sought-after feature for users
who have migrated from Sensu 1.x to Sensu Go.

See the upgrade guide to upgrade Sensu to version 5.17.0.

NEW FEATURES:

Asset names may now include capital letters.

Running the sensuctl confgure command now resets the sensuctl cluster confguration.

When you use --trusted-ca-fle to confgure sensuctl, it now detects and saves the
absolute fle path in the cluster confguration.

(Commercial feature) When a silencing entry expires or is removed, it is also removed from the
silences view in the web UI.

Fixed a bug that prevented .tar assets from extracting if they contain hardlinked fles.

In the web UI, sorting an event list view no longer clears the selected flters.

(Commercial feature) Added HTTP API for secrets management, with a built-in Env secrets
provider and support for HashiCorp Vault secrets management. The secrets provider resource

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/web-ui/sign-in
http://localhost:1313/sensu-go/5.17/web-ui/sign-in
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/api/secrets

IMPROVEMENTS:

FIXES:

is implemented for checks, mutators, and handlers.

Added the keepalive-handlers agent confguration fag to specify the keepalive handlers to
use for an entity’s events.

(Commercial feature) Upgraded the size of the events auto-incremented ID in the PostgreSQL
store to a 64-bit variant, which allows you to store many more events and avoids exhausting
the sequence.

(Commercial feature) Initialization via sensu-backend init is now implemented for Docker.

(Commercial feature) UPN binding support has been re-introduced via the
default_upn_domain confguration attribute.

In the web UI, labels that contain URLs are now clickable links.

Added event.entity.name as a supported feld for the feldSelector query parameter.

In the web UI, users with implicit permissions to a namespace can now display resources within
that namespace.

Explicit access to namespaces can only be granted via cluster-wide RBAC resources.

You can now omit the namespace from an event in HTTP POST /events requests.

Added support for the --format fag in the sensuctl command list subcommand.

(Commercial feature) Fixed a bug where the event check state was not present when using the
PostgreSQL event store.

(Commercial feature) Agent TLS authentication does not require a license.

Fixed a memory leak in the entity cache.

Fixed a bug that prevented sensuctl entity delete from returning an error when
attempting to delete a non-existent entity.

In the web UI, fxed a bug that duplicated event history in the event timeline chart.

sensuctl command assets installed via Bonsai now use the sensuctl namespace.

Fixed a bug where failing check TTL events could occur if keepalive failures had already
occurred.

http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/reference/backend/#docker-initialization
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/web-ui/sign-in
http://localhost:1313/sensu-go/5.17/api/overview/#field-selector
http://localhost:1313/sensu-go/5.17/web-ui/sign-in
http://localhost:1313/sensu-go/5.17/reference/rbac/#cluster-wide-resource-types
http://localhost:1313/sensu-go/5.17/api/events/#events-post
http://localhost:1313/sensu-go/5.17/sensuctl/reference/#list-commands
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/commercial/
http://localhost:1313/sensu-go/5.17/web-ui/sign-in

5.16.1 release notes

December 18, 2019 — The latest release of Sensu Go, version 5.16.1, is now available for download.
This release fxes a performance regression that caused API latency to scale linearly as the number of
connected agents increased and includes a change to display the sensu_go_events_processed
Prometheus counter by default.

See the upgrade guide to upgrade Sensu to version 5.16.1.

IMPROVEMENTS

FIXES:

5.16.0 release notes

December 16, 2019 — The latest release of Sensu Go, version 5.16.0, is now available for download.
This is another important release, with many new features, improvements, and fxes.
We introduced an
initialization subcommand for new installations that allows you to specify an admin username and
password instead of using a pre-defned default.
We also added new backend fags to help you take
advantage of etcd auto-discovery features and agent fags you can use to defne a timeout period for
critical and warning keepalive events.

New web UI features include a switcher that makes it easier to switch between namespaces in the
dashboard, breadcrumbs on every page, OIDC authentication in the dashboard, a drawer that replaces
the app bar to make more room for content, and more.

We also fxed issues with sensuctl dump and sensuctl cluster health , installing sensuctl
commands via Bonsai, and missing namespaces in keepalive events and events created through the
agent socket interface.

See the upgrade guide to upgrade Sensu to version 5.16.0.

IMPORTANT:

The sensu_go_events_processed Prometheus counter now initializes with the success
label so the count is always displayed.

The performance regression introduced in 5.15.0 that caused API latency to scale linearly as
the number of connected agents increased is fxed.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

NEW FEATURES:

IMPROVEMENTS:

FIXES:

For Ubuntu/Debian and RHEL/CentOS installations, the backend is no longer seeded with a
default admin username and password.
Users will need to run ‘sensu-backend init’ on every new
installation and specify an admin username and password.

(Commercial feature) Users can now authenticate with OIDC in the dashboard.

(Commercial feature) Label selectors now match the event’s check and entity labels.

Added a new fag, --etcd-client-urls , which should be used with sensu-backend when it is
not operating as an etcd member.
The fag is also used by the new sensu-backend init

subcommand.

Added the ‘sensu-backend init’ subcommand.

Added the --etcd-discovery and --etcd-discovery-srv fags to sensu-backend, which
allow users to take advantage of the embedded etcd’s auto-discovery features.

Added --keepalive-critical-timeout to defne the time after which a critical keepalive
event should be created for an agent and --keepalive-warning-timeout , which is an alias
of --keepalive-timeout for backward compatibility.

(Commercial feature) The entity limit warning message is now displayed less aggressively and
the warning threshold is proportional to the entity limit.

A new switcher in the web UI makes it easier to switch namespaces in the dashboard.
Access
the new component from the drawer or with the shortcut ctrl+k.
For users who have many
namespaces, the switcher now includes fuzzy search and improved keyboard navigation.

In the web UI, replaced the app bar with an omnipresent drawer to increase the available
space for content. Each page also now includes breadcrumbs.

In the Sensu documentation, links now point to the version of the product being run instead of
the latest, which may be helpful when running an older version of Sensu.

sensuctl dump help now shows the correct default value for the format fag.

Installing sensuctl commands via Bonsai will now check for correct labels before checking if the
asset has 1 or more builds.

Listing assets with no results now returns an empty array.

Fixed a panic that could occur when creating resources in a namespace that does not exist.

http://localhost:1313/sensu-go/5.16/reference/backend/#initialization
http://localhost:1313/sensu-go/5.16/getting-started/enterprise/
http://localhost:1313/sensu-go/5.16/getting-started/enterprise/
http://localhost:1313/sensu-go/5.16/reference/backend/#initialization
http://localhost:1313/sensu-go/5.16/reference/backend/#datastore-and-cluster-configuration-flags
http://localhost:1313/sensu-go/5.16/reference/backend/#datastore-and-cluster-configuration-flags
http://localhost:1313/sensu-go/5.16/reference/agent/#keepalive-configuration-flags
http://localhost:1313/sensu-go/5.16/reference/agent/#keepalive-configuration-flags
http://localhost:1313/sensu-go/5.16/getting-started/enterprise/
http://localhost:1313/sensu-go/5.16/dashboard/overview
http://localhost:1313/sensu-go/5.16/dashboard/overview
http://localhost:1313/sensu-go/5.16/

5.15.0 release notes

November 19, 2019 — The latest release of Sensu Go, version 5.15.0, is now available for download.
This is a signifcant release for a number of reasons.
The changes to licensing make 100% of Sensu
Go’s commercial features available for free to all users, up to your frst 100 entities!
This release also
includes the long-awaited cluster federation features, supporting multi-cluster authentication, RBAC
policy replication, and a single pane of glass for your Sensu monitoring data!
We added support for API
keys, making it easy to integrate with the Sensu API (you no longer need to manage JWTs).
In addition,
the 5.15.0 release includes support for sensu-backend environment variables and bug fxes that
improve error logging for mutator execution and fap detection weighting for checks.

See the upgrade guide to upgrade Sensu to version 5.15.0.

IMPORTANT:
Sensu’s free entity limit is now 100 entities.
All commercial features are available for free
in the packaged Sensu Go distribution up to an entity limit of 100.
You will see a warning when you
approach the 100-entity limit (at 75%).

If your Sensu instance includes more than 100 entities, contact us to learn how to upgrade your
installation and increase your limit.
See the blog announcement for more information about our usage
policy.

NEW FEATURES:

Fixed an issue where keepalive events and events created through the agent’s socket interface
could be missing a namespace.

Fixed an issue that could cause ‘sensuctl cluster health’ to hang indefnitely.

(Commercial feature) The agent.yml.example fle shipped with Sensu Agent for Windows
packages now uses DOS-style line endings.

(Commercial feature) Added support for federation replicators and the federation cluster
registration API and the ability to view resources across clusters in the federation in the web UI.

(Commercial feature) Added MSI and NuGet builds for sensuctl. Also, MSI and NuGet
installations now add the bin directory to the system PATH on Windows.

(Commercial feature) Added HTTP DELETE access for the license management API.

Added the APIKey resource, with HTTP API support for POST, GET, and DELETE and
sensuctl commands to manage the APIKey resource.

Added support for using API keys for API authentication.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.15/getting-started/enterprise/
https://sensu.io/contact/
https://sensu.io/blog/one-year-of-sensu-go/
http://localhost:1313/sensu-go/5.16/getting-started/enterprise/
http://localhost:1313/sensu-go/5.15/getting-started/enterprise/
http://localhost:1313/sensu-go/5.15/api/federation/
http://localhost:1313/sensu-go/5.15/api/federation/
http://localhost:1313/sensu-go/5.14/dashboard/overview/
http://localhost:1313/sensu-go/5.15/getting-started/enterprise/
http://localhost:1313/sensu-go/5.15/sensuctl/reference/
http://localhost:1313/sensu-go/5.15/getting-started/enterprise/
http://localhost:1313/sensu-go/5.15/api/license/
http://localhost:1313/sensu-go/5.15/reference/apikeys/
http://localhost:1313/sensu-go/5.15/guides/use-apikey-feature/#sensuctl-management-commands
http://localhost:1313/sensu-go/5.15/api/overview/#authenticate-with-the-api-key-feature

SECURITY:

IMPROVEMENTS:

FIXES:

5.14.2 release notes

November 4, 2019 — The latest release of Sensu Go, version 5.14.2, is now available for download.
This release includes an etcd upgrade, fxes that improve stability and performance, and a Sensu Go
package for CentOS 8.

See the upgrade guide to upgrade Sensu to version 5.14.2.

IMPROVEMENTS:

Added support for sensuctl commands to install, execute, list, and delete commands from
Bonsai or a URL.

Added support for sensu-backend service environment variables.

Added support for timezones in check cron strings.

(Commercial feature) Removed support for UPN binding without a binding account or
anonymous binding, which allows Sensu to effectively refresh claims during access token
renewal.

You can now use colons and periods in all resource names (except users).

Added better error logging for mutator execution.

Fixed the order of fap detection weighting for checks.

Fixed the pprof server so it only binds to localhost.

Moved corev2.BonsaiAsset to bonsai.Asset and moved
corev2.OutdatedBonsaiAsset to bonsai.OutdatedAsset .

Upgraded etcd to 3.3.17.

Added build package for CentOS 8 (el/8).

Sensu Go now uses serializable event reads, which helps improve performance.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.15/sensuctl/sensuctl-bonsai#extend-sensuctl-with-commands
http://localhost:1313/sensu-go/5.15/reference/checks/#cron-scheduling
http://localhost:1313/sensu-go/5.15/reference/checks/#cron-scheduling
http://localhost:1313/sensu-go/5.15/reference/checks/#cron-scheduling
http://localhost:1313/sensu-go/5.15/getting-started/enterprise/

FIXES:

5.14.1 release notes

October 16, 2019 — The latest release of Sensu Go, version 5.14.1, is now available for download.
This release adds Prometheus gauges for check schedulers and fxes several bugs, including a bug
discovered in 5.14.0 that prevented OIDC authentication providers from properly loading on start-up.

See the upgrade guide to upgrade Sensu to version 5.14.1.

NEW FEATURES:

FIXES:

5.14.0 release notes

October 8, 2019 — The latest release of Sensu Go, version 5.14.0, is now available for download.
This
release includes feature additions like two new confguration options for backends using embedded
etcd and a new SemVer feld in entity resources.
In addition, this release includes enhanced TLS
authentication support and bug fxes that restore check execution after a network error and enable

As a result of upgrading etcd, TLS etcd clients that lose their connection will successfully
reconnect when using --no-embed-etcd .

Check TTL and keepalive switches are now correctly buried when associated events and
entities are deleted.
As a result, Sensu now uses far fewer leases for check TTLs and
keepalives, which improves stability for most deployments.

Corrected a minor UX issue in interactive flter commands in sensuctl.

Added Prometheus gauges for check schedulers.

(Commercial feature) Sensuctl will not incorrectly warn of entity limits for unlimited licenses.

(Commercial feature) oidc authentication providers will now properly load on start-up.

When opening a Bolt database that is already open, sensu-agent will not hang indefnitely.

Running sensuctl dump for multiple resource types with the output format as YAML will not
result in separators being printed to STDOUT instead of the specifed fle.

Fixed a crash in sensu-backend (panic: send on closed channel).

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.14/getting-started/enterprise/
http://localhost:1313/sensu-go/5.14/getting-started/enterprise/
http://localhost:1313/sensu-go/5.14/sensuctl/reference/#exporting-resources

round robin schedule recovery after quorum loss.

See the upgrade guide to upgrade Sensu to version 5.14.0.

NEW FEATURES:

IMPROVEMENTS:

FIXES:

The web UI now includes an error dialog option that allows users to wipe the application’s
persisted state (rather than having to manually wipe their local/session storage).
This can help in
the rare case that something in the persisted state is leading to an uncaught exception.

The web UI now respects the system preference for operating systems with support for
selecting a preferred light or dark theme.

sensuctl dump can now list the types of supported resources with sensuctl dump --
types .

The entity resource now includes the sensu_agent_version feld, which refects the Sensu
Semantic Versioning (SemVer) version of the agent entity.

There are two new advanced confguration options for sensu-backend using embedded etcd:
etcd-heartbeat-interval and etcd-election-timeout .

(Commercial feature) Added support for mutual TLS authentication between agents and
backends.

(Commercial feature) Added support for CRL URLs for mTLS authentication.

(Commercial feature) Support agent TLS authentication is usable with the sensu-backend.

In the web UI, feedback is directed to Discourse rather than the GitHub repository’s Issues
page to facilitate discussion about feature requests.

In the web UI, when a user lands on a page inside a namespace that no longer exists or they
do not have access to, the drawer opens to that namespace switcher to help clarify next steps.

Updated Go version from 1.12.3 to 1.13.1.

(Commercial feature) sensuctl on Windows can now create Postgres resources.

(Commercial feature) Fixed a bug that resulted in event metrics being ignored when using the
Postgres store.

Fixed a bug that caused checks to stop executing after a network error.

Fixed a bug that prevented sensuctl create with stdin from working.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.14/dashboard/overview/
http://localhost:1313/sensu-go/5.14/dashboard/overview/
http://localhost:1313/sensu-go/5.13/reference/entities/
http://localhost:1313/sensu-go/5.14/reference/backend/#advanced-configuration-options
http://localhost:1313/sensu-go/5.14/getting-started/enterprise/
http://localhost:1313/sensu-go/5.14/getting-started/enterprise/
http://localhost:1313/sensu-go/5.14/getting-started/enterprise/
http://localhost:1313/sensu-go/5.14/guides/securing-sensu#sensu-agent-tls-authentication
http://localhost:1313/sensu-go/5.14/dashboard/overview/
http://localhost:1313/sensu-go/5.14/getting-started/enterprise/
http://localhost:1313/sensu-go/5.14/getting-started/enterprise/

5.13.2 release notes

September 19, 2019 — The latest release of Sensu Go, version 5.13.2, is now available for download.
This is a stability release that fxes a bug for users who have the PostgreSQL event store enabled.

See the upgrade guide to upgrade Sensu to version 5.13.2.

FIXES:

5.13.1 release notes

September 10, 2019 — The latest release of Sensu Go, version 5.13.1, is now available for download.
This is a stability release with bug fxes for multi-build asset defnitions causing a panic when no
matching flters are found.

See the upgrade guide to upgrade Sensu to version 5.13.1.

Splayed proxy checks are executed every interval (instead of every interval + interval *
splay_coverage).

Proxy entity labels and annotations are now redacted in the web UI as expected.

Fixed a bug in the ring that prevented round robin schedules from recovering after quorum
loss.

Updated web UI so that unauthorized errors emitted while creating silences or resolving events
are caught and a notifcation is presented to communicate what occurred.

Web UI does not report internal errors when a user attempts to queue an ad hoc check for a
keepalive.

Fixed a bug in the web UI that may have prevented users with appropriate roles from resolving
events, queuing checks, and creating silenced entries.

Asset builds are not separated into several assets unless the the tabular format is used in
sensuctl asset list .

The ‘fag accessed but not defned’ error is corrected in sensuctl asset outdated .

Metrics handlers now correctly receive metric points when the postgresql event store is
enabled.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.14/dashboard/overview/
http://localhost:1313/sensu-go/5.14/dashboard/overview/
http://localhost:1313/sensu-go/5.14/dashboard/overview/

FIXES:

5.13.0 release notes

September 9, 2019 — The latest release of Sensu Go, version 5.13.0, is now available for download.
This is one of the most user-friendly releases yet!
Sensuctl now integrates with Bonsai, the Sensu asset
hub, making it easier than ever to fetch and use countless Sensu monitoring plugins and integrations.
Additionally, sensuctl now supports loading resource confguration fles (e.g. checks) from directories
and URLs.
But that’s not all!
Sensuctl now provides a subcommand for exporting its confguration and
API tokens to your shell environment.
Use sensuctl to provide cURL and custom scripts with fresh API
access information!

See the upgrade guide to upgrade Sensu to version 5.13.0.

NEW FEATURES:

FIXES:

5.12.0 release notes

Multi-build asset defnitions with no matching flters will no longer cause a panic.

Fixed the oidc authentication provider resource.

Sensuctl now integrates with Bonsai, the Sensu asset hub.
Run a single sensuctl command to
add an asset to your Sensu cluster (e.g. sensuctl asset add sensu/sensu-pagerduty-
handler:1.1.0).
Check to see which assets are outdated (new releases available) with the
outdated subcommand (e.g. sensuctl asset outdated).

Sensuctl now supports the env subcommand for exporting sensuctl confguration and API
tokens to your shell environment (e.g. eval $(sensuctl env)).

Sensuctl now supports loading multiple resource confguration fles (e.g. checks and handlers)
from directories!
Sensuctl can also load a fle using a URL (e.g. sensuctl create -r -f

./checks and sensuctl create -f https://my.blog.ca/sensu-go/check.yaml).

Sensuctl interactive check create and update modes now have none for the metric output
format as the frst highlighted option instead of nagios-perfdata .

Fixed a bug where silences would not expire on event resolution.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

August 26, 2019 — The latest release of Sensu Go, version 5.12.0, is now available for download.
There are some exciting feature additions in this release, including the ability to output resources to a
fle from sensuctl and more granular control of check and check hook execution with an agent allow list.
Additionally, this release includes the ability to delete assets and more stability fxes around watcher
functionality.

See the upgrade guide to upgrade Sensu to version 5.12.0.

IMPORTANT:

Due to changes in the release process, Sensu binary-only archives are now named following the
pattern sensu-go_5.12.0_$OS_$ARCH.tar.gz , where $OS is the operating system name and
$ARCH is the CPU architecture.
These archives include all fles in the top level directory.
See the

installation guide for the latest download links.

NEW FEATURES:

IMPROVEMENTS:

Operators can now authenticate to Sensu via OpenID Direct Connect (OIDC) using sensuctl.
See our authentication documentation for details.

Added sensu-agent and sensuctl binary builds for FreeBSD.

Added sensuctl dump command to output resources to a fle or STDOUT, making it easier to
back up your Sensu backends.

Agents can now be confgured with a list of executables that are allowed to run as check and
hook commands.
See the agent reference for more information.

Assets now support defning multiple builds, reducing the number of individual assets needed
to cover disparate platforms in your infrastructure.

(Commercial feature) Namespaces listed in both the web UI and sensuctl are now limited to the
namespace to which the user has access.

Hooks now support the use of assets.

The event.check.name feld has been added as a supported feld selector.

Both the API and sensuctl can now be used to delete assets.

The use of ProtoBuf serialization/deserialization over WebSocket can now be negotiated
between agent and backend.

Web UI performance has been improved for deployments with many events and entities.

The resource caches can now rebuild themselves in case of failures.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.2/installation/install-sensu/
http://localhost:1313/sensu-go/5.2/sensuctl/reference/#global-flags
http://localhost:1313/sensu-go/5.12/reference/agent/#allow-list
http://localhost:1313/sensu-go/5.9/getting-started/enterprise/

SECURITY:

FIXES:

KNOWN ISSUES:

5.11.1 release notes

July 18, 2019 — The latest release of Sensu Go, version 5.11.1, is now available for download.
This is
a stability release with bug fxes for UPN format binding token renewal and addition of agent
heartbeats and confgurable WebSocket connection negotiation.

Event and entity resources can now be created via the API without an explicit namespace.
The
system will refer to the namespace in the request URL.

Event and entity resources can now be created via the API using the POST verb.

To prevent writing sensitive data to logs, the backend no longer logs decoded check result and
keepalive payloads.

Tabular display of flters via sensuctl now displays && or || as appropriate for inclusive and
exclusive flters, respectively.

Requesting events from the GET /events/:entity API endpoint now returns events only for
the specifed entity.

Running sensuctl confg view without confguration no longer causes a crash.

Creating an entity via sensuctl with the --interactive fag now prompts for the entity name
when it is not provided on the command line.

Check hooks with stdin: true now receive actual event data on STDIN instead of an empty
event.

Some issues with check scheduling and updating have been fxed by refactoring the backend’s
watcher implementation.

Authentication via OIDC is not yet supported in the web UI.

Deleting an asset will not remove references to said asset.
It is the operator’s responsibility to
remove the asset from the runtime_assets feld of the check, hook, flter, mutator, or handler.

Deleting an asset will not remove the tarball or downloaded fles from disk.
It is the operator’s
responsibility to clear the asset cache if necessary.

See the upgrade guide to upgrade Sensu to version 5.11.1.

FIXES:

5.11.0 release notes

July 10, 2019 — The latest release of Sensu Go, version 5.11.0, is now available for download.
There
are some exciting feature additions in this release, including the ability to delete resources from
sensuctl and manage flter and mutator resources in the web UI.
Additionally, this release includes bug
fxes for proxy checks and enhanced performance tuning for the PostgreSQL event store.

See the upgrade guide to upgrade Sensu to version 5.11.0.

NEW FEATURES:

Fixed access token renewal when UPN format binding was enabled.

The agent now sends heartbeats to the backend to detect network failures and reconnect more
quickly.

The default handshake timeout for the WebSocket connection negotiation was lowered from 45
to 15 seconds and is now confgurable.

The Sensu web UI now includes a flters page that displays available event flters and flter
confguration.

(Commercial feature) Manage your Sensu event flters from your browser: Sensu’s web UI now
supports creating, editing, and deleting flters.

The Sensu web UI now includes a mutators page that displays available mutators and mutator
confguration.

(Commercial feature) Manage your Sensu mutators from your browser: Sensu’s web UI now
supports creating, editing, and deleting mutators.

Sensuctl now includes the sensuctl delete command, letting you use resource defnitions
to delete resources from Sensu in the same way as sensuctl create .
See the sensuctl
reference for more information.

Assets now include a headers attribute to include HTTP headers in requests to retrieve
assets, allowing you to access secured assets.
See the asset reference for examples.

Sensu agents now support the disable-assets confguration fag, allowing you to disable
asset retrieval for individual agents.
See the agent reference for examples.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.11/dashboard/overview/
http://localhost:1313/sensu-go/5.11/getting-started/enterprise/
http://localhost:1313/sensu-go/5.11/dashboard/overview/
http://localhost:1313/sensu-go/5.11/dashboard/overview/
http://localhost:1313/sensu-go/5.11/getting-started/enterprise/
http://localhost:1313/sensu-go/5.11/dashboard/overview/
http://localhost:1313/sensu-go/5.11/sensuctl/reference#deleting-resources
http://localhost:1313/sensu-go/5.11/sensuctl/reference#deleting-resources
http://localhost:1313/sensu-go/5.11/reference/assets#examples
http://localhost:1313/sensu-go/5.11/reference/agent#disable-assets

IMPROVEMENTS:

FIXES:

Sensu binary-only distributions are now available as zip fles.

(Commercial feature) The Active Directory authentication provider now supports the
default_upn_domain attribute, letting you appended a domain to a username when a domain

is not specifed during login.

(Commercial feature) The Active Directory authentication provider now supports the
include_nested_groups attribute, letting you search nested groups instead of just the top-

level groups of which a user is a member.

The sensuctl confg view command now returns the currently confgured username.
See the
sensuctl reference for examples.

The Sensu API now returns the 201 Created response code for POST and PUT requests
instead of 204 No Content .

The Sensu backend now provides advanced confguration options for buffer size and worker
count of keepalives, events, and pipelines.

Sensu Go now supports Debian 10.
For a complete list of supported platforms, see the platform
page.

The web UI now returns an error when attempting to create a duplicate check or handler.

Silenced entries are now retrieved from the cache when determining whether an event is
silenced.

The Sensu API now returns an error when trying to delete an entity that does not exist.

The agent WebSocket connection now performs basic authorization.

The events API now correctly applies the current timestamp by default, fxing a regression in
5.10.0.

Multiple nested set handlers are now fagged correctly, fxing an issue in which they were
fagged as deeply nested.

Round robin proxy checks now execute as expected in the event of updated entities.

The Sensu backend now avoids situations of high CPU usage in the event that watchers enter
a tight loop.

Due to incompatibility with the Go programming language, Sensu is incompatible with
CentOS/RHEL 5.
As a result, CentOS/RHEL 5 has been removed as a supported platform for all
versions of Sensu Go.

http://localhost:1313/sensu-go/5.11/installation/verify/
http://localhost:1313/sensu-go/5.11/getting-started/enterprise/
http://localhost:1313/sensu-go/5.11/installation/auth#active-directory-authentication
http://localhost:1313/sensu-go/5.11/getting-started/enterprise/
http://localhost:1313/sensu-go/5.11/installation/auth#active-directory-authentication
http://localhost:1313/sensu-go/5.11/sensuctl/reference#view-sensuctl-config
http://localhost:1313/sensu-go/5.11/api/overview/
http://localhost:1313/sensu-go/5.11/reference/backend#advanced-configuration-options
http://localhost:1313/sensu-go/5.11/installation/platforms/
http://localhost:1313/sensu-go/5.11/installation/platforms/
http://localhost:1313/sensu-go/5.11/installation/platforms/

5.10.2 release notes

June 27, 2019 — The latest release of Sensu Go, version 5.10.2, is now available for download.
This is
a stability release with a bug fx for expired licenses.

See the upgrade guide to upgrade Sensu to version 5.10.2.

FIXES:

5.10.1 release notes

June 25, 2019 — The latest release of Sensu Go, version 5.10.1, is now available for download.
This is
a stability release with key bug fxes for proxy checks and entity deletion.

See the upgrade guide to upgrade Sensu to version 5.10.1.

FIXES:

5.10.0 release notes

June 19, 2019 — The latest release of Sensu Go, version 5.10.0, is now available for download.
There
are some exciting feature additions in this release, including the ability to perform advanced fltering in
the web UI and use PostgreSQL as a scalable event store.
This release also includes key bug fxes,
most notably for high CPU usage.

See the upgrade guide to upgrade Sensu to version 5.10.0.

NEW FEATURES:

Sensu now handles expired licenses as expected.

The proxy_requests entity_attributes are now all considered when matching entities.

Events are now removed when their corresponding entity is deleted.

(Commercial feature) The Sensu web UI now includes fast, predictive fltering for viewing
checks, entities, events, handlers, and silences, including the ability to flter based on custom

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/getting-started/enterprise/

IMPROVEMENTS:

FIXES:

labels.
Select the flter bar and start building custom views using suggested attributes and
values.
For more information, see the web UI docs.

Free Sensu instances can now delete entities in the web UI entities page.
See the docs to get
started using the Sensu web UI.

(Commercial feature) Sensu now supports using an external PostgreSQL instance for event
storage in place of etcd.
PostgreSQL can handle signifcantly higher volumes of Sensu events,
letting you scale Sensu beyond etcd’s storage limits.
See the datastore reference for more
information.

Sensu now includes a cluster ID API endpoint and sensuctl cluster id command to return
the unique Sensu cluster ID.
See the cluster API docs for more information.

The sensuctl create command now supports specifying the namespace for a group of
resources at the time of creation, allowing you to replicate resources across namespaces
without manual editing.
See the sensuctl reference for more information and usage examples.

Sensu cluster roles can now include permissions to manage your Sensu license using the
license resource type.
See the RBAC reference to create a cluster role.

The web UI now displays up to 100,000 events and entities on the homepage.

Sensu now optimizes scheduling for proxy checks, solving an issue with high CPU usage when
evaluating proxy entity attributes.

The Sensu API now validates resource namespaces and types in request bodies to ensure
RBAC permissions are enforced.

Check state and total_state_change attributes now update as expected based on check
history.

Incident and entity links in the web UI homepage now navigate to the correct views.

The web UI now displays non-standard cron statements correctly (e.g. @weekly).

On sign-in, the web UI now ensures that users are directed to a valid namespace.

In the web UI, code block scrollbars now display only when necessary.

The web UI now displays the handler timeout attribute correctly.

When editing resources, the web UI now fetches the latest resource prior to editing.

The web UI now handles array values correctly when creating and editing resources.

http://localhost:1313/sensu-go/5.10/dashboard/filtering/
http://localhost:1313/sensu-go/5.10/dashboard/overview/
http://localhost:1313/sensu-go/latest/getting-started/enterprise/
http://localhost:1313/sensu-go/5.10/reference/datastore/
http://localhost:1313/sensu-go/5.10/api/cluster#the-clusterid-API-endpoint
http://localhost:1313/sensu-go/5.10/sensuctl/reference#creating-resources-across-namespaces
http://localhost:1313/sensu-go/5.10/reference/rbac/#assigning-group-permissions-across-all-namespaces

5.9.0 release notes

May 28, 2019 — The latest release of Sensu Go, version 5.9.0, is now available for download.
There
are some exciting feature additions in this release, including the ability to log raw events to a fle
(commercial feature) and view event handlers in the web UI.

See the upgrade guide to upgrade Sensu to version 5.9.0.
If you’re upgrading a Sensu cluster from
5.7.0 or earlier, see the instructions for upgrading a Sensu cluster from 5.7.0 or earlier to 5.8.0 or later.

NEW FEATURES:

IMPROVEMENTS:

FIXES:

The Sensu web UI now includes a handlers page that displays available event handlers and
handler confguration.
See the docs to get started using the Sensu web UI.

(Commercial feature) Manage your Sensu event handlers from your browser: Sensu’s web UI
now supports creating, editing, and deleting handlers.
See the docs to get started using the
Sensu web UI.

(Commercial feature) Sensu now supports event logging to a fle using the event-log-fle
and event-log-buffer-size confguration fags.
You can use this event log fle as an input
source for your favorite data lake solution.
See the backend reference for more information.

The Sensu web UI now includes simpler, more effcient fltering in place of fltering using Sensu
query expressions.

Sensu packages are now available for Ubuntu 19.04 (Disco Dingo). See the supported
platforms page for a complete list of Sensu’s supported platforms and the installation guide to
install Sensu packages for Ubuntu.

The occurrences and occurrences_watermark event attributes now increment as
expected, giving you useful information about recent events.
See the events reference for an in-
depth discussion of these attributes.

The /silenced/subscriptions/:subscription and /silenced/checks/:check API
endpoints now return silences by check or subscription.

Sensu now handles errors when seeding initial data, avoiding a panic state.

http://localhost:1313/sensu-go/5.9/installation/upgrade/
http://localhost:1313/sensu-go/5.9/installation/upgrade/#upgrading-sensu-clusters-from-5-7-0-or-earlier-to-5-8-0-or-later
http://localhost:1313/sensu-go/5.9/dashboard/overview/
http://localhost:1313/sensu-go/5.9/getting-started/enterprise/
http://localhost:1313/sensu-go/5.9/dashboard/overview/
http://localhost:1313/sensu-go/5.9/getting-started/enterprise/
http://localhost:1313/sensu-go/5.9/reference/backend#event-logging
http://localhost:1313/sensu-go/5.9/installation/platforms/
http://localhost:1313/sensu-go/5.9/installation/platforms/
http://localhost:1313/sensu-go/5.9/installation/install-sensu/
http://localhost:1313/sensu-go/5.9/reference/events#occurrences-and-occurrences-watermark

5.8.0 release notes

May 22, 2019 — The latest release of Sensu Go, version 5.8.0, is now available for download.
This is
mainly a stability release with bug fxes and performance improvements.
Additionally, we have added
support for confgurable etcd cipher suites.

See the upgrade guide to upgrade Sensu to version 5.8.0.

IMPORTANT:

IMPROVEMENTS:

FIXES:

To upgrade to Sensu Go 5.8.0, Sensu clusters with multiple backend nodes must be shut down
during the upgrade process.
See the upgrade guide for more information.

The sensuctl command line tool now supports the --chunk-size fag to help you handle
large datasets.
See the sensuctl reference for more information.

Sensu backends now support the etcd-cipher-suites confguration option, letting you
specify the cipher suites that can be used with etcd TLS confguration.
See the backend
reference for more information.

The Sensu API now includes the version API, returning version information for your Sensu
instance.
See the API docs for more information.

Tessen now collects the numbers of events processed and resources created, giving us better
insight into how we can improve Sensu.
As always, all Tessen transmissions are logged for
complete transparency.
See the Tessen reference for more information.

Sensu licenses now include the entity limit attached to your Sensu licensing package.
See the
license management docs to learn more about entity limits.

Sensu backends now perform better at scale using increased worker pool sizes for events and
keepalives.

The maximum size of the etcd database and etcd requests is now confgurable using the
etcd-quota-backend-bytes and etcd-max-request-bytes backend confguration options.

These are advanced confguration options requiring familiarly with etcd.
Use with caution.
See the
backend reference for more information.

Most Sensu resources now use ProtoBuf serialization in etcd.

Events produced by checks now execute the correct number of write operations to etcd.

http://localhost:1313/sensu-go/5.8/installation/upgrade#upgrading-sensu-clusters-from-5-7-0-or-earlier-to-5-8-0-or-later
http://localhost:1313/sensu-go/5.8/installation/upgrade#upgrading-sensu-clusters-from-5-7-0-or-earlier-to-5-8-0-or-later
http://localhost:1313/sensu-go/5.8/sensuctl/reference#handling-large-datasets
http://localhost:1313/sensu-go/5.8/reference/backend#etcd-cipher-suites
http://localhost:1313/sensu-go/5.8/reference/backend#etcd-cipher-suites
http://localhost:1313/sensu-go/5.8/api/version/
http://localhost:1313/sensu-go/5.8/reference/tessen/
http://localhost:1313/sensu-go/5.8/reference/license/
http://localhost:1313/sensu-go/5.8/reference/backend#advanced-configuration-options

KNOWN ISSUES:

5.7.0 release notes

May 9, 2019 — The latest release of Sensu Go, version 5.7.0, is now available for download.
This is
mainly a stability release with bug fxes.
Additionally, we have added support for Windows packages
and updated our usage policy.

See the upgrade guide to upgrade Sensu to version 5.7.0.

IMPROVEMENTS:

FIXES:

5.6.0 release notes

April 30, 2019 — The latest release of Sensu Go, version 5.6.0, is now available for download.
We
have added some exciting new features in this release, including API fltering and the ability to create
and manage checks through the web UI with the presence of a valid license key.

See the upgrade guide to upgrade Sensu to version 5.6.0.

NEW FEATURES:

API pagination tokens for the users and namespaces APIs now work as expected.

Keepalive events for deleted and deregistered entities are now cleaned up as expected.

Auth tokens may not be purged from etcd, resulting in a possible impact to performance.

The Sensu agent for Windows is now available as an MSI package, making it easier to install
and operate.
See the installation guide and the agent reference to get started.

Sensu now enforces resource separation between namespaces sharing a similar prefx.

The sensuctl cluster commands now output correctly in JSON and wrapped JSON
formats.

The API now returns an error message if label and feld selectors are used without a license.

https://discourse.sensu.io/t/introducing-usage-limits-in-the-sensu-go-free-tier/1156/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.7/installation/install-sensu#windows-agent
http://localhost:1313/sensu-go/5.7/reference/agent#operation
http://localhost:1313/sensu-go/5.7/api/overview#filtering

IMPROVEMENTS:

FIXES:

5.5.1 release notes

April 17, 2019 — The latest release of Sensu Go, version 5.5.1, is now available for download.
This is a
stability release with key bug fxes, including addressing an issue with backend CPU utilization.
Additionally, we have added support for honoring the source attribute for events received via agent
socket.

See the upgrade guide to upgrade Sensu to version 5.5.1.

IMPROVEMENTS:

(Commercial feature) Manage your Sensu checks from your browser: Sensu’s web user
interface now supports creating, editing, and deleting checks.
See the docs to get started using
the Sensu web UI.

(Commercial feature) The Sensu web UI now includes an option to delete entities.

(Commercial feature) Sensu now supports resource fltering in the Sensu API and sensuctl
command line tool.
Filter events using custom labels and resource attributes, such as event
status and check subscriptions.
See the API docs and sensuctl reference for usage examples.

(Commercial feature) Sensu’s LDAP and Active Directory integrations now support mutual
authentication using the trusted_ca_fle , client_cert_fle , and client_key_fle
attributes.
See the guide to confguring an authentication provider for more information.

(Commercial feature) Sensu’s LDAP and Active Directory integrations now support connecting
to an authentication provider using anonymous binding.
See the LDAP and Active Directory
binding confguration docs to learn more.

The health API response now includes the cluster ID.

The sensuctl cluster health and sensuctl cluster member-list commands now
include the cluster ID in tabular format.

You can now confgure labels and annotations for Sensu agents using command line fags.
For
example: sensu-agent start --label example_key="example value" .
See the agent
reference for more examples.

The Sensu web UI now displays the correct checkbox state when no resources are present.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.6/getting-started/enterprise/
http://localhost:1313/sensu-go/5.6/dashboard/overview/
http://localhost:1313/sensu-go/5.6/getting-started/enterprise/
http://localhost:1313/sensu-go/5.6/getting-started/enterprise/
http://localhost:1313/sensu-go/5.6/api/overview#filtering
http://localhost:1313/sensu-go/5.6/sensuctl/reference#filtering
http://localhost:1313/sensu-go/5.6/getting-started/enterprise/
http://localhost:1313/sensu-go/5.6/installation/auth/
http://localhost:1313/sensu-go/5.6/getting-started/enterprise/
http://localhost:1313/sensu-go/5.6/installation/auth/#binding-attributes
http://localhost:1313/sensu-go/5.6/installation/auth/#active-directory-binding-attributes
http://localhost:1313/sensu-go/5.6/api/health/
http://localhost:1313/sensu-go/5.6/reference/agent#general-configuration-flags
http://localhost:1313/sensu-go/5.6/reference/agent#general-configuration-flags

FIXES:

5.5.0 release notes

April 4, 2019 — The latest release of Sensu Go, version 5.5.0, is now available for download.
This
release has some key bug fxes and additions, including the introduction of Tessen into Sensu Go.
For
more information, read Sean Porter’s blog post on Tessen.

See the upgrade guide to upgrade Sensu to version 5.5.0.

NEW FEATURES:

IMPROVEMENTS:

FIXES:

5.4.0 release notes

March 27, 2019 — The latest release of Sensu Go, version 5.4.0, is now available for download.
This

Sensu agents now support annotations (non-identifying metadata) that help people or external
tools interacting with Sensu.
See the agent reference to add annotations in the agent
confguration fle.

The agent socket event format now supports the source attribute to create a proxy entity.

Sensu 5.5.1 is built with Go version 1.12.3.

Backends now reinstate etcd watchers in the event of a watcher failure, fxing an issue causing
high CPU usage in some components.

Tessen, the Sensu call-home service, is now enabled by default in Sensu backends.
See the
Tessen docs to learn about the data that Tessen collects.

Sensu now includes more verbose check logging to indicate when a proxy request matches an
entity according to its entity attributes.

The Sensu web UI now displays silences created by LDAP users.

The web UI now uses a secondary text color for quick-navigation buttons.

https://sensu.io/blog/announcing-tessen-the-sensu-call-home-service/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.5/reference/agent#general-configuration-flags
http://localhost:1313/sensu-go/5.5/reference/agent#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets
http://localhost:1313/sensu-go/5.5/reference/tessen/

release has some very exciting feature additions, including the introduction of our new homepage.
It
also includes support for API pagination to handle large datasets more effciently and agent buffering
for robustness in lower-connectivity situations, along with key bug fxes.

See the upgrade guide to upgrade Sensu to version 5.4.0.

NEW FEATURES:

IMPROVEMENTS:

FIXES:

The Sensu dashboard now includes a homepage designed to highlight the most important
monitoring data, giving you instant insight into the state of your infrastructure.
See the web UI
docs for a preview.

The Sensu API now supports pagination using the limit and continue query parameters,
letting you limit your API responses to a maximum number of objects and making it easier to
handle large datasets.
See the API overview for more information.

Sensu now surfaces internal metrics using the metrics API.
See the metrics API reference for
more information.

Sensu now lets you specify a separate TLS certifcate and key to secure the dashboard.
See the
backend reference to confgure the dashboard-cert-fle and dashboard-key-fle fags,
and check out the guide to securing Sensu for the complete guide to making your Sensu
instance production-ready.

The Sensu agent events API now queues events before sending them to the backend, making
the agent events API more robust and preventing data loss in the event of a loss of connection
with the backend or agent shutdown.
See the agent reference for more information.

The backend now processes events without persisting metrics to etcd.

The events API POST and PUT endpoints now add the current timestamp to new events by
default.

The users API now returns a 404 response code if a username cannot be found.

The sensuctl command line tool now correctly accepts global fags when passed after a
subcommand fag (e.g. --format yaml --namespace development).

The sensuctl handler delete and sensuctl flter delete commands now correctly
delete resources from the currently confgured namespace.

The agent now terminates consistently on SIGTERM and SIGINT.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.4/dashboard/overview/
http://localhost:1313/sensu-go/5.4/dashboard/overview/
http://localhost:1313/sensu-go/5.4/api/overview#pagination
http://localhost:1313/sensu-go/5.4/api/metrics/
http://localhost:1313/sensu-go/5.4/reference/backend#dashboard-configuration-flags
http://localhost:1313/sensu-go/5.4/guides/securing-sensu/
http://localhost:1313/sensu-go/5.4/reference/agent#events-post

5.3.0 release notes

March 11, 2019 — The latest release of Sensu Go, version 5.3.0, is now available for download.
This
release has some very exciting feature additions and key bug fxes.
Active Directory can be confgured
as an authentication provider (commercial feature).
Additionally, round robin scheduling has been fully
re-implemented and is available for use.

See the upgrade guide to upgrade Sensu to version 5.3.0.

NEW FEATURES:

IMPROVEMENTS:

In the event of a loss of connection with the backend, the agent now attempts to reconnect to
any backends specifed in its confguration.

The dashboard now handles cases in which the creator of a silence is inaccessible.

The dashboard event details page now displays “-” in the command feld if no command is
associated with the event.

Round robin check scheduling lets you distribute check executions evenly over a group of
Sensu agents.
To enable round robin scheduling, set the round_robin check attribute to
true .
See the check reference for more information.

Sensu now provides commercial support for using Microsoft Active Directory as an external
authentication provider.
Read the authentication guide to confgure Active Directory, and check
out the getting started guide for more information about commercial features.

The dashboard now features offine state detection and displays an alert banner if the
dashboard loses connection to the backend.

The agent socket event format now supports the handlers attribute, giving you the ability to
send socket events to a Sensu pipeline.
See the agent reference to learn more about creating
and handling monitoring events using the agent socket.

Assets now feature improved download performance using buffered I/O.

The sensuctl CLI now uses a 15-second timeout period when connecting to the Sensu
backend.

The dashboard now includes expandable confguration details sections on the check and entity
pages.
You can now use the dashboard to review check details like command, subscriptions,
and scheduling as well as entity details like platform, IP address, and hostname.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.3/reference/checks#spec-attributes
http://localhost:1313/sensu-go/5.3/getting-started/enterprise/
http://localhost:1313/sensu-go/5.3/installation/auth/
http://localhost:1313/sensu-go/5.3/getting-started/enterprise/
http://localhost:1313/sensu-go/5.3/reference/agent#creating-monitoring-events-using-the-agent-tcp-and-udp-sockets

SECURITY:

FIXES:

5.2.1 release notes

February 11, 2019 — The latest release of Sensu Go, version 5.2.1, is now available for download.
This is a stability release with a key bug fx for proxy check functionality.

See the upgrade guide to upgrade Sensu to version 5.2.1.

FIXES:

Sensu Go 5.3.0 fxes all known TLS vulnerabilities affecting the backend, including increasing
the minimum supported TLS version to 1.2 and removing all ciphers except those with perfect
forward secrecy.

Sensu now enforces uniform TLS confguration for all three backend components: apid ,
agentd , and dashboardd .

The backend no longer requires the trusted-ca-fle fag when using TLS.

The backend no longer loads server TLS confguration for the HTTP client.

Sensu can now download assets with download times of more than 30 seconds without timing
out.

The agent now communicates entity subscriptions to the backend in the correct format.

Sensu no longer includes the edition confguration attribute or header.

DNS resolution in Alpine Linux containers now uses the built-in Go resolver instead of the glibc
resolver.

The sensuctl user list command can now output yaml and wrapped-json formats
when used with the --format fag.

The dashboard check details page now displays long commands correctly.

The dashboard check details page now displays the timeout attribute correctly.

Sensu agents now execute checks for proxy entities at the expected interval.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

5.2.0 release notes

February 7, 2019 — The latest release of Sensu Go, version 5.2.0, is now available for download.
This
release has a ton of exciting content, including the availability of our frst enterprise-only features.
For
more details on these features, see our blog post.
Release 5.2.0 also has some key improvements and
fxes: we added support for self-signed CA certifcates for sensuctl, check output truncation, and the
ability to manage silencing from the event details page in our web UI, to name a few.

See the upgrade guide to upgrade Sensu to version 5.2.0.

IMPORTANT:

NEW FEATURES:

IMPROVEMENTS:

Due to changes in the release process, Sensu binary-only archives are now named following
the pattern sensu-enterprise-go_5.2.0_$OS_$ARCH.tar.gz , where $OS is the operating
system name and $ARCH is the CPU architecture.
These archives include all fles in the top-
level directory.
See the installation guide for the latest download links.

Our frst enterprise-only features for Sensu Go: LDAP authentication, the Sensu ServiceNow
handler, and the Sensu JIRA handler.
See the getting started guide.

Sensu now provides the option to limit check output size or to drop check outputs following
metric extraction.
See the checks reference for more information.

Sensu now includes support for Debian 8 and 9.
See the installation guide to install Sensu for
Debian.

Sensu’s binary-only distribution for Linux is now available for arm64 , armv5 , armv6 ,
armv7 , and 386 in addition to amd64 .
See the installation guide for download links.

The Sensu dashboard now provides the ability to silence and unsilence events from the Events
page.

The Sensu dashboard Entity page now displays the platform version and deregistration
confguration.

Sensuctl now supports TLS confguration options, allowing you to use a self-signed certifcate
without adding it to the operating system’s CA store, either by explicitly trusting the signer or by
disabling TLS hostname verifcation.
See the sensuctl reference for more information.

sensuctl now provides action-specifc confrmation messages, like Created , Deleted , and
Updated .

https://sensu.io/blog/enterprise-features-in-sensu-go/
http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.2/installation/install-sensu/
http://localhost:1313/sensu-go/5.2/installation/auth/
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler/
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler/
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler/
http://localhost:1313/sensu-go/5.2/getting-started/enterprise/
https://docs.sensu.io/sensu-go/5.2/reference/checks/#check-output-truncation-attributes
http://localhost:1313/sensu-go/5.2/installation/install-sensu/
http://localhost:1313/sensu-go/5.2/installation/install-sensu/
http://localhost:1313/sensu-go/5.2/sensuctl/reference/#global-flags

FIXES:

5.1.1 release notes

January 24, 2019 — The latest patch release of Sensu Go, version 5.1.1, is now available for
download.
This release includes some key fxes and improvements, including refactored keepalive
functionality with increased reliability.
Additionally, based on community feedback, we have added
support for the Sensu agent and sensuctl for 32-bit Windows systems.

See the upgrade guide to upgrade Sensu to version 5.1.1.

NEW FEATURES:

IMPROVEMENTS:

SECURITY:

Check TTL failure events now persist through cluster member failures and cluster restarts.

The Sensu backend now correctly handles errors for missing keepalive events.

Token-substituted values are now omitted from event data to protect sensitive information.

Sensu now correctly processes keepalive and check TTL states after entity deletion.

Sensuctl can now run sensuctl version without being confgured.

When disabling users, sensuctl now provides the correct prompt for the action.

Sensu now includes a sensuctl command and API endpoint to test user credentials.
See the
access control reference and API docs for more information.

The Sensu agent and sensuctl tool are now available for 32-bit Windows.
See the installation
guide for instructions.

Keepalive events now include an output attribute specifying the entity name and time last sent.

The Sensu backend includes refactored authentication and licensing to support future
enterprise features.

Sensu 5.1.1 is built with Go version 1.11.5.
Go 1.11.5 addresses a security vulnerability that
affects TLS handshakes and JWT tokens.
See the CVE for more information.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.1/reference/rbac#managing-users
http://localhost:1313/sensu-go/5.1/api/auth/
http://localhost:1313/sensu-go/5.1/installation/install-sensu/
http://localhost:1313/sensu-go/5.1/installation/install-sensu/
https://nvd.nist.gov/vuln/detail/CVE-2019-6486/

FIXES:

5.1.0 release notes

December 19, 2018 — The latest release of Sensu Go, version 5.1.0, is now available for download.
This release includes an important change to the Sensu backend state directory as well as support for
Ubuntu 14.04 and some key bug fxes.

See the upgrade guide to upgrade Sensu to version 5.1.0.

IMPORTANT:

NEW FEATURES:

Keepalive events now continue to execute after a Sensu cluster restarts.

When requested, on-demand check executions now correctly retrieve asset dependencies.

Checks now maintain a consistent execution schedule after updates to the check defnition.

Proxy check request errors now include the check name and namespace.

When encountering an invalid line during metric extraction, Sensu now logs an error and
continues extraction.

Sensuctl now returns an error when attempting to delete a non-existent entity.

Sensuctl now removes the temporary fle it creates when executing the sensuctl edit
command.

The Sensu dashboard now recovers from errors correctly when shutting down.

The Sensu dashboard includes better visibility for buttons and menus in the dark theme.

NOTE: This applies only to Sensu backend binaries downloaded from s3-us-west-
2.amazonaws.com/sensu.io/sensu-go , not to Sensu RPM or DEB packages.

For Sensu backend binaries, the default state-dir is now /var/lib/sensu/sensu-
backend instead of /var/lib/sensu .
To upgrade your Sensu backend binary to 5.1.0, make
sure your /etc/sensu/backend.yml confguration fle specifes a state-dir .
See the
upgrade guide for more information.

Sensu agents now include trusted-ca-fle and insecure-skip-tls-verify confguration
fags, giving you more fexibility with certifcates when connecting agents to the backend over

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/
http://localhost:1313/sensu-go/5.1/installation/upgrade#upgrading-sensu-backend-binaries-to-5-1-0
http://localhost:1313/sensu-go/5.1/reference/agent/

IMPROVEMENTS:

FIXES:

5.0.1 release notes

December 12, 2018 — Sensu Go 5.0.1 includes our top bug fxes following last week’s general
availability release.

See the upgrade guide to upgrade Sensu to version 5.0.1.

FIXED:

TLS.

Sensu now includes support for Ubuntu 14.04.

The Sensu backend now successfully connects to an external etcd cluster.

SysVinit scripts for the Sensu agent and backend now include correct run and log paths.

Once created, keepalive alerts and check TTL failure events now continue to occur until a
successful event is observed.

When querying for an empty list of assets, sensuctl and the Sensu API now return an empty
array instead of null.

The sensuctl create command now successfully creates hooks when provided with the
correct defnition.

The Sensu dashboard now renders status icons correctly in Firefox.

The Sensu backend can now successfully connect to an external etcd cluster.

The Sensu dashboard now sorts silences in ascending order, correctly displays status values,
and reduces shuffing in the event list.

Sensu agents on Windows now execute command arguments correctly.

Sensu agents now correctly include environment variables when executing checks.

Command arguments are no longer escaped on Windows.

Sensu backend environments now include handler and mutator execution requests.

http://localhost:1313/sensu-go/latest/operations/maintain-sensu/upgrade/

5.0.0 release notes

December 5, 2018 — We’re excited to announce the general availability release of Sensu Go!
Sensu
Go is the fexible monitoring event pipeline written in Go and designed for container-based and hybrid-
cloud infrastructures.
Check out the Sensu blog for more information about Sensu Go and version 5.0.

For a complete list of changes from Beta 8-1, see the Sensu Go changelog.
This page will be the offcial
home for the Sensu Go changelog and release notes.

To get started with Sensu Go:

Download the sandbox.

Install Sensu Go.

Get started monitoring server resources.

https://sensu.io/blog/sensu-go-is-here/
https://www.github.com/sensu/sensu-go/blob/master/CHANGELOG.md#500---2018-11-30
https://www.github.com/sensu/sandbox/tree/master/sensu-go/core/
http://localhost:1313/sensu-go/5.0/installation/install-sensu/
http://localhost:1313/sensu-go/5.0/guides/monitor-server-resources/

Get started with Sensu

Sensu Go is the fexible monitoring event pipeline designed for container-based and multi-cloud
infrastructures.

Sensu is available as packages, Docker images, and binary-only distributions.
You can install the
commercial distribution of Sensu Go or build Sensu from source.

Learn Sensu

We recommend these resources for learning more about Sensu:

Install the commercial distribution of Sensu Go

Sensu’s supported platforms include CentOS/RHEL, Debian, Ubuntu, and Windows.

Learn how the Sensu pipeline works in your browser with an interactive tutorial

Download the sandbox and create a monitoring event pipeline in your local environment

See a live demo of the Sensu web UI

Sign up for our step-by-step Learn Sensu email course

Join the Sensu Community Forum on Discourse

Install Sensu Go and get started for free

Learn about Sensu’s commercial features — all commercial features are available for free in
the packaged Sensu Go distribution up to an entity limit of 100

Discover Sensu assets on Bonsai, the Sensu asset hub

Find the Sensu architecture that best meets your needs

Migrate from Sensu Core to Sensu Go

http://localhost:1313/sensu-go/5.20/learn/learn-in-15/
https://sensu.io/learn
https://discourse.sensu.io/
https://bonsai.sensu.io/

Explore monitoring at scale with Sensu Go

Sensu offers support packages for Sensu Go as well as commercial licenses designed for monitoring
at scale.

Build Sensu from source (OSS)

Sensu Go’s core is open source software, freely available under an MIT License.

Contact the sales team for a personalized demo and free trial of commercial features at scale

Activate your Sensu commercial license

Get the Sensu Go binary distribution for your platform

Visit Sensu Go on GitHub

Compare OSS and commercial features

Build from source

https://sensu.io/contact?subject=contact-sales
https://github.com/sensu/sensu-go/
https://sensu.io/features/compare
https://github.com/sensu/sensu-go/blob/master/README.md#building-from-source

Supported platforms and distributions

Sensu is available as packages, Docker images, and binary-only distributions.
We recommend installing
Sensu with one of our supported packages, Docker images, or confguration management integrations.
Sensu downloads are provided under the Sensu commercial license.

Supported packages

Supported packages are available through sensu/stable on packagecloud and the downloads page.

Sensu backend

Platform and
Version

amd64

CentOS/RHEL 6, 7, 8

Debian 8, 9, 10

Ubuntu 14.04

Ubuntu 16.04

Ubuntu 18.04, 18.10

Ubuntu 19.04, 19.10

Ubuntu 20.04

Sensu agent

Platform and
Version

amd64 386

https://sensu.io/sensu-license/
https://packagecloud.io/sensu/stable/
https://sensu.io/downloads/

CentOS/RHEL 6, 7, 8

Debian 8, 9, 10

Ubuntu 14.04

Ubuntu 16.04

Ubuntu 18.04, 18.10

Ubuntu 19.04, 19.10

Ubuntu 20.04

Windows 7 and later

Windows Server
2008 R2 and later

Sensuctl command line tool

Platform and
Version

amd64 386

CentOS/RHEL 6, 7, 8

Debian 8, 9, 10

Ubuntu 14.04

Ubuntu 16.04

Ubuntu 18.04, 18.10

Ubuntu 19.04, 19.10

Ubuntu 20.04

Windows 7 and later

Windows Server
2008 R2 and later

Docker images

Docker images that contain the Sensu backend and Sensu agent are available for Linux-based
containers.

Image Name Base

sensu/sensu Alpine Linux

sensu/sensu-rhel Red Hat Enterprise Linux

Binary-only distributions

Sensu binary-only distributions that contain the Sensu backend, agent, and sensuctl tool are available
in .zip and .tar.gz formats.

Platform Architectures

Linux 386 amd64 arm64 armv5 armv6 armv7
MIPS MIPS LE MIPS 64 MIPS 64 LE

Windows 386 amd64

macOS amd64

FreeBSD 386 amd64

Solaris amd64

Linux

Sensu binary-only distributions for Linux are available for these architectures and formats:

Architecture Formats Architecture Formats

https://hub.docker.com/r/sensu/sensu/
https://hub.docker.com/r/sensu/sensu-rhel/

386 .tar.gz | .zip MIPS hard foat .tar.gz | .zip

amd64 .tar.gz | .zip MIPS soft foat .tar.gz | .zip

arm64 .tar.gz | .zip MIPS LE hard foat .tar.gz | .zip

armv5 (agent and
CLI)

.tar.gz | .zip MIPS LE soft foat .tar.gz | .zip

armv6 (agent and
CLI)

.tar.gz | .zip MIPS 64 hard foat .tar.gz | .zip

armv7 (agent and
CLI)

.tar.gz | .zip MIPS 64 soft foat .tar.gz | .zip

MIPS 64 LE hard

foat

.tar.gz | .zip MIPS 64 LE soft foat .tar.gz | .zip

For binary distributions, we support the following Linux kernels:

For example, to download Sensu for Linux amd64 in tar.gz format:

Generate a SHA-256 checksum for the downloaded artifact:

NOTE: 32-bit systems cannot run the Sensu backend reliably, so armv5 , armv6 , and armv7
packages include the agent and CLI only.
In addition, all MIPS packages include only the agent
and CLI.

3.1.x and later for armv5

4.8 and later for MIPS 64 LE hard foat and MIPS 64 LE soft foat

2.6.23 and later for all other architectures

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_linux_amd64.tar.gz

sha256sum sensu-go_5.20.2_linux_amd64.tar.gz

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_386.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_arm64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_arm64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mipsle-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mipsle-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_armv5.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_armv5.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mipsle-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mipsle-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_armv6.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_armv6.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips64-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips64-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_armv7.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_armv7.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips64-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips64-softfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips64le-hardfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips64le-hardfloat.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips64le-softfloat.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_linux_mips64le-softfloat.zip

The result should match the checksum for your platform:

Windows

Sensu binary-only distributions for Windows are available for these architectures and formats:

Architecture Formats

amd64 .tar.gz | .zip

386 .tar.gz | .zip

We support Windows 7 and later and Windows Server 2008R2 and later for binary distributions.

For example, to download Sensu for Windows amd64 in zip format:

Generate a SHA-256 checksum for the downloaded artifact:

The result should match (with the exception of capitalization) the checksum for your platform:

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_checksums.txt && cat sensu-go_5.20.2_checksums.txt

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_windows_amd64.zip -OutFile "$env:userprofle\sensu-

go_5.20.2_windows_amd64.zip"

Get-FileHash "$env:userprofle\sensu-go_5.20.2_windows_amd64.zip" -Algorithm SHA256 |

Format-List

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_checksums.txt -OutFile "$env:userprofle\sensu-go_5.20.2_checksums.txt"

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_windows_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_windows_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_windows_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_windows_386.zip

macOS

Sensu binary-only distributions for macOS are available for these architectures and formats:

Architecture Formats

amd64 .tar.gz | .zip

We support macOS 10.11 and later for binary distributions.

For example, to download Sensu for macOS amd64 in tar.gz format:

Generate a SHA-256 checksum for the downloaded artifact:

The result should match the checksum for your platform:

Extract the archive:

Get-Content "$env:userprofle\sensu-go_5.20.2_checksums.txt" | Select-String -Pattern

windows_amd64

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_darwin_amd64.tar.gz

shasum -a 256 sensu-go_5.20.2_darwin_amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_checksums.txt && cat sensu-go_5.20.2_checksums.txt

tar -xvf sensu-go_5.20.2_darwin_amd64.tar.gz

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_darwin_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_darwin_amd64.zip

Copy the executable into your PATH:

FreeBSD

Sensu binary-only distributions for FreeBSD are available for these architectures and formats:

Architecture Formats

amd64 .tar.gz | .zip

386 .tar.gz | .zip

We support FreeBSD 11.2 and later for binary distributions.

For example, to download Sensu for FreeBSD amd64 in tar.gz format:

Generate a SHA-256 checksum for the downloaded artifact:

The result should match the checksum for your platform:

Solaris

sudo cp sensuctl /usr/local/bin/

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_freebsd_amd64.tar.gz

sha256sum sensu-go_5.20.2_freebsd_amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_checksums.txt && cat sensu-go_5.20.2_checksums.txt

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_freebsd_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_freebsd_amd64.zip
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_freebsd_386.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_freebsd_386.zip

Sensu binary-only distributions for Solaris are available for these architectures and formats:

Architecture Formats

amd64 .tar.gz | .zip

We support Solaris 11 and later (not SPARC) for binary distributions.

For example, to download Sensu for Solaris amd64 in tar.gz format:

Generate a SHA-256 checksum for the downloaded artifact.

The result should match the checksum for your platform.

The Sensu Push utility allows you to execute Sensu checks on legacy systems and other platforms
that cannot run the Sensu agent, such as AIX and SPARC Solaris.

You can also use cron to run Sensu checks locally on these systems and forward the results to an
upstream Sensu backend or agent via the Sensu API.

Build from source

Sensu Go’s core is open source software, freely available under an MIT License.
Sensu Go instances
built from source do not include commercial features such as the web UI homepage.
See the feature
comparison matrix to learn more.
To build Sensu Go from source, see the contributing guide on GitHub.

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_solaris_amd64.tar.gz

sha256sum sensu-go_5.20.2_solaris_amd64.tar.gz

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_checksums.txt && cat sensu-go_5.20.2_checksums.txt

https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_solaris_amd64.tar.gz
https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-go_5.20.2_solaris_amd64.zip
https://github.com/sensu/sensu-push
https://sensu.io/enterprise/
https://sensu.io/enterprise/
https://github.com/sensu/sensu-go/blob/master/CONTRIBUTING.md

Get started with commercial features

Sensu Go offers commercial features designed for monitoring at scale.
All commercial features are
available in the offcial Sensu Go distribution, and you can use them for free up to an entity limit of 100.

If you have more than 100 entities, contact the Sensu sales team for a free trial.

Commercial features in Sensu Go
Protect your sensitive information with secrets management.
Avoid exposing usernames,
passwords, and access keys in your Sensu confguration by integrating with HashiCorp Vault
or using Sensu’s built-in environment variable secrets provider.

Manage your monitoring resources across multiple data centers, cloud regions, or
providers and mirror changes to follower clusters with federation.
Federation affords visibility
into the health of your infrastructure and services across multiple distinct Sensu instances
within a single web UI.

Use mutual transport layer security (mTLS) authentication to provide two-way verifcation
of your Sensu agents and backend connections.

Manage resources from your browser: Create, edit, and delete checks, handlers, mutators,
and flters using the Sensu web UI, and access the Sensu web UI homepage.

Control permissions with Sensu role-based access control (RBAC), with the option of
using Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or OpenID Connect
1.0 protocol (OIDC) for authentication.

Use powerful fltering capabilities designed for large installations. With label and feld
selectors, you can flter Sensu API responses, sensuctl outputs, and Sensu web UI views using
custom labels and a wider range of resource attributes.

Log event data to a fle you can use as an input to your favorite data lake solution.

Connect your monitoring event pipelines to industry-standard tools like ServiceNow and
Jira with enterprise-tier assets.

Achieve enterprise-scale event handling for your Sensu instance with a PostgreSQL event
store.
Access the PostgreSQL event datastore with the same Sensu web UI, API, and sensuctl
processes as etcd-stored events.

Get enterprise-class support: Rest assured that with Sensu support, help is available if you

https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/contact?subject=contact-sales/
https://bonsai.sensu.io/assets?tiers%5B%5D=4/
https://sensu.io/support/

Review a complete comparison of OSS and commercial features.

Contact us for a free trial

Sensu’s commercial features are free for your frst 100 entities.
If your Sensu installation includes more
than 100 entities, contact the Sensu sales team for a free trial of commercial features at scale in Sensu
Go.

Manage your Sensu account and contact support through account.sensu.io.

Get started with commercial features in Sensu Go

If you haven’t already, install the Sensu Go backend, agent, and sensuctl tool and confgure sensuctl.

You will need a commercial license if your Sensu installation includes more than 100 entities.
To
download your commercial license fle:

1. Log in to your Sensu account at account.sensu.io.
2. Click Download license.

need it.
Our expert in-house team offers best-in-class support to get you up and running
smoothly.

NOTE: In some cases, you may need to click Generate license before you can download your
license.

https://sensu.io/features/compare
https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/contact?subject=contact-sales/
https://account.sensu.io/
https://account.sensu.io/

With the license fle downloaded, you can use sensuctl to activate your commercial license:

Use sensuctl to view your license details at any time:

These resources will help you get started with commercial features in Sensu Go:

sensuctl create --fle sensu_license.json

sensuctl license info

Set up and manage authentication providers

Install plugins with assets

Manage your Sensu commercial license

Log in to your Sensu account

Contact Sensu support

https://account.sensu.io/
https://account.sensu.io/support/

Operations

The Operations category will help you get Sensu up and running, from your frst installation in your
local development environment through a large-scale Sensu deployment using secrets management.
You’ll also learn how to keep your Sensu implementation running, with guides for upgrading,
monitoring, and troubleshooting.

Deploy Sensu

Deploy Sensu describes how to plan, install, confgure, and deploy Sensu’s fexible monitoring and
observability pipeline.

To plan your Sensu deployment, read the hardware requirements and deployment architecture pages.
To start using Sensu locally or in development environments, follow the steps in the Install Sensu
guide.

When you’re ready to deploy Sensu in production, learn to generate certifcates, secure your Sensu
installation, run a Sensu cluster, and reach multi-cluster visibility.
You’ll also fnd guides for scaling your
implementation with Sensu’s Enterprise datastore and using confguration management tools to ensure
repeatable Sensu deployments and consistent confguration.

Control Access

Control Access explains how Sensu administrators control access by authentication (verifying user
identities) and authorization (establishing and managing user permissions for Sensu resources).

Sensu requires username and password authentication to access the web UI, API, and sensuctl
command line tool.
Use Sensu’s built-in basic authentication provider or confgure external
authentication providers via Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or
OpenID Connect 1.0 protocol (OIDC) to authenticate your Sensu users.

Next, learn to confgure authorization for your authenticated Sensu users with role-based access
control (RBAC) and set up user permissions for interacting with Sensu resources.

Maintain Sensu

Maintain Sensu includes upgrade, migration, and troubleshooting information to keep your Sensu
implementation running smoothly.

Follow our step-by-step instructions to upgrade to the latest version of Sensu from any earlier version.
If you’re still using Sensu Core 1.x, read the migrate guide to upgrade to Sensu Go.
You can also learn
how to troubleshoot to identify and resolve problems with your Sensu implementation, from reading
and confguring Sensu service logs to using Sensu handlers and flters to test and debug your
implementation.

Monitor Sensu

Monitor Sensu covers how to log Sensu services and monitor your Sensu backend with a secondary
Sensu instance.

Manage Secrets

Manage Secrets explains how to use Sensu’s secrets management to eliminate the need to expose
secrets like usernames, passwords, and access keys in your Sensu confguration.
Learn to confgure
secrets and secrets providers resources to obtain secrets from one or more external secrets providers,
refer to external secrets, and consume secrets via backend environment variables.

Deploy Sensu

Use the information and instructions in the Deploy Sensu category to plan, install, confgure, and
deploy Sensu’s fexible monitoring and observability pipeline.

Plan your Sensu deployment

Find Sensu agent and backend requirements and networking and cloud recommendations in the
hardware requirements.

Deployment architecture for Sensu describes planning considerations and recommendations for a
production-ready Sensu deployment, along with communication security details and diagrams showing
single, clustered, and large-scale deployment architectures.

Install Sensu

When you’re ready to start using Sensu, the pathway you follow will depend on your monitoring and
observability needs.
No matter which pathway you choose, you should begin with the Install Sensu
guide.
If you just want to use Sensu locally, you can do that by installing Sensu according to the steps in
the guide.
You can also use the Install Sensu guide to set up proof-of-concept and testing in a
development environment.

Deploy Sensu in production

To deploy Sensu for use outside of a local development environment, install Sensu and follow these
guides to achieve a production-ready installation:

1. Generate certifcates, which you will need to secure a Sensu cluster and its agents.
2. Secure your Sensu installation using the certifcates you generate to make Sensu production-

ready.
3. Run a Sensu cluster, a group of three or more sensu-backend nodes connected to a shared

database, to improve Sensu’s availability, reliability, and durability.
4. Reach multi-cluster visibility with federation so you can gain visibility into the health of your

infrastructure and services across multiple distinct Sensu instances within a single web UI and

mirror your changes in one cluster to follower clusters.

Scale your Sensu implementation

As the number of entities and checks in your Sensu implementation grows, so does the rate of events
being written to the datastore.
In clustered etcd deployments, each event must be replicated to each
cluster member, which increases network and disk IO utilization.

Sensu’s Enterprise datastore allows you to confgure an external PostgreSQL instance for event
storage so you can scale your monitoring and observability workfows beyond etcd’s 8-GB limit.
Scale
your Sensu implementation to many thousands of events per second, achieve much higher rates of
event processing, and minimize the replication communication between etcd peers.

For deployments at scale, confguration management tools can help ensure repeatable Sensu
deployments and consistent confguration among Sensu backends.
Ansible, Chef, and Puppet have
well-defned Sensu modules to help you get started.

Hardware requirements

Sensu backend requirements

Backend minimum requirements

This confguration is the minimum required to run the Sensu backend (although it is insuffcient for
production use):

See the Backend recommended confguration for production recommendations.

Backend recommended confguration

This confguration is recommended as a baseline for production use to ensure a good user and
operator
experience:

Using additional resources (and even over-provisioning) further improves stability and scalability.

The Sensu backend is typically CPU- and storage-intensive.
In general, the backend’s use of these
resources scales linearly with the total number of checks executed by all Sensu agents connecting to
the backend.

64-bit Intel or AMD CPU

4 GB RAM

4 GB free disk space

10 mbps network link

64 bit four-core Intel or AMD CPU

8 GB RAM

SSD (NVMe or SATA3)

Gigabit ethernet

The Sensu backend is a massively parallel application that can scale to any number of CPU cores.
Provision roughly one CPU core for every 50 checks per second (including agent keepalives).
Most
installations are fne with four CPU cores, but larger installations may fnd that more CPU cores (8+)
are necessary.

Every executed Sensu check results in storage writes.
When provisioning storage, a good guideline is to
have twice as many sustained disk input/output operations per second (IOPS) as you expect to
have events per second.

Don’t forget to include agent keepalives in this calculation.
Each agent publishes a keepalive every 20
seconds.
For example, in a cluster of 100 agents, you can expect the agents to consume 10 write IOPS
for keepalives.

The Sensu backend uses a relatively modest amount of RAM under most circumstances.
Larger
production deployments use more RAM (8+ GB).

Sensu agent requirements

Agent minimum requirements

This confguration is the minimum required to run the Sensu agent (although it is insuffcient for
production use:

See the Agent recommended confguration for production recommendations.

Agent recommended confguration

This confguration is recommended as a baseline for production use to ensure a good user and
operator experience:

386, amd64, ARM (ARMv5 minimum), or MIPS CPU

128 MB RAM

10 mbps network link

64 bit four-core Intel or AMD CPU

512 MB RAM

Gigabit ethernet

The Sensu agent itself is lightweight and should be able to run on all but the most modest hardware.
However, because the agent is responsible for executing checks, you should factor the agent’s
responsibilities into your hardware provisioning.

Networking recommendations

Agent connections

Sensu uses WebSockets for communication between the agent and backend.
All communication occurs
over a single TCP socket.

We recommend that you connect backends and agents via gigabit ethernet, but any reliable network
link should work (for example, WiFi and 4G).
If you see WebSocket timeouts in the backend logs, you
may need to use a more reliable network link between the backend and agents.

Cloud recommendations

AWS

The recommended EC2 instance type and size for Sensu backends running embedded etcd is
M5d.xlarge.
The M5d instance provides four vCPU, 16 GB of RAM, up to 10 gbps network connectivity
and a 150-NVMe SSD directly attached to the instance host (optimal for sustained disk IOPS).

https://aws.amazon.com/ec2/instance-types/m5/

Install Sensu

This installation guide describes how to install the Sensu backend, Sensu agent, and sensuctl
command line tool.
If you’re trying Sensu for the frst time, we recommend setting up a local
environment using the Sensu sandbox.

Sensu downloads are provided under the Sensu commercial license.

Sensu Go is packaged for Linux, Windows (agent and CLI only), macOS (CLI only), and Docker.
See
supported platforms for more information.

Architecture overview

Sensu works differently from other monitoring and observability solutions.
Instead of provisioning each
device, server, container, or sidecar you want to monitor, you install the Sensu agent on each
infrastructure component.

Sensu agents are lightweight clients that run on the infrastructure components you want to monitor.
Agents are responsible for creating status and metric events to send to the Sensu backend event
pipeline.
Agents automatically register with Sensu as entities when you start them up and connect to the
Sensu backend with no need for further provisioning.
You only need to specify the IP address for the
Sensu backend server — you do not need to list the components to monitor in the backend.

The Sensu backend is powered by an an embedded transport and etcd datastore.
The backend sends
specifc checks for each agent to execute according to the subscriptions you defne in the agent
confguration.
Sensu automatically downloads the fles needed to run the checks from an asset
repository like Bonsai or a local repo and schedules the checks on each agent.
The agents execute the
checks the backend sends to their subscriptions and send the resulting status and metric events to the
backend event pipeline, which gives you fexible, automated workfows to route these events.

NOTE: The instructions in this guide explain how to install Sensu for proof-of-concept purposes or
testing in a development environment.
If you will deploy Sensu to your infrastructure, we
recommend one of our supported packages, Docker images, or confguration management
integrations, as well as securing your installation with transport layer security (TLS).
Read Generate
certifcates next to get the certifcates you will need for TLS.

https://sensu.io/sensu-license/
https://etcd.io/
https://bonsai.sensu.io/

The Sensu backend keeps track of all self-registered agents.
If the backend loses a keepalive signal
from any of the agents, it fags the agent and generates an event.
You can confgure your instance so
that when an agent (e.g. a server) shuts down gracefully, the agent automatically de-registers from the
backend and does not generate an alert.

Sensu backends require persistent storage for their embedded database, disk space for local asset
caching, and several exposed ports.
Agents that use Sensu assets require some disk space for a local
cache.

For more information, see the Secure Sensu guide.
See deployment architecture and hardware
requirements for deployment recommendations.

Ports

Sensu backends require the following ports:

Port Protoc
ol

Description

2379 gRPC Sensu storage client: Required for Sensu backends using an
external etcd instance

2380 gRPC Sensu storage peer: Required for other Sensu backends in a
cluster

3000 HTTP/H
TTPS

Sensu web UI: Required for all Sensu backends using a
Sensu web UI

6060 HTTP/H
TTPS

Required for all Sensu backends when performance profling
is enabled via debug setting

8080 HTTP/H Sensu API: Required for all users accessing the Sensu API

TTPS

8081 WS/WS
S

Agent API: Required for all Sensu agents connecting to a
Sensu backend

The Sensu agent uses the following ports:

Port Protoc
ol

Description

3030 TCP/U
DP

Sensu agent socket: Required for Sensu agents using the
agent socket

3031 HTTP Sensu agent API: Required for all users accessing the agent
API

8125 UDP StatsD listener: Required for all Sensu agents using the
StatsD listener

The agent TCP and UDP sockets are deprecated in favor of the agent API.

Install the Sensu backend

The Sensu backend is available for Ubuntu/Debian, RHEL/CentOS, and Docker.
See supported
platforms for more information.

1. Download

All Sensu Docker images contain a Sensu backend and a Sensu agent

Pull the Alpine-based image

docker pull sensu/sensu

Pull the image based on Red Hat Enterprise Linux

docker pull sensu/sensu-rhel

DOCKER

SHELL

2. Confgure and start

You can confgure the Sensu backend with sensu-backend start fags (recommended) or an
/etc/sensu/backend.yml fle.
The Sensu backend requires the state-dir fag at minimum, but

other useful confgurations and templates are available.

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

Install the sensu-go-backend package

sudo apt-get install sensu-go-backend

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

Install the sensu-go-backend package

sudo yum install sensu-go-backend

SHELL

NOTE: If you are using Docker, intitialization is included in this step when you start the backend
rather than in 3. Initialize.
For details about intialization in Docker, see the backend reference.

Replace `YOUR_USERNAME` and `YOUR_PASSWORD` with the username and password

you want to use for your admin user credentials.

docker run -v /var/lib/sensu:/var/lib/sensu \

-d --name sensu-backend \

-p 3000:3000 -p 8080:8080 -p 8081:8081 \

-e SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=YOUR_USERNAME \

-e SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=YOUR_PASSWORD \

sensu/sensu:latest \

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug

DOCKER

DOCKER

Replace `YOUR_USERNAME` and `YOUR_PASSWORD` with the username and password

you want to use for your admin user credentials.

version: "3"

services:

 sensu-backend:

 ports:

 - 3000:3000

 - 8080:8080

 - 8081:8081

 volumes:

 - "sensu-backend-data:/var/lib/sensu/sensu-backend/etcd"

 command: "sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-

level debug"

 environment:

 - SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=YOUR_USERNAME

 - SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=YOUR_PASSWORD

 image: sensu/sensu:latest

volumes:

 sensu-backend-data:

 driver: local

Copy the confg template from the docs

sudo curl -L https://docs.sensu.io/sensu-go/latest/fles/backend.yml -o

/etc/sensu/backend.yml

Start sensu-backend using a service manager

sudo service sensu-backend start

Verify that the backend is running

service sensu-backend status

SHELL

Copy the confg template from the docs

sudo curl -L https://docs.sensu.io/sensu-go/latest/fles/backend.yml -o

/etc/sensu/backend.yml

SHELL

For a complete list of confguration options, see the backend reference.

3. Initialize

With the backend running, run sensu-backend init to set up your Sensu administrator username
and password.
In this initialization step, you only need to set environment variables with a username
and password string — no need for role-based access control (RBAC).

Replace YOUR_USERNAME and YOUR_PASSWORD with the username and password you want to use.

Start sensu-backend using a service manager

sudo service sensu-backend start

Verify that the backend is running

service sensu-backend status

IMPORTANT : If you plan to run a Sensu cluster, make sure that each of your backend nodes is
confgured, running, and a member of the cluster before you continue the installation process.

NOTE: If you are using Docker, you already completed intitialization in 2. Confgure and start.
Skip
ahead to 4. Open the web UI to continue the backend installation process.
If you did not use
environment variables to override the default admin credentials in step 2, skip ahead to Install
sensuctl so you can change your default admin password immediately.

export SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=YOUR_USERNAME

export SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=YOUR_PASSWORD

sensu-backend init

SHELL

export SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=YOUR_USERNAME

export SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=YOUR_PASSWORD

sensu-backend init

SHELL

For details about sensu-backend init , see the backend reference.

4. Open the web UI

The web UI provides a unifed view of your monitoring events and user-friendly tools to reduce alert
fatigue.
After starting the Sensu backend, open the web UI by visiting http://localhost:3000.
You may
need to replace localhost with the hostname or IP address where the Sensu backend is running.

To log in to the web UI, enter your Sensu user credentials.
If you are using Docker and you did not
specify environment variables to override the default admin credentials, your user credentials are
username admin and password P@ssw0rd! .
Otherwise, your user credentials are the username and
password you provided with the SENSU_BACKEND_CLUSTER_ADMIN_USERNAME and
SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD environment variables.

Select the ☰ icon to explore the web UI.

5. Make a request to the health API

To make sure the backend is up and running, use the Sensu health API to check the backend’s health.
You should see a response that includes "Healthy": true .

Now that you’ve installed the Sensu backend, install and confgure sensuctl to connect to your
backend URL.
Then you can install a Sensu agent and start monitoring your infrastructure.

Install sensuctl

Sensuctl is a command line tool for managing resources within Sensu.
It works by calling Sensu’s HTTP
API to create, read, update, and delete resources, events, and entities.
Sensuctl is available for Linux,
Windows, and macOS.

NOTE: You may need to allow access to the ports Sensu requires in your local server frewall.
Refer
to the documentation for your operating system to confgure port access as needed.

curl http://127.0.0.1:8080/health

To install sensuctl:

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

Install the sensu-go-cli package

sudo apt-get install sensu-go-cli

SHELL

Add the Sensu repository

curl https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh | sudo

bash

Install the sensu-go-cli package

sudo yum install sensu-go-cli

SHELL

Download sensuctl for Windows amd64

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_windows_amd64.zip -OutFile C:\Users\Administrator\sensu-

go_5.20.2_windows_amd64.zip

Or for 386

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_windows_386.zip -OutFile C:\Users\Administrator\sensu-

go_5.20.2_windows_386.zip

POWERSHELL

Download the latest release

curl -LO https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go_5.20.2_darwin_amd64.tar.gz

Extract the archive

tar -xvf sensu-go_5.20.2_darwin_amd64.tar.gz

SHELL

To start using sensuctl, run sensuctl confgure and log in with your user credentials, namespace,
and Sensu backend URL.
To confgure sensuctl using default values:

Here, the -n fag triggers non-interactive mode.
Run sensuctl confg view to see your user profle.

For more information about sensuctl, see the quickstart and reference docs.

Change default admin password

If you are using Docker and you did not use environment variables to override the default admin
credentials in step 2 of the backend installation process, we recommend that you change the default
admin password as soon as you have installed sensuctl.
Run:

Install Sensu agents

The Sensu agent is available for Ubuntu/Debian, RHEL/CentOS, Windows, and Docker.
See supported
platforms for more information.

1. Download

Copy the executable into your PATH

sudo cp sensuctl /usr/local/bin/

sensuctl confgure -n \

--username 'YOUR_USERNAME' \

--password 'YOUR_PASSWORD' \

--namespace default \

--url 'http://127.0.0.1:8080'

sensuctl user change-password --interactive

All Sensu images contain a Sensu backend and a Sensu agent

DOCKER

Pull the Alpine-based image

docker pull sensu/sensu

Pull the RHEL-based image

docker pull sensu/sensu-rhel

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.deb.sh |

sudo bash

Install the sensu-go-agent package

sudo apt-get install sensu-go-agent

SHELL

Add the Sensu repository

curl -s https://packagecloud.io/install/repositories/sensu/stable/script.rpm.sh |

sudo bash

Install the sensu-go-agent package

sudo yum install sensu-go-agent

SHELL

Download the Sensu agent for Windows amd64

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go-agent_5.20.2.12959_en-US.x64.msi -OutFile "$env:userprofle\sensu-go-

agent_5.20.2.12959_en-US.x64.msi"

Or for Windows 386

Invoke-WebRequest https://s3-us-west-2.amazonaws.com/sensu.io/sensu-go/5.20.2/sensu-

go-agent_5.20.2.12959_en-US.x86.msi -OutFile "$env:userprofle\sensu-go-

agent_5.20.2.12959_en-US.x86.msi"

Install the Sensu agent

msiexec.exe /i $env:userprofle\sensu-go-agent_5.20.2.12959_en-US.x64.msi /qn

Or via Chocolatey

POWERSHELL

2. Confgure and start

You can confgure the Sensu agent with sensu-agent start fags (recommended) or an
/etc/sensu/agent.yml fle.
The Sensu agent requires the --backend-url fag at minimum, but

other useful confgurations and templates are available.

choco install sensu-agent

If you are running the agent locally on the same system as the Sensu backend,

add `--link sensu-backend` to your Docker arguments and change the backend

URL to `--backend-url ws://sensu-backend:8081`.

Start an agent with the system subscription

docker run -v /var/lib/sensu:/var/lib/sensu -d \

--name sensu-agent sensu/sensu:latest \

sensu-agent start --backend-url ws://sensu.yourdomain.com:8081 --log-level debug --

subscriptions system --api-host 0.0.0.0 --cache-dir /var/lib/sensu

DOCKER

Start an agent with the system subscription

version: "3"

services:

 sensu-agent:

 image: sensu/sensu:latest

 ports:

 - 3031:3031

 volumes:

 - "sensu-agent-data:/var/lib/sensu"

 command: "sensu-agent start --backend-url ws://sensu-backend:8081 --log-level

debug --subscriptions system --api-host 0.0.0.0 --cache-dir /var/lib/sensu"

volumes:

 sensu-agent-data:

 driver: local

DOCKER

SHELL

For a complete list of confguration options, see the agent reference.

3. Verify keepalive events

Copy the confg template from the docs

sudo curl -L https://docs.sensu.io/sensu-go/latest/fles/agent.yml -o

/etc/sensu/agent.yml

Start sensu-agent using a service manager

service sensu-agent start

Copy the confg template from the docs

sudo curl -L https://docs.sensu.io/sensu-go/latest/fles/agent.yml -o

/etc/sensu/agent.yml

Start sensu-agent using a service manager

service sensu-agent start

SHELL

Copy the example agent confg fle from

%ALLUSERSPROFILE%\sensu\confg\agent.yml.example

(default: C:\ProgramData\sensu\confg\agent.yml.example) to

C:\ProgramData\sensu\confg\agent.yml

cp C:\ProgramData\sensu\confg\agent.yml.example C:\ProgramData\sensu\confg\agent.yml

Change to the sensu\sensu-agent\bin directory where you installed Sensu

cd 'C:\Program Files\sensu\sensu-agent\bin'

Run the sensu-agent executable

./sensu-agent.exe

Install and start the agent

./sensu-agent service install

POWERSHELL

Sensu keepalives are the heartbeat mechanism used to ensure that all registered agents are operating
and can reach the Sensu backend.
To confrm that the agent is registered with Sensu and is sending
keepalive events, open the entity page in the Sensu web UI or run sensuctl entity list .

4. Verify an example event

With your backend and agent still running, send this request to the Sensu events API:

This request creates a warning event that you can view in your web UI Events page.

To create an OK event, change the status to 0 and resend.
You can change the output value to
connected to mysql to see a different message for the OK event.

Next steps

Now that you have installed Sensu, you’re ready to build your observability pipelines!
Here are some
ideas for next steps.

Get started with Sensu

If you’re ready to see what Sensu can do, one of these pathways can get you started:

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "check-mysql-status"

 },

 "status": 1,

 "output": "could not connect to mysql"

 }

}' \

http://127.0.0.1:3031/events

Manually trigger an event that sends alerts to your email inbox.

http://localhost:3000/

Deploy Sensu outside your local development environment

To deploy Sensu for use outside of a local development environment, frst decide whether you want to
run a Sensu cluster.
A Sensu cluster is a group of three or more sensu-backend nodes, each connected
to a shared database provided either by Sensu’s embedded etcd or an external etcd cluster.

Clustering allows you to absorb the loss of a backend node, prevent data loss, and distribute the
network load of agents.
However, scaling a single backend to a cluster or migrating a cluster from
cleartext HTTP to encrypted HTTPS without downtime can require a number of tedious steps.
For this
reason, we recommend that you decide whether your deployment will require clustering as part of your
initial planning effort.

No matter whether you deploy a single backend or a clustered confguration, begin by securing Sensu
with transport layer security (TLS).
The frst step in setting up TLS is to generate the certifcates you
need.
Then, follow our Secure Sensu guide to make Sensu production-ready.

After you’ve secured Sensu, read Run a Sensu cluster if you are setting up a clustered confguration.

Commercial features

Sensu Inc. offers support packages for Sensu Go and commercial features designed for monitoring at
scale.

All commercial features are free for your frst 100 entities.
To learn more about Sensu Go commercial
licenses for more than 100 entities, contact the Sensu sales team.

If you already have a Sensu commercial license, log in to your Sensu account and download your
license fle, then add your license using sensuctl.

You can use sensuctl to view your license details at any time.

Create a check to monitor CPU usage and send Slack alerts based on your check.

Collect metrics with a Sensu check and use a handler to populate metrics in InfuxDB.

Use the sensuctl dump command to export all of your events and resources as a backup —
then use sensuctl create to restore if needed.

sensuctl create --fle sensu_license.json

https://etcd.io/docs/v3.3.13/op-guide/runtime-configuration/
https://sensu.io/blog/one-year-of-sensu-go/
https://sensu.io/contact?subject=contact-sales/
https://account.sensu.io/

sensuctl license info

Deployment architecture for Sensu

This guide describes various deployment considerations and recommendations for a production-ready
Sensu deployment, including details related to communication security and common deployment
architectures.

etcd is a key-value store that is used by applications of varying complexity, from simple web apps to
Kubernetes.
The Sensu backend uses an embedded etcd instance for storing both confguration and
event data, so you can get Sensu up and running without external dependencies.

By building atop etcd, Sensu’s backend inherits a number of characteristics to consider when you’re
planning for a Sensu deployment.

Create and maintain clusters

Sensu’s embedded etcd supports initial cluster creation via a static list of peer URLs.
After you create a
cluster, you can add and remove cluster members with etcdctl tooling.

If you have a healthy clustered backend, you only need to make Sensu API calls to any one of the
cluster members.
The cluster protocol will replicate your changes to all cluster members.

See Run a Sensu cluster and the etcd documentation for more information.

Hardware sizing

Because etcd’s design prioritizes consistency across a cluster, the speed with which write operations
can be completed is very important to the performance of a Sensu cluster.
This means that you should
provision Sensu backend infrastructure to provide sustained IO operations per second (IOPS)
appropriate for the rate of monitoring events the system will be required to process.

Our hardware requirements documentation describes the minimum and recommended hardware
specifcations for running the Sensu backend.

https://etcd.io/docs/

Communications security

Whether you’re using using a single Sensu backend or multiple Sensu backends in a cluster,
communication with the backend’s various network ports (web UI, HTTP API, WebSocket API, etcd
client and peer) occurs in cleartext by default.
We recommend that you encrypt network
communications via TLS, which requires planning and explicit confguration.

Plan TLS for etcd

The URLs for each member of an etcd cluster are persisted to the database after initialization.
As a
result, moving a cluster from cleartext to encrypted communications requires resetting the cluster,
which destroys all confguration and event data in the database.
Therefore, we recommend planning for
encryption before initiating a clustered Sensu backend deployment.

As described in Secure Sensu, the backend uses a shared certifcate and key for web UI and agent
communications.
You can secure communications with etcd using the same certifcate and key.
The
certifcate’s common name or subject alternate names must include the network interfaces and DNS
names that will point to those systems.

See Run a Sensu cluster and the etcd documentation for more information about TLS setup and
confguration, including a walkthrough for generating TLS certifcates for your cluster.

Common Sensu architectures

Depending on your infrastructure and the type of environments you’ll be monitoring, you may use one
or a combination of these architectures to best ft your needs.

Single backend (standalone)

The single backend (standalone) with embedded etcd architecture requires minimal resources but
provides no redundancy in the event of failure.

WARNING: Reconfguring a Sensu cluster for TLS post-deployment will require resetting all etcd
cluster members, resulting in the loss of all data.

https://etcd.io/docs/

Single Sensu Go backend or standalone architecture

You can reconfgure a single backend as a member of a cluster, but this operation is destructive: it
requires destroying the existing database.

The single backend (standalone) architecture may be a good ft for small- to medium-sized
deployments (such as monitoring a remote offce or datacenter), deploying alongside individual auto-
scaling groups, or in various segments of a logical environment spanning multiple cloud providers.

For example, in environments with unreliable WAN connectivity, having agents connect to a local
backend may be more reliable than having agents connect over WAN or VPN tunnel to a backend
running in a central location.

Clustered deployment for single availability zone

To increase availability and replicate both confguration and data, join the embedded etcd databases of
multiple Sensu backend instances together in a cluster.
Read Run a Sensu cluster for more information.

Clustered Sensu Go architecture for a single availability zone

Clustering requires an odd number of backend instances.
Although larger clusters provide better fault

http://localhost:1313/images/standalone_architecture.png
https://sensu-docs.s3.amazonaws.com/images/labeled-single-AZ-sensu-deployment.png

tolerance, write performance suffers because data must be replicated across more machines.
The etcd
maintainers recommend clusters of 3, 5, or 7 backends. See the etcd documentation for more
information.

Clustered deployment for multiple availability zones

Distributing infrastructure across multiple availability zones in a given region helps ensure continuous
availability of customer infrastructure in the region if any one availability zone becomes unavailable.
With this in mind, you can deploy a Sensu cluster across multiple availability zones in a given region,
confgured to tolerate reasonable latency between those availability zones.

Clustered Sensu Go architecture for multiple availability zones

Large-scale clustered deployment for multiple availability zones

In a large-scale clustered Sensu Go deployment, you can use as many backends as you wish.
Use one
etcd node per availiability zone, with a minimum of three etcd nodes and a maximum of fve.
Three etcd
nodes allow you to tolerate the loss of a single node with minimal effect on performance.
Five etcd
nodes allow you to tolerate the loss of two nodes, but with a greater effect on performance.

https://etcd.io/docs/
https://sensu-docs.s3.amazonaws.com/images/labeled-cross-AZ-sensu-deployment.png
https://sensu-docs.s3.amazonaws.com/images/labeled-large-scale-cross-AZ-sensu-deployment.png

Large-scale clustered Sensu Go architecture for multiple availability zones

Scaled cluster performance with PostgreSQL

To achieve the high rate of event processing that many enterprises require, Sensu supports
PostgreSQL event storage as a commmercial feature.
See the Datastore reference for details on
confguring the Sensu backend to use PostgreSQL for event storage.

Clustered Sensu Go architecture with PostgreSQL event storage

In load testing, Sensu Go has proven capable of processing 36,000 events per second when using
PostgreSQL as the event store.
See the sensu-perf project repository for a detailed explanation of our
testing methodology and results.

Architecture considerations

http://localhost:1313/images/clustered_architecture_postgres.png
https://github.com/sensu/sensu-perf

Networking

Clustered deployments beneft from a fast and reliable network.
Ideally, they should be co-located in the
same network segment with as little latency as possible between all the nodes.
We do not recommend
clustering backends across disparate subnets or WAN connections.

Although 1GbE is suffcient for common deployments, larger deployments will beneft from 10GbE,
which allows a shorder mean time to recovery.

As the number of agents connected to a backend cluster grows, so will the amount of communication
between members of the cluster required for data replication.
With this in mind, clusters with a thousand
or more agents should use a discrete network interface for peer communication.

Load balancing

Although you can confgure each Sensu agent with the URLs for multiple backend instances, we
recommend that you confgure agents to connect to a load balancer.
This approach gives operators
more control over agent connection distribution and makes it possible to replace members of the
backend cluster without updates to agent confguration.

Conversely, you cannot confgure the sensuctl command line tool with multiple backend URLs.
Under
normal conditions, sensuctl communications and browser access to the web UI should be routed via a
load balancer.

Confguration management

We recommend using confguration management tools to deploy Sensu in production and at scale.

The confguration management tools listed here have well-defned Sensu modules to help you get
started.

Ansible

The Ansible role to deploy and manage Sensu Go is available in the Sensu Go Ansible Collection.

The Sensu Go Ansible Collection documentation site includes installation instructions, example
playbooks, and module references.

Chef

The Chef cookbook for installing and confguring Sensu is available in the Sensu Go Chef Cookbook.

Contact us for more information about Sensu + Chef.

Puppet

The Puppet module to install Sensu is available in the Sensu Puppet Module.

Sensu partnered with Tailored Automation to enhance the Puppet module with new features and bug
fxes.

Pin versions of Sensu-related software to ensure repeatable Sensu deployments.

Ensure consistent confguration between Sensu backends.

https://www.ansible.com/
https://galaxy.ansible.com/sensu/sensu_go
https://sensu.github.io/sensu-go-ansible/
https://www.chef.io/
https://supermarket.chef.io/cookbooks/sensu-go
http://monitoringlove.sensu.io/chef
https://puppet.com/
https://forge.puppet.com/modules/sensu/sensu
https://tailoredautomation.io/

Generate certifcates for your Sensu
installation

This guide explains how to generate the certifcates you need to secure a Sensu cluster and its agents.

When deploying Sensu for use outside of a local development environment, you should secure it using
transport layer security (TLS).

TLS uses encryption to provide security for communication between Sensu backends and agents as
well as communication between human operators and the Sensu backend, such as web UI or sensuctl
access.

Because reconfguring an existing Sensu deployment from cleartext to TLS can be time-consuming,
we recommend that you confgure TLS for your backend from the very beginning.

TLS is also required to use some of Sensu’s commercial features, like secrets management and
mutual TLS authentication (mTLS).

Prerequisites

To use this guide, you must have already installed Sensu on:

Public key infrastructure (PKI)

To use TLS, you must either posses existing public key infrastructure (PKI) or generate your own
Certifcate Authority (CA) for issuing certifcates.

This guide describes how to set up a minimal CA and generate the certifcates you need to secure
Sensu communications for a clustered backend and agents.

If your organization has existing PKI for certifcate issuance, you can adapt the suggestions in this

One backend system or three backend systems that you plan to cluster together.

One or more agents.

https://en.wikipedia.org/wiki/Public_key_infrastructure

guide to your organization’s PKI.

Recommended practices for deploying and maintaining production PKI can be complex and case-
specifc, so recommended practices are not included in the scope of this guide.

Issue certifcates

Use a CA certifcate and key to generate certifcates and keys to use with Sensu backends and agents.

This example uses the CloudFlare cfssl toolkit to generate a CA and self-signed certifcates from that
CA.

Install TLS

The cfssl toolkit is released as a collection of command-line tools.

These tools only need to be installed on one system to generate your CA and issue certifcates.

You may install the toolkit on your laptop or workstation and store the fles there for safekeeping or
install the toolkit on one of the systems where you’ll run the Sensu backend.

In this example you’ll walk through installing cfssl on a Linux system, which requires copying certain
certifcates and keys to each of the backend and agent systems you are securing.

This guide assumes that you’ll install these certifcates in the /etc/sensu/tls directory on each
system.

Download cfssl and cfssljson executables and install them in /usr/local/bin:

sudo curl -L

https://github.com/cloudfare/cfssl/releases/download/v1.4.1/cfssl_1.4.1_linux_amd64

-o /usr/local/bin/cfssl

sudo curl -L

https://github.com/cloudfare/cfssl/releases/download/v1.4.1/cfssljson_1.4.1_linux_am

d64 -o /usr/local/bin/cfssljson

sudo chmod +x /usr/local/bin/cfssl*

Verify executable version:

cfssl version

https://github.com/cloudflare/cfssl
https://github.com/cloudflare/cfssl

Create a Certifcate Authority (CA)

Create a CA with cfssl and cfssljson:

You should now have a directory at /etc/sensu/tls that contains the following fles:

flename description

ca.pem CA root certifcate. Must be copied to all systems running Sensu backend
or agent.

ca-key.pem CA root certifcate private key.

ca-confg.json CA signing parameters and profles. Not used by Sensu.

Version: 1.4.1

Runtime: go1.12.12

cfssljson -version

Version: 1.4.1

Runtime: go1.12.12

Create /etc/sensu/tls -- does not exist by default

mkdir -p /etc/sensu/tls

cd /etc/sensu/tls

Create the Certifcate Authority

echo '{"CN":"Sensu Test CA","key":{"algo":"rsa","size":2048}}' | cfssl gencert -

initca - | cfssljson -bare ca -

Defne signing parameters and profles. Note that agent profle provides the "client

auth" usage required for mTLS.

echo '{"signing":{"default":{"expiry":"17520h","usages":["signing","key

encipherment","client auth"]},"profles":{"backend":{"usages":["signing","key

encipherment","server auth","client auth"],"expiry":"4320h"},"agent":{"usages":

["signing","key encipherment","client auth"],"expiry":"4320h"}}}}' > ca-confg.json

ca.csr Certifcate signing request for the CA root certifcate. Not used by Sensu.

The sensu-agent and sensu-backend use the CA root certifcate to validate server certifcates at
connection time.

Be certain to to copy the CA root certifcate (ca.pem) fle to each agent and backend.

Generate backend cluster certifcates

Now that you’ve generated a CA, you will use it to generate certifcates and keys for each backend
server (etcd peer).

For each backend server you’ll need to document the IP addresses and hostnames to use in backend
and agent communications.

During initial confguration of a cluster of Sensu backends, you must describe every member of the
cluster with a URL passed as the value of the etcd-initial-cluster parameter.

In issuing certifcates for cluster members, the IP address or hostname used in these URLs must be
represented in either the Common Name (CN) or Subject Alternative Name (SAN) records in the
certifcate.

This guide assumes a scenario with three backend members that are reachable via a 10.0.0.x IP
address, a fully qualifed name (e.g. backend-1.example.com), and an unqualifed name (e.g.
backend-1):

Unqualifed name IP
address

Fully qualifed domain name
(FQDN)

Additional
names

backend-1 10.0.0.1 backend-1.example.com localhost,
127.0.0.1

backend-2 10.0.0.2 backend-2.example.com localhost,
127.0.0.1

backend-3 10.0.0.3 backend-3.example.com localhost,
127.0.0.1

Note that the additional names for localhost and 127.0.0.1 are added here for convenience and not
strictly required.

Use these name and address details to create two *.pem fles and one *.csr fle for each backend:

You should now have a set of fles for each backend:

flename description required on backend?

ca.pem Trusted CA root certifcate

backend-*.pem Backend server certifcate

backend-*-

key.pem

Backend server private key

backend-*.csr Certifcate signing request

Value provided for the NAME variable will be used to populate the certifcate's CN

record

Values provided in the ADDRESS variable will be used to populate the certifcate's

SAN records

For systems with multiple hostnames and IP addresses, add each to the comma-

delimited value of the ADDRESS variable

export ADDRESS=localhost,127.0.0.1,10.0.0.1,backend-1

export NAME=backend-1.example.com

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -profle="backend" -ca=ca.pem -ca-key=ca-key.pem -

hostname="$ADDRESS" - | cfssljson -bare $NAME

export ADDRESS=localhost,127.0.0.1,10.0.0.2,backend-2

export NAME=backend-2.example.com

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -profle="backend" -ca=ca.pem -ca-key=ca-key.pem -

hostname="$ADDRESS" - | cfssljson -bare $NAME

export ADDRESS=localhost,127.0.0.1,10.0.0.3,backend-3

export NAME=backend-3.example.com

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -profle="backend" -ca=ca.pem -ca-key=ca-key.pem -

hostname="$ADDRESS" - | cfssljson -bare $NAME

Again, make sure to copy all backend PEM fles and CA root certifcate to the corresponding backend
system:

These fles should be accessible only by the sensu user.
Use chown and chmod to make it so:

Generate agent certifcate

Now you will generate a certifcate that agents can use to connect to the Sensu backend.

Sensu’s commercial distribution offers support for authenticating agents via TLS certifcates instead of
a username and password.

For this certifcate, you only need to specify a CN (here, agent) — you don’t need to specify an
address.
You will create the fles agent-key.pem , agent.csr , and agent.pem :

You should now have a set of fles for use by Sensu agents:

flename description required on agent?

ca.pem Trusted CA root certifcate

Directory listing of /etc/sensu/tls on backend-1:

/etc/sensu/tls/
├── backend-1-key.pem
├── backend-1.pem
└── ca.pem

chown sensu /etc/sensu/tls/*.pem

chmod 400 /etc/sensu/tls/*.pem

export NAME=agent

echo '{"CN":"'$NAME'","hosts":[""],"key":{"algo":"rsa","size":2048}}' | cfssl

gencert -confg=ca-confg.json -ca=ca.pem -ca-key=ca-key.pem -hostname="" -

profle=agent - | cfssljson -bare $NAME

agent.pem Backend server certifcate

agent-key.pem Backend server private key

agent.csr Certifcate signing request

Again, make sure to copy all agent PEM fles and ca.pem to the corresponding backend system:

These fles should be accessible only by the sensu user.
Use chown and chmod to make it so:

Installing CA certifcates

Before you move on, make sure you have copied the certifcates and keys to each of the backend and
agent systems you are securing:

We also recommend installing the CA root certifcate in the trust store of both your Sensu systems and
those systems used by operators to manage Sensu.

Installing the CA certifcate in the trust store for these systems makes it easier to connect via web UI or
sensuctl without being prompted to accept certifcates signed by your self-generated CA.

Directory listing of /etc/sensu/tls on backend-1:

/etc/sensu/tls/
├── backend-1-key.pem
├── backend-1.pem
├── agent.pem
├── agent-key.pem
└── ca.pem

chown sensu /etc/sensu/tls/*.pem

chmod 400 /etc/sensu/tls/*.pem

Copy the Certifcate Authority (CA) root certifcate fle, ca.pem , to each agent and backend.

Copy all backend PEM fles to their corresponding backend systems.

Copy all agent PEM fles

Next step: Secure Sensu

Now that you have generated the required certifcates and copied them to the applicable hosts, follow

chmod 644 /etc/sensu/tls/ca.pem

chown root /etc/sensu/tls/ca.pem

sudo apt-get install ca-certifcates -y

sudo ln -sfv /etc/sensu/tls/ca.pem /usr/local/share/ca-certifcates/sensu-ca.crt

sudo update-ca-certifcates

SHELL

chmod 644 /etc/sensu/tls/ca.pem

chown root /etc/sensu/tls/ca.pem

sudo yum install -y ca-certifcates

sudo update-ca-trust force-enable

sudo ln -s /etc/sensu/tls/ca.pem /etc/pki/ca-trust/source/anchors/sensu-ca.pem

sudo update-ca-trust

SHELL

Import the root CA certifcate on the Mac.

Double-click the root CA certifcate to open it in Keychain Access.

The root CA certifcate appears in login.

Copy the root CA certifcate to System.

You must copy the certifcate to System to ensure that it is trusted by all users and

local system processes.

Open the root CA certifcate, expand Trust, select Use System Defaults, and save your

changes.

Reopen the root CA certifcate, expand Trust, select Always Trust, and save your

changes.

Delete the root CA certifcate from login.

SHELL

TODO: Document steps for adding CA root to Windows trust store

POWERSHELL

our Secure Sensu guide to make your Sensu installation production-ready.

Secure Sensu

As with any piece of software, it is critical to minimize any attack surface the software exposes.
Sensu is
no different.
This guide describes the components you need to secure to make Sensu production-ready.

Before you can use this guide, you must have generated the certifcates you will need to secure
Sensu.

Secure etcd peer communication

You can secure etcd peer communication via the confguration at /etc/sensu/backend.yml .
Here are
the parameters you’ll need to confgure:

Secure the API and web UI

The Sensu Go Agent API, HTTP API, and web UI use a common stanza in
/etc/sensu/backend.yml to provide the certifcate, key, and CA fle needed to provide secure

communication.
Here are the attributes you’ll need to confgure.

##

backend store confguration

##

etcd-listen-client-urls: "https://localhost:2379"

etcd-listen-peer-urls: "https://localhost:2380"

etcd-initial-advertise-peer-urls: "https://localhost:2380"

etcd-cert-fle: "/path/to/your/cert"

etcd-key-fle: "/path/to/your/key"

etcd-trusted-ca-fle: "/path/to/your/ca/fle"

etcd-peer-cert-fle: "/path/to/your/peer/cert"

etcd-peer-key-fle: "/path/to/your/peer/key"

etcd-peer-client-cert-auth: "true"

etcd-peer-trusted-ca-fle: "/path/to/your/peer/ca/fle"

Providing these cert-fle and key-fle parameters will cause the Agent Websocket API and HTTP API to
serve requests over SSL/TLS (https).
As a result, you will also need to specify https:// schema for
the api-url parameter:

You can also specify a certifcate and key for the web UI separately from the API using the
dashboard-cert-fle and dashboard-key-fle parameters:

In this example, we provide the path to the cert, key, and CA fle.
After you restart the sensu-backend

NOTE: By changing these parameters, the server will communicate using transport layer security
(TLS) and expect agents that connect to it to use the WebSocket secure protocol.
For
communication to continue, you must complete the steps in this section and in the Secure Sensu
agent-to-server communication section.

##

backend ssl confguration

##

cert-fle: "/path/to/ssl/cert.pem"

key-fle: "/path/to/ssl/key.pem"

trusted-ca-fle: "/path/to/trusted-certifcate-authorities.pem"

insecure-skip-tls-verify: false

##

backend api confguration

##

api-url: "https://localhost:8080"

##

backend ssl confguration

##

cert-fle: "/path/to/ssl/cert.pem"

key-fle: "/path/to/ssl/key.pem"

trusted-ca-fle: "/path/to/trusted-certifcate-authorities.pem"

insecure-skip-tls-verify: false

dashboard-cert-fle: "/path/to/ssl/cert.pem"

dashboard-key-fle: "/path/to/ssl/key.pem"

service, the parameters will load and you will able to access the web UI at https://localhost:3000.
Confguring these attributes will also ensure that agents can communicate securely.

Secure Sensu agent-to-server communication

By default, an agent uses the insecure ws:// transport.
Here’s an example from
/etc/sensu/agent.yml :

To use WebSocket over SSL/TLS (wss), change the backend-url value to the wss:// schema:

The agent will connect to Sensu backends over wss.
Remember, if you change the confguration to wss,
plaintext communication will not be possible.

You can also provide a trusted CA as part of the agent confguration by passing --trusted-ca-fle if
you are starting the agent via sensu-agent start .
You may include it as part of the agent
confguration in /etc/sensu/agent.yml :

NOTE: If you change the agent confguration to communicate via WebSocket Secure protocol, the
agent will no longer communicate over a plaintext connection.
For communication to continue, you
must complete the steps in this section and in the Secure the API and web UI section.

##

agent confguration

##

backend-url:

 - "ws://127.0.0.1:8081"

##

agent confguration

##

backend-url:

 - "wss://127.0.0.1:8081"

Sensu agent mTLS authentication

COMMERCIAL FEATURE : Access client mutual transport layer security (mTLS) authentication in the
packaged Sensu Go distribution.
For more information, see Get started with commercial features.

By default, Sensu agents require username and password authentication to communicate with Sensu
backends.
For Sensu’s default user credentials and details about confguring Sensu role-based access
control (RBAC), see the RBAC reference and Create a read-only user.

Sensu can also use mutual transport layer security (mTLS) authentication for connecting agents to
backends.
When agent mTLS authentication is enabled, agents do not need to send password
credentials to backends when they connect.
To use secrets management, Sensu agents must be
secured with mTLS.
In addition, when using mTLS authentication, agents do not require an explicit user
in Sensu.
Sensu agents default to authenticating as the agent user and using permissions granted to
the system:agents group by the system:agents cluster role and cluster role binding.

You can still bind agents to a specifc user when the system:agents group is problematic.
For this use
case, create a user that matches the Common Name (CN) of the agent’s certifcate.

To view a certifcate’s CN with openssl:

trusted-ca-fle: "/path/to/trusted-certifcate-authorities.pem"

NOTE: If you are creating a Sensu cluster, every cluster member needs to be present in the
confguration.
See Run a Sensu cluster for more information about how to confgure agents for a
clustered confguration.

NOTE: Sensu agents need to be able to create events in the agent’s namespace.
To ensure that
agents with incorrect CN felds can’t access the backend, remove the default system:agents
group.

$ openssl x509 -in client.pem -text -noout

Certifcate:

 Data:

 Version: 3 (0x2)

 Serial Number:

The Subject: feld indicates the certifcate’s CN is client , so to bind the agent to a particular user
in Sensu, create a user called client .

To enable agent mTLS authentication, create and distribute new certifcates and keys according to the
Generate certifcates guide.
Once the TLS certifcate and key are in place, update the agent
confguration using cert-fle and key-fle security confguration fags.

After you create backend and agent certifcates, modfy the backend and agent confguration:

You can use use certifcates for authentication that are distinct from other communication channels
used by Sensu, like etcd or the API.
However, deployments can also use the same certifcates and keys
for etcd peer and client communication, the HTTP API, and agent authentication without issues.

 37:57:7b:04:1d:67:63:7b:ff:ae:39:19:5b:55:57:80:41:3c:ec:ff

 Signature Algorithm: sha256WithRSAEncryption

 Issuer: CN = CA

 Validity

 Not Before: Sep 26 18:58:00 2019 GMT

 Not After : Sep 24 18:58:00 2024 GMT

 Subject: CN = client

...

##

backend confguration

##

agent-auth-cert-fle: "/path/to/backend-1.pem"

agent-auth-key-fle: "/path/to/backend-1-key.pem"

agent-auth-trusted-ca-fle: "/path/to/ca.pem"

##

agent confguration

##

cert-fle: "/path/to/agent.pem"

key-fle: "/path/to/agent-key.pem"

trusted-ca-fle: "/path/to/ca.pem"

Next step: Run a Sensu cluster

Well done!
Your Sensu installation should now be secured with TLS.
The last step before you deploy
Sensu is to set up a Sensu cluster.

Run a Sensu cluster

To deploy Sensu for use outside of a local development environment, frst decide whether you want to
run a Sensu cluster.

A Sensu cluster is a group of at least three sensu-backend nodes, each connected to a shared
database provided either by Sensu’s embedded etcd or an external etcd cluster.
Creating a Sensu
cluster ultimately confgures an etcd cluster.

Clustering improves Sensu’s availability, reliability, and durability.
It allows you to absorb the loss of a
backend node, prevent data loss, and distribute the network load of agents.
If you have a healthy
clustered backend, you only need to make Sensu API calls to any one of the cluster members.
The
cluster protocol will replicate your changes to all cluster members.

Scaling a single backend to a cluster or migrating a cluster from cleartext HTTP to encrypted HTTPS
without downtime can require a number of tedious steps.
For this reason, we recommend that you
decide whether your deployment will require clustering as part of your initial planning effort.

No matter whether you deploy a single backend or a clustered confguration, begin by securing Sensu
with transport layer security (TLS).
The frst step in setting up TLS is to generate the certifcates you
need.
Then, follow our Secure Sensu guide to make Sensu production-ready.

After you’ve secured Sensu, continue reading this document to set up a clustered confguration.

Confgure a cluster

The sensu-backend arguments for its store mirror the etcd confguration fags, but the Sensu fags are
prefxed with etcd .
For more detailed descriptions of the different arguments, see the etcd docs or the
Sensu backend reference.

You can confgure a Sensu cluster in a couple different ways — we’ll show you a few below — but you
should adhere to some etcd cluster guidelines as well:

NOTE: We recommend using a load balancer to evenly distribute agent connections across a
cluster.

https://etcd.io/docs/v3.4.0/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/clustering/
https://etcd.io/docs/v3.3.13/op-guide/runtime-configuration/
https://etcd.io/docs/v3.4.0/op-guide/configuration/
https://etcd.io/docs/

The recommended etcd cluster size is 3, 5 or 7, which is decided by the fault tolerance
requirement. A 7-member cluster can provide enough fault tolerance in most cases.
While a larger cluster provides better fault tolerance, the write performance reduces
since data needs to be replicated to more machines. It is recommended to have an odd
number of members in a cluster. Having an odd cluster size doesn’t change the number
needed for majority, but you gain a higher tolerance for failure by adding the extra
member. etcd2 Admin Guide

We also recommend using stable platforms to support your etcd instances (see etcd’s supported
platforms).

Docker

If you prefer to stand up your Sensu cluster within Docker containers, check out the Sensu Go Docker
confguration.
This confguration defnes three sensu-backend containers and three sensu-agent
containers.

Traditional computer instance

Sensu backend confguration

The examples in this section are confguration snippets from /etc/sensu/backend.yml using a
three-node cluster.
The nodes are named backend-1 , backend-2 and backend-3 with IP
addresses 10.0.0.1 , 10.0.0.2 and 10.0.0.3 , respectively.

NOTE: If a cluster member is started before it is confgured to join a cluster, the member will
persist its prior confguration to disk.
For this reason, you must remove any previously started
member’s etcd data by stopping sensu-backend and deleting the contents of
/var/lib/sensu/sensu-backend/etcd before proceeding with cluster confguration.

NOTE: The remainder of this guide describes on-disk confguration.
If you are using an ephemeral
computer instance, you can use sensu-backend start --help to see examples of etcd
command line fags.
The confguration fle entries in the rest of this guide translate to sensu-
backend fags.

NOTE: This backend confguration assumes you have set up and installed the sensu-backend on

https://github.com/etcd-io/etcd/blob/a621d807f061e1dd635033a8d6bc261461429e27/Documentation/v2/admin_guide.md#optimal-cluster-size
https://etcd.io/docs/v3.4.0/platforms/
https://etcd.io/docs/v3.4.0/platforms/
https://github.com/sensu/sensu-go/blob/master/docker-compose.yaml
https://github.com/sensu/sensu-go/blob/master/docker-compose.yaml

backend-1

backend-2

backend-3

all the nodes used in your cluster.
Follow the Install Sensu guide if you have not already done this.

##

store confguration for backend-1/10.0.0.1

##

etcd-advertise-client-urls: "http://10.0.0.1:2379"

etcd-listen-client-urls: "http://10.0.0.1:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.1:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-1"

##

store confguration for backend-2/10.0.0.2

##

etcd-advertise-client-urls: "http://10.0.0.2:2379"

etcd-listen-client-urls: "http://10.0.0.2:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.2:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-2"

##

store confguration for backend-3/10.0.0.3

##

After you confgure each node as described in these examples, start each sensu-backend:

Add Sensu agents to clusters

Each Sensu agent should have the following entries in /etc/sensu/agent.yml to ensure the agent
is aware of all cluster members.
This allows the agent to reconnect to a working backend if the backend
it is currently connected to goes into an unhealthy state.

You should now have a highly available Sensu cluster!
Confrm cluster health and try other cluster
management commands with sensuctl.

Manage and monitor clusters with sensuctl

Sensuctl includes several commands to help you manage and monitor your cluster.
Run sensuctl

etcd-advertise-client-urls: "http://10.0.0.3:2379"

etcd-listen-client-urls: "http://10.0.0.3:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.3:2380"

etcd-initial-cluster-state: "new"

etcd-initial-cluster-token: ""

etcd-name: "backend-3"

sudo systemctl start sensu-backend

##

backend-url confguration for all agents connecting to cluster over ws

##

backend-url:

 - "ws://10.0.0.1:8081"

 - "ws://10.0.0.2:8081"

 - "ws://10.0.0.3:8081"

cluster -h for additional help information.

Get cluster health status

Get cluster health status and etcd alarm information:

Add a cluster member

Add a new member node to an existing cluster:

List cluster members

List the ID, name, peer URLs, and client URLs of all nodes in a cluster:

sensuctl cluster health

 ID Name Error Healthy
────────────────── ─────────── ───
─────────

a32e8f613b529ad4 backend-1 true

c3d9f4b8d0dd1ac9 backend-2 dial tcp 10.0.0.2:2379: connect: connection refused false

c8f63ae435a5e6bf backend-3 true

sensuctl cluster member-add backend-4 https://10.0.0.4:2380

added member 2f7ae42c315f8c2d to cluster

ETCD_NAME="backend-4"

ETCD_INITIAL_CLUSTER="backend-4=https://10.0.0.4:2380,backend-

1=https://10.0.0.1:2380,backend-2=https://10.0.0.2:2380,backend-

3=https://10.0.0.3:2380"

ETCD_INITIAL_CLUSTER_STATE="existing"

sensuctl cluster member-list

Remove a cluster member

Remove a faulty or decommissioned member node from a cluster:

Replace a faulty cluster member

To replace a faulty cluster member to restore a cluster’s health, start by running sensuctl cluster

health to identify the faulty cluster member.
For a faulty cluster member, the Error column will
include an error message and the Healthy column will list false .

In this example, cluster member backend-4 is faulty:

Then, delete the faulty cluster member.
To continue this example, you will delete cluster member
backend-4 using its ID:

 ID Name Peer URLs Client URLs
────────────────── ─────────── ───────────────────────── ─────────────────────────

a32e8f613b529ad4 backend-1 https://10.0.0.1:2380 https://10.0.0.1:2379

c3d9f4b8d0dd1ac9 backend-2 https://10.0.0.2:2380 https://10.0.0.2:2379

c8f63ae435a5e6bf backend-3 https://10.0.0.3:2380 https://10.0.0.3:2379

2f7ae42c315f8c2d backend-4 https://10.0.0.4:2380 https://10.0.0.4:2379

sensuctl cluster member-remove 2f7ae42c315f8c2d

Removed member 2f7ae42c315f8c2d from cluster

sensuctl cluster health

 ID Name Error Healthy
────────────────── ─────────── ───
─────────

a32e8f613b529ad4 backend-1 true

c3d9f4b8d0dd1ac9 backend-2 true

c8f63ae435a5e6bf backend-3 true

2f7ae42c315f8c2d backend-4 dial tcp 10.0.0.4:2379: connect: connection refused false

Finally, add a newly created member to the cluster.
You can use the same name and IP address as the
faulty member you deleted, with one change to the confguration: specify the etcd-initial-cluster-
state as existing .

If replacing the faulty cluster member does not resolve the problem, see the etcd operations guide for
more information.

Update a cluster member

Update the peer URLs of a member in a cluster:

Cluster security

See Secure Sensu for information about cluster security.

sensuctl cluster member-remove 2f7ae42c315f8c2d

Removed member 2f7ae42c315f8c2d from cluster

etcd-advertise-client-urls: "http://10.0.0.4:2379"

etcd-listen-client-urls: "http://10.0.0.4:2379"

etcd-listen-peer-urls: "http://0.0.0.0:2380"

etcd-initial-cluster: "backend-1=http://10.0.0.1:2380,backend-

2=http://10.0.0.2:2380,backend-3=http://10.0.0.3:2380,backend-

4=http://10.0.0.4:2380"

etcd-initial-advertise-peer-urls: "http://10.0.0.4:2380"

etcd-initial-cluster-state: "existing"

etcd-initial-cluster-token: ""

etcd-name: "backend-4"

sensuctl cluster member-update c8f63ae435a5e6bf https://10.0.0.4:2380

Updated member with ID c8f63ae435a5e6bf in cluster

https://etcd.io/docs/v3.4.0/op-guide/

Use an external etcd cluster

To use Sensu with an external etcd cluster, you must have etcd 3.3.2 or newer.
To stand up an external
etcd cluster, follow etcd’s clustering guide using the same store confguration.

In this example, you will enable client-to-server and peer communication authentication using self-
signed TLS certifcates.
To start etcd for backend-1 based on the three-node confguration example:

To tell Sensu to use this external etcd data source, add the sensu-backend fag --no-embed-etcd
to the original confguration, along with the path to a client certifcate created using your CA:

etcd \

--listen-client-urls "https://10.0.0.1:2379" \

--advertise-client-urls "https://10.0.0.1:2379" \

--listen-peer-urls "https://10.0.0.1:2380" \

--initial-cluster "backend-1=https://10.0.0.1:2380,backend-

2=https://10.0.0.2:2380,backend-3=https://10.0.0.3:2380" \

--initial-advertise-peer-urls "https://10.0.0.1:2380" \

--initial-cluster-state "new" \

--name "backend-1" \

--trusted-ca-fle=./ca.pem \

--cert-fle=./backend-1.pem \

--key-fle=./backend-1-key.pem \

--client-cert-auth \

--peer-trusted-ca-fle=./ca.pem \

--peer-cert-fle=./backend-1.pem \

--peer-key-fle=./backend-1-key.pem \

--peer-client-cert-auth \

--auto-compaction-mode revision \

--auto-compaction-retention 2

NOTE: The auto-compaction-mode and auto-compaction-retention fags are important.
Without these settings, your database may quickly reach etcd’s maximum database size limit.

sensu-backend start \

--etcd-trusted-ca-fle=./ca.pem \

https://etcd.io/docs/v3.4.0/op-guide/clustering/

Troubleshoot clusters

Failure modes

See the etcd failure modes documentation for information about cluster failure modes.

Disaster recovery

See the etcd recovery guide for disaster recovery information.

--etcd-cert-fle=./client.pem \

--etcd-key-fle=./client-key.pem \

--etcd-client-urls=https://10.0.0.1:2379 https://10.0.0.2:2379 https://10.0.0.3:2379

\

--no-embed-etcd

NOTE: The etcd-cient-urls value must be a space-delimited list or a YAML array.

https://etcd.io/docs/v3.4.0/op-guide/failures/
https://etcd.io/docs/v3.4.0/op-guide/recovery/

Multi-cluster visibility with federation

COMMERCIAL FEATURE : Access federation in the packaged Sensu Go distribution.
For more
information, see Get started with commercial features.

Sensu’s federation API allows you to register external clusters, access resources across multiple
clusters via the web UI, and mirror your changes in one cluster to follower clusters.

Federation is not enabled by default. You must create a cluster resource for the federation cluster and
register it.

Create, update, and delete clusters using sensuctl create, edit, and delete commands.
Only cluster
administrators can register a new cluster, but every user can query the list of clusters.

What you can do with federation

Federation affords visibility into the health of your infrastructure and services across multiple distinct
Sensu instances within a single web UI.
This is useful when you want to provide a single entry point for
Sensu users who need to manage monitoring across multiple distinct physical data centers, cloud
regions, or providers.

Confgure federation

Complete federation of multiple Sensu instances relies on a combination of features:

Feature Purpose in federation

JSON Web Token
(JWT) authentication

Cross-cluster token authentication using asymmetric key encryption

etcd replicators Replicate RBAC policy across clusters and namespaces

Federation Gateway
and APIs

Confgure federation access for cross-cluster visibility in web UI

The following steps are required to confgure these features.
Our scenario assumes that we wish to
federate three named Sensu clusters:

Cluster name Hostname

gateway sensu.gateway.example.com

alpha sensu.alpha.example.com

beta sensu.beta.example.com

In this scenario, the gateway cluster will be the entry point for operators to manage Sensu resources
in the alpha and beta clusters.
This guide assumes a single sensu-backend in each cluster, but
named clusters comprised of multiple sensu-backends are supported.

Upon completion of these steps, you’ll be able to browse events, entities, checks and other resources
in the gateway , alpha and beta clusters from the gateway cluster web UI.

This diagram depicts the federation relationship documented in this guide:

Step 1 Confgure backends for TLS

Because federation depends on communication with multiple disparate clusters, working TLS is
required for successful federated operation.

To ensure that cluster members can validate one another, certifcates for each cluster member should
include the IP addresses and/or hostnames specifed in the values of sensu-backend etcd-

http://localhost:1313/images/federation-guide-diagram.png

advertise-client-urls , etcd-advertise-peer-urls , and etcd-initial-advertise-peer-
urls parameters.
In addition to the certifcate’s Common Name (CN), Subject Alternative Names
(SANs) are also honored for validation.

To continue with this guide, make sure you have the required TLS credentials in place:

If you don’t have existing infrastructure for issuing certifcates, see Secure Sensu for our
recommended self-signed certifcate issuance process.

This prerequisite extends to confguring the following Sensu backend etcd parameters:

Backend property Note

etcd-cert-fle Path to certifcate used for TLS on etcd client/peer communications.

etcd-key-fle Path to key corresponding with etcd-cert-fle certifcate.

etcd-trusted-ca-

fle

Path to CA certifcate chain fle. This CA certifcate chain must be usable
to validate certifcates for all backends in the federation.

etcd-client-cert-

auth

Enforces certifcate validation to authenticate etcd replicator connections.
We recommend setting to true .

etcd-advertise-

client-urls

List of https URLs to advertise for etcd replicators, accessible by other
backends in the federation (e.g.
https://sensu.beta.example.com:2379).

etcd-listen-

client-urls

List of https URLs to listen on for etcd replicators (e.g.
https://0.0.0.0:2379 to listen on port 2379 across all ipv4

interfaces).

Step 2 Confgure shared token signing keys

PEM-formatted X.509 certifcate and corresponding private key copied to each cluster member

Corresponding CA certifcate chain copied to each cluster member

NOTE: You must provide non-default values for the etcd-advertise-client-urls and etcd-
listen-client-urls backend parameters.
The default values are not suitable for use under
federation.

https://support.dnsimple.com/articles/what-is-common-name/
https://support.dnsimple.com/articles/what-is-ssl-san/
https://support.dnsimple.com/articles/what-is-ssl-san/

Whether federated or standalone, Sensu backends issue JSON Web Tokens (JWTs) to users upon
successful authentication.
These tokens include a payload that describes the username and group
affliations.
The payload is used to determine permissions based on the confgured RBAC policy.

In a federation of Sensu backends, each backend needs to have the same public/private key pair.
These asymmetric keys are used to crypotgraphically vouch for the user’s identity in the JWT payload.
This use of shared JWT keys enables clusters to grant users access to Sensu resources according to
their local policies but without requiring user resources to be present uniformly across all clusters in the
federation.

By default, a Sensu backend automatically generates an asymmetric key pair for signing JWTs and
stores it in the etcd database.
When confguring federation, you need to generate keys as fles on disk
so they can be copied to all backends in the federation.

Use use the openssl command line tool to generate a P-256 elliptic curve private key:

Then generate a public key from the private key:

For this example, you’ll put JWT keys into /etc/sensu/certs on each cluster backend, and use the
jwt-private-key-fle and jwt-public-key-fle attributes in /etc/sensu/backend.yml to

specify the paths to these JWT keys:

After updating the backend confguration in each cluster, restart sensu-backend so that your settings
take effect:

openssl ecparam -genkey -name prime256v1 -noout -out jwt_private.pem

openssl ec -in jwt_private.pem -pubout -out jwt_public.pem

jwt-private-key-fle: /etc/sensu/certs/jwt_private.pem

jwt-public-key-fle: /etc/sensu/certs/jwt_public.pem

sensu-backend start

http://localhost:1313/sensu-go/5.20/operations/control-access/rbac/

Step 3 Add a cluster role binding and user

To test your confguration, provision a User and a ClusterRoleBinding in the gateway cluster.

First, confrm that sensuctl is confgured to communicate with the gateway cluster using sensuctl
confg view to see the active confguration:

Second, create a federation-viewer user:

When prompted, enter a password for the federation-viewer user.
When prompted for groups,
press enter. Note the federation-viewer password you entered — you’ll use it to log in to the web
UI after you confgure RBAC policy replication and registered clusters into your federation.

Next, grant the federation-viewer user read-only access through a cluster role binding for the built-
in view cluster role:

In step 4, you’ll confgure etcd replicators to copy the cluster role bindings and other RBAC policies you
created in the gateway cluster to the alpha and beta clusters.

Step 4 Create etcd replicators

Etcd replicators use the etcd make-mirror utility for one-way replication of Sensu RBAC policy
resources.

=== Active Confguration

API URL: https://sensu.gateway.example.com:8080

Namespace: default

Format: tabular

Username: admin

sensuctl user create federation-viewer --interactive

sensuctl cluster-role-binding create federation-viewer-readonly --cluster-role=view

--user=federation-viewer

https://github.com/etcd-io/etcd/blob/master/etcdctl/README.md#make-mirror-options-destination
http://localhost:1313/sensu-go/5.20/operations/control-access/rbac/
http://localhost:1313/sensu-go/5.20/operations/control-access/rbac/

This allows you to centrally defne RBAC policy on the gateway cluster and replicate those resources
to other clusters in the federation, ensuring consistent permissions for Sensu users across multiple
clusters via the gateway web UI.

To get started, confgure one etcd replicator per cluster for each of those RBAC policy types, across all
namespaces, for each backend in the federation.

For example, these etcd replicator resources will replicate ClusterRoleBinding resources from
the gateway cluster to two target clusters:

NOTE: Create a replicator for each resource type you want to replicate.
Replicating namespace

resources will not replicate the resources that belong to those namespaces.

api_version: federation/v1

type: EtcdReplicator

metadata:

 name: AlphaClusterRoleBindings

spec:

 ca_cert: "/etc/sensu/certs/ca.pem"

 cert: "/etc/sensu/certs/cert.pem"

 key: "/etc/sensu/certs/key.pem"

 url: https://sensu.alpha.example.com:2379

 api_version: core/v2

 resource: ClusterRoleBinding

 replication_interval_seconds: 30

YML

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "AlphaClusterRoleBindings"

 },

 "spec": {

 "ca_cert": "/etc/sensu/certs/ca.pem",

 "cert": "/etc/sensu/certs/cert.pem",

 "key": "/etc/sensu/certs/key.pem",

JSON

 "url": "https://sensu.alpha.example.com:2379",

 "api_version": "core/v2",

 "resource": "ClusterRoleBinding",

 "replication_interval_seconds": 30

 }

}

api_version: federation/v1

type: EtcdReplicator

metadata:

 name: BetaClusterRoleBindings

spec:

 ca_cert: "/etc/sensu/certs/ca.pem"

 cert: "/etc/sensu/certs/cert.pem"

 key: "/etc/sensu/certs/key.pem"

 url: https://sensu.beta.example.com:2379

 api_version: core/v2

 resource: ClusterRoleBinding

 replication_interval_seconds: 30

YML

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "BetaClusterRoleBindings"

 },

 "spec": {

 "ca_cert": "/etc/sensu/certs/ca.pem",

 "cert": "/etc/sensu/certs/cert.pem",

 "key": "/etc/sensu/certs/key.pem",

 "url": "https://sensu.beta.example.com:2379",

 "api_version": "core/v2",

 "resource": "ClusterRoleBinding",

 "replication_interval_seconds": 30

 }

}

JSON

To confgure this etcd replicator on your gateway cluster, use sensuctl confg view to verify that
sensuctl is confgured to talk to a gateway cluster API. Reconfgure sensuctl if needed.

Write these EtcdReplicator defnitions written to disk and use sensuctl create -f to apply them to
the gateway cluster.

For a consistent experience, repeat the ClusterRoleBinding example in this guide for Role ,
RoleBinding and ClusterRole resource types.
The etcd replicators reference includes examples

you can follow for Role , RoleBinding , ClusterRole , and ClusterRoleBinding resources.

To verify that the EtcdReplicator resource is working as expected, reconfgure sensuctl to
communicate with the alpha and then beta clusters, issuing the sensuctl cluster-role-
binding list command for each.
You should see the federation-viewer-readonly binding
created in step 3 listed in the output from each cluster:

Step 5 Register clusters

Clusters must be registered to become visible in the web UI. Each registered cluster must have a
name and a list of one or more cluster member URLs corresponding to the backend REST API.

Register a single cluster

With sensuctl confgured for the gateway cluster, run sensuctl create on the yaml or JSON
below to register cluster alpha :

$ sensuctl cluster-role-binding info federation-viewer-readonly

=== federation-viewer-readonly

Name: federation-viewer-readonly

Cluster Role: view

Subjects:

 Users: federation-viewer

NOTE: Individual cluster resources may list the API URLs for a single stand-alone backend or
multiple backends that are members of the same etcd cluster.
Creating a cluster resource that lists
multiple backends that do not belong to the same cluster will result in unexpected behavior.

Register additional clusters

With sensuctl confgured for gateway cluster, run sensuctl create on the yaml or JSON below
to register an additional cluster and defne the name as beta :

api_version: federation/v1

type: Cluster

metadata:

 name: alpha

spec:

 api_urls:

 - https://sensu.alpha.example.com:8080

YML

{

 "api_version": "federation/v1",

 "type": "Cluster",

 "metadata": {

 "name": "alpha"

 },

 "spec": {

 "api_urls": [

 "https://sensu.alpha.example.com:8080"

]

 }

}

JSON

api_version: federation/v1

type: Cluster

metadata:

 name: beta

spec:

 api_urls:

 - https://sensu.beta.example.com:8080

YML

Step 6 Get a unifed view of all your clusters in the web UI

After you create clusters using the federation API, you can log in to the gateway Sensu web UI to
view them as the federation-viewer user.
Use the namespace switcher to change between
namespaces across federated clusters:

{

 "api_version": "federation/v1",

 "type": "Cluster",

 "metadata": {

 "name": "beta"

 },

 "spec": {

 "api_urls": [

 "https://sensu.alpha.example.com:8080"

]

 }

}

JSON

NOTE: When logging into the gateway cluster web UI, any namespaces, entities, events, and
other resources specifc to that cluster will be labeled as local-cluster .

Because the federation-viewer user is granted only permissions provided by the built-in view
role, this user should be able to view all resources across all clusters but should not be able to make
any changes.
If you haven’t changed the permissions of the default admin user, that user should be
able to view, create, delete, and update resources across all clusters.

Next steps

Learn more about confguring RBAC policies in our RBAC reference documentation.

http://localhost:1313/sensu-go/5.20/operations/control-access/rbac/

Scale Sensu Go with Enterprise datastore

COMMERCIAL FEATURE : Access the datastore feature in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Sensu Go’s datastore feature enables scaling your monitoring to many thousands of events per
second.

For each unique entity/check pair, Sensu records the latest event object in its datastore.
By default,
Sensu uses the embedded etcd datastore for event storage.
The embedded etcd datastore helps you
get started, but as the number of entities and checks in your Sensu implementation grows, so does the
rate of events being written to the datastore.
In a clustered deployment of etcd, whether embedded or
external to Sensu, each event received by a member of the cluster must be replicated to other
members, increasing network and disk IO utilization.

Our team documented confguration and testing of Sensu running on bare metal infrastructure in the
sensu/sensu-perf project.
This confguration comfortably handled 12,000 Sensu agent connections (and
their keepalives) and processed more than 8,500 events per second.

This rate of events should be suffcient for many installations but assumes an ideal scenario where
Sensu backend nodes use direct-attached, dedicated non-volatile memory express (NVMe) storage
and are connected to a dedicated LAN.
Deployments on public cloud providers are not likely to achieve
similar results due to sharing both disk and network bandwidth with other tenants.
Adhering to the cloud
provider’s recommended practices may also become a factor because many operators are inclined to
deploy a cluster across multiple availability zones.
In such a deployment cluster, communication
happens over shared WAN links, which are subject to uncontrolled variability in throughput and
latency.

The Enterprise datastore can help operators achieve much higher rates of event processing and
minimize the replication communication between etcd peers.
The sensu-perf test environment
comfortably handles 40,000 Sensu agent connections (and their keepalives) and processes more than
36,000 events per second under ideal conditions.

Prerequisites
Database server running Postgres 9.5 or later

Postgres database (or administrative access to create one)

https://github.com/sensu/sensu-perf

Confgure Postgres

Before Sensu can start writing events to Postgres, you need a database and an account with
permissions to write to that database.
To provide consistent event throughput, we recommend
exclusively dedicating your Postgres instance to storage of Sensu events.

If you have administrative access to Postgres, you can create the database and user:

With this confguration complete, Postgres will have a sensu_events database for storing Sensu
events and a sensu user with permissions to that database.

By default, the Postgres user you’ve just added will not be able to authenticate via password, so you’ll
also need to make a change to the pg_hba.conf fle.
The required change will depend on how Sensu
will connect to Postgres.
In this case, you’ll confgure Postgres to allow the sensu user to connect to
the sensu_events database from any host using an md5-encrypted password:

Postgres user with permissions to the database (or administrative access to create such a
user)

Licensed Sensu Go backend

$ sudo -u postgres psql

postgres=# CREATE DATABASE sensu_events;

CREATE DATABASE

postgres=# CREATE USER sensu WITH ENCRYPTED PASSWORD 'mypass';

CREATE ROLE

postgres=# GRANT ALL PRIVILEGES ON DATABASE sensu_events TO sensu;

GRANT

postgres-# \q

make a copy of the current pg_hba.conf

sudo cp /var/lib/pgsql/data/pg_hba.conf /var/tmp/pg_hba.conf.bak

give sensu user permissions to connect to sensu_events database from any IP

address

echo 'host sensu_events sensu 0.0.0.0/0 md5' | sudo tee -a

/var/lib/pgsql/data/pg_hba.conf

restart postgresql service to activate pg_hba.conf changes

sudo systemctl restart postgresql

https://www.postgresql.org/docs/9.5/auth-methods.html#AUTH-PASSWORD

With this confguration complete, you can confgure Sensu to store events in your Postgres database.

Confgure Sensu

If your Sensu backend is already licensed, the confguration for routing events to Postgres is relatively
straightforward.
Create a PostgresConfg resource that describes the database connection as a data
source name (DSN):

This confguration is written to disk as my-postgres.yml , and you can install it using sensuctl :

type: PostgresConfg

api_version: store/v1

metadata:

 name: postgres01

spec:

 dsn: "postgresql://sensu:mypass@10.0.2.15:5432/sensu_events?sslmode=disable"

 pool_size: 20

YML

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres"

 },

 "spec": {

 "dsn": "postgresql://sensu:mypass@10.0.2.15:5432/sensu_events",

 "pool_size": 20

 }

}

JSON

sensuctl create -f my-postgres.yml

The Sensu backend is now confgured to use Postgres for event storage!

In the web UI and in sensuctl, event history will appear incomplete.
When Postgres confguration is
provided and the backend successfully connects to the database, etcd event history is not migrated.
New events will be written to Postgres as they are processed, with the Postgres datastore ultimately
being brought up to date with the current state of your monitored infrastructure.

Aside from event history, which is not migrated from etcd, there’s no observable difference when using
Postgres as the event store, and neither interface supports displaying the PostgresConfg type.

To verify that the change was effective and your connection to Postgres was successful, look at the
sensu-backend log:

You can also use psql to verify that events are being written to the sensu_events database.
This
code illustrates connecting to the sensu_events database, listing the tables in the database, and
requesting a list of all entities reporting keepalives:

{"component":"store","level":"warning","msg":"trying to enable external event

store","time":"2019-10-02T23:31:38Z"}

{"component":"store","level":"warning","msg":"switched event store to

postgres","time":"2019-10-02T23:31:38Z"}

postgres=# \c sensu_events

You are now connected to database "sensu_events" as user "postgres".

sensu_events=# \dt

 List of relations

 Schema | Name | Type | Owner

--------+-------------------+-------+-------

 public | events | table | sensu

 public | migration_version | table | sensu

(2 rows)

sensu_events=# select sensu_entity from events where sensu_check = 'keepalive';

 sensu_entity

 i-414141

 i-424242

 i-434343

(3 rows)

Revert to the built-in datastore

If you want to revert to the default etcd event store, delete the PostgresConfg resource.
In this example,
my-postgres.yml contains the same confguration you used to confgure the Enterprise event store
earlier in this guide:

To verify that the change was effective, look for messages similar to these in the sensu-backend log:

Similar to enabling Postgres, switching back to the etcd datastore does not migrate current event data
from one store to another.
You may see old events in the web UI or sensuctl output until the etcd
datastore catches up with the current state of your monitored infrastructure.

Confgure Postgres streaming replication

Postgres supports an active standby by using streaming replication.
All Sensu events written to the
primary Postgres server will be replicated to the standby server.

This section describes how to confgure PostgreSQL streaming replication in four steps.

Step 1: Create and add the replication role

If you have administrative access to Postgres, you can create the replication role:

sensuctl delete -f my-postgres.yml

{"component":"store","level":"warning","msg":"store confguration

deleted","store":"/sensu.io/api/enterprise/store/v1/provider/postgres01","time":"201

9-10-02T23:29:06Z"}

{"component":"store","level":"warning","msg":"switched event store to

etcd","time":"2019-10-02T23:29:06Z"}

NOTE: Paths and service names may vary based on your operating system.

https://wiki.postgresql.org/wiki/Streaming_Replication

Then, you must add the replication role to pg_hba.conf using an md5-encrypted password.
Make a
copy of the current pg_hba.conf :

Next, give the repl user permissions to replicate from the standby host.
In the following command,
replace STANDBY_IP with the IP address of your standby host:

Restart the PostgreSQL service to activate the pg_hba.conf changes:

Step 2: Set streaming replication confguration parameters

The next step is to set the streaming replication confguration parameters on the primary Postgres host.
Begin by making a copy of the postgresql.conf :

Next, append the necessary confguration options.

$ sudo -u postgres psql

postgres=# CREATE ROLE repl PASSWORD 'secret' LOGIN REPLICATION;

CREATE ROLE

postgres-# \q

sudo cp /var/lib/pgsql/data/pg_hba.conf /var/tmp/pg_hba.conf.bak

export STANDBY_IP=192.168.52.10

echo "host replication repl ${STANDYB_IP}/32 md5" | sudo tee -a

/var/lib/pgsql/data/pg_hba.conf

sudo systemctl restart postgresql

sudo cp -a /var/lib/pgsql/data/postgresql.conf

/var/lib/pgsql/data/postgresql.conf.bak

https://www.postgresql.org/docs/9.5/auth-methods.html#AUTH-PASSWORD

Set the maximum number of concurrent connections from the standby servers:

To prevent the primary server from removing the WAL segments required for the standby server before
shipping them, set the minimum number of segments retained in the pg_xlog directory:

At minimum, the number of wal_keep_segments should be larger than the number of segments
generated between the beginning of online backup and the startup of streaming replication.

Restart the PostgreSQL service to activate the postgresql.conf changes:

Step 3: Bootstrap the standby host

The standby host must be bootstrapped using the pg_basebackup command.
This process will copy
all confguration fles from the primary as well as databases.

If the standby host has ever run Postgres, you must empty the data directory:

echo 'wal_level = hot_standby' | sudo tee -a /var/lib/pgsql/data/postgresql.conf

echo 'max_wal_senders = 5' | sudo tee -a /var/lib/pgsql/data/postgresql.conf

echo 'wal_keep_segments = 32' | sudo tee -a /var/lib/pgsql/data/postgresql.conf

NOTE: If you enable WAL archiving to an archive directory accessible from the standby, this may
not be necessary.

sudo systemctl restart postgresql

sudo systemctl stop postgresql

sudo mv /var/lib/pgsql/data /var/lib/pgsql/data.bak

Make the standby data directory:

And then bootstrap the standby data directory:

Step 4: Confrm replication

To confrm your confguration is working properly, start by removing confgurations that are only for the
primary:

Start the PostgreSQL service:

To verify that the replication is taking place, check the commit log location on the primary and standby
hosts:

sudo install -d -o postgres -g postgres -m 0700 /var/lib/pgsql/data

export PRIMARY_IP=192.168.52.11

sudo -u postgres pg_basebackup -h $PRIMARY_IP -D /var/lib/pgsql/data -P -U repl -R -

-xlog-method=stream

Password:

30318/30318 kB (100%), 1/1 tablespace

sudo sed -r -i.bak '/^(wal_level|max_wal_senders|wal_keep_segments).*/d'

/var/lib/pgsql/data/postgresql.conf

sudo systemcl start postgresql

From master

sudo -u postgres psql -c "select pg_current_xlog_location()"

 pg_current_xlog_location

 0/3000568

With this confguration complete, your Sensu events will be replicated to the standby host.

(1 row)

From standby

sudo -u postgres psql -c "select pg_last_xlog_receive_location()"

 pg_last_xlog_receive_location

 0/3000568

(1 row)

From standby

sudo -u postgres psql -c "select pg_last_xlog_replay_location()"

 pg_last_xlog_replay_location

 0/3000568

(1 row)

Install Sensu plugins

Extend Sensu’s functionality with plugins, which provide executables for performing status or metric
checks, mutators for changing data to a desired format, and handlers for performing an action on a
Sensu event.

Install plugins with assets

Assets are shareable, reusable packages that make it easier to deploy Sensu plugins.
To start using
and deploying assets, read Install plugins with assets to become familiar with workfows that involve
assets.

Use Bonsai, the Sensu asset hub

Bonsai, the Sensu asset hub, is a centralized place for downloading and sharing plugin assets.
Make
Bonsai your frst stop when you need to fnd an asset.
Bonsai includes plugins, libraries, and runtimes
you need to automate your monitoring workfows.
You can also share your asset on Bonsai.

Install plugins with the sensu-install tool

To use community plugins that are not yet compatible with Sensu Go, use the sensu-install tool.

If you’ve used previous versions of Sensu, you’re probably familiar with the Sensu Community Plugins
organization on GitHub.
Although some of these plugins are enabled for Sensu Go, some do not include
the components necessary to work with Sensu Go.
Read each plugin’s instructions for information about
whether it is compatibile with Sensu Go.

NOTE: Assets are not required to use Sensu Go.
You can install Sensu plugins using the sensu-
install tool or a confguration management solution.

NOTE: Plugins in the Sensu Plugins GitHub organization are community-maintained: anyone can
improve on them.
To get started with adding to a plugin or sharing your own, head to the Sensu

http://localhost:1313/plugins/latest/reference/
https://bonsai.sensu.io/
https://github.com/sensu-plugins/
https://slack.sensu.io/

The sensu-install tool comes with an embedded version of Ruby, so you don’t need to have Ruby
installed on your system.

To install a Sensu Community plugin with Sensu Go:

1. Install the sensu-plugins-ruby package from packagecloud.

2. Run the sensu-install command to install plugins in the Sensu Community Plugins GitHub
organization by repository name.
Plugins are installed into /opt/sensu-plugins-

ruby/embedded/bin .

For example, to install the Sensu InfuxDB plugin:

To install a specifc version of the Sensu InfuxDB plugin with sensu-install , run:

Community Slack channel.
Maintainers are always happy to help answer questions and point you in
the right direction.

sensu-install --help

Usage: sensu-install [options]

 -h, --help Display this message

 -v, --verbose Enable verbose logging

 -p, --plugin PLUGIN Install a Sensu PLUGIN

 -P, --plugins PLUGIN[,PLUGIN] PLUGIN or comma-delimited list of Sensu plugins

to install

 -e, --extension EXTENSION Install a Sensu EXTENSION

 -E, --extensions EXTENSION[,EXT] EXTENSION or comma-delimited list of Sensu

extensions to install

 -s, --source SOURCE Install Sensu plugins and extensions from a

custom SOURCE

 -c, --clean Clean up (remove) other installed versions of

the plugin(s) and/or extension(s)

 -x, --proxy PROXY Install Sensu plugins and extensions via a

PROXY URL

sudo sensu-install -p infuxdb

https://github.com/sensu-plugins/
https://packagecloud.io/sensu/community/
https://github.com/sensu-plugins/
https://github.com/sensu-plugins/
https://github.com/sensu-plugins/sensu-plugins-influxdb/
https://slack.sensu.io/

We recommend using a confguration management tool or using Sensu assets to pin the versions of
any plugins installed in production.

Troubleshoot the sensu-install tool

Some plugins require additional tools to install them successfully.
An example is the Sensu disk checks
plugin.
Depending on the plugin, you may need to install developer tool packages.

Ubuntu/Debian:

RHEL/CentOS:

sudo sensu-install -p 'sensu-plugins-infuxdb:2.0.0'

NOTE: If a plugin is not Sensu Go-enabled and there is no analogue on Bonsai, you can add the
necessary functionality to make the plugin compatible with Sensu Go.
Follow this
discourse.sensu.io guide to walk through the process.

sudo apt-get update

sudo apt-get install build-essential

sudo yum update

sudo yum groupinstall "Development Tools"

https://github.com/sensu-plugins/sensu-plugins-disk-checks/
https://github.com/sensu-plugins/sensu-plugins-disk-checks/
https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165
https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165

Control Access

Sensu administrators control access by authentication and authorization.

Authentication verifes user identities to confrm that users are who they say they are.
Sensu requires
username and password authentication to access the web UI, API, and sensuctl command line tool.
You
can use Sensu’s built-in basic authentication provider or confgure external authentication providers.

Authorization establishes and manages user permissions: the extent of access users have for different
Sensu resources.
Confgure authorization with role-based access control (RBAC) to exercise fne-
grained control over how they interact with Sensu resources.

Authentication

Sensu web UI and sensuctl command line tool users can authenticate via built-in basic authentication
provider or Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or OpenID Connect
1.0 protocol (OIDC) when external authentication providers are confgured by the administrator.

Sensu agents authenticate to the Sensu backend using either basic or mutual transport layer security
(TLS) authentication.

Use built-in basic authentication

Sensu’s built-in basic authentication provider allows you to create and manage user credentials
(usernames and passwords) with the users API, either directly or using sensuctl.
The basic
authentication provider does not depend on external services and is not confgurable.

Sensu hashes user passwords using the bcrypt algorithm and records the basic authentication
credentials in etcd.

Use an authentication provider

NOTE: For API-specifc authentication, see the API overview and Use API keys to authenticate to
Sensu.

https://en.wikipedia.org/wiki/Bcrypt
https://etcd.io/

COMMERCIAL FEATURE : Access authentication providers in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

In addition to built-in authentication, Sensu includes commercial support for authentication using
external authentication providers via Lightweight Directory Access Protocol (LDAP), Active Directory
(AD), or OpenID Connect 1.0 protocol (OIDC).

Confgure authentication providers

1. Write an authentication provider confguration defnition

2. Apply the confguration with sensuctl

Log in to sensuctl as the default admin user and apply the confguration to Sensu:

Use sensuctl to verify that your provider confguration was applied successfully:

Manage authentication providers

View and delete authentication providers with the authentication providers API or these sensuctl
commands.

Standards-compliant LDAP tools like OpenLDAP: LDAP confguration examples and
specifcation

Microsoft AD, including Azure AD: AD confguration examples and specifcation

OIDC tools like Okta and PingFederate: OIDC confguration examples and specifcation

sensuctl create --fle flename.json

sensuctl auth list

 Type Name
────── ──────────

 ldap openldap

To view active authentication providers:

To view confguration details for an authentication provider named openldap :

To delete an authentication provider named openldap :

Authorization

After you set up authentication, confgure authorization via role-based access control (RBAC) to give
those users permissions within Sensu.
RBAC allows you to specify actions users are allowed to take
against resources, within namespaces or across all namespaces, based on roles bound to the user or
to one or more groups the user is a member of.
See Create a read-only user for an example.

To enable permissions for external users and groups within Sensu, you can create a set of roles,
cluster roles, role bindings, and cluster role bindings that map to the usernames and group names in
your authentication provider.

After you confgure an authentication provider and establish the roles and bindings to grant
authenticated users the desired privileges, those users can log in via sensuctl and the web UI using a
single-sign-on username and password.
Users do not need to provide the username prefx for the

sensuctl auth list

sensuctl auth info openldap

sensuctl auth delete openldap

Namespaces partition resources within Sensu.
Sensu entities, checks, handlers, and other
namespaced resources belong to a single namespace.

Roles create sets of permissions (like GET and DELETE) tied to resource types.
Cluster roles
apply permissions across all namespaces and may include access to cluster-wide resources
like users and namespaces.

Role bindings assign a role to a set of users and groups within a namespace.
Cluster role
bindings assign a cluster role to a set of users and groups across all namespaces.

authentication provider when logging in to Sensu.

Confgure Active Directory (AD)
authentication to access Sensu

COMMERCIAL FEATURE : Access authentication providers in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Sensu requires username and password authentication to access the web UI, API, and sensuctl
command line tool.

In addition to the built-in basic authentication provider, Sensu offers commercial support for using
Microsoft Active Directory (AD) for authentication.
The AD authentication provider is based on the LDAP
authentication provider.

To use AD authentication for Azure, follow Microsoft’s tutorial to set up secure LDAP in your Azure
account and create the host and certifcates you need.

For general information about confguring authentication providers, see Use an authentication provider.

AD confguration examples

Example AD confguration: Minimum required attributes

type: ad

api_version: authentication/v2

metadata:

 name: activedirectory

spec:

 servers:

 - group_search:

 base_dn: dc=acme,dc=org

 host: 127.0.0.1

 user_search:

 base_dn: dc=acme,dc=org

YML

https://docs.microsoft.com/en-us/azure/active-directory-domain-services/tutorial-configure-ldaps
https://docs.microsoft.com/en-us/azure/active-directory-domain-services/tutorial-configure-ldaps

Example AD confguration: All attributes

{

 "type": "ad",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "activedirectory"

 }

}

JSON

type: ad

api_version: authentication/v2

metadata:

 name: activedirectory

spec:

 groups_prefx: ad

 servers:

 - binding:

 password: YOUR_PASSWORD

 user_dn: cn=binder,cn=users,dc=acme,dc=org

 client_cert_fle: /path/to/ssl/cert.pem

 client_key_fle: /path/to/ssl/key.pem

 default_upn_domain: example.org

 include_nested_groups: true

YML

 group_search:

 attribute: member

 base_dn: dc=acme,dc=org

 name_attribute: cn

 object_class: group

 host: 127.0.0.1

 insecure: false

 port: 636

 security: tls

 trusted_ca_fle: /path/to/trusted-certifcate-authorities.pem

 user_search:

 attribute: sAMAccountName

 base_dn: dc=acme,dc=org

 name_attribute: displayName

 object_class: person

 username_prefx: ad

{

 "type": "ad",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "default_upn_domain": "example.org",

 "include_nested_groups": true,

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

JSON

Example AD confguration: Use memberOf attribute instead of group_search

AD automatically returns a memberOf attribute in users’ accounts.
The memberOf attribute contains
the user’s group membership, which effectively removes the requirement to look up the user’s groups.

To use the memberOf attribute in your AD implementation, remove the group_search object from
your AD confg:

 "name_attribute": "cn",

 "object_class": "group"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

 }

 }

],

 "groups_prefx": "ad",

 "username_prefx": "ad"

 },

 "metadata": {

 "name": "activedirectory"

 }

}

type: ad

api_version: authentication/v2

metadata:

 name: activedirectory

spec:

 servers:

 host: 127.0.0.1

 user_search:

 base_dn: dc=acme,dc=org

YML

JSON

After you confgure AD to use the memberOf attribute, the debug log level will include the following
log entries:

AD specifcation

AD top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
For AD defnitions, the type should always be ad .

{

 "type": "ad",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "activedirectory"

 }

}

{"component":"authentication/v2","level":"debug","msg":"using the \"memberOf\"

attribute to determine the group membership of user \"user1\"","time":"2020-06-

25T14:10:58-04:00"}

{"component":"authentication/v2","level":"debug","msg":"found 1 LDAP group(s):

[\"sensu\"]","time":"2020-06-25T14:10:58-04:00"}

required true

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
AD defnitions, the api_version should always be
authentication/v2 .

required true

type String

example

metadata

description Top-level map that contains the AD defnition name . See the metadata
attributes reference for details.

required true

type Map of key-value pairs

example

spec

"type": "ad"

"api_version": "authentication/v2"

"metadata": {

 "name": "activedirectory"

}

description Top-level map that includes the AD spec attributes.

required true

type Map of key-value pairs

example
"spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "default_upn_domain": "example.org",

 "include_nested_groups": true,

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

 }

 }

],

 "groups_prefx": "ad",

 "username_prefx": "ad"

}

AD spec attributes

servers

description An array of AD servers for your directory. During the authentication
process, Sensu attempts to authenticate using each AD server in
sequence.

required true

type Array

example
"servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "default_upn_domain": "example.org",

 "include_nested_groups": true,

 "binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

groups_prefx

description The prefx added to all AD groups. Sensu appends the groups_prefx
with a colon. For example, for the groups_prefx ad and the group
dev , the resulting group name in Sensu is ad:dev . Use the

groups_prefx when integrating AD groups with Sensu RBAC role
bindings and cluster role bindings.

required false

type String

example

username_prefx

description The prefx added to all AD usernames. Sensu appends the
username_prefx with a colon. For example, for the username_prefx
ad and the user alice , the resulting username in Sensu is
ad:alice . Use the username_prefx when integrating AD users with

Sensu RBAC role bindings and cluster role bindings. Users do not need
to provide the username_prefx when logging in to Sensu.

required false

type String

example

AD server attributes

 }

 }

]

"groups_prefx": "ad"

"username_prefx": "ad"

host

description AD server IP address or FQDN.

required true

type String

example

port

description AD server port.

required true

type Integer

default 389 for insecure connections; 636 for TLS connections

example

insecure

description Skips SSL certifcate verifcation when set to true .

required false

type Boolean

"host": "127.0.0.1"

"port": 636

WARNING: Do not use an insecure connection in production
environments.

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

default false

example

security

description Determines the encryption type to be used for the connection to the AD
server: insecure (unencrypted connection; not recommended for
production), tls (secure encrypted connection), or starttls
(unencrypted connection upgrades to a secure connection).

type String

default "tls"

example

trusted_ca_fle

description Path to an alternative CA bundle fle in PEM format to be used instead of
the system’s default bundle. This CA bundle is used to verify the server’s
certifcate.

required false

type String

example

client_cert_fle

description Path to the certifcate that should be sent to the server if requested.

"insecure": false

"security": "tls"

"trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem"

required false

type String

example

client_key_fle

description Path to the key fle associated with the client_cert_fle .

required false

type String

example

binding

description The AD account that performs user and group lookups. If your sever
supports anonymous binding, you can omit the user_dn or password
attributes to query the directory without credentials. To use anonymous
binding with AD, the ANONYMOUS LOGON object requires read
permissions for users and groups.

required false

type Map

example

"client_cert_fle": "/path/to/ssl/cert.pem"

"client_key_fle": "/path/to/ssl/key.pem"

"binding": {

 "user_dn": "cn=binder,cn=users,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

}

group_search

description Search confguration for groups. See the group search attributes for
more information. Remove the group_search object from your
confguration to use the memberOf attribute instead.

required false

type Map

example

user_search

description Search confguration for users. See the user search attributes for more
information.

required true

type Map

example

default_upn_doma
in

"group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "group"

}

"user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "sAMAccountName",

 "name_attribute": "displayName",

 "object_class": "person"

}

description Enables UPN authentication when set. The default UPN suffx that will be
appended to the username when a domain is not specifed during login
(for example, user becomes user@defaultdomain.xyz).

required false

type String

example

include_nested_gr
oups

description If true , the group search includes any nested groups a user is a
member of. If false , the group search includes only the top-level
groups a user is a member of.

required false

type Boolean

example

AD binding attributes

WARNING: When using UPN authentication, users must re-
authenticate to apply any changes to group membership on the AD
server since their last authentication. For example, if you remove a
user from a group with administrator permissions for the current
session (such as a terminated employee), Sensu will not apply the
change until the user logs out and tries to start a new session.
Likewise, under UPN, users cannot be forced to log out of Sensu. To
apply group membership updates without re-authentication, specify a
binding account or enable anonymous binding.

"default_upn_domain": "example.org"

"include_nested_groups": true

user_dn

description The AD account that performs user and group lookups. We recommend
using a read-only account. Use the distinguished name (DN) format,
such as cn=binder,cn=users,dc=domain,dc=tld . If your sever
supports anonymous binding, you can omit this attribute to query the
directory without credentials.

required false

type String

example

password

description Password for the user_dn account. If your sever supports anonymous
binding, you can omit this attribute to query the directory without
credentials.

required false

type String

example

AD group search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

"user_dn": "cn=binder,cn=users,dc=acme,dc=org"

"password": "YOUR_PASSWORD"

type String

example

attribute

description Used for comparing result entries. Combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default "member"

example

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default "cn"

example

object_class

description Identifes the class of objects returned in the search result. Combined
with other flters as "(objectClass=<ObjectClass>)" .

"base_dn": "dc=acme,dc=org"

"attribute": "member"

"name_attribute": "cn"

required false

type String

default "group"

example

AD user search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

example

attribute

description Used for comparing result entries. Combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default "sAMAccountName"

example

"object_class": "group"

"base_dn": "dc=acme,dc=org"

"attribute": "sAMAccountName"

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default "displayName"

example

object_class

description Identifes the class of objects returned in the search result. Combined
with other flters as "(objectClass=<ObjectClass>)" .

required false

type String

default "person"

example

AD metadata attributes

name

description A unique string used to identify the AD confguration. Names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z).

required true

"name_attribute": "displayName"

"object_class": "person"

https://regex101.com/r/zo9mQU/2

type String

example

AD troubleshooting

The troubleshooting steps in the LDAP troubleshooting section also apply for AD troubleshooting.

"name": "activedirectory"

Confgure Lightweight Directory Access
Protocol (LDAP) authentication to access
Sensu

COMMERCIAL FEATURE : Access authentication providers in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Sensu requires username and password authentication to access the web UI, API, and sensuctl
command line tool.

In addition to the built-in basic authentication provider, Sensu offers commercial support for a
standards-compliant Lightweight Directory Access Protocol (LDAP) tool for authentication.
The Sensu
LDAP authentication provider is tested with OpenLDAP.
If you’re using AD, head to the AD section.

For general information about confguring authentication providers, see Use an authentication provider.

LDAP confguration examples

Example LDAP confguration: Minimum required attributes

type: ldap

api_version: authentication/v2

metadata:

 name: openldap

spec:

 servers:

 - group_search:

 base_dn: dc=acme,dc=org

 host: 127.0.0.1

 user_search:

 base_dn: dc=acme,dc=org

YML

JSON

https://www.openldap.org/

Example LDAP confguration: All attributes

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

}

type: ldap

api_version: authentication/v2

metadata:

 name: openldap

spec:

 groups_prefx: ldap

 servers:

 - binding:

 password: YOUR_PASSWORD

 user_dn: cn=binder,dc=acme,dc=org

 client_cert_fle: /path/to/ssl/cert.pem

 client_key_fle: /path/to/ssl/key.pem

 group_search:

 attribute: member

 base_dn: dc=acme,dc=org

YML

 name_attribute: cn

 object_class: groupOfNames

 host: 127.0.0.1

 insecure: false

 port: 636

 security: tls

 trusted_ca_fle: /path/to/trusted-certifcate-authorities.pem

 user_search:

 attribute: uid

 base_dn: dc=acme,dc=org

 name_attribute: cn

 object_class: person

 username_prefx: ldap

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

JSON

LDAP specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
For LDAP defnitions, the type should always be ldap .

required true

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
LDAP defnitions, the api_version should always be
authentication/v2 .

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "groups_prefx": "ldap",

 "username_prefx": "ldap"

 },

 "metadata": {

 "name": "openldap"

 }

}

"type": "ldap"

required true

type String

example

metadata

description Top-level map that contains the LDAP defnition name . See the
metadata attributes reference for details.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes the LDAP spec attributes.

required true

type Map of key-value pairs

example

"api_version": "authentication/v2"

"metadata": {

 "name": "openldap"

}

"spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

LDAP spec attributes

servers

description An array of LDAP servers for your directory. During the authentication
process, Sensu attempts to authenticate using each LDAP server in
sequence.

required true

type Array

example

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "groups_prefx": "ldap",

 "username_prefx": "ldap"

}

"servers": [

 {

groups_prefx

description The prefx added to all LDAP groups. Sensu appends the groups_prefx
with a colon. For example, for the groups_prefx ldap and the group
dev , the resulting group name in Sensu is ldap:dev . Use the

groups_prefx when integrating LDAP groups with Sensu RBAC role
bindings and cluster role bindings.

required false

type String

example

 "host": "127.0.0.1",

 "port": 636,

 "insecure": false,

 "security": "tls",

 "trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem",

 "client_cert_fle": "/path/to/ssl/cert.pem",

 "client_key_fle": "/path/to/ssl/key.pem",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

]

username_prefx

description The prefx added to all LDAP usernames. Sensu appends the
username_prefx with a colon. For example, for the username_prefx
ldap and the user alice , the resulting username in Sensu is
ldap:alice . Use the username_prefx when integrating LDAP users

with Sensu RBAC role bindings and cluster role bindings. Users do not
need to provide the username_prefx when logging in to Sensu.

required false

type String

example

LDAP server attributes

host

description LDAP server IP address or FQDN.

required true

type String

example

port

description LDAP server port.

"groups_prefx": "ldap"

"username_prefx": "ldap"

"host": "127.0.0.1"

https://en.wikipedia.org/wiki/Fully_qualified_domain_name

required true

type Integer

default 389 for insecure connections; 636 for TLS connections

example

insecure

description Skips SSL certifcate verifcation when set to true .

required false

type Boolean

default false

example

security

description Determines the encryption type to be used for the connection to the
LDAP server: insecure (unencrypted connection; not recommended
for production), tls (secure encrypted connection), or starttls
(unencrypted connection upgrades to a secure connection).

type String

default "tls"

example

"port": 636

WARNING: Do not use an insecure connection in production
environments.

"insecure": false

trusted_ca_fle

description Path to an alternative CA bundle fle in PEM format to be used instead of
the system’s default bundle. This CA bundle is used to verify the server’s
certifcate.

required false

type String

example

client_cert_fle

description Path to the certifcate that should be sent to the server if requested.

required false

type String

example

client_key_fle

description Path to the key fle associated with the client_cert_fle .

required false

type String

example

"security": "tls"

"trusted_ca_fle": "/path/to/trusted-certifcate-

authorities.pem"

"client_cert_fle": "/path/to/ssl/cert.pem"

"client key fle": "/path/to/ssl/key.pem"

binding

description The LDAP account that performs user and group lookups. If your sever
supports anonymous binding, you can omit the user_dn or password
attributes to query the directory without credentials.

required false

type Map

example

group_search

description Search confguration for groups. See the group search attributes for
more information.

required true

type Map

example

user_search

"binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

}

"group_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "member",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

}

description Search confguration for users. See the user search attributes for more
information.

required true

type Map

example

LDAP binding attributes

user_dn

description The LDAP account that performs user and group lookups. We
recommend using a read-only account. Use the distinguished name (DN)
format, such as cn=binder,cn=users,dc=domain,dc=tld . If your sever
supports anonymous binding, you can omit this attribute to query the
directory without credentials.

required false

type String

example

password

description Password for the user_dn account. If your sever supports anonymous
binding, you can omit this attribute to query the directory without
credentials.

"user_search": {

 "base_dn": "dc=acme,dc=org",

 "attribute": "uid",

 "name_attribute": "cn",

 "object_class": "person"

}

"user_dn": "cn=binder,dc=acme,dc=org"

required false

type String

example

LDAP group search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

example

attribute

description Used for comparing result entries. Combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default "member"

example

"password": "YOUR_PASSWORD"

"base_dn": "dc=acme,dc=org"

"attribute": "member"

name_attribute

description Represents the attribute to use as the entry name.

required false

type String

default "cn"

example

object_class

description Identifes the class of objects returned in the search result. Combined
with other flters as "(objectClass=<ObjectClass>)" .

required false

type String

default "groupOfNames"

example

LDAP user search attributes

base_dn

description Tells Sensu which part of the directory tree to search. For example,
dc=acme,dc=org searches within the acme.org directory.

required true

type String

"name_attribute": "cn"

"object_class": "groupOfNames"

example

attribute

description Used for comparing result entries. Combined with other flters as
"(<Attribute>=<value>)" .

required false

type String

default "uid"

example

name_attribute

description Represents the attribute to use as the entry name

required false

type String

default "cn"

example

object_class

description Identifes the class of objects returned in the search result. Combined
with other flters as "(objectClass=<ObjectClass>)" .

required false

"base_dn": "dc=acme,dc=org"

"attribute": "uid"

"name_attribute": "cn"

type String

default "person"

example

LDAP metadata attributes

name

description A unique string used to identify the LDAP confguration. Names cannot
contain special characters or spaces (validated with Go regex
\A[\w\.\-]+\z).

required true

type String

example

LDAP troubleshooting

To troubleshoot any issue with LDAP authentication, start by [increasing the log verbosity][19] of
sensu-backend to the debug log level.
Most authentication and authorization errors are only displayed
on the debug log level to avoid fooding the log fles.

Authentication errors

This section lists common error messages and possible solutions.

"object_class": "person"

"name": "openldap"

NOTE: If you can’t locate any log entries referencing LDAP authentication, make sure the LDAP
provider was successfully installed using sensuctl.

https://regex101.com/r/zo9mQU/2

Error message: failed to connect: LDAP Result Code 200 "Network Error"

The LDAP provider couldn’t establish a TCP connection to the LDAP server.
Verify the host and
port attributes.
If you are not using LDAP over TLS/SSL, make sure to set the value of the
security attribute to "insecure" for plaintext communication.

Error message: certifcate signed by unknown authority

If you are using a self-signed certifcate, make sure to set the insecure attribute to true .
This will
bypass verifcation of the certifcate’s signing authority.

Error message: failed to bind: ...

The frst step for authenticating a user with the LDAP provider is to bind to the LDAP server using the
service account specifed in the binding object.
Make sure the user_dn specifes a valid DN and
that its password is correct.

Error message: user <username> was not found

The user search failed.
No user account could be found with the given username.
Check the
user_search object and make sure that:

Error message: ldap search for user <username> returned x results, expected only 1

The user search returned more than one user entry, so the provider could not determine which of
these entries to use.
Change the user_search object so the provided username can be used to
uniquely identify a user entry.
Here are two methods to try:

Error message: ldap entry <DN> missing required attribute <name_attribute>

The user entry returned (identifed by <DN>) doesn’t include the attribute specifed by

The specifed base_dn contains the requested user entry DN

The specifed attribute contains the username as its value in the user entry

The object_class attribute corresponds to the user entry object class

Adjust the attribute so its value (which corresponds to the username) is unique among
the user entries

Adjust the base_dn so it only includes one of the user entries

name_attribute object, so the LDAP provider could not determine which attribute to use as the
username in the user entry.
Adjust the name_attribute so it specifes a human-readable name for the
user.

Error message: ldap group entry <DN> missing <name_attribute> and cn attributes

The group search returned a group entry (identifed by <DN>) that doesn’t have the
name_attribute attribute or a cn attribute, so the LDAP provider could not determine which

attribute to use as the group name in the group entry.
Adjust the name_attribute so it specifes a
human-readable name for the group.

Authorization issues

Once authenticated, each user needs to be granted permissions via either a ClusterRoleBinding or
a RoleBinding .

The way LDAP users and LDAP groups can be referred as subjects of a cluster role or role binding
depends on the groups_prefx and username_prefx confguration attributes values of the LDAP
provider.
For example, for the groups_prefx ldap and the group dev , the resulting group name in
Sensu is ldap:dev .

Issue: Permissions are not granted via the LDAP group(s)

During authentication, the LDAP provider will print in the logs all groups found in LDAP (for example,
found 1 group(s): [dev] .
Keep in mind that this group name does not contain the groups_prefx

at this point.

The Sensu backend logs each attempt made to authorize an RBAC request.
This is useful for
determining why a specifc binding didn’t grant the request.
For example:

[...] the user is not a subject of the ClusterRoleBinding cluster-admin [...]

[...] could not authorize the request with the ClusterRoleBinding system:user [...]

[...] could not authorize the request with any ClusterRoleBindings [...]

Confgure OpenID Connect 1.0 protocol
(OIDC) authentication to access Sensu

COMMERCIAL FEATURE : Access authentication providers in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Sensu requires username and password authentication to access the web UI, API, and sensuctl
command line tool.

In addition to the built-in basic authentication provider, Sensu offers commercial support for
authentication using the OpenID Connect 1.0 protocol (OIDC) on top of the OAuth 2.0 protocol.
The
Sensu OIDC provider is tested with Okta and PingFederate.

For general information about confguring authentication providers, see Use an authentication provider.

OIDC confguration examples

WARNING: Defning multiple OIDC providers can lead to inconsistent authentication behavior.
Use
sensuctl auth list to verify that only one authentication provider of type OIDC is defned.
If

more than one OIDC auth provider confguration is listed, use sensuctl auth delete $NAME to
remove the extra OIDC confgurations by name.

type: oidc

api_version: authentication/v2

metadata:

 name: oidc_name

spec:

 additional_scopes:

 - groups

 - email

 client_id: a8e43af034e7f2608780

 client_secret: b63968394be6ed2edb61c93847ee792f31bf6216

 disable_offine_access: false

YML

https://www.okta.com/
https://www.pingidentity.com/en/software/pingfederate.html

OIDC specifcation

OIDC top-level attributes

 redirect_uri: http://127.0.0.1:8080/api/enterprise/authentication/v2/oidc/callback

 server: https://oidc.example.com:9031

 groups_claim: groups

 groups_prefx: 'oidc:'

 username_claim: email

 username_prefx: 'oidc:'

{

 "type": "oidc",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "oidc_name"

 },

 "spec": {

 "additional_scopes": [

 "groups",

 "email"

],

 "client_id": "a8e43af034e7f2608780",

 "client_secret": "b63968394be6ed2edb61c93847ee792f31bf6216",

 "disable_offine_access": false,

 "redirect_uri": "http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2/oidc/callback",

 "server": "https://oidc.example.com:9031",

 "groups_claim": "groups",

 "groups_prefx": "oidc:",

 "username_claim": "email",

 "username_prefx": "oidc:"

 }

}

JSON

type

description Top-level attribute that specifes the sensuctl create resource type.
For OIDC confguration, the type should always be oidc .

required true

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
OIDC confguration, the api_version should always be
authentication/v2 .

required true

type String

example

metadata

description Top-level collection of metadata about the OIDC confguration. The
metadata map is always at the top level of the OIDC defnition. This

means that in wrapped-json and yaml formats, the metadata
scope occurs outside the spec scope.

required true

type Map of key-value pairs

example

"type": "oidc"

"api_version": "authentication/v2"

"metadata": {

 "name": "oidc_name"

spec

description Top-level map that includes the OIDC spec attributes.

required true

type Map of key-value pairs

example

OIDC metadata attribute

name

description A unique string used to identify the OIDC confguration. The

 }

}

"spec": {

 "additional_scopes": [

 "groups",

 "email"

],

 "client_id": "a8e43af034e7f2608780",

 "client_secret":

"b63968394be6ed2edb61c93847ee792f31bf6216",

 "disable_offine_access": false,

 "redirect_uri": "http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2/o

idc/callback",

 "server": "https://oidc.example.com:9031",

 "groups_claim": "groups",

 "groups_prefx": "oidc:",

 "username_claim": "email",

 "username_prefx": "oidc:"

 }

}

metadata.name cannot contain special characters or spaces (validated
with Go regex \A[\w\.\-]+\z).

required true

type String

example

OIDC spec attributes

additional_scopes

description Scopes to include in the claims, in addition to the default openid scope.

required false

type Array

example

client_id

description The OIDC provider application Client ID .

required true

"name": "oidc_name"

NOTE: For most providers, you’ll want to include groups , email
and username in this list.

"additional_scopes": ["groups", "email", "username"]

NOTE: Requires registering an application in the OIDC provider.

https://regex101.com/r/zo9mQU/2

type String

example

client_secret

description The OIDC provider application Client Secret .

required true

type String

example

disable_offine_ac
cess

description If true , the OIDC provider cannot include the offine_access scope
in the authentication request. Otherwise, false .

We recommend setting disable_offine_access to false . If set to
true , OIDC providers cannot return a refresh token that allows users to

refresh their access tokens, and users will be logged out after 5 minutes.

required true

default false

type Boolean

example

"client_id": "1c9ae3e6f3cc79c9f1786fcb22692d1f"

NOTE: Requires registering an application in the OIDC provider.

"client_secret": "a0f2a3c1dcd5b1cac71bf0c03f2ff1bd"

"disable_offine_access": false

redirect_uri

description Redirect URL to provide to the OIDC provider. Requires
/api/enterprise/authentication/v2/oidc/callback

required false

type String

example

server

description The location of the OIDC server you wish to authenticate against.

required true

type String

example

groups_claim

description The claim to use to form the associated RBAC groups.

NOTE: Only required for certain OIDC providers, such as Okta.

"redirect_uri": "http://sensu-

backend.example.com:8080/api/enterprise/authentication/v2/o

idc/callback"

NOTE: If you confgure with http, the connection will be insecure.

"server": "https://sensu.oidc.provider.example.com"

required false

type String

example

groups_prefx

description The prefx added to all OIDC groups. Sensu appends the groups_prefx
with a colon. For example, for the groups_prefx okta and the group
dev , the resulting group name in Sensu is okta:dev . Use the

groups_prefx when integrating OIDC groups with Sensu RBAC role
bindings and cluster role bindings.

required false

type String

example

username_claim

description The claim to use to form the fnal RBAC user name.

required false

type String

example

NOTE: The value held by the claim must be an array of strings.

 "groups_claim": "groups"

"groups_prefx": "okta"

"username_claim": "person"

username_prefx

description The prefx added to all OIDC usernames. Sensu appends the
username_prefx with a colon. For example, for the username_prefx
okta and the user alice , the resulting username in Sensu is
okta:alice . Use the username_prefx when integrating OIDC users

with Sensu RBAC role bindings and cluster role bindings. Users do not
need to provide the username_prefx when logging in to Sensu.

required false

type String

example

Register an OIDC application

To use OIDC for authentication, register Sensu Go as an OIDC application.
Use the instructions listed in
this section to register an OIDC application for Sensu Go based on your OIDC provider.

Okta

Requirements

Create an Okta application

"username_prefx": "okta"

Okta

Access to the Okta Administrator Dashboard

Sensu Go 5.12.0 or later (plus a valid commercial license for Sensu Go versions 5.12.0
through 5.14.2)

NOTE: These instructions are based on the Okta Classic UI.
The steps may be different if you are
using the Okta Developer Console.

1. In the Okta Administrator Dashboard, start the wizard:
select Applications > Add Application > Create New App .

2. In the Platform dropdown, select Web .
3. In the Sign on method section, select OpenID Connect .
4. Click Create.
5. In the Create OpenID Connect Integration window:

6. Click Save.
7. Select the General tab and click Edit.
8. In the Allowed grant types section, click to select the box next to Refresh Token.
9. Click Save.

10. Select the Sign On tab.
11. In the OpenID Connect ID Token section, click Edit.
12. In the Groups claim flter section:

13. Click Save.
14. (Optional) Select the Assignments tab to assign people and groups to your app.

OIDC provider confguration

1. Add the additional_scopes confguration attribute in the OIDC scope and set the value to [
"groups"] :

2. Add the groups to the groups_claim string.
For example, if you have an Okta group
groups and you set the groups_prefx to okta: , you can set up RBAC objects to mention

group okta:groups as needed:

GENERAL SETTINGS section: in the Application name feld, enter the app name. You
can also upload a logo in the if desired.

CONFIGURE OPENID CONNECT section: in the Login redirect URIs feld, enter
API_URL/api/enterprise/authentication/v2/oidc/callback (replace API_URL

with your API URL).

In the frst feld, enter groups

In the dropdown menu, select matches regex

In the second feld, enter .*

"additional_scopes": ["groups"]

"groups_claim": "okta:groups"

3. Add the redirect_uri confguration attribute in the OIDC scope and set the value to the
Redirect URI confgured at step 3 of Create an Okta application:

Sensuctl login with OIDC

1. Run sensuctl login oidc .

2. If you are using a desktop, a browser will open to OIDC provider and allow you to
authenticate and log in.
If a browser does not open, launch a browser to complete the login via
your OIDC provider at following URL:

"redirect_uri": "API_URL/api/enterprise/authentication/v2/oidc/callback"

https://sensu-
backend.example.com:8080/api/enterprise/authentication/v2/oidc/authorize

https://sensu-backend.example.com/
https://sensu-backend.example.com/

Use API keys to authenticate to Sensu

The Sensu API key feature (core/v2.APIKey) is a persistent UUID that maps to a stored Sensu
username.
The advantages of authenticating with API keys rather than access tokens include:

API keys are cluster-wide resources, so only cluster admins can grant, view, and revoke them.

API key authentication

Similar to the Bearer [token] Authorization header, Key [api-key] will be accepted as an
Authorization header for authentication.

For example, a JWT Bearer [token] Authorization header might be:

If you’re using Key [api-key] to authenticate instead, the Authorization header might be:

More effcient integration: Check and handler plugins and other code can integrate with the
Sensu API without implementing the logic required to authenticate via the /auth API
endpoint to periodically refresh the access token

Improved security: API keys do not require providing a username and password in check or
handler defnitions

Better admin control: API keys can be created and revoked without changing the underlying
user’s password…but keep in mind that API keys will continue to work even if the user’s
password changes

NOTE: API keys are not supported for authentication providers such as LDAP and OIDC.

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

Example

Sensuctl management commands

To generate a new API key for the admin user:

$ curl -H "Authorization: Key 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

HTTP/1.1 200 OK

[

 {

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

 }

]

NOTE: The API key resource is intentionally not compatible with sensuctl create .

$ sensuctl api-key grant admin

Created: /api/core/v2/apikeys/7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2

To get information about an API key:

To get a list of all API keys:

To revoke an API key for the admin user:

$ sensuctl api-key info 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2 --format json

{

 "metadata": {

 "name": "7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2"

 },

 "username": "admin",

 "created_at": 1570744117

}

$ sensuctl api-key list

 Name Username Created At

 ────────────────────────────────────── ────────── ───────────────────────────────

 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2 admin 2019-10-10 14:48:37 -0700 PDT

$ sensuctl api-key revoke 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2 --skip-confrm

Deleted

Create a read-only user with role-based
access control (RBAC)

Role-based access control (RBAC) allows you to exercise fne-grained control over how Sensu users
interact with Sensu resources.
Use RBAC rules to achieve multitenancy so different projects and
teams can share a Sensu instance.

Sensu RBAC helps different teams and projects share a Sensu instance.
RBAC allows you to manage
users and their access to resources based on namespaces, groups, roles, and bindings.

By default, Sensu includes a default namespace and an admin user with full permissions to
create, modify, and delete resources within Sensu, including RBAC resources like users and roles.
This
guide requires a running Sensu backend and a sensuctl instance confgured to connect to the backend
as an admin user.

Create a read-only user

In this section, you’ll create a user and assign them read-only access to resources within the
default namespace using a role and a role binding.

1. Create a user with the username alice and assign them to the group ops :

2. Create a read-only role with get and list permissions for all resources (*) within the
default namespace:

3. Create an ops-read-only role binding to assign the read-only role to the ops group:

sensuctl user create alice --password='password' --groups=ops

sensuctl role create read-only --verb=get,list --resource=* --

namespace=default

You can also use role bindings to tie roles directly to users using the --user fag.

All users in the ops group now have read-only access to all resources within the default namespace.
You can use the sensuctl user , sensuctl role , and sensuctl role-binding commands to
manage your RBAC confguration.

Create a cluster-wide event-reader user

Suppose you want to create a user with read-only access to events across all namespaces.
Because
you want this role to have cluster-wide permissions, you’ll need to create a cluster role and a cluster
role binding.

1. Create a user with the username bob and assign them to the group ops :

2. Create a global-event-reader cluster role with get and list permissions for events
across all namespaces:

3. Create an ops-event-reader cluster role binding to assign the global-event-reader role
to the ops group:

All users in the ops group now have read-only access to events across all namespaces.

sensuctl role-binding create ops-read-only --role=read-only --group=ops

sensuctl user create bob --password='password' --groups=ops

sensuctl cluster-role create global-event-reader --verb=get,list --

resource=events

sensuctl cluster-role-binding create ops-event-reader --cluster-role=global-

event-reader --group=ops

Next steps

Now that you know how to create a user, a role, and a role binding to assign a role to a user, check out
the RBAC reference for in-depth documentation on role-based access control, examples, and
information about cluster-wide permissions.

Maintain Sensu

The Maintain Sensu category includes information to keep your Sensu installation up-to-date and
running smoothly.

Upgrade or migrate

Follow the upgrade guide for step-by-step instructions to upgrade to the latest version of Sensu from
any earlier version.
The upgrade instructions include details about important changes between versions
that could affect your upgrade and any special requirements to make sure your upgrade is successful.

If you are still using Sensu Core 1.x, follow the migrate guide to upgrade to Sensu Go.
The migrate
guide includes links to Sensu’s migration resources and Core confguration translation tools, as well as
instructions for installing Sensu Go alongside your existing Sensu Core instance.

Troubleshoot

Use the Sensu troubleshooting guide to diagnose and resolve common issues.
Learn how to read,
confgure, and fnd the logs produced by Sensu services.
Sensu log messages can help you identify and
solve backend startup errors and permissions issues.

The troubleshooting guide also describes how to use Sensu handlers and flters to test and debug your
observability pipeline and diagnose problems related to assets.

Upgrade Sensu

Upgrade to the latest version of Sensu Go from 5.0.0 or later

To upgrade to the latest version of Sensu Go from version 5.0.0 or later, install the latest packages.

Then, restart the services.

Use the version command to determine the installed version using the sensu-agent , sensu-
backend , and sensuctl tools.
For example, sensu-backend version .

Upgrade to Sensu Go 5.16.0 from any earlier version

As of Sensu Go 5.16.0, Sensu’s free entity limit is 100 entities.
All commercial features are available for
free in the packaged Sensu Go distribution up to an entity limit of 100.

When you upgrade to 5.16.0, if your existing unlicensed instance has more than 100 entities, Sensu
will continue to monitor those entities.
However, if you try to create any new entities via the HTTP API or
sensuctl, you will see the following message:

This functionality requires a valid Sensu Go license with a suffcient entity limit.

To get a valid license fle, arrange a trial, or increase your entity limit, contact

Sales.

NOTE: For systems that use systemd , run sudo systemctl daemon-reload before restarting
the services.

Restart the Sensu agent

sudo service sensu-agent restart

Restart the Sensu backend

sudo service sensu-backend restart

Connections from new agents will fail and result in a log message like this:

In the web UI, you will see the following message when you reach the 100-entity limit:

If your Sensu instance includes more than 100 entities, contact Sales to learn how to upgrade your
installation and increase your limit.
See our blog announcement for more information about our usage
policy.

Upgrade Sensu clusters from 5.7.0 or earlier to 5.8.0 or later

Due to updates to etcd serialization, you must shut down Sensu clusters with multiple backend nodes
while upgrading from Sensu Go 5.7.0 or earlier to 5.8.0 or later.
See the backend reference for more
information about stopping and starting backends.

Upgrade Sensu backend binaries to 5.1.0

For Sensu backend binaries, the default state-dir in 5.1.0 is now /var/lib/sensu/sensu-
backend instead of /var/lib/sensu .
To upgrade your Sensu backend binary to 5.1.0, frst download
the latest version.
Then, make sure the /etc/sensu/backend.yml confguration fle specifes a
state-dir .
To continue using /var/lib/sensu as the state-dir , add the following confguration

to /etc/sensu/backend.yml .

{"component":"agent","error":"handshake failed with status

402","level":"error","msg":"reconnection attempt failed","time":"2019-11-

20T05:49:24-07:00"}

NOTE: This section applies only to Sensu clusters with multiple backend nodes.

NOTE: This section applies only to Sensu backend binaries downloaded from s3-us-west-
2.amazonaws.com/sensu.io/sensu-go , not to Sensu RPM or DEB packages.

https://sensu.io/contact?subject=contact-sales/
https://sensu.io/blog/one-year-of-sensu-go

Then restart the backend.

/etc/sensu/backend.yml confguration to store backend data at /var/lib/sensu

state-dir: "/var/lib/sensu"

Migrate from Sensu Core to Sensu Go

This guide includes general information for migrating your Sensu instance from Sensu Core 1.x to
Sensu Go.
For instructions and tools to help you translate your Sensu confguration from Sensu Core
1.x to Sensu Go, see the Sensu Translator project and our blog post about check confguration
upgrades with the Sensu Go sandbox.

Sensu Go includes important changes to all parts of Sensu: architecture, installation, resource
defnitions, the event data model, check dependencies, flter evaluation, and more.
Sensu Go also
includes many powerful commercial features to make monitoring easier to build, scale, and offer as a
self-service tool to your internal customers.

Sensu Go is available for RHEL/CentOS, Debian, Ubuntu, and Docker.
The Sensu Go agent is also
available for Windows.

Aside from this migration guide, these resources can help you migrate from Sensu Core to Sensu Go:

We also offer commercial support and professional services packages to help with your Sensu Go
migration.

Confguration management with Ansible, Chef, and Puppet

IMPORTANT : To install Sensu Go alongside your current Sensu instance, you must upgrade to at
least Sensu Core 1.9.0-2.

Sensu Community Slack: Join hundreds of other Sensu users in our Community Slack, where
you can ask questions and beneft from tips others picked up during their own Sensu Go
migrations.

Sensu Community Forum: Drop a question in our dedicated category for migrating to Go.

Sensu Go Sandbox: Download the sandbox and try out some monitoring workfows with
Sensu Go.

Sensu Translator: Use this command-line tool to generate Sensu Go confgurations from your
Sensu Core confg fles.

https://github.com/sensu/sensu-translator/
https://sensu.io/blog/check-configuration-upgrades-with-the-sensu-go-sandbox/
https://sensu.io/blog/check-configuration-upgrades-with-the-sensu-go-sandbox/
https://sensu.io/support/
https://sensu.io/support/
https://sensu.io/support/
https://sensu.io/support/
https://eol-repositories.sensuapp.org/
https://slack.sensu.io/
https://discourse.sensu.io/c/sensu-go/migrating-to-go
https://github.com/sensu/sensu-translator

Confguration management integrations for Sensu Go are available for Ansible, Chef, and Puppet:

Packaging

Sensu Go is provided as three packages: sensu-go-backend, sensu-go-agent, and sensu-go-cli
(sensuctl). This is a fundamental change in Sensu terminology from Sensu Core: the server is now the
backend.

Clients are represented within Sensu Go as abstract entities that can describe a wider range of system
components such as network gear, a web server, or a cloud resource.
Entities include agent entities that
run a Sensu agent and the familiar proxy entities.

The glossary includes more information about new terminology in Sensu Go.

Architecture

The external RabbitMQ transport and Redis datastore in Sensu Core 1.x are replaced with an
embedded transport and etcd datastore in Sensu Go.

Single Sensu Go backend or standalone architecture

In Sensu Go, the Sensu backend and agent are confgured with YAML fles or the sensu-backend or
sensu-agent command line tools rather than JSON fles.
Sensu checks and pipeline elements are

confgured via the API or sensuctl tool in Sensu Go instead of JSON fles.

The Sensu backend is powered by an embedded transport and etcd datastore and gives you fexible,
automated workfows to route metrics and alerts.
Sensu backends require persistent storage for their

Ansible collection for Sensu Go and documentation site

Chef cookbook for Sensu Go — contact us for more information

Puppet module for Sensu Go

https://etcd.io/docs/latest/
http://localhost:1313/images/standalone_architecture.png
https://etcd.io/
https://galaxy.ansible.com/sensu/sensu_go
https://sensu.github.io/sensu-go-ansible/
https://supermarket.chef.io/cookbooks/sensu-go
https://monitoringlove.sensu.io/chef
https://forge.puppet.com/modules/sensu/sensu

embedded database, disk space for local asset caching, and several exposed ports:

Sensu agents are lightweight clients that run on the infrastructure components you want to monitor.
Agents automatically register with Sensu as entities and are responsible for creating check and metric
events to send to the backend event pipeline.

The Sensu agent uses:

The agent TCP and UDP sockets are deprecated in favor of the agent API.

Agents that use Sensu assets require some disk space for a local cache.

See the backend, agent, and sensuctl reference docs for more information.

Entities

“Clients” are represented within Sensu Go as abstract “entities” that can describe a wider range of
system components (for example, network gear, a web server, or a cloud resource).
Entities include
agent entities, which are entities running a Sensu agent, and the familiar proxy entities.
See the entity
reference and the guide to monitoring external resources for more information.

Checks

Standalone checks are not supported in Sensu Go, although you can achieve similar functionality with
role-based access control (RBAC), assets, and entity subscriptions.
There are also a few changes to

2379 (gRPC) Sensu storage client: Required for Sensu backends using an external etcd
instance

2380 (gRPC) Sensu storage peer: Required for other Sensu backends in a cluster

3000 (HTTP/HTTPS) Sensu web UI: Required for all Sensu backends using a Sensu web UI

8080 (HTTP/HTTPS) Sensu API: Required for all users accessing the Sensu API

8081 (WS/WSS) Agent API: Required for all Sensu agents connecting to a Sensu backend

3030 (TCP/UDP) Sensu agent socket: Required for Sensu agents using the agent socket

3031 (HTTP) Sensu agent API: Required for all users accessing the agent API

8125 (UDP) StatsD listener: Required for all Sensu agents using the StatsD listener

https://sensu.io/blog/self-service-monitoring-checks-in-sensu-go/
https://sensu.io/blog/self-service-monitoring-checks-in-sensu-go/

check defnitions in Sensu Go.
The stdin check attribute is not supported in Sensu Go, and Sensu
Go does not try to run a “default” handler when executing a check without a specifed handler.
In
addition, check subdues are not available in Sensu Go.

Check hooks are a resource type in Sensu Go: you can create, manage, and reuse hooks
independently of check defnitions.
You can also execute multiple hooks for any given response code.

Events

In Sensu Go, all check results are considered events and are processed by event handlers.
You can
use the built-in incidents flter to recreate the Sensu Core 1.x behavior in which only check results with
a non-zero status are considered events.

Handlers

Transport handlers are not supported by Sensu Go, but you can create similar functionality with a pipe
handler that connects to a message bus and injects event data into a queue.

Filters

Sensu Go includes three new built-in event flters: only-incidents, only-metrics, and allow-silencing.
Sensu Go does not include a built-in check dependencies flter or a flter-when feature.

Ruby eval logic from Sensu Core 1.x is replaced with JavaScript expressions in Sensu Go, opening up
powerful ways to flter events based on occurrences and other event attributes.
As a result, Sensu Go
does not include the built-in occurrence-based event flter in Sensu Core 1.x, which allowed you
to control the number of duplicate events that reached the handler.
You can replicate the occurrence-
based flter’s functionality with Sensu Go’s repeated events flter defnition.

Fatigue check flter

For Sensu Go users, we recommend the fatigue check flter, a JavaScript implementation of the
occurrences flter from Sensu 1.x.
This flter looks for check and entity annotations in each event it

receives and uses the values of those annotations to confgure the flter’s behavior on a per-event
basis.

https://github.com/nixwiz/sensu-go-fatigue-check-filter/
https://github.com/nixwiz/sensu-go-fatigue-check-filter/#configuration

The Sensu Translator version 1.1.0 retrieves occurrence and refresh values from a Sensu Core 1.x
check defnition and outputs them as annotations in a Sensu Go check defnition, compatible with the
fatigue check flter.

However, the Sensu Translator doesn’t automatically add the fatigue check flter asset or the flter
confguration you need to run it.
To use the fatigue check flter asset, you must register it, create a
correctly confgured event flter defnition, and add the event flter to the list of flters on applicable
handlers.

Assets

The sensu-install tool in Sensu Core 1.x is replaced by assets in Sensu Go.
Assets are shareable,
reusable packages that make it easier to deploy Sensu plugins.

You can still install Sensu Community plugins in Ruby via sensu-install by installing sensu-
plugins-ruby.
See the installing plugins guide for more information.

Role-based access control (RBAC)

Role-based access control (RBAC) is a built-in feature of the open-source version of Sensu Go.
RBAC
allows you to manage and access users and resources based on namespaces, groups, roles, and
bindings.
To set up RBAC in Sensu Go, see the RBAC reference and Create a read-only user.

Silencing

Silencing is disabled by default in Sensu Go.
You must explicitly enable silencing with the built-in
not_silenced event flter.

Token substitution

The syntax for token substitution changed to double curly braces in Sensu Go (from triple colons in
Sensu Core 1.x).

Aggregates

https://github.com/sensu/sensu-translator/
https://github.com/nixwiz/sensu-go-fatigue-check-filter/#asset-registration
https://github.com/nixwiz/sensu-go-fatigue-check-filter/#filter-definition
https://github.com/sensu-plugins/
https://packagecloud.io/sensu/community/
https://packagecloud.io/sensu/community/

Check aggregates are supported through the Sensu Go Aggregate Check Plugin (a commercial
resource).

API

In addition to the changes to resource defnitions, Sensu Go includes a new, versioned API. See the
API overview for more information.

Step-by-step migration instructions

Step 1: Install Sensu Go

1. Install the Sensu Go backend

The Sensu backend is available for Ubuntu/Debian, RHEL/CentOS, and Docker.
See the installation
guide to install, confgure, and start the Sensu backend according to your deployment strategy.

2. Log in to the Sensu web UI

The Sensu Go web UI provides a unifed view of your monitoring events with user-friendly tools to
reduce alert fatigue and manage your Sensu instance.
After starting the Sensu backend, open the web
UI by visiting http://localhost:3000.
You may need to replace localhost with the hostname or IP
address where the Sensu backend is running.

To log in, enter your Sensu user credentials, or use Sensu’s default admin credentials (username:
admin and password: P@ssw0rd!).

3. Install sensuctl on your workstation

Sensuctl is a command line tool for managing resources within Sensu.
It works by calling Sensu’s HTTP
API to create, read, update, and delete resources, events, and entities.
Sensuctl is available for Linux,
Windows, and macOS.
See the installation guide to install and confgure sensuctl.

4. Set up Sensu users

https://bonsai.sensu.io/assets/sensu/sensu-aggregate-check/

Role-based access control (RBAC) is a built-in feature of the open-source version of Sensu Go.
RBAC
allows you to manage and access users and resources based on namespaces, groups, roles, and
bindings.
To set up RBAC in Sensu Go, see the RBAC reference and Create a read-only user.

In Sensu Go, namespaces partition resources within a Sensu instance.
Sensu Go entities, checks,
handlers, and other namespaced resources belong to a single namespace.
The Sensu translator places
all translated resources into the default namespace — we’ll use the translater in a moment.

In addition to built-in RBAC, Sensu Go’s commercial features include support for authentication using
Microsoft Active Directory (AD) and standards-compliant Lightweight Directory Access Protocol tools
like OpenLDAP.

5. Install agents

The Sensu agent is available for Ubuntu/Debian, RHEL/CentOS, Windows, and Docker.
See the
installation guide to install, confgure, and start Sensu agents.

If you’re doing a side-by-side migration, add api-port (default: 3031) and socket-port (default:
3030) to your agent confguration.
This prevents the Sensu Go agent API and socket from conficting

with the Sensu Core client API and socket.
You can also disable these features in the agent
confguration using the disable-socket and disable-api fags.

Sensu should now be installed and functional. The next step is to translate your Sensu Core
confguration to Sensu Go.

Step 2: Translate your confguration

Use t Sensu Translator command line tool to transfer your Sensu Core checks, handlers, and mutators
to Sensu Go.

1. Run the translator

agent confguration: /etc/sensu.agent.yml

...

api-port: 4041

socket-port: 4030

...

https://github.com/sensu/sensu-translator/

Install and run the translator.

If translation is successful, you should see a few callouts followed by DONE! .

Combine your confg into a sensuctl-readable format.

NOTE: for use with sensuctl create , do not use a comma between resource objects in Sensu Go
resource defnitions in JSON format.

Most attributes are ready to use as-is, but you’ll need to adjust your Sensu Go confguration manually
to migrate some of Sensu’s features.

NOTE: To streamline a comparison of your Sensu Core confguration with your Sensu Go
confguration, output your current Sensu Core confguration using the API: curl -s

http://127.0.0.1:4567/settings | jq . > sensu_confg_original.json

Install dependencies

yum install -q -y rubygems ruby-devel

Install sensu-translator

gem install sensu-translator

Translate all confg in /etc/sensu/conf.d to Sensu Go and output to

/sensu_confg_translated

Option: translate your confg in sections according to resource type

sensu-translator -d /etc/sensu/conf.d -o /sensu_confg_translated

Sensu 1.x flter translation is not yet supported

Unable to translate Sensu 1.x flter: only_production

{:attributes=>{:check=>{:environment=>"production"}}}

DONE!

fnd sensu_confg_translated/ -name '*.json' -exec cat {} \; >

sensu_confg_translated_singlefle.json

2. Translate checks

Review your Sensu Core check confguration for the following attributes, and make the corresponding
updates to your Sensu Go confguration.

Core attribute Manual updates required in Sensu Go confg

::: foo ::: Update the syntax for token substitution from triple colons to double curly
braces. For example: {{ foo }}

stdin: true No updates required. Sensu Go checks accept data on stdin by default.

handlers:

default

Sensu Go does not have a default handler. Create a handler named
default to continue using this pattern.

subdues Check subdues are not available in Sensu Go.

standalone: true Standalone checks are not supported in Sensu Go, although you can
achieve similar functionality using role-based access control, assets, and
entity subscriptions. The translator assigns all Core standalone checks to
a standalone subscription in Sensu Go. Confgure one or more Sensu
Go agents with the standalone subscription to execute formerly
standalone checks.

metrics: true See the translate metric checks section.

proxy_requests See the translate proxy requests section.

subscribers:

roundrobin...

Remove roundrobin from the subscription name, and add the
round_robin check attribute set to true .

aggregate Check aggregates are supported through the commercial Sensu Go
Aggregate Check Plugin.

hooks See the translate hooks section.

dependencies Check dependencies are not available in Sensu Go.

PRO TIP: When using token substitution in Sensu Go and accessing labels or annotations that
include . (for example: sensu.io.json_attributes), use the index function. For example,
{{index .annotations "web_url"}} substitutes the value of the web_url annotation;
{{index .annotations "production.ID"}} substitutes the value of the production.ID

https://sensu.io/blog/self-service-monitoring-checks-in-sensu-go/
https://sensu.io/blog/self-service-monitoring-checks-in-sensu-go/
https://bonsai.sensu.io/assets/sensu/sensu-aggregate-check/
https://bonsai.sensu.io/assets/sensu/sensu-aggregate-check/

Translate metric checks

The Sensu Core type: metric attribute is not part of the Sensu Go check spec, so you’ll need to
adjust it manually.
Sensu Core checks could be confgured as type: metric , which told Sensu to
always handle the check regardless of the check status output.
This allowed Sensu Core to process
output metrics via a handler even when the check status was not in an alerting state.

Sensu Go treats output metrics as frst-class objects, so you can process check status as well as
output metrics via different event pipelines.
See the guide to metric output to update your metric checks
with the output_metric_handlers and output_metric_format attributes.

Translate proxy requests and proxy entities

See the guide to monitoring external resources to re-confgure proxy_requests attributes and
update your proxy check confguration.
See the entity reference to re-create your proxy client
confgurations as Sensu Go proxy entities.

Translate hooks

Check hooks are now a resource type in Sensu Go, so you can create, manage, and reuse hooks
independently of check defnitions.
You can also execute multiple hooks for any given response code.
See the guide and hooks reference docs to re-create your Sensu Core hooks as Sensu Go hook
resources.

Custom attributes

Custom check attributes are not supported in Sensu Go.
Instead, Sensu Go allows you to add custom
labels and annotations to entities, checks, assets, hooks, flters, mutators, handlers, and silences.
See
the metadata attributes section in the reference documentation for more information about using labels
and annotations (for example, metadata attributes for entities).

The Sensu Translator stores all check extended attributes in the check metadata annotation named
sensu.io.json_attributes .
See the check reference for more information about using labels and

annotations in check defnitions.

3. Translate flters

Ruby eval logic used in Sensu Core flters is replaced with JavaScript expressions in Sensu Go,
opening up powerful possibilities to combine flters with flter assets.
As a result, you’ll need to rewrite

annotation.

https://bonsai.sensu.io/assets?q=eventfilter

your Sensu Core flters in Sensu Go format.

First, review your Core handlers to identify which flters are being used. Then, follow the flter reference
and guide to using flters to re-write your flters using Sensu Go expressions and event data. Check out
the blog post on flters for a deep dive into Sensu Go flter capabilities.

4. Translate handlers

In Sensu Go, all check results are considered events and are processed by event handlers.
Use the
built-in is_incident flter to recreate the Sensu Core behavior, in which only check results with a
non-zero status are considered events.

Sensu Core hourly flter

{

 "flters": {

 "recurrences": {

 "attributes": {

 "occurrences": "eval: value == 1 || value % 60 == 0"

 }

 }

 }

}

Sensu Go hourly flter

 {

 "metadata": {

 "name": "hourly",

 "namespace": "default"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0"

],

 "runtime_assets": null

 }

NOTE: Silencing is disabled by default in Sensu Go and must be explicitly enabled using the built-
in not_silenced flter. Add the not_silenced flter to any handlers for which you want to

https://sensu.io/blog/filters-valves-for-the-sensu-monitoring-event-pipeline

Review your Sensu Core check confguration for the following attributes, and make the corresponding
updates to your Sensu Go confguration.

Core attribute Manual updates required in Sensu Go confg

flters:

occurrences

The built-in occurrences flter in Sensu Core is not available in Sensu Go,
but you can replicate its functionality with the sensu-go-fatigue-check-
flter asset.

type: transport Transport handlers are not supported in Sensu Go, but you can create
similar functionality with a pipe handler that connects to a message bus
and injects event data into a queue.

flters:

check_dependencie

s

Sensu Go does not include a built-in check dependencies flter.

severities Severities are not available in Sensu Go.

handle_silenced Silencing is disabled by default in Sensu Go and must be explicitly
enabled using the built-in not_silenced flter.

handle_fapping All check results are considered events in Sensu Go and are processed
by event handlers.

5. Upload your confg to your Sensu Go instance

After you review your translated confguration, make any necessary updates, and add resource
defnitions for any flters and entities you want to migrate, you can upload your Sensu Go confg using
sensuctl.

PRO TIP: sensuctl create (and sensuctl delete) are powerful tools to help you manage your
Sensu confgs across namespaces. See the sensuctl reference for more information.

Access your Sensu Go confg using the Sensu API.

enable Sensu’s silencing feature.

sensuctl create --fle /path/to/confg.json

https://bonsai.sensu.io/assets/nixwiz/sensu-go-fatigue-check-filter
https://bonsai.sensu.io/assets/nixwiz/sensu-go-fatigue-check-filter

You can also access your Sensu Go confguration in JSON or YAML using sensuctl.
For example,
sensuctl check list --format json .
Run sensuctl help to see available commands.
For more

information about sensuctl’s output formats (json , wrapped-json , and yaml), see the sensuctl
reference.

Step 3: Translate plugins and register assets

Sensu plugins

Within the Sensu Plugins org, see individual plugin READMEs for compatibility status with Sensu Go.
For handler and mutators plugins, see the Sensu plugins README to map event data to the Sensu Go
event format.
This allows you to use Sensu plugins for handlers and mutators with Sensu Go without re-
writing them.

To re-install Sensu plugins onto your Sensu Go agent nodes (check plugins) and backend nodes
(mutator and handler plugins), see the guide to installing the sensu-install tool for use with Sensu
Go.

Sensu Go assets

The sensu-install tool in Sensu Core 1.x is replaced by assets in Sensu Go.
Assets are shareable,
reusable packages that make it easier to deploy Sensu plugins.

Set up a local API testing environment by saving your Sensu credentials

and token as environment variables. Requires curl and jq.

export SENSU_USER=admin && SENSU_PASS=P@ssw0rd!

export SENSU_TOKEN=`curl -XGET -u "$SENSU_USER:$SENSU_PASS" -s

http://localhost:8080/auth | jq -r ".access_token"`

Return list of all confgured checks

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

Return list of all confgured handlers

curl -H "Authorization: Bearer $SENSU_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers

https://github.com/sensu-plugins/
https://github.com/sensu-plugins/sensu-plugin#sensu-go-enablement

Although assets are not required to run Sensu Go, we recommend using assets to install plugins
where possible.
You can still install Sensu Community plugins in Ruby via sensu-install by installing
sensu-plugins-ruby.
See the installing plugins guide for more information.

Sensu supports runtime assets for checks, flters, mutators, and handlers.
Discover, download, and
share assets with Bonsai, the Sensu asset hub.

To create your own assets, see the asset reference and guide to sharing an asset on Bonsai.
To
contribute to converting a Sensu plugin to an asset, see the Discourse post.

Step 4: Sunset your Sensu Core instance

When you’re ready to sunset your Sensu Core instance, see the platform documentation to stop the
Sensu Core services.
You may also want to re-install the sensu-install tool using the sensu-
plugins-ruby package.

https://github.com/sensu-plugins/
https://packagecloud.io/sensu/community/
https://bonsai.sensu.io/
https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165
https://docs.sensu.io/sensu-core/latest/platforms/
https://packagecloud.io/sensu/community/
https://packagecloud.io/sensu/community/
https://packagecloud.io/sensu/community/

Troubleshoot Sensu

Service logging

Logs produced by Sensu services (sensu-backend and sensu-agent) are often the best place to start
when troubleshooting a variety of issues.

Log levels

Each log message is associated with a log level that indicates the relative severity of the event being
logged:

Log level Description

panic Severe errors that cause the service to shut down in an unexpected state

fatal Fatal errors that cause the service to shut down (status 0)

error Non-fatal service error messages

warn Warning messages that indicate potential issues

info Information messages that represent service actions

debug Detailed service operation messages to help troubleshoot issues

trace Confrmation messages about whether a rule authorized a request

You can confgure these log levels by specifying the desired log level as the value of log-level in
the service confguration fle (agent.yml or backend.yml) or as an argument to the --log-level
command line fag:

sensu-agent start --log-level debug

You must restart the service after you change log levels via confguration fles or command line
arguments.
For help with restarting a service, see the agent reference or backend reference.

Increment log level verbosity

Use these commands to increment the log level verbosity at runtime:

When you increment the log at the trace level (the most verbose log level), the log will wrap around to
the error level.

Log fle locations

Linux

Sensu services print structured log messages to standard output.
To capture these log messages to
disk or another logging facility, Sensu services use capabilities provided by the underlying operating
system’s service management.
For example, logs are sent to the journald when systemd is the service
manager, whereas log messages are redirected to /var/log/sensu when running under sysv init
schemes.
If you are running systemd as your service manager and would rather have logs written to
/var/log/sensu/ , see forwarding logs from journald to syslog.

The following table lists the common targets for logging and example commands for following those
logs.
You may substitute the name of the desired service (e.g. backend or agent) for the
${service} variable.

Platform Versio
n

Targ
et

Command to follow log

RHEL/Centos >= 7 journal
d

RHEL/Centos <= 6 log fle

kill -s SIGUSR1 $(pidof sensu-backend)

kill -s SIGUSR1 $(pidof sensu-agent)

journalctl --follow --unit

sensu-${service}

https://dzone.com/articles/what-is-structured-logging

Ubuntu >=
15.04

journal
d

Ubuntu <=
14.10

log fle

Debian >= 8 journal
d

Debian <= 7 log fle

Narrow your search to a specifc timeframe

Use the journald keyword since to refne the basic journalctl commands and narrow your
search by timeframe.

Retrieve all the logs for sensu-backend since yesterday:

tail --follow

/var/log/sensu/sensu-${service}

journalctl --follow --unit

sensu-${service}

tail --follow

/var/log/sensu/sensu-${service}

journalctl --follow --unit

sensu-${service}

tail --follow

/var/log/sensu/sensu-${service}

NOTE: Platform versions are listed for reference only and do not supersede the documented
supported platforms.

journalctl -u sensu-backend --since yesterday | tee sensu-backend-$(date +%Y-%m-

%d).log

Retrieve all the logs for sensu-agent since a specifc time:

Retrieve all the logs for sensu-backend for a specifc date range:

Logging edge cases

If a Sensu service experiences a panic crash, the service may seem to start and stop without
producing any output in journalctl.
This is due to a bug in systemd.

In these cases, try using the _COMM variable instead of the -u fag to access additional log entries:

Windows

The Sensu agent stores service logs to the location specifed by the log-fle confguration fag
(default %ALLUSERSPROFILE%\sensu\log\sensu-agent.log , C:\ProgramData\sensu\log\sensu-
agent.log on standard Windows installations).
For more information about managing the Sensu agent
for Windows, see the agent reference.
You can also view agent events using the Windows Event
Viewer, under Windows Logs, as events with source SensuAgent.

If you’re running a binary-only distribution of the Sensu agent for Windows, you can follow the service
log printed to standard output using this command:

journalctl -u sensu-agent --since 09:00 --until "1 hour ago" | tee sensu-

agent-$(date +%Y-%m-%d).log

journalctl -u sensu-backend --since "2015-01-10" --until "2015-01-11 03:00" | tee

sensu-backend-$(date +%Y-%m-%d).log

journalctl _COMM=sensu-backend.service --since yesterday

Get-Content - Path "C:\scripts\test.txt" -Wait

https://github.com/systemd/systemd/issues/2913

Sensu backend startup errors

The following errors are expected when starting up a Sensu backend with the default confguration:

The serving insecure client requests warning is an expected warning from the embedded etcd
database.
TLS confguration is recommended but not required.
For more information, see etcd security
documentation.

Permission issues

The Sensu user and group must own fles and folders within /var/cache/sensu/ and
/var/lib/sensu/ .
You will see a logged error like those listed here if there is a permission issue with

either the sensu-backend or the sensu-agent:

Use a recursive chown to resolve permission issues with the sensu-backend:

or the sensu-agent:

{"component":"etcd","level":"warning","msg":"simple token is not cryptographically

signed","pkg":"auth","time":"2019-11-04T10:26:31-05:00"}

{"component":"etcd","level":"warning","msg":"set the initial cluster version to

3.3","pkg":"etcdserver/membership","time":"2019-11-04T10:26:31-05:00"}

{"component":"etcd","level":"warning","msg":"serving insecure client requests on

127.0.0.1:2379, this is strongly discouraged!","pkg":"embed","time":"2019-11-

04T10:26:33-05:00"}

{"component":"agent","error":"open /var/cache/sensu/sensu-agent/assets.db:

permission denied","level":"fatal","msg":"error executing sensu-agent","time":"2019-

02-21T22:01:04Z"}

{"component":"backend","level":"fatal","msg":"error starting etcd: mkdir

/var/lib/sensu: permission denied","time":"2019-03-05T20:24:01Z"}

sudo chown -R sensu:sensu /var/cache/sensu/sensu-backend

https://etcd.io/docs/v3.4.0/op-guide/security/
https://etcd.io/docs/v3.4.0/op-guide/security/

Handlers and event flters

Whether implementing new workfows or modifying existing workfows, you may need to troubleshoot
various stages of the event pipeline.
In many cases, generating events using the agent API will save
you time and effort over modifying existing check confgurations.

Here’s an example that uses cURL with the API of a local sensu-agent process to generate test-event
check results:

It may also be helpful to see the complete event object being passed to your workfows.
We recommend
using a debug handler like this one to write an event to disk as JSON data:

sudo chown -R sensu:sensu /var/cache/sensu/sensu-agent

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "test-event"

 },

 "status": 2,

 "output": "this is a test event targeting the email_ops handler",

 "handlers": ["email_ops"]

 }

}' \

http://127.0.0.1:3031/events

type: Handler

api_version: core/v2

metadata:

 name: debug

spec:

 type: pipe

 command: cat > /var/log/sensu/debug-event.json

 timeout: 2

YML

With this handler defnition installed in your Sensu backend, you can add the debug to the list of
handlers in your test event:

The event data should be written to /var/log/sensu/debug-event.json for inspection.
The contents
of this fle will be overwritten by every event sent to the debug handler.

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "debug"

 },

 "spec": {

 "type": "pipe",

 "command": "cat > /var/log/sensu/debug-event.json",

 "timeout": 2

 }

}

JSON

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "test-event"

 },

 "status": 2,

 "output": "this is a test event targeting the email_ops handler",

 "handlers": ["email_ops", "debug"]

 }

}' \

http://127.0.0.1:3031/events

NOTE: When multiple Sensu backends are confgured in a cluster, event processing is distributed

Assets

Asset flters allow you to scope an asset to a particular operating system or architecture.
You can see
an example in the asset reference.
An improperly applied asset flter can prevent the asset from being
downloaded by the desired entity and result in error messages both on the agent and the backend
illustrating that the command was not found:

Agent log entry

Backend event

across all members.
You may need to check the flesystem of each Sensu backend to locate the
debug output for your test event.

{

 "asset": "check-disk-space",

 "component": "asset-manager",

 "entity": "sensu-centos",

 "flters": [

 "true == false"

],

 "level": "debug",

 "msg": "entity not fltered, not installing asset",

 "time": "2019-09-12T18:28:05Z"

}

 {

 "timestamp": 1568148292,

 "check": {

 "command": "check-disk-space",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "sensu-plugins-disk-checks"

If you see a message like this, review your asset defnition — it means that the entity wasn’t able to

],

 "subscriptions": [

 "caching_servers"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "duration": 0.001795508,

 "executed": 1568148292,

 "history": [

 {

 "status": 127,

 "executed": 1568148092

 }

],

 "issued": 1568148292,

 "output": "sh: check-disk-space: command not found\n",

 "state": "failing",

 "status": 127,

 "total_state_change": 0,

 "last_ok": 0,

 "occurrences": 645,

 "occurrences_watermark": 645,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "failing-disk-check",

 "namespace": "default"

 }

 },

 "metadata": {

 "namespace": "default"

 }

}

download the required asset due to asset flter restrictions.
You can review the flters for an asset by
using the sensuctl asset info command with a --format fag:

or

Confating operating systems with families

A common asset flter issue is confating operating systems with the family they’re a part of.
For
example, although Ubuntu is part of the Debian family of Linux distributions, Ubuntu is not the same as
Debian.
A practical example might be:

This would not allow an Ubuntu system to run the asset.

Instead, the asset flter should look like this:

or

sensuctl asset info sensu-plugins-disk-checks --format yaml

sensuctl asset info sensu-plugins-disk-checks --format json

...

 - entity.system.platform == 'debian'

 - entity.system.arch == 'amd64'

...

 - entity.system.platform_family == 'debian'

 - entity.system.arch == 'amd64'

 - entity.system.platform == 'ubuntu'

 - entity.system.arch == 'amd64'

This would allow the asset to be downloaded onto the target entity.

Running the agent on an unsupported Linux platform

If you run the Sensu agent on an unsupported Linux platform, the agent might fail to correctly identify
your version of Linux and could download the wrong version of an asset.

This issue affects Linux distributions that do not include the lsb_release package in their default
installations.
In this case, gopsutil may try to open /etc/lsb_release or try to run
/usr/bin/lsb_release to fnd system information, including Linux version.
Since the lsb_release

package is not installed, the agent will not be able to discover the Linux version as expected.

To resolve this problem, install the lsb_release package for your Linux distribution.

https://pkgs.org/download/lsb
https://pkgs.org/download/lsb

Monitor Sensu

Use the guides in the Monitor Sensu category to successfully monitor your Sensu installation.

Learn how to log Sensu services with systemd, including adding log forwarding from journald to syslog,
using rsyslog to write logging data to disk, and setting up log rotation.

Read Monitor Sensu with Sensu to monitor the Sensu backend with another Sensu backend or cluster:
use a secondary Sensu instance to notify you when your primary Sensu instance is down (and vice
versa).

Log Sensu services with systemd

By default, systems where systemd is the service manager do not write logs to /var/log/sensu/ for
the sensu-agent and the sensu-backend services.
This guide explains how to add log forwarding
from journald to syslog, have rsyslog write logging data to disk, and set up log rotation of the newly
created log fles.

Confgure journald

To confgure journald to forward logging data to syslog, modify /etc/systemd/journald.conf to
include the following line:

Confgure rsyslog

Next, set up rsyslog to write the logging data received from journald to
/var/log/sensu/servicename.log .
In this example, the sensu-backend and sensu-agent

logging data is sent to individual fles named after the service.
The sensu-backend is not required if
you’re only setting up log forwarding for the sensu-agent service.

ForwardToSyslog=yes

For the sensu-backend service, inside /etc/rsyslog.d/99-sensu-backend.conf

if $programname == 'sensu-backend' then {

 /var/log/sensu/sensu-backend.log

 ~

}

For the sensu-agent service, inside /etc/rsyslog.d/99-sensu-agent.conf

if $programname == 'sensu-agent' then {

 /var/log/sensu/sensu-agent.log

 ~

}

Restart rsyslog and journald to apply the new confguration:

Set up log rotation

Set up log rotation for newly created log fles to ensure logging does not fll up your disk.

These examples rotate the log fles /var/log/sensu/sensu-agent.log and
/var/log/sensu/sensu-backend.log weekly, unless the size of 100M is reached frst.
The last seven

rotated logs are kept and compressed, with the exception of the most recent log.
After rotation,
rsyslog is restarted to ensure logging is written to a new fle and not the most recent rotated fle.

NOTE: On Ubuntu systems, run chown -R syslog:adm /var/log/sensu so syslog can write to
that directory.

systemctl restart systemd-journald

systemctl restart rsyslog

Inside /etc/logrotate.d/sensu-agent.conf

/var/log/sensu/sensu-agent.log {

 daily

 rotate 7

 size 100M

 compress

 delaycompress

 postrotate

 /bin/systemctl restart rsyslog

 endscript

}

Inside /etc/logrotate.d/sensu-backend.conf

/var/log/sensu/sensu-backend.log {

 daily

 rotate 7

 size 100M

 compress

You can use the following command to see what logrotate would do if it were executed now based on
the above schedule and size threshold.
The -d fag will output details, but it will not take action on the
logs or execute the postrotate script:

Next steps

Sensu also offers logging of event data to a separate log fle as a commercial feature.
See the Sensu
backend reference for more information about event logging.

 delaycompress

 postrotate

 /bin/systemctl restart rsyslog

 endscript

}

logrotate -d /etc/logrotate.d/sensu.conf

Monitor Sensu with Sensu

This guide describes best practices and strategies for monitoring the Sensu backend with another
Sensu backend or cluster.

To completely monitor Sensu (a Sensu backend with internal etcd and an agent), you will need at least
one independent Sensu instance in addition to the primary instance you want to monitor.
The second
Sensu instance will ensure that you are notifed when the primary is down and vice versa.

This guide requires Sensu plugins using assets.
For more information about using Sensu plugins, see
Install plugins with assets.

The following ports and endpoints are monitored as part of this guide:

Port En
dp
oint

Description

2379 /h

eal

th

Etcd health endpoint. Provides health status for etcd nodes.

8080 /h

eal

th

Sensu Go health endpoint. Provides health status for Sensu
backends, as well as for Postgres (when enabled).

Monitor your Sensu backend instances

Monitor the host running the sensu-backend locally by a sensu-agent process for operating

NOTE: This guide describes approaches for monitoring a single backend.
These strategies are also
useful for monitoring individual members of a backend cluster.

This guide does not describe Sensu agent keepalive monitoring.

system checks and metrics.

For Sensu components that must be running for Sensu to create events, you should also monitor the
sensu-backend remotely from an independent Sensu instance.
This will allow you to monitor whether

your Sensu event pipeline is working.

To do this, use the check-http.rb plugin from the Sensu Plugins HTTP asset to query Sensu’s
health API endpoint with a check defnition for your primary (Backend Alpha) and secondary (Backend
Beta) backends:

type: CheckConfg

api_version: core/v2

metadata:

 namespace: default

 name: check_beta_backend_health

spec:

 command: check-http.rb -u http://sensu-backend-beta:8080/health -n false

 subscriptions:

 - backend_alpha

 interval: 10

 publish: true

 timeout: 10

 runtime_assets:

 - sensu-ruby-runtime

 - sensu-plugins-http

YML

type: CheckConfg

api_version: core/v2

metadata:

 namespace: default

 name: check_alpha_backend_health

spec:

 command: check-http.rb -u http://sensu-backend-beta:8080/health -n false

 subscriptions:

 - backend_beta

 interval: 10

 publish: true

 timeout: 10

YML

https://bonsai.sensu.io/assets/sensu/monitoring-plugins

Monitor external etcd

If your Sensu Go deployment uses an external etcd cluster, you’ll need to check the health of the
respective etcd instances.

This example includes checks for your primary (Backend Alpha) and secondary (Backend Beta)
backends:

 runtime_assets:

 - sensu-ruby-runtime

 - sensu-plugins-http

type: CheckConfg

api_version: core/v2

metadata:

 namespace: default

 name: check_beta_etcd_health

spec:

 command: check_http -H sensu-beta-etcd -p 2379 -u /health

 subscriptions:

 - backend_alpha

 interval: 10

 publish: true

 timeout: 10

 runtime_assets:

 - monitoring-plugins

YML

type: CheckConfg

api_version: core/v2

metadata:

 namespace: default

 name: check_alpha_etcd_health

spec:

 command: check_http -H sensu-alpha-etcd -p 2379 -u /health

 subscriptions:

YML

Monitor Postgres

COMMERCIAL FEATURE : Access enterprise-scale Postgres event storage in the packaged Sensu
Go distribution.
For more information, see Get started with commercial features.

Larger Sensu deployments may use Postgres as an alternative datastore to process larger numbers of
events.
The connection to Postgres is exposed on Sensu’s /health endpoint and will look like the
example below:

 - backend_beta

 interval: 10

 publish: true

 timeout: 10

 runtime_assets:

 - monitoring-plugins

{

 "Alarms": null,

 "ClusterHealth": [{

 "MemberID": 3470366781180380542,

 "MemberIDHex": "302938336092857e",

 "Name": "sensu00",

 "Err": "",

 "Healthy": true

 }, {

 "MemberID": 15883454222313069303,

 "MemberIDHex": "dc6d5d7607261af7",

 "Name": "sensu01",

 "Err": "",

 "Healthy": true

 }, {

 "MemberID": 11377294497886211005,

 "MemberIDHex": "9de44510fb838bbd",

 "Name": "sensu02",

 "Err": "",

 "Healthy": true

 }],

 "Header": {

 "cluster_id": 13239446193995634903,

https://docs.sensu.io/sensu-go/latest/operations/deploy-sensu/scale-event-storage/

To monitor Postgres’ health from Sensu’s perspective, use a check like this example:

 "member_id": 3470366781180380542,

 "raft_term": 1549

 },

 "PostgresHealth": [{

 "Name": "sensu_postgres",

 "Active": true,

 "Healthy": true

 }]

}

type: CheckConfg

api_version: core/v2

metadata:

 created_by: admin

 labels:

 sensu.io/managed_by: sensuctl

 name: check-postgres-health

 namespace: default

spec:

 check_hooks: null

 command: check-http-json.rb -u https://sensu.example.com:8080/health --key

PostgresHealth[0].Healthy

 --value true

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 proxy_entity_name: ""

 publish: true

 round_robin: true

 runtime_assets:

 - sensu-plugins/sensu-plugins-http

 - sensu/sensu-ruby-runtime

 secrets: null

YML

 stdin: false

 subdue: null

 subscriptions:

 - backends

 timeout: 0

 ttl: 0

{

 "command": "check-http-json.rb -u https://sensu.example.com:8080/health --key

PostgresHealth[0].Healthy --value true",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [

 "sensu-plugins/sensu-plugins-http",

 "sensu/sensu-ruby-runtime"

],

 "subscriptions": [

 "backends"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": true,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check-postgres-health",

 "namespace": "default",

 "labels": {

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 },

JSON

A successful check result will look like this:

Successful Postgres health check in Sensu Go web UI

 "secrets": null

}

Manage Secrets

Sensu’s secrets management eliminates the need to expose secrets like usernames, passwords, and
access keys in your Sensu confguration.
Secrets management is available for Sensu handler, mutator,
and check resources.

The Sensu Go commercial distribution includes a built-in secrets provider, Env , that exposes secrets
from environment variables on your Sensu backend nodes.
You can also use the secrets provider
VaultProvider to authenticate via the HashiCorp Vault integration.

Secrets are confgured via secrets resources.
A secret resource defnition refers to the secrets provider
(Env or VaultProvider) and an ID (the named secret to fetch from the secrets provider).

Use secrets management in Sensu explains how to use Sensu’s built-in secrets provider (Env) or
HashiCorp Vault as your external secrets provider and authenticate without exposing your secrets.
Follow this guide to set up your PagerDuty Integration Key as a secret and create a PagerDuty handler
defnition that requires the secret.
Your Sensu backend will be able to execute the handler with any
check.

Use secrets management in Sensu

COMMERCIAL FEATURE : Access the Env and VaultProvider secrets provider datatypes in the
packaged Sensu Go distribution.
For more information, see Get started with commercial features.

Sensu’s secrets management allows you to avoid exposing secrets like usernames, passwords, and
access keys in your Sensu confguration.
In this guide, you’ll learn how to use Sensu’s built-in secrets
provider, Env , or HashiCorp Vault as your external secrets provider and authenticate without
exposing your secrets.
You’ll set up your PagerDuty Integration Key as a secret and create a PagerDuty
handler defnition that requires the secret.
Your Sensu backend can then execute the handler with any
check.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running,
and install and confgure sensuctl.

Secrets are confgured via secrets resources.
A secret resource defnition refers to the secrets provider
(Env or VaultProvider) and an ID (the named secret to fetch from the secrets provider).

This guide only covers the handler use case, but you can use secrets management in handler,
mutator, and check execution.
When a check confguration references a secret, the Sensu backend will
only transmit the check’s execution requests to agents that are connected via mutually authenticated
transport layer security (mTLS)-encrypted websockets. Read more about enabling mTLS.

The secret included in your Sensu handler will be exposed to Sensu services at runtime as an
environment variable.
Sensu only exposes secrets to Sensu services like environment variables and
automatically redacts secrets from all logs, the API, and the web UI.

Retrieve your PagerDuty Integration Key

The example in this guide uses the PagerDuty Integration Key as a secret and a PagerDuty handler
defnition that requires the secret.

Here’s how to fnd your Integration Key in PagerDuty so you can set it up as your secret:

1. Log in to your PagerDuty account.
2. In the Confguration drop-down menu, select Services.
3. Click your Sensu service.

https://www.vaultproject.io/docs/what-is-vault/
https://www.pagerduty.com/

4. Click the Integrations tab. The Integration Key is listed in the second column.

PagerDuty Integration Key location

Make a note of your Integration Key — you’ll need it to create your backend environment variable or
HashiCorp Vault secret.

Use Env for secrets management

The Sensu Go commercial distribution includes a built-in secrets provider, Env , that exposes secrets
from environment variables on your Sensu backend nodes.
The Env secrets provider is automatically
created with an empty spec when you start your Sensu backend.

Create your backend environment variable

To use the built-in Env secrets provider, you will add your secret as a backend environment variable.

First, make sure you have created the fles you need to store backend environment variables.

Then, run the following code, replacing INTEGRATION_KEY with your PagerDuty Integration Key:

$ echo 'SENSU_PAGERDUTY_KEY=INTEGRATION_KEY' | sudo tee -a /etc/default/sensu-

backend

SHELL

https://www.vaultproject.io/docs/what-is-vault/

This confgures the SENSU_PAGERDUTY_KEY environment variable to your PagerDuty Integration Key in
the context of the sensu-backend process.

Create your Env secret

Now you’ll use sensuctl create to create your secret.
This code creates a secret named
pagerduty_key that refers to the environment variable ID SENSU_PAGERDUTY_KEY .
Run:

You can securely pass your PagerDuty Integration Key in Sensu checks, handlers, and mutators by
referring to the pagerduty_key secret.
Skip to the add a handler section, where you’ll use your
pagerduty_key secret in your handler defnition.

Use HashiCorp Vault for secrets management

This section explains how to use HashiCorp Vault as your external secrets provider to authenticate via
the HashiCorp Vault integration’s token auth method or TLS certifcate auth method.

$ sudo systemctl restart sensu-backend

$ echo 'SENSU_PAGERDUTY_KEY=INTEGRATION_KEY' | sudo tee -a /etc/sysconfg/sensu-

backend

$ sudo systemctl restart sensu-backend

SHELL

cat << EOF | sensuctl create

type: Secret

api_version: secrets/v1

metadata:

 name: pagerduty_key

 namespace: default

spec:

 id: SENSU_PAGERDUTY_KEY

 provider: env

EOF

https://www.vaultproject.io/docs/what-is-vault/
https://www.vaultproject.io/docs/auth/token/
https://www.vaultproject.io/docs/auth/cert/

Confgure your Vault authentication method (token or TLS)

If you use HashiCorp Vault as your external secrets provider, you can authenticate via the HashiCorp
Vault integration’s token or transport layer security (TLS) certifcate authentication method.

Vault token authentication

Follow the steps in this section to use HashiCorp Vault as your external secrets provider to
authenticate with the HashiCorp Vault integration’s token auth method.

Retrieve your Vault root token

To retrieve your Vault root token:

1. Download and install the Vault edition for your operating system.
2. Open a terminal window and run vault server -dev .

The command output includes a Root Token line.
Find this line in your command output and copy the
Root Token value.
You will use it next to create your Vault secrets provider.

NOTE: You must set up HashiCorp Vault to use VaultProvider secrets management in
production.
The examples in this guide use the Vault dev server, which is useful for learning and
experimenting.
The Vault dev server gives you access to a preconfgured, running Vault server with
in-memory storage that you can use right away.
Follow the HashiCorp Learn curriculum when you
are ready to set up a production server in Vault.

In addition, this guide uses the Vault KV secrets engine.
Using the Vault KV secrets engine with the
Vault dev server requires v2 connections.
For this reason, in the VaultProvider spec in these
examples, the client version value is v2.

NOTE: The examples in this guide use the Root Token for the the Vault dev server, which gives
you access to a preconfgured, running Vault server with in-memory storage that you can use right
away.
Follow the HashiCorp Learn curriculum when you are ready to set up a production server in
Vault.

https://www.vaultproject.io/docs/what-is-vault/
https://www.vaultproject.io/docs/auth/token/
https://www.vaultproject.io/docs/auth/cert/
https://www.vaultproject.io/docs/auth/token/
https://www.vaultproject.io/downloads/
https://www.vaultproject.io/docs/install/
https://www.vaultproject.io/docs/concepts/dev-server/
https://learn.hashicorp.com/vault
https://www.vaultproject.io/api/secret/kv/kv-v2.html
https://learn.hashicorp.com/vault/getting-started/dev-server
https://learn.hashicorp.com/vault

HashiCorp Vault Root Token location

Leave the Vault dev server running.
Because you aren’t using TLS, you will need to set
VAULT_ADDR=http://127.0.0.1:8200 in your shell environment.

Create your Vault secrets provider

Use sensuctl create to create your secrets provider, vault .
In the code below, replace
ROOT_TOKEN with the Root Token value for your Vault dev server.
Then, run:

NOTE: In Vault’s dev server, TLS is not enabled, so you won’t be able to use certifcate-based
authentication.

cat << EOF | sensuctl create

type: VaultProvider

api_version: secrets/v1

metadata:

 name: vault

spec:

 client:

 address: http://localhost:8200

 token: ROOT_TOKEN

 version: v2

 tls: null

 max_retries: 2

 timeout: 20s

 rate_limiter:

To continue, skip ahead to create your Vault secret.

Vault TLS certifcate authentication

This section explains how use HashiCorp Vault as your external secrets provider to authenticate with
the HashiCorp Vault integration’s TLS certifcate auth method.

First, in your Vault, enable and confgure certifcate authentication.
For example, your Vault might be
confgured for certifcate authentication like this:

Second, confgure your VaultProvider in Sensu:

 limit: 10

 burst: 100

EOF

NOTE: You will need to set up HashiCorp Vault in production to use TLS certifcate-based
authentication. In Vault’s dev server, TLS is not enabled. Follow the HashiCorp Learn curriculum
when you are ready to set up a production server in Vault.

vault write auth/cert/certs/sensu-backend \

 display_name=sensu-backend \

 policies=sensu-backend-policy \

 certifcate=@sensu-backend-vault.pem \

 ttl=3600

type: VaultProvider

api_version: secrets/v1

metadata:

 name: vault

spec:

 client:

 address: https://vault.example.com:8200

 version: v2

 tls:

https://www.vaultproject.io/docs/auth/cert/
https://www.vaultproject.io/docs/auth/cert/#configuration
https://www.vaultproject.io/docs/install/
https://learn.hashicorp.com/vault

The certifcate you specify for tls.client_cert should be the same certifcate you confgured in
your Vault for certifcate authentication.

Next, create your Vault secret.

Create your Vault secret

First, retrieve your PagerDuty Integration Key (the secret you will set up in Vault).

Next, open a new terminal and run vault kv put secret/pagerduty key=INTEGRATION_KEY .
Replace INTEGRATION_KEY with your PagerDuty Integration Key.
This writes your secret into Vault.

In this example, the name of the secret is pagerduty .
The pagerduty secret contains a key, and you
specifed that the key value is your PagerDuty Integration Key.
The id value for your secret will be
secret/pagerduty#key .

Run vault kv get secret/pagerduty to see the secret you just set up.

Use sensuctl create to create your vault secret:

 ca_cert: /path/to/your/ca.pem

 client_cert: /etc/sensu/ssl/sensu-backend-vault.pem

 client_key: /etc/sensu/ssl/sensu-backend-vault-key.pem

 cname: sensu-backend.example.com

 max_retries: 2

 timeout: 20s

 rate_limiter:

 limit: 10

 burst: 100

NOTE: The id value for secrets that target a HashiCorp Vault must start with the name of the
secret’s path in Vault.
The Vault dev server is preconfgured with the secret keyspace already set
up, and Sensu requires the secret/ path for the id value.

cat << EOF | sensuctl create

type: Secret

api_version: secrets/v1

Now you can securely pass your PagerDuty Integration Key in the handlers, and mutators by referring
to the pagerduty_key secret.
In the add a handler section, you’ll use your pagerduty_key secret in
your handler defnition.

Add a handler

Register the PagerDuty Handler asset

To begin, register the Sensu PagerDuty Handler asset with sensuctl asset add :

This example uses the -r (rename) fag to specify a shorter name for the asset: pagerduty-
handler .

Run sensuctl asset list --format yaml to confrm that the asset is ready to use.

With this handler, Sensu can trigger and resolve PagerDuty incidents.
However, you still need to add
your secret to the handler spec so that it requires your backend to request secrets from your secrets
provider.

Add your secret to the handler spec

To create a handler defnition that uses your pagerduty_key secret, run:

metadata:

 name: pagerduty_key

 namespace: default

spec:

 id: secret/pagerduty#key

 provider: vault

EOF

sensuctl asset add sensu/sensu-pagerduty-handler:1.2.0 -r pagerduty-handler

NOTE: You can adjust the asset defnition according to your Sensu confguration if needed.

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

Now that your handler is set up and Sensu can create incidents in PagerDuty, you can automate this
workfow by adding your pagerduty handler to your Sensu service check defnitions.
See Monitor
server resources to learn more.

Next steps

Read the secrets or secrets providers reference for in-depth secrets management documentation.

cat << EOF | sensuctl create

api_version: core/v2

type: Handler

metadata:

 namespace: default

 name: pagerduty

spec:

 type: pipe

 command: pagerduty-handler --token $PD_TOKEN

 secrets:

 - name: PD_TOKEN

 secret: pagerduty_key

 runtime_assets:

 - pagerduty-handler

 timeout: 10

 flters:

 - is_incident

EOF

Guides

These guides explain how to confgure Sensu’s observabilty pipeline to meet the challenges of
monitoring multi-cloud and ephemeral infrastructures.

Route alerts to the right person, reduce alert fatigue and automate data collection to relieve operator
burden, collect metrics and populate them in InfuxDB, and more.

Monitor server resources with checks

Sensu checks are commands (or scripts) the Sensu agent executes that output data and produce an
exit code to indicate a state.
Sensu checks use the same specifcation as Nagios, so you can use
Nagios check plugins with Sensu.

You can use checks to monitor server resources, services, and application health (for example, to
check whether Nginx is running) and collect and analyze metrics (for example, to learn how much disk
space you have left).

This guide will help you monitor server resources (specifcally, CPU usage) by confguring a check
named check-cpu with a subscription named system to target all entities that are subscribed to the
system subscription.
To use this guide, you’ll need to install a Sensu backend and have at least one

Sensu agent running on Linux.

Register assets

To power the check, you’ll use the Sensu CPU Checks asset.
The Sensu CPU Checks asset includes
the check-cpu.rb plugin, which your check will rely on.

The Sensu assets packaged from Sensu CPU Checks are built against the Sensu Ruby runtime
environment, so you also need to add the Sensu Ruby Runtime asset.
The Sensu Ruby Runtime asset
delivers the Ruby executable and supporting libraries the check will need to run the check-cpu.rb
plugin.

Use sensuctl asset add to register the Sensu CPU Checks asset, sensu-plugins/sensu-
plugins-cpu-checks:4.1.0 :

This example uses the -r (rename) fag to specify a shorter name for the asset: cpu-checks-
plugins .

You can also download the asset defnition for Debian or Alpine from Bonsai and register the asset

sensuctl asset add sensu-plugins/sensu-plugins-cpu-checks:4.1.0 -r cpu-checks-

plugins

https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-cpu-checks
https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime
https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-cpu-checks

with sensuctl create --fle flename.yml .

Then, use the following sensuctl example to register the Sensu Ruby Runtime asset, sensu/sensu-
ruby-runtime:0.0.10 :

You can also download the asset defnition from Bonsai and register the asset using sensuctl
create --fle flename.yml .

Use sensuctl to confrm that both the cpu-checks-plugins and sensu-ruby-runtime assets are
ready to use:

Create a check

Now that the assets are registered, create a check named check-cpu that runs the command
check-cpu.rb -w 75 -c 90 with the cpu-checks-plugins and sensu-ruby-runtime assets at

an interval of 60 seconds for all entities subscribed to the system subscription.
This check generates a
warning event (-w) when CPU usage reaches 75% and a critical alert (-c) at 90%.

sensuctl asset add sensu/sensu-ruby-runtime:0.0.10 -r sensu-ruby-runtime

sensuctl asset list

 Name URL Hash
──────────────────────────
───
─────────

 cpu-checks-plugins //assets.bonsai.sensu.io/.../sensu-plugins-cpu-checks_4.1.0_centos_linux_amd64.tar.gz 518e7c1

 sensu-ruby-runtime //assets.bonsai.sensu.io/.../sensu-ruby-runtime_0.0.10_ruby-2.4.4_centos_linux_amd64.tar.gz

338b88b

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

sensuctl check create check-cpu \

--command 'check-cpu.rb -w 75 -c 90' \

--interval 60 \

https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

Confgure the subscription

To run the check, you’ll need a Sensu agent with the subscription system .
After you install an agent,
open /etc/sensu/agent.yml and add the system subscription so the subscription confguration
looks like this:

Then, restart the agent:

Validate the check

Use sensuctl to confrm that Sensu is monitoring CPU usage using the check-cpu , returning an OK
status (0).
It might take a few moments after you create the check for the check to be scheduled on
the entity and the event to return to Sensu backend.

--subscriptions system \

--runtime-assets cpu-checks-plugins,sensu-ruby-runtime

subscriptions:

 - system

sudo service sensu-agent restart

sensuctl event list

 Entity Check Output Status

Silenced Timestamp
────────────── ───────────
──

─── ──────── ──────────
───────────────────────────────

 sensu-centos check-cpu CheckCPU TOTAL OK: total=0.2 user=0.0 nice=0.0 system=0.2 idle=99.8 iowait=0.0 irq=0.0

softirq=0.0 steal=0.0 guest=0.0 guest_nice=0.0 0 false 2019-04-23 16:42:28 +0000 UTC

Next steps

Now that you know how to run a check to monitor CPU usage, read these resources to learn more:

Checks reference

Install plugins with assets

Monitor external resources with proxy checks and entities

Send Slack alerts with handlers

Monitor external resources with proxy
requests and entities

Proxy entities allow Sensu to monitor external resources on systems and devices where a Sensu
agent cannot be installed, like a network switch or a website.
You can create proxy entities with
sensuctl, the Sensu API, and the proxy_entity_name check attribute.
When executing checks that
include a proxy_entity_name or proxy_requests attributes, Sensu agents report the resulting
event under the proxy entity instead of the agent entity.

Use a proxy entity to monitor a website

In this section, you’ll monitor the status of sensu.io by confguring a check with a proxy entity name
so that Sensu creates an entity that represents the site and reports the status of the site under this
entity.

Register assets

To power the check, you’ll use the Sensu Plugins HTTP asset.
The Sensu Plugins HTTP asset includes
check-http.rb , which your check will rely on.

The Sensu assets packaged from Sensu Plugins HTTP are built against the Sensu Ruby runtime
environment, so you also need to add the Sensu Ruby Runtime asset.
Sensu Ruby Runtime delivers
the Ruby executable and supporting libraries the check will need to run the check-http.rb plugin.

Use sensuctl asset add to register the Sensu Plugins HTTP asset, sensu-plugins/sensu-

plugins-http:5.1.1 :

NOTE: This guide requires a running Sensu backend, a running Sensu agent, and a sensuctl
instance confgured to connect to the backend as a user with get, list, and create permissions for
entities, checks, and events.

sensuctl asset add sensu-plugins/sensu-plugins-http:5.1.1 -r sensu-plugins-http

https://sensu.io/
https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-http

This example uses the -r (rename) fag to specify a shorter name for the asset: sensu-plugins-
http .

You can also download the asset defnition for Debian or Alpine from Bonsai and register the asset
with sensuctl create --fle flename.yml .

Then, use the following sensuctl example to register the Sensu Ruby Runtime asset, sensu/sensu-
ruby-runtime:0.0.10 :

You can also download the asset defnition from Bonsai and register the asset using sensuctl
create --fle flename.yml .

Use sensuctl to confrm that both the sensu-plugins-http and sensu-ruby-runtime assets are
ready to use:

Create the check

Now that the assets are registered, you can create a check named check-sensu-site to run the
command check-http.rb -u https://sensu.io with the sensu-plugins-http and sensu-
ruby-runtime assets, at an interval of 60 seconds, for all agents subscribed to the proxy
subscription, using the sensu-site proxy entity name.
To avoid duplicate events, add the
round_robin attribute to distribute the check execution across all agents subscribed to the proxy

sensuctl asset add sensu/sensu-ruby-runtime:0.0.10 -r sensu-ruby-runtime

sensuctl asset list

 Name URL Hash
──────────────────────────
───
─────────

 sensu-plugins-http //assets.bonsai.sensu.io/.../sensu-plugins-http_5.1.1_centos_linux_amd64.tar.gz 31023af

 sensu-ruby-runtime //assets.bonsai.sensu.io/.../sensu-ruby-runtime_0.0.10_ruby-2.4.4_centos_linux_amd64.tar.gz

338b88b

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

https://bonsai.sensu.io/assets/sensu-plugins/sensu-plugins-http
https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

subscription.

Create a fle called check.json and add this check defnition:

type: CheckConfg

api_version: core/v2

metadata:

 name: check-sensu-site

 namespace: default

spec:

 command: check-http.rb -u https://sensu.io

 interval: 60

 proxy_entity_name: sensu-site

 publish: true

 round_robin: true

 runtime_assets:

 - sensu-plugins-http

 - sensu-ruby-runtime

 subscriptions:

 - proxy

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-sensu-site",

 "namespace": "default"

 },

 "spec": {

 "command": "check-http.rb -u https://sensu.io",

 "runtime_assets": [

 "sensu-plugins-http",

 "sensu-ruby-runtime"

],

 "interval": 60,

 "proxy_entity_name": "sensu-site",

 "publish": true,

 "round_robin": true,

JSON

Now you can use sensuctl to add the check to Sensu:

Add the subscription

To run the check, you’ll need a Sensu agent with the subscription proxy .
After you install an agent,
open /etc/sensu/agent.yml and add the proxy subscription so the subscription confguration
looks like this:

Then, restart the agent:

Validate the check

 "subscriptions": [

 "proxy"

]

 }

}

sensuctl create --fle check.json

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets

Hooks Publish? Stdin?
────────────────── ────────────────────────────────── ────────── ────── ───────── ─────
─────────────── ────────── ─────────────────────────────────────── ─────── ──────────
────────

 check-sensu-site check-http.rb -u https://sensu.io 60 0 0 proxy sensu-plugins-http,sensu-

ruby-runtime true false

subscriptions:

 - proxy

sudo service sensu-agent restart

Use sensuctl to confrm that Sensu created the proxy entity sensu-site :

Then, use sensuctl to confrm that Sensu is monitoring sensu-site with the check-sensu-site
check:

You can also see the new proxy entity in your Sensu web UI.

Use proxy requests to monitor a group of websites

Suppose that instead of monitoring just sensu.io, you want to monitor multiple sites, like docs.sensu.io,
packagecloud.io, and github.com.
In this section, you’ll use the proxy_requests check attribute along
with entity labels and token substitution to monitor three sites with the same check.
Before you start,
register the sensu-plugins-http and sensu-ruby-runtime assets if you haven’t already.

sensuctl entity list

 ID Class OS Subscriptions Last Seen
────────────── ─────── ─────── ───────────────────────────
───────────────────────────────

sensu-centos agent linux proxy,entity:sensu-centos 2019-01-16 21:50:03 +0000 UTC

sensu-site proxy entity:sensu-site N/A

NOTE: It might take a few moments for Sensu to execute the check and create the proxy entity.

sensuctl event info sensu-site check-sensu-site

=== sensu-site - check-sensu-site

Entity: sensu-site

Check: check-sensu-site

Output:

Status: 0

History: 0,0

Silenced: false

Timestamp: 2019-01-16 21:51:53 +0000 UTC

Create proxy entities

Instead of creating a proxy entity using the proxy_entity_name check attribute, use sensuctl to
create proxy entities to represent the three sites you want to monitor.
Your proxy entities need the
entity_class attribute set to proxy to mark them as proxy entities as well as a few custom
labels to identify them as a group and pass in individual URLs.

Create a fle called entities.json and add the following entity defnitions:

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs",

 "namespace": "default",

 "labels": {

 "proxy_type": "website",

 "url": "https://docs.sensu.io"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "packagecloud-site",

 "namespace": "default",

 "labels": {

 "proxy_type": "website",

 "url": "https://packagecloud.io"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

{

 "type": "Entity",

Now you can use sensuctl to add these proxy entities to Sensu:

Create a reusable HTTP check

Now that you have three proxy entities set up, each with a proxy_type and url label, you can use
proxy requests and token substitution to create a single check that monitors all three sites.

Create a fle called check-proxy-requests.json and add the following check defnition:

 "api_version": "core/v2",

 "metadata": {

 "name": "github-site",

 "namespace": "default",

 "labels": {

 "proxy_type": "website",

 "url": "https://github.com"

 }

 },

 "spec": {

 "entity_class": "proxy"

 }

}

PRO TIP: When you create proxy entities, you can add any custom labels that make sense for
your environment.
For example, when monitoring a group of routers, you may want to add
ip_address labels.

sensuctl create --fle entities.json

sensuctl entity list

 ID Class OS Subscriptions Last Seen
─────────────────── ─────── ─────── ───────────────────────────
───────────────────────────────

 github-site proxy N/A

 packagecloud-site proxy N/A

 sensu-centos agent linux proxy,entity:sensu-centos 2019-01-16 23:05:03 +0000 UTC

 sensu-docs proxy N/A

type: CheckConfg

api_version: core/v2

metadata:

 name: check-http

 namespace: default

spec:

 command: check-http.rb -u {{ .labels.url }}

 interval: 60

 proxy_requests:

 entity_attributes:

 - entity.entity_class == 'proxy'

 - entity.labels.proxy_type == 'website'

 publish: true

 runtime_assets:

 - sensu-plugins-http

 - sensu-ruby-runtime

 subscriptions:

 - proxy

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-http",

 "namespace": "default"

 },

 "spec": {

 "command": "check-http.rb -u {{ .labels.url }}",

 "runtime_assets": [

 "sensu-plugins-http",

 "sensu-ruby-runtime"

],

 "interval": 60,

 "subscriptions": [

 "proxy"

],

 "publish": true,

JSON

Your check-http check uses the proxy_requests attribute to specify the applicable entities.
In this
case, you want to run the check-http check on all entities of entity class proxy and proxy type
website .
Because you’re using this check to monitor multiple sites, you can use token substitution to

apply the correct url in the check command .

Use sensuctl to add the check-proxy-requests check to Sensu:

Validate the check

Before you validate the check, make sure that you’ve registered the sensu-plugins-http and
sensu-ruby-runtime assets and added the proxy subscription to a Sensu agent.

Use sensuctl to confrm that Sensu is monitoring docs.sensu.io, packagecloud.io, and github.com with
the check-http , returning a status of 0 (OK):

 "proxy_requests": {

 "entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

]

 }

 }

}

sensuctl create --fle check-proxy-requests.json

sensuctl check list

 Name Command Interval Cron Timeout TTL Subscriptions Handlers Assets

Hooks Publish? Stdin?
───────────────── ─────────────────────────────────── ────────── ────── ───────── ─────
─────────────── ────────── ─────────────────────────────────────── ─────── ──────────
────────

 check-http check-http.rb -u {{ .labels.url }} 60 0 0 proxy sensu-plugins-http,sensu-ruby-

runtime true false

PRO TIP: To distribute check executions across multiple agents, set the round-robin check
attribute to true .
For more information about round robin checks, see the check reference.

Next steps

Now that you know how to run a proxy check to verify the status of a website and use proxy requests
to run a check on two different proxy entities based on label evaluation, read these recommended
resources:

sensuctl event list

 Entity Check Output Status Silenced Timestamp
─────────────────── ───────────────────── ──────── ──────── ──────────
───────────────────────────────

github-site check-http 0 false 2019-01-17 17:10:31 +0000 UTC

packagecloud-site check-http 0 false 2019-01-17 17:10:34 +0000 UTC

sensu-centos keepalive ... 0 false 2019-01-17 17:10:34 +0000 UTC

sensu-docs check-http 0 false 2019-01-17 17:06:59 +0000 UTC

Proxy checks

Assets reference

Send Slack alerts with handlers

Collect metrics with Sensu checks

Sensu checks are commands (or scripts) that the Sensu agent executes that output data and produce
an exit code to indicate a state.
If you are unfamiliar with checks or want to learn how to confgure a
check before reading this guide, read the check reference and Monitor server resources.

Extract metrics from check output

To extract metrics from check output, you’ll need to:

1. Confgure the check command so that the command execution outputs metrics in one of the
supported output metric formats.

2. Confgure the check output_metric_format to one of the supported output metric formats.

You can also confgure the check output_metric_handlers to a Sensu handler that is equipped to
handle Sensu metrics if you wish. See handlers or infux-db handler to learn more.

You can confgure the check with these felds at creation or use the commands in this guide (assuming
you have a check named collect-metrics).
This example uses graphite_plaintext format and
sends the metrics to a handler named infux-db .

Supported output metric formats

The output metric formats that Sensu currently supports for check output metric extraction are
nagios , infuxdb , graphite , and opentsdb .

nagios

output_metric_format nagios_perfdata

sensuctl check set-command collect-metrics collect_metrics.sh

sensuctl check set-output-metric-format collect-metrics graphite_plaintext

sensuctl check set-output-metric-handlers collect-metrics infux-db

documentation Nagios Performance Data

example

graphite

output_metric_format graphite_plaintext

documentation Graphite Plaintext Protocol

example

infuxdb

output_metric_format infuxdb_line

documentation InfuxDB Line Protocol

example

opentsdb

output_metric_format opentsdb_line

documentation OpenTSDB Data Specifcation

example

PING ok - Packet loss = 0%, RTA = 0.80 ms |

percent_packet_loss=0, rta=0.80

local.random.diceroll 4 123456789

weather,location=us-midwest temperature=82

1465839830100400200

sys.cpu.user 1356998400 42.5 host=webserver01 cpu=0

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://docs.influxdata.com/influxdb/v1.4/write_protocols/line_protocol_tutorial/#measurement
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#data-specification

Validate the metrics

If the check output is formatted correctly according to its output_metric_format , the metrics will be
extracted in Sensu metric format and passed to the event pipeline.
You should expect to see errors
logged by sensu-agent if it is unable to parse the check output.
To confrm that metrics have been
extracted from your check, inspect the event passed to the handler.

See Troubleshoot Sensu for an example debug handler that writes events to a fle for inspection.

The example check would yield an event similar to this:

type: Event

api_version: core/v2

metadata: {}

spec:

 check:

 command: collect_metrics.sh

 metadata:

 name: collect-metrics

 namespace: default

 output: |-

 cpu.idle_percentage 61 1525462242

 mem.sys 104448 1525462242

 output_metric_format: graphite_plaintext

 output_metric_handlers:

 - infux-db

 metrics:

 handlers:

 - infux-db

 points:

 - name: cpu.idle_percentage

 tags: []

 timestamp: 1525462242

 value: 61

 - name: mem.sys

 tags: []

 timestamp: 1525462242

 value: 104448

YML

http://localhost:1313/sensu-go/5.20/operations/monitor-sensu/troubleshoot#handlers-and-event-filters

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "check": {

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default"

 },

 "command": "collect_metrics.sh",

 "output": "cpu.idle_percentage 61 1525462242\nmem.sys 104448 1525462242",

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

]

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "cpu.idle_percentage",

 "value": 61,

 "timestamp": 1525462242,

 "tags": []

 },

 {

 "name": "mem.sys",

 "value": 104448,

 "timestamp": 1525462242,

 "tags": []

 }

]

 }

 }

}

JSON

Next steps

Now you know how to extract metrics from check output!
Check out these resources for more
information about scheduling checks and using handlers:

Checks reference: in-depth checks documentation

Monitor server resources: learn how to schedule checks

Handlers reference: in-depth handler documentation

Populate metrics in InfuxDB: learn to use Sensu’s built-in metrics handler

Augment event data with check hooks

Check hooks are commands the Sensu agent runs in response to the result of check command
execution.
The Sensu agent executes the appropriate confgured hook command based on the exit
status code of the check command (e.g. 1).

Check hooks allow Sensu users to automate data collection that operators would routinely perform to
investigate monitoring alerts, which frees up precious operator time.
Although you can use check hooks
for rudimentary auto-remediation tasks, they are intended to enrich monitoring event data.
This guide
helps you create a check hook that captures the process tree in case a service check returns a critical
status.

Follow these steps to create a check hook that captures the process tree in the event that an
nginx_process check returns a status of 2 (critical, not running).

1. Create a hook

Create a new hook that runs a specifc command to capture the process tree.
Set an execution timeout
of 10 seconds for this command:

2. Assign the hook to a check

Now that you’ve created the process_tree hook, you can assign it to a check.
This example assumes
you’ve already set up the nginx_process check.
Setting the type to critical ensures that
whenever the check command returns a critical status, Sensu executes the process_tree hook and
adds the output to the resulting event data:

sensuctl hook create process_tree \

--command 'ps aux' \

--timeout 10

sensuctl check set-hooks nginx_process \

--type critical \

3. Validate the check hook

Verify that the check hook is behaving properly against a specifc event with sensuctl .
It might take a
few moments after you assign the check hook for the check to be scheduled on the entity and the
result sent back to the Sensu backend.
The check hook command result is available in the hooks
array, within the check scope:

After you confrm that the hook is attached to your check, you can stop Nginx and observe the check
hook in action on the next check execution.
This example uses sensuctl to query event info and send
the response to jq so you can isolate the check hook output:

--hooks process_tree

sensuctl event info i-424242 nginx_process --format json

{

 [...]

 "check": {

 [...]

 "hooks": [

 {

 "confg": {

 "name": "process_tree",

 "command": "ps aux",

 "timeout": 10,

 "namespace": "default"

 },

 "duration": 0.008713605,

 "executed": 1521724622,

 "output": "",

 "status": 0

 }

],

 [...]

 }

}

Although this output is truncated in the interest of brevity, it refects the output of the ps aux

command specifed in the check hook you created.
Now when you are alerted that Nginx is not running,
you can review the check hook output to confrm this is true with no need to start up an SSH session to
investigate.

Next steps

To learn more about data collection with check hooks, read the hooks reference.

sensuctl event info i-424242 nginx_process --format json | jq -r

'.check.hooks[0].output'

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 0.0 0.3 46164 6704 ? Ss Nov17 0:11

/usr/lib/systemd/systemd --switched-root --system --deserialize 20

root 2 0.0 0.0 0 0 ? S Nov17 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S Nov17 0:01 [ksoftirqd/0]

root 7 0.0 0.0 0 0 ? S Nov17 0:01 [migration/0]

root 8 0.0 0.0 0 0 ? S Nov17 0:00 [rcu_bh]

root 9 0.0 0.0 0 0 ? S Nov17 0:34 [rcu_sched]

Aggregate metrics with the Sensu StatsD
listener

StatsD is a daemon, tool, and protocol that you can use to send, collect, and aggregate custom metrics
Services that implement StatsD typically expose UDP port 8125 to receive metrics according to the line
protocol <metricname>:<value>|<type> .

With StatsD, you can measure anything and everything.
Collect custom metrics in your code and send
them to a StatsD server to monitor applicaton performance.
Monitor CPU, I/O, and network system
levels with collection daemons.
You can feed the metrics that StatsD aggregates to multiple different
backends to store or visualize the data.

Use Sensu to implement StatsD

Sensu implements a StatsD listener on its agents.
Each sensu-agent listens on the default port 8125
for UDP messages that follow the StatsD line protocol.
StatsD aggregates the metrics, and Sensu
translates them to Sensu metrics and events that can be passed to the event pipeline.
You can
confgure the StatsD listener and access it with the netcat utility command:

Metrics received through the StatsD listener are not stored in etcd.
Instead, you must confgure event
handlers to send the data to a storage solution (for example, a time-series database like InfuxDB).

Confgure the StatsD listener

Use fags to confgure the Sensu StatsD Server when you start up a sensu-agent .

The following fags allow you to confgure event handlers, fush interval, address, and port:

echo 'abc.def.g:10|c' | nc -w1 -u localhost 8125

--statsd-disable disables the statsd listener and metrics

server

https://github.com/statsd/statsd

For example:

Next steps

Now that you know how to feed StatsD metrics into Sensu, check out these resources to learn how to
handle the StatsD metrics:

--statsd-event-handlers stringSlice comma-delimited list of event handlers for

statsd metrics

--statsd-fush-interval int number of seconds between statsd fush (default

10)

--statsd-metrics-host string address used for the statsd metrics server

(default "127.0.0.1")

--statsd-metrics-port int port used for the statsd metrics server

(default 8125)

sensu-agent start --statsd-event-handlers infux-db --statsd-fush-interval 1 --

statsd-metrics-host "123.4.5.6" --statsd-metrics-port 8125

Handlers reference: in-depth documentation for Sensu handlers

InfuxDB handler guide: instructions on Sensu’s built-in metric handler

Populate metrics in InfuxDB with handlers

A Sensu event handler is an action the Sensu backend executes when a specifc event occurs.
In this
guide, you’ll use a handler to populate the time series database InfuxDB.
If you’re not familiar with
handlers, consider reading the handlers reference before continuing through this guide.

The example in this guide explains how to populate Sensu metrics into the time series database
InfuxDB.
Metrics can be collected from check output or the Sensu StatsD Server.

Register the asset

Assets are shareable, reusable packages that make it easier to deploy Sensu plugins.
This example
uses the Sensu InfuxDB Handler asset to power an infux-db handler.

Use sensuctl asset add to register the Sensu InfuxDB Handler asset:

This example uses the -r (rename) fag to specify a shorter name for the asset: infuxdb-handler .

You can also download the latest asset defnition for your platform from Bonsai and register the asset
with sensuctl create --fle flename.yml .

You should see a confrmation message from sensuctl:

Run sensuctl asset list --format yaml to confrm that the asset is ready to use.

sensuctl asset add sensu/sensu-infuxdb-handler:3.1.2 -r infuxdb-handler

Created

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler
https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

Create the handler

Now that you have registered the asset, you’ll use sensuctl to create a handler called infux-db that
pipes event data to InfuxDB with the sensu-infuxdb-handler asset.
Edit the command below to
include your database name, address, username, and password.
For more information about the Sensu
InfuxDB handler, see the asset page in Bonsai.

You should see a confrmation message from sensuctl:

Assign the handler to an event

With the infux-db handler created, you can assign it to a check for check output metric extraction.
In
this example, the check name is collect-metrics :

You can also assign the handler to the Sensu StatsD listener at agent startup to pass all StatsD
metrics into InfuxDB:

sensuctl handler create infux-db \

--type pipe \

--command "sensu-infuxdb-handler -d sensu" \

--env-vars "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086,

INFLUXDB_USER=sensu, INFLUXDB_PASS=password" \

--runtime-assets infuxdb-handler

Created

sensuctl check set-output-metric-handlers collect-metrics infux-db

sensu-agent start --statsd-event-handlers infux-db

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler

Validate the handler

It might take a few moments after you assign the handler to the check or StatsD server for Sensu to
receive the metrics, but after an event is handled you should start to see metrics populating InfuxDB.
You can verify proper handler behavior with sensu-backend logs.
See Troubleshoot Sensu for log
locations by platform.

Whenever an event is being handled, a log entry is added with the message "handler":"infux-
db","level":"debug","msg":"sending event to handler" ,
followed by a second log entry with the
message "msg":"pipelined executed event pipe handler","output":"","status":0 .

Next steps

Now that you know how to apply a handler to metrics and take action on events, here are a few other
recommended resources:

Handlers reference

Aggregate metrics with the Sensu StatsD listener

Collect metrics with Sensu checks

Send Slack alerts with handlers

Sensu event handlers are actions the Sensu backend executes on events.
You can use handlers to
send an email alert, create or resolve incidents (in PagerDuty, for example), or store metrics in a time-
series database like InfuxDB.

This guide will help you send alerts to Slack in the channel monitoring by confguring a handler
named slack to a check named check-cpu .
If you don’t already have a check in place, Monitor
server resources is a great place to start.

Register the asset

Assets are shareable, reusable packages that help you deploy Sensu plugins.
In this guide, you’ll use
the Sensu Slack Handler asset to power a slack handler.

Use sensuctl asset add to register the Sensu Slack Handler asset:

This example uses the -r (rename) fag to specify a shorter name for the asset: sensu-slack-
handler .

You can also download the latest asset defnition for your platform from Bonsai and register the asset
with sensuctl create --fle flename.yml .

You should see a confrmation message from sensuctl:

sensuctl asset add sensu/sensu-slack-handler:1.0.3 -r sensu-slack-handler

Created

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

Get a Slack webhook

If you’re already the admin of a Slack, visit https://YOUR WORKSPACE NAME
HERE.slack.com/services/new/incoming-webhook and follow the steps to add the Incoming
WebHooks integration, choose a channel, and save the settings.
If you’re not yet a Slack admin, create
a new workspace.
After saving, you’ll see your webhook URL under Integration Settings.

Create a handler

Use sensuctl to create a handler called slack that pipes event data to Slack using the sensu-
slack-handler asset.
Edit the command below to include your Slack channel and webhook URL.
For
more information about customizing your Sensu slack alerts, see the asset page in Bonsai.

You should see a confrmation message from sensuctl:

Assign the handler to a check

With the slack handler created, you can assign it to a check.
In this case, you’re using the check-

cpu check: you want to receive Slack alerts whenever the CPU usage of your systems reach some
specifc thresholds.
Assign your handler to the check check-cpu :

sensuctl handler create slack \

--type pipe \

--env-vars "SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX"

\

--command "sensu-slack-handler --channel '#monitoring'" \

--runtime-assets sensu-slack-handler

Created

sensuctl check set-handlers check-cpu slack

https://slack.com/get-started#/create
https://slack.com/get-started#/create
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

Validate the handler

It might take a few moments after you assign the handler to the check for the check to be scheduled on
the entities and the result sent back to Sensu backend.
After an event is handled, you should see the
following message in Slack:

Verify the proper behavior of this handler with sensu-backend logs.
See Troubleshooting for log
locations by platform.

Whenever an event is being handled, a log entry is added with the message
"handler":"slack","level":"debug","msg":"sending event to handler" , followed by a second

log entry with the message "msg":"pipelined executed event pipe
handler","output":"","status":0 .

Next steps

Now that you know how to apply a handler to a check and take action on events, read the handlers
reference for in-depth handler documentation and check out the Reduce alert fatigue guide.

You can also try our interactive tutorial and learn how to send Sensu Go alerts to your PagerDuty
account.

http://localhost:1313/sensu-go/5.20/learn/sensu-pagerduty/
http://localhost:1313/sensu-go/5.20/learn/sensu-pagerduty/

Send email alerts with the Sensu Go Email
Handler

Sensu event handlers are actions the Sensu backend executes on events.
This guide explains how to
use the Sensu Go Email Handler asset to send notifcation emails.

When you are using Sensu in production, events will come from a check or metric you confgure.
For
this guide, you will create an ad hoc event that you can trigger manually to test your email handler.

To follow this guide, you’ll need to install the Sensu backend, have at least one Sensu agent running
on Linux, and install and confgure sensuctl.

Your backend will execute an email handler that sends notifcations to the email address you specify.
You’ll also add an event flter to make sure you only receive a notifcation when your event represents
a status change.

Add the email handler asset

Assets are shareable, reusable packages that help you deploy Sensu plugins.
In this guide, you’ll use
the Sensu Go Email Handler asset to power an email handler.

Use the following sensuctl example to register the Sensu Go Email Handler asset:

The -r (rename) fag allows you to specify a shorter name for the asset (in this case, email-
handler).

You can also download the latest asset defnition for your platform from Bonsai and register the asset
with sensuctl create --fle flename.yml .

To confrm that the handler asset was added correctly, run:

sensuctl asset add sensu/sensu-email-handler -r email-handler

https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler

You should see the email-handler asset in the list.
For a detailed list of everything related to the
asset that Sensu added automatically, run:

The asset includes the sensu-email-handler command, which you will use when you create the
email handler defnition later in this guide.

Add an event flter

Event flters allow you to fne-tune how your events are handled and reduce alert fatigue.
In this guide,
your event flter will send notifcations only when your event’s state changes (for example, for any
change between 0 OK, 1 warning, and 2 critical).

Here’s an overview of how the state_change_only flter will work:

To create the event flter, run:

sensuctl asset list

sensuctl asset info email-handler

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

If your event status changes from 0 to 1 , you will receive one email notifcation for the
change to warning status.

If your event status stays at 1 for the next hour, you will not receive repeated email
notifcations during that hour.

If your event status changes to 2 after 1 hour at 1 , you will receive one email notifcation for
the change from warning to critical status.

If your event status fuctuates between 0 , 1 , and 2 for the next hour, you will receive one
email notifcation each time the status changes.

cat << EOF | sensuctl create

Create the email handler defnition

After you add an event flter, create the email handler defnition to specify the email address where the
sensu/sensu-email-handler asset will send notifcations.
In the handler defnition’s command value

you’ll need to change a few things.

Copy this text into a text editor:

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: state_change_only

 namespace: default

spec:

 action: allow

 expressions:

 - event.check.occurrences == 1

 runtime_assets: []

EOF

cat << EOF | sensuctl create

api_version: core/v2

type: Handler

metadata:

 namespace: default

 name: email

spec:

 type: pipe

 command: sensu-email-handler -f YOUR-SENDER@example.com -t YOUR-

RECIPIENT@example.com -s YOUR-SMTP-SERVER.example.com

 -u USERNAME -p PASSWORD

 timeout: 10

 flters:

 - is_incident

 - not_silenced

 - state_change_only

Then, replace the following text:

You probably noticed that the handler defnition includes two other flters besides
state_change_only : is_incident and not_silenced .
These two flters are included in every

Sensu backend installation, so you don’t have to create them.

After you add your email, server, username, and password values, run your updated code to create the
email handler defnition.

Now your handler and event flter are set up!

The Sensu Go Email Handler asset makes it possible to add a template that provides context for your
email notifcations.
The email template functionality uses tokens to populate the values provided by the
event, and you can use HTML to format the email.

Before your handler can send alerts to your email, you need an event that generates the alerts.
In the
fnal step, you will create an ad hoc event that you can trigger manually.

Create and trigger an ad hoc event

 runtime_assets:

 - email-handler

EOF

YOUR-SENDER@example.com : Replace with the email address you want to use to send email
alerts.

YOUR-RECIPIENT@example.com : Replace with the email address you want to receive email
alerts.

YOUR-SMTP-SERVER.example.com : Replace with the hostname of your SMTP server.

USERNAME : Replace with your SMTP username, typically your email address.

PASSWORD : Replace with your SMTP password, typically the same as your email password.

NOTE: To use Gmail or G Suite as your SMTP server, follow Google’s instructions to send email
via SMTP.
If you have enabled 2-step verifcation on your Google account, use an app password
instead of your login password.
If you have not enabled 2-step verifcation, you may need to adjust
your app access settings to follow the example in this guide.

https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler#templates
https://support.google.com/a/answer/176600?hl=en
https://support.google.com/a/answer/176600?hl=en
https://support.google.com/accounts/answer/185833?hl=en
https://support.google.com/accounts/answer/6010255

To create an ad hoc event, frst use sensuctl env to set up environment variables.
The environment
variables will provide the required credentials for the Sensu API:

Verify that the SENSU_ACCESS_TOKEN environment variable is set by echoing its value:

With the environment variables set, you can use the Sensu API to create your ad hoc monitoring event.
This event outputs the message “Everything is OK.” when it occurs:

eval $(sensuctl env)

echo $SENSU_ACCESS_TOKEN

efPxbRciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJleHAiOjE1NzkwMzY5NjQsImp0aSI6ImJiMmY0ODY4ZTJ

hZWEyMDhhMTExOTllMGZkNzkzMDc0Iiwic3ViIjoiYWRtaW4iLCJncm91cHMiOlsiY2x1c3Rlci1hZG1pbnM

iLCJzeXN0ZW06dXNlcnMiXSwicHJvdmlkZXIiOnsicHJvdmlkZXJfaWQiOiJiYXNpYyIsInByb3ZpZGVyX3R

5cGUiOiIiLCJ1c2VyX2lkIjoiYWRtaW4ifX0.6XmuvblCN743R2maF4yErS3K3sOVczsCBsjib9TenUU

curl -sS -H 'Content-Type: application/json' \

-H "Authorization: Bearer $SENSU_ACCESS_TOKEN" \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server01",

 "namespace": "default"

 }

 },

 "check": {

 "metadata": {

 "name": "server-health"

 },

 "output": "Everything is OK.",

 "status": 0,

 "interval": 60

 }

}' \

http://localhost:8080/api/core/v2/namespaces/default/events

As confgured, the event status is 0 (OK).
Now it’s time to trigger an event and see the results!

To generate a status change event, use the update event endpoint to create a 1 (warning) event.
Run:

Check your email — you should see a message from Sensu!

Create another event with status set to 0 . Run:

curl -sS -X PUT \

-H "Authorization: Bearer $SENSU_ACCESS_TOKEN" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server01",

 "namespace": "default"

 }

 },

 "check": {

 "metadata": {

 "name": "server-health"

 },

 "output": "This is a warning.",

 "status": 1,

 "interval": 60,

 "handlers": ["email"]

 }

}' \

http://localhost:8080/api/core/v2/namespaces/default/events/server01/server-health

NOTE: If you see an invalid credentials error, refresh your token.
Run eval $(sensuctl

env) .

curl -sS -X PUT \

-H "Authorization: Bearer $SENSU_ACCESS_TOKEN" \

You should receive another email because the event status changed to 0 (OK).

Next steps

Now that you know how to apply a handler to a check and take action on events:

You can also follow our Up and running with Sensu Go interactive tutorial to set up the Sensu Go email
handler and test a similar workfow with the addition of a Sensu agent for producing events using
scheduled checks.

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server01",

 "namespace": "default"

 }

 },

 "check": {

 "metadata": {

 "name": "server-health"

 },

 "output": "Everything is OK.",

 "status": 0,

 "interval": 60,

 "handlers": ["email"]

 }

}' \

http://localhost:8080/api/core/v2/namespaces/default/events/server01/server-health

Reuse this email handler with the check-cpu check from our Monitor server resources guide.

Read the handlers reference for in-depth handler documentation.

Check out the Reduce alert fatigue guide.

http://localhost:1313/sensu-go/5.20/learn/up-and-running/

Create handler templates

Sensu Go uses the Go template package, which allows you to generate text output that includes
observation data from events.
Sensu handler templates include HTML-formatted text and data derived
from event attributes like event.entity.name and .event.check.output .
This allows you to add
meaningful, actionable context to alerts.

For example, a template for a brief Slack alert might include information about the affected entity and
its status, as well as a link to the organization’s playbook for resolving observability alerts:

Template syntax and format

Handler templates use dot notation syntax to access event attributes, with the event attribute wrapped
in double curly braces.
The initial dot indicates event .

For example, in a handler template, a reference to the event attribute .Check.occurrences becomes
.Check.Occurrences}} .

Use HTML to format the text and spacing in your templates.
All text outside double curly braces is
copied directly into the template output, with HTML formatting applied.

Available event attributes

If you are using a plugin that supports template output, every attribute in the Sensu event is available.
However, the attribute capitalization pattern is different for handler templates than for event format.

<html>

The entity {{.Entity.Name}} has a status of {{.Check.State}}. The entity has

reported the same status for {{.Check.Occurrences}} preceding events.

The playbook for managing this alert is available at

https://example.com/observability/alerts/playbook.

</html>

https://pkg.go.dev/text/template
https://bonsai.sensu.io/

The table below lists the event attributes that are available to use in handler templates, in the correct
dot notation and capitalization pattern.
You can also use the template toolkit command to print available
event attributes for a specifc event.

attribute attribute attribute

.HasCheck .HasMetrics .IsIncident

.IsResolution .IsSilenced .Timestamp

.Check.Annotation

s

.Check.CheckHooks .Check.Command

.Check.Cron .Check.DiscardOutput .Check.Duration

.Check.EnvVars .Check.Executed .Check.ExtendedAttributes

.Check.Handlers .Check.HighFlapThreshold .Check.History

.Check.Hooks .Check.Interval .Check.Issued

.Check.Labels .Check.LastOK .Check.LowFlapThreshold

.Check.MaxOutputS

ize

.Check.Name .Check.Namespace

.Check.Occurrence

s

.Check.OccurrencesWatermark .Check.Output

.Check.OutputMetr

icFormat

.Check.OutputMetricHandlers .Check.ProxyEntityName

.Check.ProxyReque

sts

.Check.Publish .Check.RoundRobin

.Check.RuntimeAss

ets

.Check.Secrets .Check.Silenced

.Check.State .Check.Status .Check.Stdin

NOTE: The entity and events specifcations describe each attribute in detail.

.Check.Subdue .Check.Subscriptions .Check.Timeout

.Check.TotalState

Change

.Check.Ttl .Entity.Annotations

.Entity.Deregiste

r

.Entity.Deregistration .Entity.EntityClass

.Entity.ExtendedA

ttributes

.Entity.KeepaliveHandlers .Entity.Labels

.Entity.LastSeen .Entity.Name .Entity.Namespace

.Entity.Redact .Entity.SensuAgentVersion .Entity.Subscriptions

.Entity.System .Entity.System.Arch .Entity.System.ARMVersion

.Entity.System.Cl

oudProvider

.Entity.System.Hostname .Entity.System.LibcType

.Entity.System.Ne

twork

.Entity.System.OS .Entity.System.Platform

.Entity.System.Pl

atformFamily

.Entity.System.PlatformVersio

n

.Entity.System.Processes

.Entity.System.VM

Role

.Entity.System.VMSystem .Entity.User

.Metrics.Handler

s

.Metrics.Points

Template toolkit command

The Sensu template toolkit command is a sensuctl command plugin you can use to print a list of
available event attributes in handler template dot notation syntax and validate your handler template
output.

The template toolkit command uses event data you supply via STDIN in JSON format.

Visit the template toolkit command Bonsai page to install the plugin.

https://bonsai.sensu.io/assets/sensu/template-toolkit-command
https://bonsai.sensu.io/assets/sensu/template-toolkit-command

Print available event attributes

Use the template toolkit command to print a list of the available event attributes as well as the correct
dot notation and capitalization pattern for a specifc event (in this example, event.json):

In this example, the response lists the available event attributes .Timestamp ,
.Entity.EntityClass , .Entity.System , .Check.Command , .Check.Handlers , and
.Check.HighFlapThreshold .

You can also use sensuctl event info [ENTITY_NAME] [CHECK_NAME] to print the correct notation
and pattern: template output for a specifc event (in this example, an event for entity webserver01
and check check-http):

cat event.json | sensuctl command exec template-toolkit-command -- --dump-names

INFO[0000] asset includes builds, using builds instead of asset asset=template-

toolkit-command component=asset-manager entity=sensuctl

.Event{

 .Timestamp: 1580310179,

 .Entity{

 .EntityClass: "agent",

 .System: .System{

 [...]

 .Check{

 .Command: "",

 .Handlers: {"keepalive"},

 .HighFlapThreshold: 0x0,

 [...]

sensuctl event info server01 server-health --format json | sensuctl command exec

template-toolkit -- --dump-names

INFO[0000] asset includes builds, using builds instead of asset asset=template-

toolkit-command component=asset-manager entity=sensuctl

.Event{

 .Timestamp: 1580310179,

 .Entity:{

 .EntityClass: "proxy",

 .System: .System{

 [...]

Validate handler template output

Use the template toolkit command to validate the dot notation syntax and output for any event attribute.

For example, to test the output for the {{.Check.Name}} attribute for the event event.json :

In this example, the command validates that for the event.json event, the handler template will
replace {{.Check.Name}} with keepalive in template output.

You can also use sensuctl event info [ENTITY_NAME] [CHECK_NAME] to validate template output
for a specifc event (in this example, an event for entity webserver01 and check check-http):

Examples

 .Check:{

 .Command: "health.sh",

 .Handlers: {"slack"},

 .HighFlapThreshold: 0x0,

 [...]

cat event.json | sensuctl command exec template-toolkit-command -- --template "

{{.Check.Name}}"

INFO[0000] asset includes builds, using builds instead of asset asset=template-

toolkit-command component=asset-manager entity=sensuctl

executing command with --template {{.Check.Name}}

Template String Output: keepalive

sensuctl event info webserver01 check-http --format json | sensuctl command exec

template-toolkit-command -- --template "Server: {{.Entity.Name}} Check:

{{.Check.Name}} Status: {{.Check.State}}"

Executing command with --template Server: {{.Entity.Name}} Check: {{.Check.Name}}

Status: {{.Check.State}}

Template String Output: Server: "webserver01 Check: check-http Status: passing"

Sensu Email Handler plugin

The Sensu Email Handler plugin allows you to provide a template for the body of the email.
For
example, this template will produce an email body that includes the name of the check and entity
associated with the event, the status and number of occurrences, and other event details:

The Sensu Email Handler plugin also includes a UnixTime function that allows you to print timestamp
values from events in human-readable format.
See the Sensu Email Handler Bonsai page for details.

Sensu PagerDuty Handler Example

The Sensu PagerDuty Handler plugin includes a basic template for the PagerDuty alert summary:

<html>

Greetings,

<h3>Informational Details</h3>

Check: {{.Check.Name}}

Entity: {{.Entity.Name}}

State: {{.Check.State}}

Occurrences: {{.Check.Occurrences}}

Playbook: https://example.com/monitoring/wiki/playbook

<h3>Check Output Details</h3>

Check Output: {{.Check.Output}}

<h4>Check Hook(s)</h4>

{{range .Check.Hooks}}Hook Name: {{.Name}}

Hook Command: {{.Command}}

Hook Output: {{.Output}}

{{end}}

#monitoringlove,

Sensu

</html>

"{{.Entity.Name}}/{{.Check.Name}} : {{.Check.Output}}"

https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-email-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

With this template, the summary for every alert in PagerDuty will include:

See the Sensu PagerDuty Handler Bonsai page for details.

The name of the affected entity.

The name of the check that produced the event.

The check output for the event.

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

Install plugins with assets

Assets are shareable, reusable packages that make it easier to deploy Sensu plugins.
You can use
assets to provide the plugins, libraries, and runtimes you need to automate your monitoring workfows.
See the asset reference for more information about assets.
This guide uses the Sensu PagerDuty
Handler asset as an example.

Register the Sensu PagerDuty Handler asset

To add the Sensu PagerDuty Handler asset to Sensu, use sensuctl asset add :

This example uses the -r (rename) fag to specify a shorter name for the asset: pagerduty-
handler .

You can also click the Download button on the asset page in Bonsai to download the asset defnition
for your Sensu backend platform and architecture.

Adjust the asset defnition

Asset defnitions tell Sensu how to download and verify the asset when required by a check, flter,
mutator, or handler.

After you add or download the asset defnition, open the fle and adjust the namespace and flters

NOTE: Assets are not required to use Sensu Go.
You can install Sensu plugins using the sensu-
install tool or a confguration management solution.

sensuctl asset add sensu/sensu-pagerduty-handler:1.2.0 -r pagerduty-handler

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

for your Sensu instance.
Here’s the asset defnition for version 1.2.0 of the Sensu PagerDuty Handler
asset for Linux AMD64:

Filters for check assets should match entity platforms.
Filters for handler and flter assets should match
your Sensu backend platform.
If the provided flters are too restrictive for your platform, replace os and
arch with any supported entity system attributes (for example, entity.system.platform_family
== 'rhel').
You may also want to customize the asset name to refect the supported platform (for
example, pagerduty-handler-linux) and add custom attributes with labels and annotations .

Enterprise-tier assets (like the ServiceNow and Jira event handlers) require a Sensu commercial
license.
For more information about commercial features and to activate your license, see Get started
with commercial features.

Use sensuctl to verify that the asset is registered and ready to use:

Create a workfow

type: Asset

api_version: core/v2

metadata:

 name: pagerduty-handler

 namespace: default

 labels: {}

 annotations: {}

spec:

 url:

https://assets.bonsai.sensu.io/02fc48fb7cbfd27f36915489af2725034a046772/sensu-

pagerduty-handler_1.2.0_linux_amd64.tar.gz

 sha512:

5be236b5b9ccceb10920d3a171ada4ac4f4caaf87f822475cd48bd7f2fab3235fa298f79ef6f97b0eb64

98205740bb1af1120ca036fd3381edfebd9fb15aaa99

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

sensuctl asset list --format yaml

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler
https://bonsai.sensu.io/assets/sensu/sensu-servicenow-handler
https://bonsai.sensu.io/assets/sensu/sensu-jira-handler

With the asset downloaded and registered, you can use it in a monitoring workfow.
Assets may provide
executable plugins intended for use with a Sensu check, handler, mutator, or hook, or JavaScript
libraries intended to provide functionality for use in event flters.
The details in Bonsai are the best
resource for information about each asset’s capabilities and confguration.

For example, to use the Sensu PagerDuty Handler asset, you would create a pagerduty handler that
includes your PagerDuty service API key in place of SECRET and pagerduty-handler as a runtime
asset:

type: Handler

api_version: core/v2

metadata:

 name: pagerduty

 namespace: default

spec:

 command: sensu-pagerduty-handler

 env_vars:

 - PAGERDUTY_TOKEN=SECRET

 flters:

 - is_incident

 runtime_assets:

 - pagerduty-handler

 timeout: 10

 type: pipe

YML

{

 "api_version": "core/v2",

 "type": "Handler",

 "metadata": {

 "namespace": "default",

 "name": "pagerduty"

 },

 "spec": {

 "type": "pipe",

 "command": "sensu-pagerduty-handler",

 "env_vars": [

 "PAGERDUTY_TOKEN=SECRET"

JSON

https://bonsai.sensu.io/assets/sensu/sensu-pagerduty-handler

Save the defnition to a fle (for example, pagerduty-handler.json), and add it to Sensu with
sensuctl:

Now that Sensu can create incidents in PagerDuty, you can automate this workfow by adding the
pagerduty handler to your Sensu service check defnitions.
See Monitor server resources to learn

more.

Next steps

Read these resources for more information about using assets in Sensu:

You can also try our interactive tutorial to send critical alerts to your PagerDuty account.

],

 "runtime_assets": ["pagerduty-handler"],

 "timeout": 10,

 "flters": [

 "is_incident"

]

 }

}

sensuctl create --fle pagerduty-handler.json

Assets reference

Asset format specifcation

Share assets on Bonsai

http://localhost:1313/sensu-go/5.20/learn/sensu-pagerduty/

Reduce alert fatigue with flters

Sensu event flters allow you to flter events destined for one or more event handlers.
Sensu event flters
evaluate their expressions against the event data to determine whether the event should be passed to
an event handler.

Use event flters to eliminate notifcation noise from recurring events and to flter events from systems
in pre-production environments.

In this guide, you learn how to reduce alert fatigue by confguring an event flter named hourly for a
handler named slack to prevent alerts from being sent to Slack every minute.
If you don’t already
have a handler in place, follow Send Slack alerts with handlers before continuing with this guide.

You can use either of two approaches to create the event flter to handle occurrences:

Approach 1: Use sensuctl to create an event flter

First, create an event flter called hourly that matches new events (where the event’s occurrences

is equal to 1) or hourly events (every hour after the frst occurrence, calculated with the check’s
interval and the event’s occurrences).

Events in Sensu Go are handled regardless of check execution status.
Even successful check events
are passed through the pipeline, so you’ll need to add a clause for non-zero status.

Assign the event flter to a handler

Use sensuctl

Use a flter asset

sensuctl flter create hourly \

--action allow \

--expressions "event.check.occurrences == 1 || event.check.occurrences % (3600 /

event.check.interval) == 0"

Now that you’ve created the hourly event flter, you can assign it to a handler.
Because you want to
reduce the number of Slack messages Sensu sends, you’ll apply the event flter to an existing handler
named slack , in addition to the built-in is_incident flter, so only failing events are handled.

Follow the prompts to add the hourly and is_incident event flters to the Slack handler.

Create a fatigue check event flter

Although you can use sensuctl to interactively create a flter, you can create more reusable flters
with assets.
Read on to see how to implement a flter using this approach.

Approach 2: Use an event flter asset

If you’re not already familiar with assets, please take a moment to read Install plugins with assets.
This
will help you understand what assets are and how they are used in Sensu.

In this approach, the frst step is to obtain an event flter asset that will allow you to replicate the
behavior of the hourly event flter created in Approach 1 via sensuctl .

Use sensuctl asset add to register the fatigue check flter asset:

This example uses the -r (rename) fag to specify a shorter name for the asset: fatigue-flter .

You can also download the asset directly from Bonsai, the Sensu asset hub.

You’ve registered the asset, but you still need to create the flter.
To do this, use the following
confguration:

sensuctl handler update slack

sensuctl asset add nixwiz/sensu-go-fatigue-check-flter:0.3.2 -r fatigue-flter

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

https://bonsai.sensu.io/assets/nixwiz/sensu-go-fatigue-check-filter
https://bonsai.sensu.io/

Then, create the flter, naming it sensu-fatigue-check-flter.yml :

Now that you’ve created the flter asset and the event flter, you can create the check annotations you
need for the asset to work properly.

Annotate a check for flter asset use

Next, you need to make some additions to any checks you want to use the flter with.
Here’s an example
CPU check:

type: EventFilter

api_version: core/v2

metadata:

 name: fatigue_check

 namespace: default

spec:

 action: allow

 expressions:

 - fatigue_check(event)

 runtime_assets:

 - fatigue-flter

sensuctl create -f sensu-fatigue-check-flter.yml

type: CheckConfg

api_version: core/v2

metadata:

 name: linux-cpu-check

 namespace: default

 annotations:

 fatigue_check/occurrences: '1'

 fatigue_check/interval: '3600'

 fatigue_check/allow_resolution: 'false'

spec:

Notice the annotations under the metadata scope.
The annotations are required for the flter asset to
work the same way as the interactively created event flter.
Specifcally, the annotations in this check
defnition are doing several things:

1. fatigue_check/occurrences : Tells the event flter on which occurrence to send the event for
further processing

2. fatigue_check/interval : Tells the event flter the interval at which to allow additional events
to be processed (in seconds)

3. fatigue_check/allow_resolution : Determines whether to pass a resolve event through
to the flter

For more information about confguring these values, see the flter asset’s README.
Next, you’ll assign
the newly minted event flter to a handler.

Assign the event flter to a handler

Just like with the interactively created event flter, you’ll introduce the flter into your Sensu workfow by
confguring a handler to use it.
Here’s an example:

 command: check-cpu -w 90 c 95

 env_vars:

 handlers:

 - email

 high_fap_threshold: 0

 interval: 60

 low_fap_threshold: 0

 output_metric_format: ''

 output_metric_handlers:

 proxy_entity_name: ''

 publish: true

 round_robin: false

 runtime_assets:

 stdin: false

 subdue:

 subscriptions:

 - linux

 timeout: 0

 ttl: 0

https://github.com/nixwiz/sensu-go-fatigue-check-filter#configuration

Validate the event flter

Verify the proper behavior of these event flters with sensu-backend logs.
The default location of these
logs varies based on the platform used (see Troubleshoot Sensu for details).

Whenever an event is being handled, a log entry is added with the message
"handler":"slack","level":"debug","msg":"sending event to handler" , followed by
a second

log entry with the message "msg":"pipelined executed event pipe
handler","output":"","status":0 .
However, if the event is being discarded by the event flter, a log
entry with the message event fltered will appear instead.

Next steps

Now that you know how to apply an event flter to a handler and use a flter asset to help reduce alert
fatigue, read the flters reference for in-depth information about event flters.

api_version: core/v2

type: Handler

metadata:

 namespace: default

 name: slack

spec:

 type: pipe

 command: 'sensu-slack-handler --channel ''#general'' --timeout 20 --username

''sensu'' '

 env_vars:

 - SLACK_WEBHOOK_URL=https://www.webhook-url-for-slack.com

 timeout: 30

 flters:

 - is_incident

 - fatigue_check

Route alerts with flters

Every alert has an ideal frst responder: a team or person who knows how to triage and address the
issue.
Sensu contact routing lets you alert the right people using their preferred contact methods,
reducing mean time to response and recovery.

In this guide, you’ll set up alerts for two teams (ops and dev) with separate Slack channels.
Assume
each team wants to be alerted only for the things they care about, using their team’s Slack channel.
To
achieve this, you’ll create two types of Sensu resources:

Here’s a quick overview of the confguration to set up contact routing.
The check defnition includes the
contacts: dev label, which will result in an alert sent to the dev team but not to the ops team or the

fallback option.

Sensu Go contact routing: Route alerts to the dev team using a check label

Event handlers to store contact preferences for the ops team, the dev team, and a fallback
option

Event flters to match contact labels to the right handler

http://localhost:1313/images/contact-routing1.png

Prerequisites

To complete this guide, you’ll need:

To set up a quick testing environment, download and start the Sensu sandbox.

Confgure contact routing

1. Register the has-contact flter asset

Contact routing is powered by the has-contact flter asset.
To add the has-contact asset to Sensu, use
sensuctl asset add :

This example uses the -r (rename) fag to specify a shorter name for the asset: contact-flter .

You can also download the latest asset defnition from Bonsai.

Run sensuctl asset list --format yaml to confrm that the asset is ready to use.

2. Create contact flters

A Sensu backend

At least one Sensu agent

Sensuctl (confgured to talk to the Sensu backend)

cURL

A Slack webhook URL and three different Slack channels to receive test alerts (one for each
team)

sensuctl asset add sensu/sensu-go-has-contact-flter:0.2.0 -r contact-flter

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

https://bonsai.sensu.io/assets/sensu/sensu-go-has-contact-filter
https://bonsai.sensu.io/assets/sensu/sensu-go-has-contact-filter
https://curl.haxx.se/
https://api.slack.com/incoming-webhooks

The Bonsai documentation for the asset explains that the has-contact asset supports two functions:

You’ll use these functions to create event flters that represent the three actions that the Sensu Slack
handler can take on an event: contact the ops team, contact the dev team, and contact the fallback
option.

event flter name expression description

contact_ops has_contact(event, "ops") Allow events with the entity
or check label contacts: ops

contact_dev has_contact(event, "dev") Allow events with the entity
or check label contacts: dev

contact_fallback no_contacts(event) Allow events without an entity
or check contacts label

To add these flters to Sensu, use sensuctl create :

has_contact , which takes the Sensu event and the contact name as arguments

no_contact , which is available as a fallback in the absence of contact labels and takes only
the event as an argument

echo '---

type: EventFilter

api_version: core/v2

metadata:

 name: contact_ops

spec:

 action: allow

 runtime_assets:

 - sensu-go-has-contact-flter_any_noarch

 expressions:

 - has_contact(event, "ops")

type: EventFilter

api_version: core/v2

metadata:

 name: contact_dev

spec:

Run sensuctl flter list --format yaml to confrm that the flters are ready to use.

3. Create a handler for each contact

With your contact flters in place, you can create a handler for each contact: ops, dev, and fallback.
If
you haven’t already, add the Slack handler asset to Sensu with sensuctl:

This example uses the -r (rename) fag to specify a shorter name for the asset: sensu-slack-
handler .

In each handler defnition, specify:

 action: allow

 runtime_assets:

 - contact-flter

 expressions:

 - has_contact(event, "dev")

type: EventFilter

api_version: core/v2

metadata:

 name: contact_fallback

spec:

 action: allow

 runtime_assets:

 - contact-flter

 expressions:

 - no_contacts(event)' | sensuctl create

sensuctl asset add sensu/sensu-slack-handler:1.0.3 -r sensu-slack-handler

A unique name: slack_ops , slack_dev , or slack_fallback

A customized command with the contact’s preferred Slack channel

The contact flter

The built-in is_incident and not_silenced flters to reduce noise and enable silences

An environment variable that contains your Slack webhook URL

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler

To create the slack_ops , slack_dev , and slack_fallback handlers, edit and run this example:

The sensu-slack-handler runtime asset

Edit before running:

1. Add your SLACK_WEBHOOK_URL

2. Make sure the Slack channels specifed in the

command` attributes match channels available

to receive test alerts in your Slack instance.

echo '---

type: Handler

api_version: core/v2

metadata:

 name: slack_ops

spec:

 command: sensu-slack-handler --channel "#alert-ops"

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX

 flters:

 - is_incident

 - not_silenced

 - contact_ops

 runtime_assets:

 - sensu-slack-handler

 type: pipe

type: Handler

api_version: core/v2

metadata:

 name: slack_dev

spec:

 command: sensu-slack-handler --channel "#alert-dev"

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX

 flters:

 - is_incident

 - not_silenced

 - contact_dev

 runtime_assets:

 - sensu-slack-handler

 type: pipe

Run sensuctl handler list --format yaml to confrm that the handlers are ready to use.

4. Create a handler set

To centralize contact management and simplify confguration, create a handler set that combines your
contact-specifc handlers under a single handler name.

Use sensuctl to create a slack handler set:

type: Handler

api_version: core/v2

metadata:

 name: slack_fallback

spec:

 command: sensu-slack-handler --channel "#alert-all"

 env_vars:

 - SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T0000/B000/XXXXXXXX

 flters:

 - is_incident

 - not_silenced

 - contact_fallback

 runtime_assets:

 - sensu-slack-handler

 type: pipe' | sensuctl create

echo '---

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 handlers:

 - slack_ops

 - slack_dev

 - slack_fallback

 type: set' | sensuctl create

You should see updated output of sensuctl handler list that includes the slack handler set.

Congratulations! Your Sensu contact routing is set up.
Next, test your contact flters to make sure they
work.

Test contact routing

To make sure your contact flters work the way you expect, use the agent API to create ad hoc events
and send them to your Slack pipeline.

First, create an event without a contacts label.
You may need to modify the URL with your Sensu
agent address.

You should see a 202 response from the API.
Since this event doesn’t include a contacts label, you
should also see an alert in the Slack channel specifed by the slack_fallback handler.
Behind the
scenes, Sensu uses the contact_fallback flter to match the event to the slack_fallback
handler.

Now, create an event with a contacts label:

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "example-check"

 },

 "status": 1,

 "output": "You should receive this example event in the Slack channel specifed

by your slack_fallback handler.",

 "handlers": ["slack"]

 }

}' \

http://127.0.0.1:3031/events

curl -X POST \

-H 'Content-Type: application/json' \

Because this event contains the contacts: dev label, you should see an alert in the Slack channel
specifed by the slack_dev handler.

Resolve the events by sending the same API requests with status set to 0 .

Manage contact labels in checks and entities

To assign an alert to a contact, add a contacts label to the check or entity.

Checks

This check defnition includes two contacts (ops and dev) and the handler slack .
To add the
runtime assets and set up the check_cpu check, see Monitor server resources.

-d '{

 "check": {

 "metadata": {

 "name": "example-check",

 "labels": {

 "contacts": "dev"

 }

 },

 "status": 1,

 "output": "You should receive this example event in the Slack channel specifed

by your slack_dev handler.",

 "handlers": ["slack"]

 }

}' \

http://127.0.0.1:3031/events

type: CheckConfg

api_version: core/v2

metadata:

 name: check_cpu

 labels:

 contacts: ops, dev

spec:

When the check_cpu check generates an incident, Sensu flters the event according to the
contact_ops and contact_dev flters, resulting in an alert sent to #alert-ops and #alert-dev.

Sensu Go contact routing: Route alerts to two contacts using a check label

Entities

You can also specify contacts using an entity label.
For more information about managing entity labels,
see the entity reference.

If contact labels are present in both the check and entity, the check contacts override the entity
contacts.
In this example, the dev label in the check confguration overrides the ops label in the
agent defnition, resulting in an alert sent to #alert-dev but not to #alert-ops or #alert-all.

 command: check-cpu.rb -w 75 -c 90

 handlers:

 - slack

 interval: 10

 publish: true

 subscriptions:

 - system

 runtime-assets:

 - sensu-plugins-cpu-checks

 - sensu-ruby-runtime

http://localhost:1313/images/contact-routing2.png

Sensu Go contact routing: Check contacts override entity contacts

Next steps

Now that you’ve set up contact routing for two example teams, you can create additional flters,
handlers, and labels to represent your team’s contacts.
Learn how to use Sensu to Reduce alert fatigue.

http://localhost:1313/images/contact-routing3.png

Plan maintenance windows with silencing

As the Sensu backend processes check results, the server executes event handlers to send alerts to
personnel or otherwise relay event data to external services.
Sensu’s built-in silencing, along with the
built-in not_silenced flter, provides a way to suppress execution of event handlers on an ad hoc
basis.

Use silencing to prevent handlers confgured with the not_silenced flter from being triggered based
on the check name in a check result or the subscriptions associated with the entity that published the
check result.
Sensu’s silencing capability allows operators to quiet incoming alerts while coordinating a
response or during planned maintenance windows.

Sensu silencing makes it possible to:

Suppose you want to plan a maintenance window.
In this example, you’ll create a silenced entry for a
specifc entity named i-424242 and its check, check-http , to prevent alerts as you restart and
redeploy the services associated with this entity.

Create the silenced entry

To begin, create a silenced entry that will silence the check check-http on the entity i-424242 for
a planned maintenance window that starts at 01:00 on Sunday and ends 1 hour later.
Your username
will be added automatically as the creator of the silenced entry:

Silence all checks on a specifc entity

Silence a specifc check on a specifc entity

Silence all checks on entities with a specifc subscription

Silence a specifc check on entities with a specifc subscription

Silence a specifc check on every entity

sensuctl silenced create \

--subscription 'entity:i-424242' \

--check 'check-http' \

--begin '2018-03-16 01:00:00 -04:00' \

See the sensuctl documentation for the supported time formats for the begin fag.

Validate the silenced entry

Use sensuctl to verify that the silenced entry against the entity i-424242 was created properly:

After the silenced entry starts to take effect, events that are silenced will be marked as such in
sensuctl events :

Next steps

Next, read the silencing reference for in-depth documentation about silenced entries.

--expire 3600 \

--reason 'Server upgrade'

sensuctl silenced info 'entity:i-424242:check-http'

sensuctl event list

 Entity Check Output Status Silenced Timestamp
────────────── ───────── ───────── ──────────── ──────────
───────────────────────────────

 i-424242 check-http 0 true 2018-03-16 13:22:16 -0400 EDT

WARNING: By default, a silenced event will be handled unless the handler uses the
not_silenced flter to discard silenced events.

Sensuctl CLI

Sensuctl is a command line tool for managing resources within Sensu.
It works by calling Sensu’s
underlying API to create, read, update, and delete resources, events, and entities.
Sensuctl is available
for Linux, macOS, and Windows.
See Install Sensu to install and confgure sensuctl.

First-time setup

To set up sensuctl, run sensuctl confgure to log in to sensuctl and connect to the Sensu backend:

When prompted, type the Sensu backend URL and your Sensu access credentials.

Sensu backend URL

The Sensu backend URL is the HTTP or HTTPS URL where sensuctl can connect to the Sensu
backend server.
The default URL is http://127.0.0.1:8080 .

To connect to a Sensu cluster, connect sensuctl to any single backend in the cluster.
For information
about confguring the Sensu backend URL, see the backend reference.

Confguration fles

During confguration, sensuctl creates confguration fles that contain information for connecting to your

sensuctl confgure

? Sensu Backend URL: http://127.0.0.1:8080

? Username: YOUR_USERNAME

? Password: YOUR_PASSWORD

? Namespace: default

? Preferred output format: tabular

Sensu Go deployment.
You can fnd these fles at $HOME/.confg/sensu/sensuctl/profle and
$HOME/.confg/sensu/sensuctl/cluster .

For example:

These confguration fles are useful if you want to know which cluster you’re connecting to or which
namespace or username you’re currently confgured to use.

Username, password, and namespace

During the Sensu backend installation process, you create an administrator username and password
and a default namespace.

Your ability to get, list, create, update, and delete resources with sensuctl depends on the permissions
assigned to your Sensu user.
For more information about confguring Sensu access control, see the
RBAC reference.

cat .confg/sensu/sensuctl/profle

{

 "format": "tabular",

 "namespace": "demo",

 "username": "admin"

}

cat .confg/sensu/sensuctl/cluster

{

 "api-url": "http://localhost:8080",

 "trusted-ca-fle": "",

 "insecure-skip-tls-verify": false,

 "access_token": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "expires_at": 1550082282,

 "refresh_token": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

}

NOTE: For a new installation, you can set administrator credentials with environment variables
during initialization.
If you are using Docker and you do not include the environment variables to set
administrator credentials, the backend will initialize with the default username (admin) and

Change admin user’s password

After you have installed and confgured sensuctl, you can change the admin user’s password.
Run:

You must specify the user’s current password to use the sensuctl user change-password

command.

Reset a user password

To reset a user password without specifying the current password, run:

You must have admin permissions to use the sensuctl user reset-password command.

Test a user password

To test the password for a user created with Sensu’s built-in basic authentication:

An empty response indicates valid credentials.
A request-unauthorized response indicates invalid
credentials.

password (P@ssw0rd!).

sensuctl user change-password --interactive

sensuctl user reset-password USERNAME --interactive

sensuctl user test-creds USERNAME --password 'password'

NOTE: The sensuctl user test-creds command tests passwords for users created with
Sensu’s built-in basic authentication provider.
It does not test user credentials defned via an
authentication provider like Lightweight Directory Access Protocol (LDAP), Active Directory (AD),

For example, if you test LDAP credentials with the sensuctl user test-creds command, the
backend will log an error, even if you know the LDAP credentials are correct:

Generate a password hash

To generate a password hash for a specifed cleartext password, run:

The sensuctl user hash-password command creates a bcrypt hash of the specifed password.
You
can use this hash instead of the password when you use sensuctl to create and edit users.

Preferred output format

Sensuctl supports the following output formats:

After you are logged in, you can change the output format with sensuctl confg set-format or set
the output format per command with the --format fag.

Non-interactive mode

or OpenID Connect 1.0 protocol (OIDC).

{"component":"apid.routers","error":"basic provider is

disabled","level":"info","msg":"invalid username and/or password","time":"2020-02-

07T20:42:14Z","user":"dev"}

sensuctl user hash-password PASSWORD

tabular : A user-friendly, columnar format

wrapped-json : An accepted format for use with sensuctl create

yaml : An accepted format for use with sensuctl create

json : A format used by the Sensu API

https://en.wikipedia.org/wiki/Bcrypt

Run sensuctl confgure non-interactively by adding the -n (--non-interactive) fag.

Get help

Sensuctl supports a --help fag for each command and subcommand.

See command and global fags

See subcommands and fags

See usage and fags

Manage sensuctl

The sencutl confg command lets you view the current sensuctl confguration and set the
namespace and output format.

View sensuctl confg

sensuctl confgure -n --url http://127.0.0.1:8080 --username YOUR_USERNAME --password

YOUR_PASSWORD --format tabular

sensuctl --help

sensuctl check --help

sensuctl check delete --help

To view the active confguration for sensuctl:

The sensuctl confg view response includes the Sensu backend URL, default namespace for the
current user, default output format for the current user, and currently confgured username:

Set output format

Use the set-format command to change the default output format for the current user.

For example, to change the output format to tabular :

Set namespace

Use the set-namespace command to change the default namespace for the current user.
For more
information about confguring Sensu access control, see the RBAC reference.

For example, to change the default namespace to development :

Log out of sensuctl

sensuctl confg view

=== Active Confguration

API URL: http://127.0.0.1:8080

Namespace: default

Format: tabular

Username: admin

sensuctl confg set-format tabular

sensuctl confg set-namespace development

To log out of sensuctl:

To log back in to sensuctl:

View the sensuctl version number

To display the current version of sensuctl:

Global fags

Global fags modify settings specifc to sensuctl, such as the Sensu backend URL and namespace.
You
can use global fags with most sensuctl commands.

You can set these fags permanently by editing .confg/sensu/sensuctl/{cluster, profle} .

Shell auto-completion

sensuctl logout

sensuctl confgure

sensuctl version

--api-url string host URL of Sensu installation

--cache-dir string path to directory containing cache & temporary fles

--confg-dir string path to directory containing confguration fles

--insecure-skip-tls-verify skip TLS certifcate verifcation (not recommended!)

--namespace string namespace in which we perform actions

--trusted-ca-fle string TLS CA certifcate bundle in PEM format

Installation (Bash shell)

Make sure bash-completion is installed.
If you use a current Linux in a non-minimal installation, bash-
completion should be available.

On macOS, install with:

Then add this to your ~/.bash_profle :

After bash-completion is installed, add this to your ~/.bash_profle :

Now you can source your ~/.bash_profle or launch a new terminal to use shell auto-completion.

Installation (ZSH)

Add this to your ~/.zshrc :

Now you can source your ~/.zshrc or launch a new terminal to use shell auto-completion.

brew install bash-completion

if [-f $(brew --prefx)/etc/bash_completion]; then

. $(brew --prefx)/etc/bash_completion

f

source <(sensuctl completion bash)

source ~/.bash_profle

source <(sensuctl completion zsh)

Usage

sensuctl Tab

sensuctl check Tab

source ~/.zshrc

check confgure event user

asset completion entity handler

create delete import list

Create and manage resources with
sensuctl

Use the sensuctl command line tool to create and manage resources within Sensu.
Sensuctl works by
calling Sensu’s underlying API to create, read, update, and delete resources, events, and entities.

Create resources

The sensuctl create command allows you to create or update resources by reading from STDIN or
a fag confgured fle (-f).
The create command accepts Sensu resource defnitions in wrapped-
json and yaml .
Both JSON and YAML resource defnitions wrap the contents of the resource in
spec and identify the resource type .
See the wrapped-json example and this table for a list of

supported types.
See the reference docs for information about creating resource defnitions.

wrapped-json format

In this example, the fle my-resources.json specifes two resources: a marketing-site check and
a slack handler, separated without a comma:

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata" : {

 "name": "marketing-site",

 "namespace": "default"

 },

 "spec": {

 "command": "check-http.rb -u https://sensu.io",

 "subscriptions": ["demo"],

 "interval": 15,

 "handlers": ["slack"]

 }

}

{

To create all resources from my-resources.json using sensuctl create :

Or:

yaml format

In this example, the fle my-resources.yml specifes two resources: a marketing-site check and
a slack handler, separated with three dashes (---).

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

sensuctl create --fle my-resources.json

cat my-resources.json | sensuctl create

To create all resources from my-resources.yml using sensuctl create :

Or:

type: CheckConfg

api_version: core/v2

metadata:

 name: marketing-site

 namespace: default

spec:

 command: check-http.rb -u https://sensu.io

 subscriptions:

 - demo

 interval: 15

 handlers:

 - slack

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 flters:

 - is_incident

 - not_silenced

 type: pipe

sensuctl create --fle my-resources.yml

cat my-resources.yml | sensuctl create

sensuctl create fags

Run sensuctl create -h to view command-specifc and global fags.
The following table describes
the command-specifc fags.

Flag Function and important notes

-f or --fle Files, URLs, or directories to create resources from. Strings.

-h or --help Help for the create command.

-r or --recursive Create command will follow subdirectories.

sensuctl create resource types

sensuctl create
types

AdhocRequest adhoc_request Asset asset

CheckConfg check_confg ClusterRole cluster_role

ClusterRoleBindin

g

cluster_role_binding Entity Env

entity EtcdReplicators Event event

EventFilter event_flter GlobalConfg Handler

handler Hook hook HookConfg

hook_confg Mutator mutator Namespace

namespace Role role RoleBinding

role_binding Secret Silenced silenced

User user VaultProvider ldap

ad oidc TessenConfg PostgresConfg

Create resources across namespaces

If you omit the namespace attribute from resource defnitions, you can use the senusctl create --
namespace fag to specify the namespace for a group of resources at the time of creation.
This allows
you to replicate resources across namespaces without manual editing.
To learn more about
namespaces and namespaced resource types, see the RBAC reference.

The sensuctl create command applies namespaces to resources in the following order, from
highest precedence to lowest:

1. Namespaces specifed within resource defnitions: You can specify a resource’s
namespace within individual resource defnitions using the namespace attribute. Namespaces
specifed in resource defnitions take precedence over all other methods.

2. --namespace fag: If resource defnitions do not specify a namespace, Sensu applies the
namespace provided by the sensuctl create --namespace fag.

3. Current sensuctl namespace confguration: If you do not specify an embedded namespace
attribute or use the --namespace fag, Sensu applies the namespace confgured in the current
sensuctl session. See Manage sensuctl to view your current session confg and set the session
namespace.

In this example, the fle pagerduty.yml defnes a handler without a namespace attribute:

To create the pagerduty handler in the default namespace:

type: Handler

api_version: core/v2

metadata:

 name: pagerduty

spec:

 command: sensu-pagerduty-handler

 env_vars:

 - PAGERDUTY_TOKEN=SECRET

 type: pipe

sensuctl create --fle pagerduty.yml --namespace default

To create the pagerduty handler in the production namespace:

To create the pagerduty handler in the current session namespace:

Delete resources

The sensuctl delete command allows you to delete resources by reading from STDIN or a fag
confgured fle (-f).
The delete command accepts Sensu resource defnitions in wrapped-json
and yaml formats and uses the same resource types as sensuctl create .
To be deleted
successfully, resources provided to the delete command must match the name and namespace of
an existing resource.

To delete all resources from my-resources.yml with sensuctl delete :

Or:

Delete resources across namespaces

If you omit the namespace attribute from resource defnitions, you can use the senusctl delete --
namespace fag to specify the namespace for a group of resources at the time of deletion.
This allows
you to remove resources across namespaces without manual editing.
See the Create resources across
namespaces section for usage examples.

sensuctl create --fle pagerduty.yml --namespace production

sensuctl create --fle pagerduty.yml

sensuctl delete --fle my-resources.yml

cat my-resources.yml | sensuctl delete

Update resources

Sensuctl allows you to update resource defnitions with a text editor.
To use sensuctl edit , specify
the resource type and resource name.

For example, to edit a handler named slack with sensuctl edit :

sensuctl edit resource types

sensuctl edit types

asset check cluster cluster-role

cluster-role-

binding

entity event flter

handler hook mutator namespace

role role-binding silenced user

auth

Manage resources

Sensuctl provides the following commands to manage Sensu resources.

sensuctl edit handler slack

sensuctl asset

sensuctl auth (commercial feature)

sensuctl check

sensuctl cluster

sensuctl cluster-role

Subcommands

Sensuctl provides a standard set of list, info, and delete operations for most resource types.

For example, to list all monitoring checks:

To list checks from all namespaces:

sensuctl cluster-role-binding

sensuctl entity

sensuctl event

sensuctl flter

sensuctl handler

sensuctl hook

sensuctl license (commercial feature)

sensuctl mutator

sensuctl namespace

sensuctl role

sensuctl role-binding

sensuctl secrets

sensuctl silenced

sensuctl tessen

sensuctl user

list list resources

info NAME show detailed resource information given resource name

delete NAME delete resource given resource name

sensuctl check list

To write all checks to my-resources.json in wrapped-json format:

To see the defnition for a check named check-cpu in wrapped-json format:

In addition to the standard operations, commands may support subcommands or fags that allow you
to take special action based on the resource type.
The sections below describe these resource-specifc
operations.

For a list of subcommands specifc to a resource, run sensuctl TYPE --help .

Handle large datasets

When querying sensuctl for large datasets, use the --chunk-size fag with any list command to
avoid timeouts and improve performance.

For example, the following command returns the same output as sensuctl event list but makes
multiple API queries (each for the number of objects specifed by --chunk-size) instead of one API
query for the complete dataset:

sensuctl check

In addition to the standard subcommands, the sensuctl check execute command executes a
check on demand, given the check name:

sensuctl check list --all-namespaces

sensuctl check list --format wrapped-json > my-resources.json

sensuctl check info check-cpu --format wrapped-json

sensuctl event list --chunk-size 500

For example, the following command executes the check-cpu check with an attached message:

You can also use the --subscriptions fag to override the subscriptions in the check defnition:

sensuctl cluster

The sensuctl cluster command lets you manage a Sensu cluster using the following
subcommands:

To view cluster members:

To see the health of your Sensu cluster:

sensuctl check execute NAME

sensuctl check execute check-cpu --reason "giving a sensuctl demo"

sensuctl check execute check-cpu --subscriptions demo,webserver

health get Sensu health status

id get unique Sensu cluster ID

member-add add cluster member to an existing cluster, with comma-separated

peer addresses

member-list list cluster members

member-remove remove cluster member by ID

member-update update cluster member by ID with comma-separated peer addresses

sensuctl cluster member-list

sensuctl cluster health

sensuctl event

In addition to the standard subcommands, you can use sensuctl event resolve to manually
resolve events:

For example, the following command manually resolves an event created by the entity webserver1
and the check check-http :

sensuctl namespace

See the RBAC reference for information about using access control with namespaces.

sensuctl user

See the RBAC reference for information about local user management with sensuctl.

sensuctl prune

COMMERCIAL FEATURE : Access sensuctl pruning in the packaged Sensu Go distribution.
For more
information, see Get started with commercial features.

The sensuctl prune subcommand allows you to delete resources that do not appear in a given set
of Sensu objects (called a “confguration”) from a from a fle, URL, or STDIN.
For example, you can use
sensuctl create to to apply a new confguration, then use sensuctl prune to prune unneeded

resources, resources that were created by a specifc user or that include a specifc label selector, and
more.

sensuctl event resolve ENTITY CHECK

sensuctl event resolve webserver1 check-http

IMPORTANT : sensuctl prune is an alpha feature in release 5.19.0 and may include breaking
changes.

The pruning operation always follows the role-based access control (RBAC) permissions of the current
user.
For example, to prune resources in the dev namespace, the current user who sends the prune
command must have delete access to the dev namespace.
In addition, pruning requires cluster-level
privileges, even when all resources belong to the same namespace.

sensuctl prune usage

In this example sensuctl prune command:

Use a comma separator to prune more than one resource in a single command.

For example, to prune checks and assets from the fle checks.yaml for the dev namespace and
the admin and ops users:

sensuctl prune fags

NOTE: sensuctl prune can only delete resources that have the label sensu.io/managed_by:
sensuctl , which Sensu automatically adds to all resources created with sensuctl.
This means you
can only use sensuctl prune to delete resources that were created with sensuctl.

sensuctl prune [RESOURCE TYPE],[RESOURCE TYPE]... -f [FILE or URL] [-r] ...] [--

NAMESPACE] [fags]

Replace [RESOURCE TYPE] with the fully qualifed name or short name of the resource you
want to prune.
You must specify at least one resource type or the all qualifer (to prune all
resource types).

Replace [FILE or URL] with the name of the fle or the URL that contains the set of Sensu
objects you want to keep (the confguration).

Replace [fags] with the fags you want to use, if any.

Replace [–NAMESPACE] with the namespace where you want to apply pruning.
If you omit the
namespace qualifer, the command defaults to the current confgured namespace.

sensuctl prune core/v2.CheckConfg,core/v2.Asset --fle checks.yaml --namespace dev --

users admin,ops

sensuctl prune checks,assets --fle checks.yaml --namespace dev --users admin,ops

Run sensuctl prune -h to view command-specifc and global fags.
The following table describes the
command-specifc fags.

Flag Function and important notes

-a or --all-users Prunes resources created by all users. Mutually exclusive with the --
users fag. Defaults to false.

-c or --cluster-
wide

Prunes any cluster-wide (non-namespaced) resources that are not
defned in the confguration. Defaults to false.

-d or --dry-run Prints the resources that will be pruned but does not actually delete
them. Defaults to false.

-f or --fle Files, URLs, or directories to prune resources from. Strings.

-h or --help Help for the prune command.

--label-selector Prunes only resources that match the specifed labels (comma-separated
strings). Labels are a commercial feature.

-r or --recursive Prune command will follow subdirectories.

-u or --users Prunes only resources that were created by the specifed users (comma-
separated strings). Defaults to the currently confgured sensuctl user.

Supported resource types

Use sensuctl describe-type all to retrieve the list of supported sensuctl prune resource
types.

NOTE: Short names are only supported for core/v2 resources.

sensuctl describe-type all

 Fully Qualifed Name Short Name API Version Type Namespaced

 ────────────────────────────── ───────────────────── ───────────────────
──────────────────── ────────────

 authentication/v2.Provider authentication/v2 Provider false

sensuctl prune examples

sensuctl prune supports pruning resources by their fully qualifed names or short names:

Use the all qualifer to prune all supported resources:

 licensing/v2.LicenseFile licensing/v2 LicenseFile false

 store/v1.PostgresConfg store/v1 PostgresConfg false

 federation/v1.EtcdReplicator federation/v1 EtcdReplicator false

 secrets/v1.Secret secrets/v1 Secret true

 secrets/v1.Provider secrets/v1 Provider false

 searches/v1.Search searches/v1 Search true

 web/v1.GlobalConfg web/v1 GlobalConfg false

 core/v2.Namespace namespaces core/v2 Namespace false

 core/v2.ClusterRole clusterroles core/v2 ClusterRole false

 core/v2.ClusterRoleBinding clusterrolebindings core/v2 ClusterRoleBinding false

 core/v2.User users core/v2 User false

 core/v2.APIKey apikeys core/v2 APIKey false

 core/v2.TessenConfg tessen core/v2 TessenConfg false

 core/v2.Asset assets core/v2 Asset true

 core/v2.CheckConfg checks core/v2 CheckConfg true

 core/v2.Entity entities core/v2 Entity true

 core/v2.Event events core/v2 Event true

 core/v2.EventFilter flters core/v2 EventFilter true

 core/v2.Handler handlers core/v2 Handler true

 core/v2.Hook hooks core/v2 Hook true

 core/v2.Mutator mutators core/v2 Mutator true

 core/v2.Role roles core/v2 Role true

 core/v2.RoleBinding rolebindings core/v2 RoleBinding true

 core/v2.Silenced silenced core/v2 Silenced true

sensuctl prune core/v2.CheckConfg,core/v2.Entity

sensuctl prune checks,entities

sensuctl prune all

Time formats

Sensuctl supports multiple time formats depending on the manipulated resource.
Supported canonical
time zone IDs are defned in the tz database.

Dates with time

Use full dates with time to specify an exact point in time.
This is useful for setting silences, for example.

Sensuctl supports the following formats:

WARNING: Windows does not support canonical zone IDs (for example, America/Vancouver).

RFC3339 with numeric zone offset: 2018-05-10T07:04:00-08:00 or
2018-05-
10T15:04:00Z

RFC3339 with space delimiters and numeric zone offset: 2018-05-10 07:04:00 -08:00

Sensu alpha legacy format with canonical zone ID: May 10 2018 7:04AM America/Vancouver

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Back up and recover resources with
sensuctl

The sensuctl dump command allows you to export your resources to standard out (STDOUT) or to a
fle.
You can export all of your resources or a subset of them based on a list of resource types.
The
dump command supports exporting in wrapped-json and yaml .

For example, to export all resources for the current namespace to a fle named my-resources.yaml
in yaml format:

To export only checks for only the current namespace to STDOUT in yaml format:

To export only handlers and flters for only the current namespace to a fle named my-handlers-and-

flters.yaml in yaml format:

To export resources for all namespaces, add the --all-namespaces fag to any sensuctl dump
command:

sensuctl dump all --format yaml --fle my-resources.yaml

sensuctl dump core/v2.CheckConfg --format yaml

sensuctl dump core/v2.Handler,core/v2.EventFilter --format yaml --fle my-handlers-

and-flters.yaml

sensuctl dump all --all-namespaces --format yaml --fle my-resources.yaml

sensuctl dump core/v2.CheckConfg --all-namespaces --format yaml

sensuctl dump core/v2.Handler,core/v2.EventFilter --all-namespaces --format yaml --

fle my-handlers-and-flters.yaml

You can use fully qualifed names or short names to specify resources in sensuctl dump commands:

After you use sensuctl dump to back up your Sensu resources, you can restore them later with
sensuctl create .
This page explains how to back up your resources for two common use cases:

before a Sensu version upgrade and to populate new namespaces with existing resources.

Back up before a Sensu version upgrade

You should create a backup before you upgrade to a new version of Sensu.
Here’s the step-by-step
process:

1. Create a backup folder.

2. Create a backup of the entire cluster, except entities, events, and role-based access control
(RBAC) resources, for all namespaces.

3. Export your RBAC resources, except API keys and users, for all namespaces.

sensuctl dump core/v2.Handler,core/v2.EventFilter --format yaml --fle my-handlers-

and-flters.yaml

sensuctl dump handlers,flters --format yaml --fle my-handlers-and-flters.yaml

mkdir backup

sensuctl dump all \

--all-namespaces \

--omit

core/v2.Entity,core/v2.Event,core/v2.APIKey,core/v2.User,core/v2.Role,core/v2.

RoleBinding,core/v2.ClusterRole,core/v2.ClusterRoleBinding \

--format yaml > backup/confg.yaml

4. Export your API keys and users resources for all namespaces.

5. Export your entity resources for all namespaces (if desired).

Back up to populate new namespaces

You can create a backup copy of your existing resources with their namespaces stripped from the
record.
This backup allows you to replicate resources across namespaces without manual editing.

sensuctl dump

core/v2.Role,core/v2.RoleBinding,core/v2.ClusterRole,core/v2.ClusterRoleBindin

g \

--all-namespaces \

--format yaml > backup/rbac.yaml

sensuctl dump core/v2.APIKey,core/v2.User \

--all-namespaces \

--format yaml > backup/cannotrestore.yaml

NOTE: Passwords are not included when you export users.
You must add the
password_hash or password attribute to any exported users resources before you

can use them with sensuctl create .

Because users require this additional confguration and API keys cannot be restored from a
sensuctl dump backup, you might prefer to export your API keys and users to a different

folder than backup .

sensuctl dump core/v2.Entity \

--all-namespaces \

--format yaml > backup/inventory.yaml

NOTE: If you do not export your entities, proxy check requests will not be scheduled for the
excluded proxy entities.

To create a backup of your resources that you can replicate in new namespaces:

1. Create a backup folder.

2. Back up your pipeline resources for all namespaces, stripping namespaces so that your
resources are portable for reuse in any namespace.

Restore resources from backup

When you are ready to restore your exported resources, use sensuctl create .

To restore everything you exported all at once, run:

To restore a subset of your exported resources (in this example, your RBAC resources), run:

mkdir backup

sensuctl dump

core/v2.Asset,core/v2.CheckConfg,core/v2.Hook,core/v2.EventFilter,core/v2.Muta

tor,core/v2.Handler,core/v2.Silenced,secrets/v1.Secret,secrets/v1.Provider \

--all-namespaces \

--format yaml | grep -v "^\s*namespace:" > backup/pipelines.yaml

sensuctl create -r -f backup/

sensuctl create -f backup/rbac.yaml

NOTE: You can’t restore API keys or users from a sensuctl dump backup.

API keys must be reissued, but you can use your backup as a reference for granting new API keys
to replace the exported keys.

Supported resource types

Use sensuctl describe-type all to retrieve the list of supported sensuctl dump resource types.

When you export users, required password attributes are not included.
You must add a
password_hash or password to users resources before restoring them with the sensuctl
create command.

IMPORTANT : The sensuctl describe-type command deprecates sensuctl dump --types .

NOTE: Short names are only supported for core/v2 resources.

sensuctl describe-type all

 Fully Qualifed Name Short Name API Version Type Namespaced

 ────────────────────────────── ───────────────────── ───────────────────
──────────────────── ────────────

 authentication/v2.Provider authentication/v2 Provider false

 licensing/v2.LicenseFile licensing/v2 LicenseFile false

 store/v1.PostgresConfg store/v1 PostgresConfg false

 federation/v1.EtcdReplicator federation/v1 EtcdReplicator false

 secrets/v1.Secret secrets/v1 Secret true

 secrets/v1.Provider secrets/v1 Provider false

 searches/v1.Search searches/v1 Search true

 web/v1.GlobalConfg web/v1 GlobalConfg false

 core/v2.Namespace namespaces core/v2 Namespace false

 core/v2.ClusterRole clusterroles core/v2 ClusterRole false

 core/v2.ClusterRoleBinding clusterrolebindings core/v2 ClusterRoleBinding false

 core/v2.User users core/v2 User false

 core/v2.APIKey apikeys core/v2 APIKey false

 core/v2.TessenConfg tessen core/v2 TessenConfg false

 core/v2.Asset assets core/v2 Asset true

 core/v2.CheckConfg checks core/v2 CheckConfg true

 core/v2.Entity entities core/v2 Entity true

 core/v2.Event events core/v2 Event true

 core/v2.EventFilter flters core/v2 EventFilter true

 core/v2.Handler handlers core/v2 Handler true

You can also list specifc resource types by fully qualifed name or short name:

To list more than one type, use a comma-separated list:

Format the sensuctl describe-type response

Add the --format fag to specify how the resources should be formatted in the sensuctl
describe-type response.
The default is unformatted, but you can specify either wrapped-json or
yaml :

 core/v2.Hook hooks core/v2 Hook true

 core/v2.Mutator mutators core/v2 Mutator true

 core/v2.Role roles core/v2 Role true

 core/v2.RoleBinding rolebindings core/v2 RoleBinding true

 core/v2.Silenced silenced core/v2 Silenced true

sensuctl describe-type core/v2.CheckConfg

sensuctl describe-type checks

sensuctl describe-type core/v2.CheckConfg,core/v2.EventFilter,core/v2.Handler

sensuctl describe-type checks,flters,handlers

sensuctl describe-type core/v2.CheckConfg --format yaml

sensuctl describe-type core/v2.CheckConfg --format wrapped-json

Filter responses with sensuctl

COMMERCIAL FEATURE : Access sensuctl response fltering in the packaged Sensu Go distribution.
For more information, see Get started with commercial features.

Sensuctl supports response fltering for all commands using the list verb.
For information about
response fltering methods and available label and feld selectors, see API response fltering.

Sensuctl-specifc syntax

You can use the same methods, selectors, and examples for sensuctl response fltering as for API
response fltering, except you’ll format your requests with the --label-selector and --feld-
selector fags instead of cURL.

The standard sensuctl response fltering syntax is:

To create a sensuctl response fltering command:

For example:

Sensuctl response fltering commands will also work with a single equals sign between the selector
fag and the flter statement:

sensuctl RESOURCE_TYPE list --SELECTOR 'FILTER_STATEMENT'

Replace RESOURCE_TYPE with the resource your flter is based on.

Replace SELECTOR with either label-selector or feld-selector , depending on which
selector you want to use.

Replace FILTER_STATEMENT with the flter to apply.

sensuctl event list --feld-selector 'linux notin event.entity.subscriptions'

The examples demonstrate how to construct sensuctl flter statements for different selectors and
operators.

Operators quick reference

Sensuctl response fltering supports two equality-based operators, two set-based operators, one
substring matching operator, and one logical operator.

operator description example

== Equality check.publish == true

!= Inequality check.namespace != "default"

in Included in linux in check.subscriptions

notin Not included in slack notin check.handlers

matches Substring
matching

check.name matches "linux-"

&& Logical AND check.publish == true && slack in

check.handlers

For details about operators, see API response fltering operators.

Examples

Filter responses with label selectors

Use the --label-selector fag to flter responses using custom labels.

For example, to return entities with the proxy_type label set to switch :

sensuctl event list --feld-selector='linux notin event.entity.subscriptions'

Filter responses with feld selectors

Use the --feld-selector fag to flter responses using specifc resource attributes.

For example, to return entities with the switches subscription:

To retrieve all events that equal a status of 2 (CRITICAL):

To retrieve all entities whose name includes the substring webserver :

Use the logical AND operator

To use the logical AND operator (&&) to return checks that include a linux subscription in the dev
namespace:

Combine label and feld selectors

You can combine the --label-selector and --feld-selector fags in a single command.

sensuctl entity list --label-selector 'proxy_type == switch'

sensuctl entity list --feld-selector 'switches in entity.subscriptions'

sensuctl event list --feld-selector 'event.check.status == "2"'

sensuctl entity list --feldSelector 'entity.name matches "webserver"'

sensuctl check list --feld-selector 'linux in check.subscriptions && dev in

check.namespace'

For example, this command returns checks with the region label set to us-west-1 that also use
the slack handler:

sensuctl check list --label-selector 'region == "us-west-1"' --feld-selector 'slack

in check.handlers'

Set environment variables with sensuctl

Sensuctl includes the sensuctl env command to help export and set environment variables on your
systems.

These examples demonstrate how to use sensuctl to export and set environment variables:

SENSU_API_URL URL of the Sensu backend API in sensuctl

SENSU_NAMESPACE Name of the current namespace in sensuctl

SENSU_FORMAT Set output format in sensuctl (e.g. JSON, YAML,

etc.)

SENSU_ACCESS_TOKEN Current API access token in sensuctl

SENSU_ACCESS_TOKEN_EXPIRES_AT Timestamp specifying when the current API access

token expires

SENSU_REFRESH_TOKEN Refresh token used to obtain a new access token

SENSU_TRUSTED_CA_FILE Path to a trusted CA fle if set in sensuctl

SENSU_INSECURE_SKIP_TLS_VERIFY Boolean value that can be set to skip TLS

verifcation

export SENSU_API_URL="http://127.0.0.1:8080"

export SENSU_NAMESPACE="default"

export SENSU_FORMAT="tabular"

export SENSU_ACCESS_TOKEN="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x"

export SENSU_ACCESS_TOKEN_EXPIRES_AT="1567716187"

export SENSU_REFRESH_TOKEN="eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x"

export SENSU_TRUSTED_CA_FILE=""

export SENSU_INSECURE_SKIP_TLS_VERIFY="true"

Run this command to confgure your shell:

eval $(sensuctl env)

BASH

SET SENSU_API_URL=http://127.0.0.1:8080

CMD

SET SENSU_NAMESPACE=default

SET SENSU_FORMAT=tabular

SET SENSU_ACCESS_TOKEN=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x

SET SENSU_ACCESS_TOKEN_EXPIRES_AT=1567716676

SET SENSU_REFRESH_TOKEN=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x

SET SENSU_TRUSTED_CA_FILE=

SET SENSU_INSECURE_SKIP_TLS_VERIFY=true

REM Run this command to confgure your shell:

REM @FOR /f "tokens=*" %i IN ('sensuctl env --shell cmd') DO @%i

$Env:SENSU_API_URL = "http://127.0.0.1:8080"

$Env:SENSU_NAMESPACE = "default"

$Env:SENSU_FORMAT = "tabular"

$Env:SENSU_ACCESS_TOKEN = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x"

$Env:SENSU_ACCESS_TOKEN_EXPIRES_AT = "1567716738"

$Env:SENSU_REFRESH_TOKEN = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.x.x"

$Env:SENSU_TRUSTED_CA_FILE = ""

$Env:SENSU_INSECURE_SKIP_TLS_VERIFY = "true"

Run this command to confgure your shell:

& sensuctl env --shell powershell | Invoke-Expression

POWERSHELL

Use sensuctl with Bonsai

Sensuctl supports installing asset defnitions directly from Bonsai, the Sensu asset hub, and checking
your Sensu backend for outdated assets.
You can also use sensuctl command to install, execute, list,
and delete commands from Bonsai or a URL.

Install asset defnitions

To install an asset defnition directly from Bonsai, use sensuctl asset add [NAMESPACE/NAME]

[:VERSION] .
[:VERSION] is only required if you require a specifc version or are pinning to a specifc
version.

Replace [NAMESPACE/NAME] with the namespace and name of the asset from Bonsai:

You can also use the --rename fag to rename the asset on install:

sensuctl asset add sensu/sensu-infuxdb-handler:3.1.1

fetching bonsai asset: sensu/sensu-infuxdb-handler:3.1.1

added asset: sensu/sensu-infuxdb-handler:3.1.1

https://bonsai.sensu.io/

Check your Sensu backend for outdated assets

To check your Sensu backend for assets that have newer versions available on Bonsai, use sensuctl

asset outdated .
This will print a list of assets installed in the backend whose version is older than the
newest version available on Bonsai:

Extend sensuctl with commands

Use sensuctl command to install, execute, list, and delete commands from Bonsai or a URL.

Install commands

To install a sensuctl command from Bonsai or a URL:

sensuctl asset add sensu/sensu-slack-handler --rename slack-handler

no version specifed, using latest: 1.0.3

fetching bonsai asset: sensu/sensu-slack-handler:1.0.3

added asset: sensu/sensu-slack-handler:1.0.3

NOTE: Sensu does not download and install asset builds onto the system until they are needed for
command execution.
Read the asset reference for more information about asset builds.

sensuctl asset outdated

 Asset Name Bonsai Asset Current Version Latest

Version

---------------------------- ---------------------------- --------------- -------

sensu/sensu-infuxdb-handler sensu/sensu-infuxdb-handler 3.1.1

3.1.2

sensuctl command install [ALIAS] ([NAMESPACE/NAME]:[VERSION] | --url [ARCHIVE_URL] -

-checksum [ARCHIVE_CHECKSUM]) [fags]

To install a command plugin, use the Bonsai asset name or specify a URL and SHA512 checksum.

To install a command using the Bonsai asset name, replace [NAMESPACE/NAME] with the name of
the asset from Bonsai.
[:VERSION] is only required if you require a specifc version or are pinning to a
specifc version.
If you do not specify a version, sensuctl will fetch the latest version from Bonsai.

Replace [ALIAS] with a unique name for the command.
For example, for the Sensu EC2 Discovery
Plugin, you might use the alias sensu-ec2-discovery .
[ALIAS] is required.

Replace [fags] with the fags you want to use.
Run sensuctl command install -h to view fags.
Flags are optional and apply only to the install command — they are not saved as part of the
command you are installing.

To install a command from the Sensu EC2 Discovery Plugin with no fags:

To install a command from a URL, replace [ARCHIVE_URL] with a command URL that points to a
tarball (e.g. https://path/to/asset.tar.gz).
Replace [ARCHIVE_CHECKSUM] with the checksum you want to
use.
Replace [ALIAS] with a unique name for the command.

Replace [fags] with the fags you want to use.
Run sensuctl command install -h to view fags.
Flags are optional and apply only to the install command — they are not saved as part of the
command you are installing.

For example, to install a command-test asset via URL with no fags:

Execute commands

sensuctl command install sensu-ec2-discovery portertech/sensu-ec2-discovery:0.3.0

sensuctl command install command-test --url https://github.com/amdprophet/command-

test/releases/download/v0.0.4/command-test_0.0.4_darwin_amd64.tar.gz --checksum

8b15a170e091dab42256fe64ca7c4a050ed49a9dbfd6c8129c95506a8a9a91f2762ac1a6d24f4fc54543

0613fd45abc91d3e5d3605fcfffb270dcf01996caa7f

NOTE: Asset defnitions with multiple asset builds are only supported via Bonsai.

https://bonsai.sensu.io/assets/portertech/sensu-ec2-discovery
https://bonsai.sensu.io/assets/portertech/sensu-ec2-discovery
https://bonsai.sensu.io/assets/portertech/sensu-ec2-discovery

To execute a sensuctl command plugin via its asset’s bin/entrypoint executable:

Replace [ALIAS] with a unique name for the command.
For example, for the Sensu EC2 Discovery
Plugin, you might use the alias sensu-ec2-discovery .
[ALIAS] is required.

Replace [fags] with the fags you want to use.
Run sensuctl command exec -h to view fags.
Flags
are optional and apply only to the exec command — they are not saved as part of the command you
are executing.

Replace [args] with the globlal fags you want to use.
Run sensuctl command exec -h to view
global fags.
To pass [args] fags to the bin/entrypoint executable, make sure to specify them after a
double dash surrounded by spaces.

For example:

Sensuctl will parse the –cache-dir fag, but bin/entrypoint will parse all fags after the -- .

In this example, the full command run by sensuctl exec would be:

List commands

To list installed sensuctl commands:

sensuctl command exec [ALIAS] [args] [fags]

NOTE: When you use sensuctl command exec , the environment variables are passed to the
command.

sensuctl command exec mycommand arg1 arg2 --cache-dir /tmp -- --fag1 --fag2=value

bin/entrypoint arg1 arg2 --fag1 --fag2=value

sensuctl command list [fags]

https://bonsai.sensu.io/assets/portertech/sensu-ec2-discovery
https://bonsai.sensu.io/assets/portertech/sensu-ec2-discovery

Replace [fags] with the fags you want to use.
Run sensuctl command list -h to view fags.
Flags
are optional and apply only to the list command.

Delete commands

To delete sensuctl commands:

Replace [ALIAS] with a unique name for the command.
For example, for the Sensu EC2 Discovery
Plugin, you might use the alias sensu-ec2-discovery .
[ALIAS] is required.

Replace [fags] with the fags you want to use.
Run sensuctl command delete -h to view fags.
Flags are optional and apply only to the delete command.

sensuctl command delete [ALIAS] [fags]

https://bonsai.sensu.io/assets/portertech/sensu-ec2-discovery
https://bonsai.sensu.io/assets/portertech/sensu-ec2-discovery

Web UI

The Sensu backend includes the Sensu web UI: a unifed view of your events, entities, and checks
with user-friendly tools to reduce alert fatigue.

COMMERCIAL FEATURE : Access the Sensu web UI homepage (shown below) in the packaged
Sensu Go distribution. For more information, see Get started with commercial features.

Sensu web UI homepage

Access the web UI

After you start the Sensu backend, you can access the web UI in your browser by visiting
http://localhost:3000.

NOTE: You may need to replace localhost with the hostname or IP address where the Sensu
backend is running.

Sign in to the web UI

Sign in to the web UI with your sensuctl username and password.
See the role-based access control
reference for default user credentials and instructions for creating new users.

Change web UI themes

Use the preferences menu to change the theme or switch to the dark theme.

View and manage resources in the web UI

You can view and manage Sensu resources in the web UI, including events, entities, silences, checks,
handlers, event flters, and mutators.

Use the namespace switcher

The web UI displays events, entities, and resources for a single namespace at a time.
By default, the
web UI displays the default namespace.

To switch namespaces, select the menu icon in the upper-left corner and choose a namespace from
the dropdown.

COMMERCIAL FEATURE : In the packaged Sensu Go distribution, the namespace switcher will list
only the namespaces to which the current user has access. For more information, see Get started with
commercial features.

Sensu web UI namespace switcher

Manage events

Resolve, re-run, silence, and delete Sensu events in the web UI Events page.

Manage entities

Silence and delete Sensu entities in the web UI Entities page.

Manage silences

Create and clear silences in the web UI Silences page.

Manage checks, handlers, event flters, and mutators

COMMERCIAL FEATURE : Access check, handler, event flter, and mutator management in the
packaged Sensu Go distribution. For more information, see Get started with commercial features.

Create, edit, and delete Sensu checks, handlers, event flters, and mutators from their respective
pages in the web UI.

Build fltered views in the web UI

The Sensu web UI includes basic flters you can use to build customized views of your Sensu
resources.
Sensu also supports advanced web UI fltering based on a wider range of resource attributes
and custom labels as a commercial feature.

When you apply a flter to a web UI page, it creates a unique link for the fltered page.
You can
bookmark these links and share your favorite flter combinations.

Basic flters

Sensu includes these basic flters:

You can also sort events and silences using the SORT dropdown menu:

Advanced flters

COMMERCIAL FEATURE : Access advanced fltering in the packaged Sensu Go distribution.
For more
information, see Get started with commercial features.

Sensu supports advanced web UI fltering using a wider range of attributes, including custom labels.
You can use the same methods, selectors, and examples for web UI fltering as for API response

Events page: flter by entity, check, status, and silenced/unsilenced.

Entities page: flter by entity class and subscription.

Checks page: flter by subscription and published/unpublished.

Handlers page: flter by handler type.

Filters page: flter by action.

Silences page: flter by check and subscription.

Events page: sort by last OK, severity, newest, and oldest.

Silences page: sort by start date.

fltering, with some syntax differences.

Create basic web UI flters

If you are using the basic web UI flters, you can create your flter just by clicking in the flter bar at the
top of the web UI page:

1. In the web UI, open the page of resources you want to flter.
2. Click in the flter bar at the top of the web UI page.
3. Select the attribute you want to flter for from the dropdown list of options.
4. Click in the flter bar again and select the flter to apply.
5. Press Return/Enter.

Create web UI flters based on label selectors or feld
selectors

To flter resources based on label selectors or feld selectors, you’ll write a brief flter statement.
The
flter statement construction is slightly different for different operators, but the standard web UI fltering
syntax is:

To write a web UI flter command:

The examples demonstrate how to construct web UI flter statements for different operators and
specifc purposes.

NOTE: You do not need to specify a resource type in web UI fltering because you must navigate
to the resource page before you construct the flter.

SELECTOR:FILTER_STATEMENT

Replace SELECTOR with the selector you want to use: labelSelector or feldSelector .

Replace FILTER_STATEMENT with the flter to apply.

Web UI-specifc syntax

Space after the colon

Web UI fltering statements will work with no space or a single space after the colon.
For example, this
flter will return all events for entities with the linux subscription:

And this flter will work the same way:

Values that begin with a number or include special characters

If you are fltering for a value that begins with a number, place the value in single or double quotes:

Likewise, to use a label or feld selector with string values that include special characters like hyphens
and underscores, place the value in single or double quotes:

Operators quick reference

Web UI fltering supports two equality-based operators, two set-based operators, one substring
matching operator, and one logical operator.

feldSelector:linux in event.entity.subscriptions

feldSelector: linux in event.entity.subscriptions

feldSelector:entity.name == '1b04994n'

feldSelector:entity.name == "1b04994n"

labelSelector:region == 'us-west-1'

labelSelector:region == "us-west-1"

operator description example

== Equality check.publish == true

!= Inequality check.namespace != "default"

in Included in linux in check.subscriptions

notin Not included in slack notin check.handlers

matches Substring
matching

check.name matches "linux-"

&& Logical AND check.publish == true && slack in

check.handlers

For details about operators, see API response fltering operators.

Examples

Filter with label selectors

To flter resources using custom labels (in this example, to display only resources with the type label
set to server :

To flter for entities that are labeled for any region in the US (e.g. us-east-1 , us-west-1 , and so
on):

Filter with feld selectors

labelSelector:type == server

labelSelector:region matches "us"

To flter resources using specifc resource attributes (in this example, to display only events at 2
(CRITICAL) status):

On the Events page, to display only events for checks with the subscription webserver :

On the Checks page, to display only checks that use the slack handler:

Use the logical AND operator

To use the logical AND operator (&&) to return checks that include a linux subscription and the
slack handler:

Combine label and feld selectors

To combine labelSelector and feldSelector flters, create the flters separately.

For example, to return resources with the region label set to us-west-1 that also use the slack
handler:

1. Create the labelSelector flter in the flter bar and press Return/Enter.

feldSelector:event.check.status == "2"

feldSelector:webserver in event.check.subscriptions

feldSelector:slack in check.handlers

feldSelector:linux in check.subscriptions && slack in check.handlers

labelSelector:region == "us-west-1"

2. Add the feldSelector flter in the flter bar after the labelSelector flter and press
Return/Enter again.

Save a fltered search

COMMERCIAL FEATURE : Access saved fltered searches in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

To save a fltered search:

1. Create a web UI flter.
2. Click the save icon at the right side of the flter bar:
3. Click Save this search.
4. Type the name you want to use for the saved search.
5. Press Return/Enter.

Sensu saves your fltered searches to etcd in a namespaced resource named searches .
To recall a
saved fltered search, a Sensu user must be assigned to a role that includes permissions for both the
searches resource and the namespace where you save the search.

The role-based access control (RBAC) reference includes example workfows that demonstrate how to
confgure a user’s roles and role bindings to include full permissions for namespaced resources,
including saved searches.

Recall a saved fltered search

To recall a saved search, click the save icon in the flter bar and select the name of the search you
want to recall.

You can combine an existing saved search with a new flter to create a new saved search.
To do this,
recall a saved search, add the new flter in the flter bar, and save the combination as a new saved
search.

Delete a saved fltered search

feldSelector:slack in check.handlers

To delete a saved search:

1. Click the save icon in the flter bar:
2. Click the delete icon next to the search you want to delete:

Confgure the web UI

COMMERCIAL FEATURE : Access web UI confguration in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Web UI confguration allows you to defne certain display options for the Sensu web UI, such as which
web UI theme to use, the number of items to list on each page, and which URLs and linked images to
expand.
You can defne a single custom web UI confguration to federate to all, some, or only one of
your clusters.

Create a web UI confguration

Use the web UI confguration API or sensuctl create to create a GlobalConfg resource.
The web UI
confguration reference describes each attribute you can confgure in the GlobalConfg resource.

If an individual user’s settings confict with the web UI confguration settings, Sensu will use the
individual user’s settings.
For example, if a user’s system is set to dark mode and their web UI settings
are confgured to use their system settings, the user will see dark mode in Sensu’s web UI, even if you
set the theme to classic in your web UI confguration.

Federate a web UI confguration to specifc clusters

The web UI confguration in use is provided by the cluster you are connected to.
For example, if you
open the web UI for https://cluster-a.sensu.my.org:3000, the web UI display will be confgured
according to the GlobalConfg resource for cluster-a.

In a federated environment, you can create an etcd replicator for your GlobalConfg resource so you
can use it for different clusters:

NOTE: Each cluster should have only one web confguration.

YML

https://cluster-a.sensu.my.org/

Debugging in federated environments

In a federated environment, a problem like incorrect confguration, an error, or a network issue could
prevent a cluster from appearing in the web UI namespace switcher.

type: EtcdReplicator

api_version: federation/v1

metadata:

 name: web_global_confg

spec:

 api_version: web/v1

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 insecure: false

 key: /path/to/ssl/key.pem

 replication_interval_seconds: 120

 resource: GlobalConfg

 url: "http://127.0.0.1:2379"

{

 "type": "EtcdReplicator",

 "api_version": "federation/v1",

 "metadata": {

 "name": "web_global_confg"

 },

 "spec": {

 "api_version": "web/v1",

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "insecure": false,

 "key": "/path/to/ssl/key.pem",

 "replication_interval_seconds": 120,

 "resource": "GlobalConfg",

 "url": "http://127.0.0.1:2379"

 }

}

JSON

If you set the always_show_local_cluster attribute to true in your web UI confguration, the
namespace switcher will display a heading for each federated cluster, along with the local-cluster
heading to indicate the cluster you are currently connected to.
With always_show_local_cluster set
to true , the cluster administrator can directly connect to the local cluster even if there is a problem
that would otherwise prevent the cluster from being listed in the namespace switcher.

NOTE: Use the always_show_local_cluster attribute only in federated environments.
In a
single-cluster environment, the namespace switcher will only list a local-cluster heading and the
namespaces for that cluster.

API

API version: v2

The Sensu backend REST API provides access to Sensu workfow confgurations and monitoring
event data.
For information about the Sensu agent API, see the agent reference.

If you have a healthy clustered backend, you only need to make Sensu API calls to any one of the
cluster members.
The cluster protocol will replicate your changes to all cluster members.

URL format

Sensu API endpoints use the standard URL format
/api/{group}/{version}/namespaces/{namespace} where:

Data format

The Sensu API uses JSON-formatted requests and responses.
In terms of sensuctl output types, the
Sensu API uses the json format, not wrapped-json .

{group} is the API group: core .

{version} is the API version: v2 .

{namespace} is the namespace name.
The examples in these API docs use the default

namespace.
The Sensu API requires the authenticated user to have the correct access
permissions for the namespace specifed in the URL.
If the authenticated user has the correct
cluster-wide permissions, you can leave out the /namespaces/{namespace} portion of the
URL to access Sensu resources across namespaces.
See the RBAC reference for more
information about confguring Sensu users and access controls.

NOTE: The authentication API, authentication providers API, and health API do not follow this
standard URL format.

Versioning

The Sensu Go API is versioned according to the format v{majorVersion}{stabilityLevel}

{iterationNumber} , in which v2 is stable version 2.
The Sensu API guarantees backward
compatibility for stable versions of the API.

Sensu does not guarantee that an alpha or beta API will be maintained for any period of time.
Consider
alpha versions under active development — they may not be published for every release.
Beta APIs are
more stable than alpha versions, but they offer similarly short-lived lifespans and also are not
guaranteed to convert programmatically when the API is updated.

Request size limit

API request bodies are limited to 0.512 MB in size.

Access control

With the exception of the authentication, health, and metrics APIs, the Sensu API requires
authentication using a JSON Web Token (JWT) access token or API key.

Code examples in the Sensu API docs use the environment variable $SENSU_API_KEY to represent a
valid API key in API requests.

Authentication quickstart

To set up a local API testing environment, save your Sensu credentials and token as environment
variables:

NOTE: The authentication information on this page is specifc to the Sensu API.
For information
about using Sensu’s built-in basic authentication or external authentication providers to
authenticate to the Sensu web UI, API, or sensuctl, read the Control Access documentation.

Requires curl and jq

export SENSU_USER=YOUR_USERNAME && SENSU_PASS=YOUR_PASSWORD

The sensuctl reference demonstrates how to use the sensuctl env command to export your access
token, token expiry time, and refresh token as environment variables.

Authenticate with the authentication API

Use the authentication API and your Sensu username and password to generate access tokens and
refresh tokens.
The /auth API endpoint lets you generate short-lived API tokens using your Sensu
username and password.

1. Retrieve an access token for your user.
For example, to generate an access token using
example admin credentials:

The access token should be included in the output, along with a refresh token:

2. Use the access token in the authentication header of the API request.
For example:

3. Refresh your access token every 15 minutes.
Access tokens last for approximately 15 minutes.
When your token expires, you should see a 401 Unauthorized response from the API.
To
generate a new access token, use the /auth/token API endpoint, including the expired
access token in the authorization header and the refresh token in the request body:

export SENSU_ACCESS_TOKEN=`curl -X GET -u "$SENSU_USER:$SENSU_PASS" -s

http://localhost:8080/auth | jq -r ".access_token"`

curl -u 'YOUR_USERNAME:YOUR_PASSWORD' http://localhost:8080/auth

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

The new access token should be included in the output:

Generate an API token with sensuctl

You can also generate an API access token using the sensuctl command line tool.
The user credentials
that you use to log in to sensuctl determine your permissions to get, list, create, update, and delete
resources with the Sensu API.

1. Install and log in to sensuctl.

2. Retrieve an access token for your user:

The access token should be included in the output:

3. Copy the access token into the authentication header of the API request.
For example:

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

-H 'Content-Type: application/json' \

-d '{"refresh_token": "eyJhbGciOiJIUzI1NiIs..."}' \

http://127.0.0.1:8080/auth/token

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1561055277,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

cat ~/.confg/sensu/sensuctl/cluster|grep access_token

"access_token": "eyJhbGciOiJIUzI1NiIs...",

curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

4. Refresh your access token every 15 minutes.
Access tokens last for approximately 15 minutes.
When your token expires, you should see a 401 Unauthorized response from the API.
To
regenerate a valid access token, run any sensuctl command (like sensuctl event list) and
repeat step 2.

Authenticate with an API key

Each Sensu API key (core/v2.APIKey) is a persistent UUID that maps to a stored Sensu username.
The
advantages of authenticating with API keys rather than access tokens include:

API keys are cluster-wide resources, so only cluster admins can grant, view, and revoke them.

Confgure an environment variable for API key authentication

Code examples in the Sensu API docs use the environment variable $SENSU_API_KEY to represent a
valid API key in API requests.

Use sensuctl or the APIkeys API to generate an API key.
Then, follow this example to export your API
key to the SENSU_API_KEY environment variable you can use for API authentication:

More effcient integration: Check and handler plugins and other code can integrate with the
Sensu API without implementing the logic required to authenticate via the /auth API
endpoint to periodically refresh the access token

Improved security: API keys do not require providing a username and password in check or
handler defnitions

Better admin control: API keys can be created and revoked without changing the underlying
user’s password, but keep in mind that API keys will continue to work even if the user’s
password changes

NOTE: API keys are not supported for authentication providers such as LDAP and OIDC.

export SENSU_API_KEY="83abef1e-e7d7-4beb-91fc-79ad90084d5b"

BASH

SET SENSU_API_KEY="83abef1e-e7d7-4beb-91fc-79ad90084d5b"

CMD

Authorization header for API key authentication

Similar to the Bearer [token] Authorization header, Key [api-key] will be accepted as an
Authorization header for authentication.

For example, a JWT Bearer [token] Authorization header might be:

If you’re using Key [api-key] to authenticate instead, the Authorization header might be:

Example

This example uses the API key directly (rather than via an environment variable) to authenticate to the
checks API:

$Env:SENSU_API_KEY = "83abef1e-e7d7-4beb-91fc-79ad90084d5b"

POWERSHELL

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

curl -H "Authorization: Key $SENSU_API_KEY"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

$ curl -H "Authorization: Key 7f63b5bc-41f4-4b3e-b59b-5431afd7e6a2"

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

HTTP/1.1 200 OK

[

 {

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

Pagination

The Sensu API supports response pagination for most core/v2 GET endpoints that return an array.
You can request a paginated response with the limit and continue query parameters.

Limit query parameter

The following request limits the response to a maximum of two objects:

The response includes the available objects up to the specifed limit.

Continue query parameter

If more objects are available beyond the limit you specifed in a request, the response header includes
a Sensu-Continue token you can use to request the next page of objects.

For example, the following response indicates that more than two users are available because it
provides a Sensu-Continue token in the response header:

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

curl http://127.0.0.1:8080/api/core/v2/users?limit=2 -H "Authorization: Bearer

$SENSU_ACCESS_TOKEN"

To request the next two available users, use the Sensu-Continue token included in the response
header:

If the response header does not include a Sensu-Continue token, there are no further objects to
return.
For example, this response header indicates that no further users are available:

HTTP/1.1 200 OK

Content-Type: application/json

Sensu-Continue: L2RlZmF1bU2Vuc3UtTWFjQ

Sensu-Entity-Count: 3

Sensu-Entity-Limit: 100

Sensu-Entity-Warning:

Date: Fri, 14 Feb 2020 15:44:25 GMT

Content-Length: 132

[

 {

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

 },

 {

 "username": "bob",

 "groups": [

 "ops"

],

 "disabled": false

 }

]

curl http://127.0.0.1:8080/api/core/v2/users?limit=2&continue=L2RlZmF1bU2Vuc3UtTWFjQ

\

-H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

HTTP/1.1 200 OK

Content-Type: application/json

Response fltering

COMMERCIAL FEATURE : Access API response fltering in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

The Sensu API supports response fltering for all GET endpoints that return an array.
You can flter
resources based on their labels with the labelSelector query parameter and based on certain pre-
determined felds with the feldSelector query parameter.

Label selector

The labelSelector query parameter allows you to group resources by the label attributes specifed
in the resource metadata object.
All resources support labels within the metadata object.

Field selector

The feldSelector query parameter allows you to organize and select subsets of resources based
on certain felds.
Here’s the list of available felds:

Sensu-Entity-Count: 3

Sensu-Entity-Limit: 100

Sensu-Entity-Warning:

Date: Fri, 14 Feb 2020 15:46:02 GMT

Content-Length: 54

[

 {

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

 }

]

NOTE: To use label and feld selectors in the Sensu web UI, see web UI fltering.

Resource Fields

Asset asset.name asset.namespace asset.flters

Check check.name check.namespace check.handlers check.publish
check.round_robin check.runtime_assets check.subscriptions

ClusterRole clusterrole.name

ClusterRoleBinding clusterrolebinding.name clusterrolebinding.role_ref.name
clusterrolebinding.role_ref.type

Entity entity.name entity.namespace entity.deregister
entity.entity_class entity.subscriptions

Event event.is_silenced event.name event.namespace
event.check.handlers event.check.is_silenced
event.check.name event.check.publish
event.check.round_robin event.check.runtime_assets
event.check.status event.check.subscriptions
event.entity.deregister event.entity.entity_class
event.entity.name event.entity.subscriptions

Extension extension.name extension.namespace

Filter flter.name flter.namespace flter.action
flter.runtime_assets

Handler handler.name handler.namespace handler.flters
handler.handlers handler.mutator handler.type

Hook hook.name hook.namespace

Mutator mutator.name mutator.namespace mutator.runtime_assets

Namespace namespace.name

Role role.name role.namespace

RoleBinding rolebinding.name rolebinding.namespace
rolebinding.role_ref.name rolebinding.role_ref.type

Secrets secret.name secret.namespace secret.provider secret.id

SecretsProviders provider.name provider.namespace

Silenced silenced.name silenced.namespace silenced.check
silenced.creator silenced.expire_on_resolve
silenced.subscription

User user.username user.disabled user.groups

API-specifc syntax

To create an API response flter, you’ll write a brief flter statement.
The operators and examples
sections demonstrate how to construct API response flter statements for different operators and
specifc purposes.

The flter statement construction is slightly different for different operators, but there are a few general
syntax rules that apply to all flter statements.

Spaces in the flter statement

As shown in this example:

Quotation marks around the flter statement

Place the entire flter statement inside single quotes:

Exception: If the flter statement contains a shell variable, you must use double quotation marks
around the statement:

'feldSelector=silenced.expire_on_resolve == true'

Do not use spaces around the = between the selector type and the rest of the flter
statement.

Do use spaces around the operator (in this example, the ==).

'feldSelector=linux in check.subscriptions'

If you use single quotes around a flter statement that contains a shell variable, the single quotes will
keep the variable intact instead of expanding it.

Values that begin with a number or include special characters

If you are fltering for a value that begins with a number, place the value in double quotes:

Likewise, to use a label or feld selector with string values that include special characters like hyphens
and underscores, place the value in double quotes:

Operators

Sensu’s API response fltering supports two equality-based operators, two set-based operators, one
substring matching operator, and one logical operator.

operator description example

== Equality check.publish == true

!= Inequality check.namespace != "default"

in Included in linux in check.subscriptions

notin Not included in slack notin check.handlers

"labelSelector=host == $HOSTNAME"

NOTE: This exception only applies to shell variables.
It does not apply for variables in languages
that treat single and double quotation marks interchangeably, like JavaScript.

'feldSelector=entity.name == "1b04994n"'

'labelSelector:region == "us-west-1"'

matches Substring
matching

check.name matches "linux-"

&& Logical AND check.publish == true && slack in

check.handlers

Equality-based operators

Sensu’s two equality-based operators are == (equality) and != (inequality).

For example, to retrieve only checks with the label type and value server :

To retrieve checks that are not in the production namespace:

Set-based operators

Sensu’s two set-based operators for lists of values are in and notin .

For example, to retrieve checks with a linux subscription:

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'labelSelector=type == "server"'

NOTE: Use the fag --data-urlencode in cURL to encode the query parameter.
Include the -G

fag so the request appends the query parameter data to the URL.

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=check.namespace != "production"'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=linux in check.subscriptions'

To retrieve checks that do not use the slack handler:

The in and notin operators have two important conditions:

Substring matching operator

Sensu’s substring matching operator is matches .

For example, to retrieve all checks whose name includes linux :

Suppose you are using Sensu to monitor 1000 entities that are named incrementally and according to
technology.
For example, your webservers are named webserver-1 through webserver-25 , and
your CPU entities are named cpu-1 through cpu-300 , and so on.
In this case, you can use
matches to retrieve all of your webserver entities:

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=slack notin check.handlers'

First, they only work when the underlying value you’re fltering for is a string.
You can flter for
strings and arrays of strings with in and notin operators, but you cannot use them to flter
for integer, foat, array, or Boolean values.

Second, to flter for a string, the string must be to the left of the operator: string [in|notin]
selector .
To flter for an array of strings, the array must be to the right of the operator:
selector [in|notin] [string1,string2] .

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=check.name matches "linux"'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'feldSelector=entity.name matches "webserver-"'

Similarly, if you have entities labeled for different regions, you can use matches to fnd the entities
that are labeled for the US (e.g. us-east-1 , us-west-1 , and so on):

The matches operator only works when the underlying value you’re fltering for is a string.
You can
flter for strings and arrays of strings with the matches operator, but you cannot use it to flter for
integer, foat, array, or Boolean values.
Also, the string must be to the right of the operator: selector
matches string .

Logical operator

Sensu’s logical operator is && (AND).
Use it to combine multiple statements separated with the logical
operator in feld and label selectors.

For example, the following cURL request retrieves checks that are not confgured to be published and
include the linux subscription:

To retrieve checks that are not published, include a linux subscription, and are in the dev
namespace:

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'labelSelector:region matches "us"'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=check.publish != true && linux in

check.subscriptions'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=check.publish != true && linux in check.subscriptions

&& dev in check.namespace'

NOTE: Sensu does not have the OR logical operator.

Combined selectors

You can use feld and label selectors in a single request.
For example, to retrieve only checks that
include a linux subscription and do not include a label for type server :

Examples

Values with special characters

To use a label or feld selector with string values that include special characters like hyphens and
underscores, place the value in single or double quotes:

Use selectors with arrays of strings

To retrieve checks that are in either the dev or production namespace:

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=linux in check.subscriptions' \

--data-urlencode 'labelSelector=type != "server"'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN" -X GET

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'labelSelector=region == "us-west-1"'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'feldSelector="entity:i-0c1f8a116b84ea50c" in entity.subscriptions'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=check.namespace in [dev,production]'

Filter events by entity or check

To retrieve events for a specifc check (checkhttp):

Similary, to retrieve only events for the server entity:

Filter events by severity

Use the event.check.status feld selector to retrieve events by severity.
For example, to retrieve all
events at 2 (CRITICAL) status:

Filter all incidents

To retrieve all incidents (all events whose status is not 0):

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/events -G \

--data-urlencode 'feldSelector=checkhttp in event.check.name'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/events -G \

--data-urlencode 'feldSelector=server in event.entity.name'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/events -G \

--data-urlencode 'feldSelector=event.check.status == "2"'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/events -G \

--data-urlencode 'feldSelector=event.entity.status != "0"'

Filter checks, entities, or events by subscription

To list all checks that include the linux subscription:

Similarly, to list all entities that include the linux subscription:

To list all events for the linux subscription, use the event.entity.subscriptions feld selector:

Filter silenced resources and silences

Filter silenced resources by namespace

To list all silenced resources for a particular namespace (in this example, the default namespace):

Likewise, to list all silenced resources except those in the default namespace:

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/checks -G \

--data-urlencode 'feldSelector=linux in check.subscriptions'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/entities -G \

--data-urlencode 'feldSelector=linux in entity.subscriptions'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/events -G \

--data-urlencode 'feldSelector=linux in event.entity.subscriptions'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.namespace == "default"'

To list all silenced events for all namespaces:

Filter silences by creator

To list all silences created by the user alice :

To list all silences that were not created by the admin user:

Filter silences by silence subscription

To retrieve silences with a specifc subscription (in this example, linux):

Another way to make the same request is:

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.namespace != "default"'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/events -G \

--data-urlencode 'feldSelector=event.is_silenced == true'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.creator == "alice"'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.creator != "admin"'

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.subscription == "linux"'

Filter silenced resources by expiration

To list all silenced resources that expire only when a matching check resolves:

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=linux in silenced.subscription'

NOTE: For this feld selector, subscription means the subscription specifed for the silence.
In
other words, this flter retrieves silences with a particular subscription, not silenced entities or
checks with a matching subscription.

curl -H "Authorization: Bearer $SENSU_ACCESS_TOKEN

http://127.0.0.1:8080/api/core/v2/silenced -G \

--data-urlencode 'feldSelector=silenced.expire_on_resolve == true'

APIKeys API

Get all API keys

The /apikeys GET endpoint retrieves all API keys.

Example

The following example demonstrates a request to the /apikeys API endpoint, resulting in a JSON
array that contains all API keys.

NOTE: Requests to the APIKeys API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/apikeys \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "83abef1e-e7d7-4beb-91fc-79ad90084d5b",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1570640363

 }

]

API Specifcation

/apikeys (GET)

description Returns the list of API keys.

example url http://hostname:8080/api/core/v2/apikeys

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes

output

Create a new API key

The /apikeys API endpoint provides HTTP POST access to create a new API key.

Example

In the following example, an HTTP POST request is submitted to the /apikeys API endpoint to

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "83abef1e-e7d7-4beb-91fc-79ad90084d5b",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1570640363

 }

]

create a new API key.
The request includes the API key defnition in the request body and returns a
successful HTTP 201 Created response.

API Specifcation

/apikeys (POST)

description Creates a new API key, a Sensu-generated UUID. The response will
include HTTP 201 and a Location header that contains the relative
path to the new API key.

example URL http://hostname:8080/api/core/v2/apikeys

request payload

response codes

Get a specifc API key

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "username": "admin"

}' \

http://127.0.0.1:8080/api/core/v2/apikeys

HTTP/1.1 201 Created

{

 "username": "admin"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The /apikeys/:apikey GET endpoint retrieves the specifed API key.

Example

In the following example, querying the /apikeys/:apikey API returns the requested :apikey

defnition or an error if the key is not found.

API Specifcation

/apikeys/:apikey
(GET)

description Returns the specifed API key.

example url http://hostname:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-91fc-
79ad90084d5b

response type Map

response codes

curl -X GET \

http://127.0.0.1:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-91fc-79ad90084d5b \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "83abef1e-e7d7-4beb-91fc-79ad90084d5b",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1570640363

}

Success: 200 (OK)

Missing: 404 (Not Found)

output

Delete an API key

The /apikeys/:apikey API endpoint provides HTTP DELETE access to remove an API key.

Example

The following example shows a request to the /apikeys/:apikey API endpoint to delete the API key
83abef1e-e7d7-4beb-91fc-79ad90084d5b , resulting in a successful HTTP 204 No Content

response.

API Specifcation

/apikeys/:apikey
(DELETE)

description Revokes the specifed API key.

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "83abef1e-e7d7-4beb-91fc-79ad90084d5b",

 "created_by": "admin"

 },

 "username": "admin",

 "created_at": 1570640363

}

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-91fc-79ad90084d5b

HTTP/1.1 204 No Content

example URL http://hostname:8080/api/core/v2/apikeys/83abef1e-e7d7-4beb-91fc-
79ad90084d5b

response codes
Success: 204 (No Content)

Error: 500 (Internal Server Error)

Assets API

Get all assets

The /assets API endpoint provides HTTP GET access to asset data.

Example

The following example demonstrates a request to the /assets API endpoint, resulting in a JSON
array that contains asset defnitions.

NOTE: Requests to the assets API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "url": "https://github.com/sensu/sensu-infuxdb-

handler/releases/download/3.1.2/sensu-infuxdb-handler_3.1.2_linux_amd64.tar.gz",

 "sha512":

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9b

1257bb479676bc155b24e21bf93c722b812b0f15cb3bd",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-infuxdb-handler",

API Specifcation

/assets (GET)

description Returns the list of assets.

example url http://hostname:8080/api/core/v2/namespaces/default/assets

pagination This endpoint supports pagination using the limit and continue

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 },

 {

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "url": "https://github.com/sensu/sensu-infuxdb-

handler/releases/download/3.1.2/sensu-infuxdb-

handler_3.1.2_linux_amd64.tar.gz",

 "sha512":

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13

a13e7540bac2b63e324f39d9b1257bb479676bc155b24e21bf93c722b81

2b0f15cb3bd",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-infuxdb-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 },

 {

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-

handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66

556e9079e1270521999b5871473e6c851f51b34097c54fdb8d18eedb706

Create a new asset

The /assets API endpoint provides HTTP POST access to asset data.

Example

In the following example, an HTTP POST request is submitted to the /assets API endpoint to create
a role named sensu-slack-handler .
The request returns a successful HTTP 201 Created

response.

4df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

API Specifcation

/assets (POST)

description Creates a Sensu asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets

payload

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 },

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets

HTTP/1.1 201 Created

{

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-

handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66

556e9079e1270521999b5871473e6c851f51b34097c54fdb8d18eedb706

4df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

response codes

Get a specifc asset

The /assets/:asset API endpoint provides HTTP GET access to asset data for specifc :asset
defnitions, by asset name .

Example

In the following example, querying the /assets/:asset API endpoint returns a JSON map that
contains the requested :asset defnition (in this example, for the :asset named check_script).

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 },

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/sensu-slack-handler \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

API Specifcation

/assets/:asset
(GET)

description Returns the specifed asset.

example url http://hostname:8080/api/core/v2/namespaces/default/assets/sensu-
slack-handler

response type Map

response codes

output

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

[

 {

 "url": "https://github.com/sensu/sensu-slack-

Create or update an asset

The /assets/:asset API endpoint provides HTTP PUT access to create or update specifc :asset

defnitions, by asset name.

Example

In the following example, an HTTP PUT request is submitted to the /assets/:asset API endpoint to
create the asset sensu-slack-handler .
The request returns a successful HTTP 201 Created

response.

handler/releases/download/1.0.3/sensu-slack-

handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66

556e9079e1270521999b5871473e6c851f51b34097c54fdb8d18eedb706

4df9019adc8",

 "flters": [

 "entity.system.os = 'linux'",

 "entity.system.arch = 'amd64'"

],

 "builds": null,

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default",

 "created_by": "admin"

 },

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

API Specifcation

/assets/:asset
(PUT)

description Creates or updates the specifed Sensu asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets/sensu-
slack-handler

payload

-d '{

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 },

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/sensu-slack-

handler

HTTP/1.1 201 Created

{

 "url": "https://github.com/sensu/sensu-slack-

handler/releases/download/1.0.3/sensu-slack-

handler_1.0.3_linux_amd64.tar.gz",

 "sha512":

response codes

Delete an asset

The /assets/:asset API endpoint provides HTTP DELETE access so you can delete an asset.

Example

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66

556e9079e1270521999b5871473e6c851f51b34097c54fdb8d18eedb706

4df9019adc8",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer $TOKEN",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 },

 "metadata": {

 "name": "sensu-slack-handler",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: Deleting an asset does not remove the downloaded fles from the asset cache or remove
any references to the deleted asset in other resources.

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/assets/sensu-slack-handler \

-H "Authorization: Key $SENSU_API_KEY"

API Specifcation

/assets/:asset
(DELETE)

description Deletes the specifed Sensu asset.

example URL http://hostname:8080/api/core/v2/namespaces/default/assets/sensu-
slack-handler

response codes

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Authentication API

Generate an access token and a refresh token

The /auth API endpoint provides HTTP GET access to generate an access token and a refresh
token using Sensu’s basic authentication.

Example

In the following example, querying the /auth API endpoint with a given username and password
returns an HTTP 200 OK response to indicate that the credentials are valid, along with an access
token and a refresh token.

API Specifcation

/auth (GET)

description Generates an access and a refresh token used for accessing the API
using Sensu’s basic authentication. Access tokens last for approximately
15 minutes. When your token expires, you should see a 401
Unauthorized response from the API. To generate a new access token,

curl -X GET \

http://127.0.0.1:8080/auth \

-u myusername:mypassword

HTTP/1.1 200 OK

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

use the /auth/token API endpoint.

example url http://hostname:8080/auth

output

response codes

Test basic auth user credentials

The /auth/test API endpoint provides HTTP GET access to test basic authentication user
credentials that were created with Sensu’s built-in basic authentication.

Example

In the following example, querying the /auth/test API endpoint with a given username and
password returns an HTTP 200 OK response, indicating that the credentials are valid.

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

Valid credentials: 200 (OK)

Invalid credentials: 401 (Unauthorized)

Error: 500 (Internal Server Error)

NOTE: The /auth/test endpoint only tests user credentials created with Sensu’s built-in basic
authentication provider. It does not test user credentials defned via an authentication provider like
Lightweight Directory Access Protocol (LDAP), Active Directory (AD), or OpenID Connect 1.0
protocol (OIDC).

curl -X GET \

http://127.0.0.1:8080/auth/test \

-u myusername:mypassword

API Specifcation

/auth/test (GET)

description Tests basic authentication credentials (username and password) that
were created with Sensu’s users API.

example url http://hostname:8080/auth/test

response codes

Renew an access token

The /auth/token API endpoint provides HTTP POST access to renew an access token.

Example

In the following example, an HTTP POST request is submitted to the /auth/token API endpoint to
generate a valid access token.
The request includes the refresh token in the request body and returns a
successful HTTP 200 OK response along with the new access token.

HTTP/1.1 200 OK

Valid credentials: 200 (OK)

Invalid credentials: 401 (Unauthorized)

Error: 500 (Internal Server Error)

curl -X POST \

http://127.0.0.1:8080/auth/token \

-H "Authorization: Bearer eyJhbGciOiJIUzI1NiIs..." \

-H 'Content-Type: application/json' \

-d '{"refresh_token": "eyJhbGciOiJIUzI1NiIs..."}'

HTTP/1.1 200 OK

{

API Specifcation

/auth/token
(POST)

description Generates a new access token using a refresh token and an expired
access token.

example url http://hostname:8080/auth/token

example payload

output

response codes

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

{

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

{

 "access_token": "eyJhbGciOiJIUzI1NiIs...",

 "expires_at": 1544582187,

 "refresh_token": "eyJhbGciOiJIUzI1NiIs..."

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Authentication providers API

COMMERCIAL FEATURE : Access authentication providers in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Get active authentication provider confgurations

The /authproviders API endpoint provides HTTP GET access to authentication provider
confguration in Sensu.

Example

In the following example, querying the /authproviders API endpoint returns the authentication
provider confguration in Sensu, with an HTTP 200 OK response.

NOTE: Requests to the authentication providers API require you to authenticate with a Sensu
access token or API key.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/authentication/v2/authproviders \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "type": "ldap",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "openldap"

 },

 "spec": {

 "groups_prefx": "",

 "servers": [

API Specifcation

/authproviders
(GET)

description Returns the list of active authentication providers.

 {

 "binding": {

 "password": "YOUR_PASSWORD",

 "user_dn": "cn=binder,dc=acme,dc=org"

 },

 "client_cert_fle": "",

 "client_key_fle": "",

 "default_upn_domain": "",

 "group_search": {

 "attribute": "member",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "host": "127.0.0.1",

 "insecure": false,

 "port": 636,

 "security": "tls",

 "trusted_ca_fle": "",

 "user_search": {

 "attribute": "uid",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "username_prefx": ""

 }

 }

]

example url http://hostname:8080/api/enterprise/authentication/v2/authproviders

pagination This endpoint supports pagination using the limit and continue
query parameters. See the API overview for details.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "ldap",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "openldap"

 },

 "spec": {

 "groups_prefx": "",

 "servers": [

 {

 "binding": {

 "password": "YOUR_PASSWORD",

 "user_dn": "cn=binder,dc=acme,dc=org"

 },

 "client_cert_fle": "",

 "client_key_fle": "",

 "default_upn_domain": "",

 "group_search": {

 "attribute": "member",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "host": "127.0.0.1",

 "insecure": false,

 "port": 636,

 "security": "tls",

 "trusted_ca_fle": "",

 "user search": {

Get the confguration for a specifc authentication provider

The /authproviders/:name API endpoint provides HTTP GET access to the authentication provider
confguration for a specifc :name .

Example

In the following example, an HTTP GET request is submitted to the /authproviders/:name API
endpoint to retrieve the openldap authenthication provider confguration, resulting in an HTTP 200

OK response.

 "attribute": "uid",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "username_prefx": ""

 }

 }

]

curl -X GET \

http://127.0.0.1:8080/api/enterprise/authentication/v2/authproviders/openldap \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json'

HTTP/1.1 200 OK

-d '{

 "type": "ldap",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "openldap"

 },

 "spec": {

API Specifcation

/authproviders/:na
me (GET)

description Returns the confguration for an authentication provider for the specifed
confgured provider name.

 "groups_prefx": "",

 "servers": [

 {

 "binding": {

 "password": "YOUR_PASSWORD",

 "user_dn": "cn=binder,dc=acme,dc=org"

 },

 "client_cert_fle": "",

 "client_key_fle": "",

 "default_upn_domain": "",

 "group_search": {

 "attribute": "member",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "host": "127.0.0.1",

 "insecure": false,

 "port": 636,

 "security": "tls",

 "trusted_ca_fle": "",

 "user_search": {

 "attribute": "uid",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "username_prefx": ""

 }

}'

example url http://hostname:8080/api/enterprise/authentication/v2/authproviders/open
ldap

response type Map

response codes

output

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "ldap",

 "api_version": "authentication/v2",

 "metadata": {

 "name": "openldap"

 },

 "spec": {

 "groups_prefx": "",

 "servers": [

 {

 "binding": {

 "password": "YOUR_PASSWORD",

 "user_dn": "cn=binder,dc=acme,dc=org"

 },

 "client_cert_fle": "",

 "client_key_fle": "",

 "default_upn_domain": "",

 "group_search": {

 "attribute": "member",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "groupOfNames"

 },

 "host": "127.0.0.1",

 "insecure": false,

 "port": 636,

 "security": "tls",

 "trusted_ca_fle": "",

 "user_search": {

Create or update the confguration for a specifc
authentication provider

The /authproviders/:name API endpoint provides HTTP PUT access to create or update the
authentication provider confguration for a specifc :name .

Example

In the following example, an HTTP PUT request is submitted to the /authproviders/:name API
endpoint to create the openldap authenthication provider, resulting in an HTTP 200 OK response.

 "attribute": "uid",

 "base_dn": "dc=acme,dc=org",

 "name_attribute": "cn",

 "object_class": "person"

 }

 }

],

 "username_prefx": ""

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "Type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

 },

API Specifcation

/authproviders/:na
me (PUT)

description Creates or updates the authentication provider confguration for the
specifed name. See the authentication guide for more information about
supported providers.

example url http://hostname:8080/api/enterprise/authentication/v2/authproviders/open
ldap

payload

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

}' \

http://127.0.0.1:8080/api/enterprise/authentication/v2/authproviders/openldap

HTTP/1.1 200 OK

{

 "Type": "ldap",

 "api_version": "authentication/v2",

 "spec": {

 "servers": [

 {

 "host": "127.0.0.1",

 "binding": {

 "user_dn": "cn=binder,dc=acme,dc=org",

 "password": "YOUR_PASSWORD"

payload parameters All attributes shown in the example payload are required. For more
information about confguring authentication providers, see the
authentication guide.

response codes

Delete the confguration for a specifc authentication provider

The /authproviders/:name API endpoint provides HTTP DELETE access to delete the
authentication provider confguration from Sensu for a specifc :name .

Example

The following example shows a request to the /authproviders/:name API endpoint to delete the
confguration for the authentication provider openldap , resulting in a successful HTTP 204 No

Content response.

 },

 "group_search": {

 "base_dn": "dc=acme,dc=org"

 },

 "user_search": {

 "base_dn": "dc=acme,dc=org"

 }

 }

]

 },

 "metadata": {

 "name": "openldap"

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

API Specifcation

/authproviders/:na
me (DELETE)

description Deletes the authentication provider confguration from Sensu for the
specifed name.

example url http://hostname:8080/api/enterprise/authentication/v2/authproviders/open
ldap

response codes

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/authproviders/openldap

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Checks API

Get all checks

The /checks API endpoint provides HTTP GET access to check data.

Example

The following example demonstrates a request to the /checks API endpoint, resulting in a JSON
array that contains check defnitions.

NOTE: Requests to the checks API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "command": "check-email.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": null,

 "subscriptions": [

 "linux"

],

API Specifcation

/checks (GET)

description Returns the list of checks.

example url http://hostname:8080/api/core/v2/namespaces/default/checks

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check-email",

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

Create a new check

The /checks API endpoint provides HTTP POST access to create checks.

Example

In the following example, an HTTP POST request is submitted to the /checks API endpoint to create

 {

 "command": "check-email.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": null,

 "subscriptions": [

 "linux"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check-email",

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

a check-cpu check.
The request includes the check defnition in the request body and returns a
successful HTTP 200 OK response and the created check defnition.

API Specifcation

/checks (POST)

description Creates a Sensu check.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks

example payload

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": [

 "linux"

],

 "interval": 60,

 "publish": true,

 "handlers": [

 "slack"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks

HTTP/1.1 201 Created

{

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": [

 "linux"

],

payload parameters Required check attributes: interval (integer) or cron (string) and a
metadata scope that contains name (string) and namespace (string).

For more information about creating checks, see the check reference.

response codes

Get a specifc check

The /checks/:check API endpoint provides HTTP GET access to check data for :check
defnitions, specifed by check name.

Example

In the following example, querying the /checks/:check API endpoint returns a JSON map that
contains the requested :check defnition (in this example, for the :check named check-cpu).

 "interval": 60,

 "publish": true,

 "handlers": [

 "slack"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

API Specifcation

/checks/:check
(GET)

description Returns the specifed check.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

response type Map

{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": null,

 "subscriptions": [

 "linux"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check-cpu",

 "namespace": "default",

 "created_by": "admin"

 }

}

response codes

output

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": null,

 "subscriptions": [

 "linux"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "check-cpu",

 "namespace": "default",

 "created_by": "admin"

 }

}

Create or update a check

The /checks/:check API endpoint provides HTTP PUT access to create and update :check

defnitions, specifed by check name.

Example

In the following example, an HTTP PUT request is submitted to the /checks/:check API endpoint to
update the check-cpu check, resulting in an HTTP 200 OK response and the updated check
defnition.

API Specifcation

/checks/:check
(PUT)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 201 Created

description Creates or updates the specifed Sensu check.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

payload

payload parameters Required check attributes: interval (integer) or cron (string) and a
metadata scope that contains name (string) and namespace (string).

For more information about creating checks, see the check reference.

response codes

Delete a check

The /checks/:check API endpoint provides HTTP DELETE access to delete a check from Sensu,
specifed by the check name.

Example

{

 "command": "check-cpu.sh -w 75 -c 90",

 "handlers": [

 "slack"

],

 "interval": 60,

 "publish": true,

 "subscriptions": [

 "linux"

],

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The following example shows a request to the /checks/:check API endpoint to delete the check
named check-cpu , resulting in a successful HTTP 204 No Content response.

API Specifcation

/checks/:check
(DELETE)

description Removes the specifed check from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-cpu

response codes

Create an ad hoc check execution request

The /checks/:check/execute API endpoint provides HTTP POST access to create an ad hoc check
execution request so you can execute a check on demand.

Example

In the following example, an HTTP POST request is submitted to the /checks/:check/execute API
endpoint to execute the check-cpu check.
The request includes the check name in the request body
and returns a successful HTTP 202 Accepted response and an issued timestamp.

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

API Specifcation

/checks/:check/ex
ecute (POST)

description Creates an ad hoc request to execute the specifed check.

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check-
cpu/execute

payload

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "check": "check-cpu",

 "subscriptions": [

 "entity:i-424242"

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu/execute

HTTP/1.1 202 Accepted

{"issued":1543861798}

PRO TIP: Include the subscriptions attribute with the request body to override the
subscriptions confgured in the check defnition.
This gives you the fexibility to execute a check on
any Sensu entity or group of entities on demand.

{

 "check": "check-cpu",

 "subscriptions": [

 "entity:i-424242"

]

}

payload parameters

response codes

Assign a hook to a check

The /checks/:check/hooks/:type API endpoint provides HTTP PUT access to assign a hook to a
check.

Example

In the following example, an HTTP PUT request is submitted to the /checks/:check/hooks/:type

API endpoint, assigning the process_tree hook to the check-cpu check in the event of a
critical type check result, resulting in a successful HTTP 204 No Content response.

Required: check (the name of the check to execute).

Optional: subscriptions (an array of subscriptions to publish
the check request to). When provided with the request, the
subscriptions attribute overrides any subscriptions confgured

in the check defnition.

Success: 202 (Accepted)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "critical": [

 "process_tree"

]

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-cpu/hooks/critical

HTTP/1.1 201 Created

API Specifcation

checks/:check/hoo
ks/:type (PUT)

description Assigns a hook to a check (specifed by the check name and check
response type).

example URL http://hostname:8080/api/core/v2/namespaces/default/checks/check-
cpu/hooks/critical

example payload

payload parameters This endpoint requires a JSON map of check response types (for
example, critical or warning). Each must contain an array of hook
names.

response codes

Remove a hook from a check

The /checks/:check/hooks/:type/hook/:hook API endpoint provides HTTP DELETE access to a
remove a hook from a check.

Example

The following example shows a request to the /checks/:check/hooks/:type/hook/:hook API

{

 "critical": [

 "process_tree"

]

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

endpoint to remove the process_tree hook from the check-cpu check, resulting in a successful
HTTP 204 No Content response.

API Specifcation

/checks/:check/ho
oks/:type/hook/:ho
ok (DELETE)

description Removes a single hook from a check (specifed by the check name,
check response type, and hook name). See the checks reference for
available types.

example url http://hostname:8080/api/core/v2/namespaces/default/checks/check-
cpu/hooks/critical/hook/process_tree

response codes

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/checks/check-

cpu/hooks/critical/hook/process_tree

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Cluster API

Get all cluster data

The /cluster/members API endpoint provides HTTP GET access to Sensu cluster data.

Example

The following example demonstrates a request to the /cluster/members API endpoint, resulting in a
JSON map that contains a Sensu cluster defnition.

NOTE: Requests to the cluster API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/cluster/members \

-H "Authorization: Key $SENSU_API_KEY" \

HTTP/1.1 200 OK

{

 "header": {

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148554927,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

API Specifcation

/cluster/members
(GET)

description Returns the etcd cluster defnition.

example url http://hostname:8080/api/core/v2/cluster/members

query parameters timeout : Defnes the timeout when querying etcd. Default is 3 .

response type Map

response codes

example output

 "http://127.0.0.1:2379"

]

 }

]

}

Success: 200 (OK)

Error: 500 (Internal Server Error)

{

 "header": {

 "cluster_id": 4255616304056076734,

 "member_id": 9882886658148554927,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148554927,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://127.0.0.1:2379"

Create a new cluster member

The /cluster/members API endpoint provides HTTP POST access to create a Sensu cluster
member.

Example

]

 }

]

}

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/cluster/members?peer-addrs=http://127.0.0.1:2380

HTTP/1.1 200 OK

{

 "header": {

 "cluster_id": 4255616304056077000,

 "member_id": 9882886658148555000,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148555000,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://localhost:2379"

]

 }

]

}

API Specifcation

/cluster/members/:
member (POST)

description Creates a cluster member.

example url http://hostname:8080/api/core/v2/cluster/members?peer-
addrs=http://127.0.0.1:2380

query parameters

response codes

Create or update a cluster member

The /cluster/members/:member API endpoint provides HTTP PUT access to create or update a
cluster member, by cluster member ID.

Example

Required: peer-addrs (a comma-delimited list of peer
addresses).

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/cluster/members/8927110dc66458af?peer-

addrs=http://127.0.0.1:2380

HTTP/1.1 200 OK

{

 "header": {

API Specifcation

/cluster/members/:
member (PUT)

description Creates or updates a cluster member.

example url http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af?
peer-addrs=http://127.0.0.1:2380

url parameters Required: 8927110dc66458af (hex-encoded uint64 cluster member ID
generated using sensuctl cluster member-list).

query parameters Required: peer-addrs (a comma-delimited list of peer addresses).

response codes

 "cluster_id": 4255616304056077000,

 "member_id": 9882886658148555000,

 "raft_term": 2

 },

 "members": [

 {

 "ID": 9882886658148555000,

 "name": "default",

 "peerURLs": [

 "http://127.0.0.1:2380"

],

 "clientURLs": [

 "http://localhost:2379"

]

 }

]

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Delete a cluster member

The /cluster/members/:member API endpoint provides HTTP DELETE access to remove a Sensu
cluster member.

Example

The following example shows a request to the /cluster/members/:member API endpoint to remove
the Sensu cluster member with the ID 8927110dc66458af , resulting in a successful HTTP 204 No

Content response.

API Specifcation

/cluster/members/:
member
(DELETE)

description Removes a member from a Sensu cluster (specifed by the member ID).

example url http://hostname:8080/api/core/v2/cluster/members/8927110dc66458af

url parameters

response codes

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/cluster/members/8927110dc66458a

f

HTTP/1.1 204 No Content

8927110dc66458af (required): Required hex-encoded uint64
cluster member ID generated using sensuctl cluster member-
list

Success: 204 (No Content)

Get a cluster ID

The /cluster/id API endpoint provides HTTP GET access to the Sensu cluster ID.

Example

The following example demonstrates a request to the /cluster/id API endpoint, resulting in a string
that contains the Sensu cluster ID.

API Specifcation

/cluster/id (GET)

description Returns the unique Sensu cluster ID.

example url http://hostname:8080/api/core/v2/cluster/id

query parameters timeout : Defnes the timeout when querying etcd. Default is 3 .

response type String

response codes

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X GET \

 -H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/cluster/id

HTTP/1.1 200 OK

"23481e76-5844-4d07-b714-6e2ffbbf9315"

Success: 200 (OK)

Error: 500 (Internal Server Error)

example output
"23481e76-5844-4d07-b714-6e2ffbbf9315"

Cluster role bindings API

Get all cluster role bindings

The /clusterrolebindings API endpoint provides HTTP GET access to cluster role binding data.

Example

The following example demonstrates a request to the /clusterrolebindings API endpoint, resulting
in a JSON array that contains cluster role binding defnitions.

NOTE: Requests to the cluster role bindings API require you to authenticate with a Sensu access
token or API key.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "cluster-admins"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "cluster-admin",

API Specifcation

/clusterrolebinding
s (GET)

description Returns the list of cluster role bindings.

example url http://hostname:8080/api/core/v2/clusterrolebindings

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

 "created_by": "admin"

 }

 },

 {

 "subjects": [

 {

 "type": "Group",

 "name": "system:agents"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "system:agent"

 },

 "metadata": {

 "name": "system:agent",

 "created_by": "admin"

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

output

Create a new cluster role binding

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "cluster-admins"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "cluster-admin",

 "created_by": "admin"

 }

 },

 {

 "subjects": [

 {

 "type": "Group",

 "name": "system:agents"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "system:agent"

 },

 "metadata": {

 "name": "system:agent"

 }

 }

]

The /clusterrolebindings API endpoint provides HTTP POST access to create a cluster role
binding.

Example

In the following example, an HTTP POST request is submitted to the /clusterrolebindings API
endpoint to create a cluster role binding that assigns the cluster-admin cluster role to the user
bob .
The request includes the cluster role binding defnition in the request body and returns a

successful HTTP 200 OK response and the created cluster role binding defnition.

API Specifcation

/clusterrolebinding
s (POST)

description Creates a Sensu cluster role binding.

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}' \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings

HTTP/1.1 201 Created

example URL http://hostname:8080/api/core/v2/clusterrolebindings

payload

response codes

Get a specifc cluster role binding

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP GET access to
cluster role binding data for specifc :clusterrolebinding defnitions, by cluster role binding name .

Example

In the following example, querying the /clusterrolebindings/:clusterrolebinding API endpoint
returns a JSON map that contains the requested :clusterrolebinding defnition (in this example,
for the :clusterrolebinding named bob-binder).

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

API Specifcation

/clusterrolebinding
s/:clusterrolebindin
g (GET)

description Returns the specifed cluster role binding.

example url http://hostname:8080/api/core/v2/clusterrolebindings/bob-binder

response type Map

response codes

curl -X GET \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/bob-binder \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder",

 "created_by": "admin"

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

output

Create or update a cluster role binding

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP PUT access to
create or update a cluster role binding, by cluster role binding name .

Example

In the following example, an HTTP PUT request is submitted to the
/clusterrolebindings/:clusterrolebinding API endpoint to create a cluster role binding that

assigns the cluster-admin cluster role to users in the group ops .
The request includes the cluster
role binding defnition in the request body and returns a successful HTTP 200 OK response and the
created cluster role binding defnition.

{

 "subjects": [

 {

 "type": "User",

 "name": "bob"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "bob-binder",

 "created_by": "admin"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "subjects": [

API Specifcation

/clusterrolebinding
s/:clusterrolebindin
g (PUT)

description Creates or updates the specifed Sensu cluster role binding.

example URL http://hostname:8080/api/core/v2/clusterrolebindings/ops-group-binder

payload

 {

 "type": "Group",

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

 "name": "ops-group-binder"

 }

}' \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-group-binder

HTTP/1.1 201 Created

{

 "subjects": [

 {

 "type": "Group",

 "name": "ops"

 }

],

 "role_ref": {

 "type": "ClusterRole",

 "name": "cluster-admin"

 },

 "metadata": {

response codes

Delete a cluster role binding

The /clusterrolebindings/:clusterrolebinding API endpoint provides HTTP DELETE access to
delete a cluster role binding from Sensu (specifed by the cluster role binding name).

Example

The following example shows a request to the /clusterrolebindings/:clusterrolebinding API
endpoint to delete the cluster role binding ops-binding , resulting in a successful HTTP 204 No

Content response.

API Specifcation

/clusterrolebinding
s/:clusterrolebindin
g (DELETE)

description Removes a cluster role binding from Sensu (specifed by the cluster role

 "name": "ops-group-binder"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/clusterrolebindings/ops-binding

HTTP/1.1 204 No Content

binding name).

example url http://hostname:8080/api/core/v2/clusterrolebindings/ops-binding

response codes
Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Cluster roles API

Get all cluster roles

The /clusterroles API endpoint provides HTTP GET access to cluster role data.

Example

The following example demonstrates a request to the /clusterroles API endpoint, resulting in a
JSON array that contains cluster role defnitions.

NOTE: Requests to the cluster roles API require you to authenticate with a Sensu access token or
API key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/clusterroles \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "assets",

 "checks",

 "entities",

 "extensions",

 "events",

 "flters",

 "handlers",

 "hooks",

 "mutators",

 "silenced",

 "roles",

 "rolebindings"

],

 "resource_names": null

 },

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "namespaces"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "cluster-admin",

 "created_by": "admin"

 }

 }

]

API Specifcation

/clusterroles (GET)

description Returns the list of cluster roles.

example url http://hostname:8080/api/core/v2/clusterroles

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "rules": [

 {

 "verbs": [

 "*"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "cluster-admin",

 "created_by": "admin"

 }

 }

]

Create a new cluster role

The /clusterroles API endpoint provides HTTP POST access to create a cluster role.

Example

In the following example, an HTTP POST request is submitted to the /clusterroles API endpoint to
create a global-event-reader cluster role.
The request includes the cluster role defnition in the
request body and returns a successful HTTP 201 Created response.

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/clusterroles

HTTP/1.1 201 Created

API Specifcation

/clusterroles
(POST)

description Creates a Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles

payload

response codes

Get a specifc cluster role

The /clusterroles/:clusterrole API endpoint provides HTTP GET access to cluster role data for

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

specifc :clusterrole defnitions, by cluster role name .

Example

In the following example, querying the /clusterroles/:clusterrole API endpoint returns a JSON
map that contains the requested :clusterrole defnition (in this example, for the :clusterrole
named global-event-reader).

API Specifcation

/clusterroles/:clust
errole (GET)

description Returns the specifed cluster role.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "global-event-reader",

 "created_by": "admin"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

example url http://hostname:8080/api/core/v2/clusterroles/global-event-reader

response type Map

response codes

output

Create or update a cluster role

The /clusterroles/:clusterrole API endpoint provides HTTP PUT access to create or update a
cluster role, by cluster role name.

Example

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "global-event-reader",

 "created_by": "admin"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

In the following example, an HTTP PUT request is submitted to the /clusterroles/:clusterrole

API endpoint to update the global-event-reader cluster role by adding "checks" to the resources
The request includes the cluster role defnition in the request body and returns a successful HTTP 201

Created response.

API Specifcation

/clusterroles/:clust
errole (PUT)

description Creates or updates the specifed Sensu cluster role.

example URL http://hostname:8080/api/core/v2/clusterroles/global-event-reader

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "checks",

 "events"

],

 "resource_names": null

 }

]

}' \

http://127.0.0.1:8080/api/core/v2/clusterroles

HTTP/1.1 201 Created

payload

response codes

Delete a cluster role

The /clusterroles/:clusterrole API endpoint provides HTTP DELETE access to delete a cluster
role from Sensu (specifed by the cluster role name).

Example

The following example shows a request to the /clusterroles/:clusterrole API endpoint to delete
the cluster role global-event-reader , resulting in a successful HTTP 204 No Content response.

{

 "metadata": {

 "name": "global-event-reader"

 },

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

]

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

API Specifcation

/clusterroles/:clust
errole (DELETE)

description Removes a cluster role from Sensu (specifed by the cluster role name).

example url http://hostname:8080/api/core/v2/clusterroles/global-event-reader

response codes

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/clusterroles/global-event-reader

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Datastore API

Get all datastore providers

The /provider API endpoint provides HTTP GET access to Sensu datastore data.

Example

The following example demonstrates a request to the /provider API endpoint, resulting in a JSON
map that contains a list of Sensu datastore providers.

NOTE: Requests to the datastore API require you to authenticate with a Sensu access token or
API key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/store/v1/provider

-H "Authorization: Key $SENSU_API_KEY" \

HTTP/1.1 200 OK

[

 {

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-other-postgres",

 "created_by": "admin"

 },

 "spec": {

 "dsn": "postgresql://user:secret@host:port/otherdbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20

 }

API Specifcation

/provider (GET)

description Returns the list of datastore providers.

example url http://hostname:8080/api/enterprise/store/v1/provider

response type Map

response codes

output

 },

 {

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 },

 "spec": {

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

Get a specifc datastore provider

The /provider/:provider API endpoint provides HTTP PUT access to retrieve a Sensu datastore
provider.

Example

 },

 "spec": {

 "dsn":

"postgresql://user:secret@host:port/otherdbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20

 }

 },

 {

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 },

 "spec": {

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20

 }

 }

]

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/store/v1/provider/my-postgres

HTTP/1.1 200 OK

API Specifcation

/provider/:provider
(GET)

description Returns the specifed datastore provider.

example url http://hostname:8080/api/enterprise/store/v1/provider/my-postgres

url parameters Required: my-postgres (name of provider to retrieve).

response codes

output

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 },

 "spec": {

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres",

 "created_by": "admin"

 },

Create or update a datastore provider

The /provider/:provider API endpoint provides HTTP PUT access to create or update a Sensu
datastore provider.

Example

API Specifcation

 "spec": {

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20

 }

}

curl -X PUT \

http://127.0.0.1:8080/api/enterprise/store/v1/provider/my-postgres \

-H "Authorization: Key $SENSU_API_KEY" \

-d '{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres"

 },

 "spec": {

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20

 }

}'

HTTP/1.1 200 OK

/provider/:provider
(PUT)

description Creates a datastore provider.

example url http://hostname:8080/api/enterprise/store/v1/provider/my-postgres

url parameters Required: my-postgres (name to use for provider).

payload

response codes

Delete a datastore provider

The /provider/:provider API endpoint provides HTTP DELETE access to remove a Sensu
datastore provider.

Example

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres"

 },

 "spec": {

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

The following example shows a request to the /provider/:provider API endpoint to remove the
Sensu datastore provider with the ID my-postgres , resulting in a successful HTTP 204 No

Content response.

API Specifcation

/provider/:provider
(DELETE)

description Removes the specifed datastore provider.

example url http://hostname:8080/api/enterprise/store/v1/provider/my-postgres

url parameters Required: my-postgres (name of provider to delete).

response codes

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/store/v1/provider/my-postgres

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Entities API

Get all entities

The /entities API endpoint provides HTTP GET access to entity data.

Example

The following example demonstrates a request to the /entities API endpoint, resulting in a JSON
array that contains the entity defnitions.

NOTE: Requests to the entities API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "entity_class": "agent",

 "sensu_agent_version": "1.0.0",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

API Specifcation

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

 }

]

/entities (GET)

description Returns the list of entities.

example url http://hostname:8080/api/core/v2/namespaces/default/entities

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "entity_class": "agent",

 "sensu_agent_version": "1.0.0",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

Create a new entity

The /entities API endpoint provides HTTP POST access to create a Sensu entity.

Example

In the following example, an HTTP POST request is submitted to the /entities API endpoint to
create a proxy entity named sensu-centos .
The request includes the entity defnition in the request

]

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

 }

]

body and returns a successful HTTP 200 OK response.

API Specifcation

/entities (POST)

description Creates a Sensu entity.

example URL http://hostname:8080/api/core/v2/namespaces/default/entities

payload

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity_class": "proxy",

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "web"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities

HTTP/1.1 200 OK

{

 "entity_class": "proxy",

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "web"

],

response codes

Get a specifc entity

The /entities/:entity API endpoint provides HTTP GET access to entity data for specifc
:entity defnitions, by entity name .

Example

In the following example, querying the /entities/:entity API endpoint returns a JSON map that
contains the requested :entity defnition (in this example, for the :entity named sensu-
centos).

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/sensu-centos \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "entity_class": "agent",

 "sensu_agent_version": "1.0.0",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin",

API Specifcation

/entities/:entity
(GET)

description Returns the specifed entity.

example url http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

response type Map

response codes

output

 "labels": null,

 "annotations": null

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "entity_class": "agent",

 "sensu_agent_version": "1.0.0",

 "system": {

 "hostname": "sensu-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::f50c:b029:30a5:3e26/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:9f:5d:f3",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe9f:5df3/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

Create or update an entity

The /entities/:entity API endpoint provides HTTP PUT access to create or update the specifed
Sensu entity.

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "subscriptions": [

 "entity:sensu-centos"

],

 "last_seen": 1543349936,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

}

Example

In the following example, an HTTP PUT request is submitted to the /entities/:entity API
endpoint to update the entity named sensu-centos .
The request includes the updated entity defnition
in the request body and returns a successful HTTP 200 OK response.

API Specifcation

/entities/:entity
(PUT)

description Creates or updates the specifed Sensu entity.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity_class": "proxy",

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "web",

 "system"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/sensu-centos

HTTP/1.1 200 OK

example URL http://hostname:8080/api/core/v2/namespaces/default/entities/sensu-
centos

payload

response codes

Delete an entity

The /entities/:entity API endpoint provides HTTP DELETE access to delete an entity from
Sensu (specifed by the entity name).

Example

NOTE: When you create an entity via an HTTP PUT request, the
entity will use the namespace in the request URL.

{

 "entity_class": "proxy",

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "web",

 "system"

],

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default",

 "labels": null,

 "annotations": null

 }

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The following example shows a request to the /entities/:entity API endpoint to delete the entity
server1 , resulting in a successful HTTP 204 No Content response.

API Specifcation

/entities/:entity
(DELETE)

description Removes a entity from Sensu (specifed by the entity name).

example url http://hostname:8080/api/core/v2/namespaces/default/entities/server1

response codes

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/entities/server1 \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Events API

Get all events

The /events API endpoint provides HTTP GET access to event data.

Example

The following example demonstrates a request to the /events API endpoint, resulting in a JSON
array that contains event defnitions.

NOTE: Requests to the events API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "timestamp": 1542667666,

 "id": "caaf2c38-2afb-4f96-89b3-8ca5c3e6f449",

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "testing",

 "entity:webserver01"

],

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

 },

 "check": {

 "check_hooks": null,

 "duration": 2.033888684,

 "command": "http_check.sh http://localhost:80",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 20,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [],

 "subscriptions": [

 "testing"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

 "duration": 0.010849143,

 "output": "",

 "state": "failing",

 "status": 1,

 "total_state_change": 0,

 "last_ok": 0,

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

 "output_metric_handlers": [],

 "env_vars": null,

 "metadata": {

 "name": "check-nginx",

API Specifcation

/events (GET)

description Returns the list of events.

example url http://hostname:8080/api/core/v2/namespaces/default/events

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "timestamp": 1542667666,

 "id": "caaf2c38-2afb-4f96-89b3-8ca5c3e6f449",

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "testing",

 "entity:webserver01"

],

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

 },

 "check": {

 "check_hooks": null,

 "duration": 2.033888684,

 "command": "http_check.sh http://localhost:80",

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 20,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": [],

 "subscriptions": [

 "testing"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

 "duration": 0.010849143,

 "output": "",

 "state": "failing",

 "status": 1,

 "total_state_change": 0,

 "last_ok": 0,

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

Create a new event

The /events API endpoint provides HTTP POST access to create an event and send it to the Sensu
pipeline.

Example

In the following example, an HTTP POST request is submitted to the /events API endpoint to create
an event.
The request includes information about the check and entity represented by the event and
returns a successful HTTP 201 Created response and the event defnition.

 "output_metric_handlers": [],

 "env_vars": null,

 "metadata": {

 "name": "check-nginx",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 }

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

API Specifcation

/events (POST)

description Creates a new Sensu event. To update an existing event, use the
/events PUT endpoint.

If you create a new event referencing an entity that does not already
exist, the sensu-backend will automatically create a proxy entity when
the event is published.

example URL http://hostname:8080/api/core/v2/namespaces/default/events

payload

 "state": "failing",

 "status": 2,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events

HTTP/1.1 201 Created

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "state": "failing",

 "status": 2,

response codes

Get event data for a specifc entity

The /events/:entity API endpoint provides HTTP GET access to event data specifc to an
:entity , by entity name .

Example

In the following example, querying the /events/:entity API endpoint returns a list of Sensu events
for the sensu-go-sandbox entity and a successful HTTP 200 OK response.

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "timestamp": 1543871497,

 "id": "a68906e0-7c5c-49f0-8424-59a71d3ecfe2",

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543858763,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default",

 "created_by": "admin"

 }

 },

 "check": {

 "command": "check-cpu.sh -w 75 -c 90",

 "duration": 1.054253257,

 "executed": 1543871496,

 "history": [

 {

 "status": 0,

 "executed": 1543870296

 }

],

 "issued": 1543871496,

 "output": "CPU OK - Usage:.50\n",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871497,

 "occurrences": 1,

 "metadata": {

 "name": "check-cpu",

 "namespace": "default",

 "created_by": "admin"

 }

 },

 "metadata": {

 "namespace": "default"

 }

 },

 {

 "timestamp": 1543871524,

 "id": "095c37e8-1cb4-4d10-91e9-0bdd55a4f35b",

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543871523,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default",

 "created_by": "admin"

 }

 },

 "check": {

 "handlers": [

 "keepalive"

],

 "executed": 1543871524,

 "history": [

 {

 "status": 0,

 "executed": 1543871124

 }

],

 "issued": 1543871524,

 "output": "",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871524,

 "occurrences": 1,

 "metadata": {

 "name": "keepalive",

 "namespace": "default",

API Specifcation

/events/:entity
(GET)

description Returns a list of events for the specifed entity.

example url http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-
sandbox

pagination This endpoint supports pagination using the limit and continue
query parameters.

response type Array

response codes

output

 "created_by": "admin"

 }

 },

 "metadata": {}

 }

]

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

[

 {

 "timestamp": 1543871524,

 "id": "095c37e8-1cb4-4d10-91e9-0bdd55a4f35b",

 "entity": {

 "entity_class": "agent",

 "system": {

 "hostname": "webserver01",

 "...": "...",

 "arch": "amd64"

 },

 "subscriptions": [

 "linux",

 "entity:sensu-go-sandbox"

],

 "last_seen": 1543871523,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default",

 "created_by": "admin"

 }

 },

 "check": {

 "handlers": [

 "keepalive"

],

 "executed": 1543871524,

 "history": [

 {

 "status": 0,

 "executed": 1543871124

 }

],

 "issued": 1543871524,

 "output": "",

 "state": "passing",

 "status": 0,

 "total_state_change": 0,

 "last_ok": 1543871524,

 "occurrences": 1,

 "metadata": {

 "name": "keepalive",

 "namespace": "default",

 "created_by": "admin"

 }

 },

 "metadata": {}

 }

]

Get event data for a specifc entity and check

The /events/:entity/:check API endpoint provides HTTP GET access to event data for the
specifed entity and check.

Example

In the following example, an HTTP GET request is submitted to the /events/:entity/:check API
endpoint to retrieve the event for the server1 entity and the server-health check.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "timestamp": 1577724113,

 "id": "cf3c9fc0-023a-497a-aaf4-880dbd490332",

 "entity": {

 "entity_class": "proxy",

 "system": {

 "network": {

 "interfaces": null

 }

 },

 "subscriptions": null,

 "last_seen": 0,

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "server1",

 "namespace": "default",

 "created_by": "admin"

 },

 "sensu_agent_version": ""

 },

 "check": {

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": false,

 "runtime_assets": null,

 "subscriptions": [],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "executed": 1543880280,

 "history": [

 {

 "status": 1,

 "executed": 1543880296

 },

 {

 "status": 2,

 "executed": 1543880435

 },

 {

 "status": 1,

 "executed": 1543889363

 }

],

 "issued": 0,

 "output": "Server error",

 "state": "failing",

 "status": 1,

 "total_state_change": 0,

 "last_ok": 0,

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "server-health",

The request returns an HTTP 200 OK response and the resulting event defnition.

API Specifcation

/events/:entity/:che
ck (GET)

description Returns an event for the specifed entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/server1/ser
ver-health

response type Map

response codes

output

 "namespace": "default",

 "created_by": "admin"

 }

 },

 "metadata": {}

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "timestamp": 1577724113,

 "id": "cf3c9fc0-023a-497a-aaf4-880dbd490332",

 "entity": {

 "entity_class": "proxy",

 "system": {

 "network": {

 "interfaces": null

 }

 },

 "subscriptions": null,

 "last_seen": 0,

 "deregister": false,

 "deregistration": {},

 "metadata": {

 "name": "server1",

 "namespace": "default",

 "created_by": "admin"

 },

 "sensu_agent_version": ""

 },

 "check": {

 "handlers": [

 "slack"

],

 "high_fap_threshold": 0,

 "interval": 60,

 "low_fap_threshold": 0,

 "publish": false,

 "runtime_assets": null,

 "subscriptions": [],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "subdue": null,

 "ttl": 0,

 "timeout": 0,

 "round_robin": false,

 "executed": 1543880280,

 "history": [

 {

 "status": 1,

 "executed": 1543880296

 },

 {

 "status": 2,

 "executed": 1543880435

 },

 {

 "status": 1,

 "executed": 1543889363

 }

],

 "issued": 0,

Create a new event for an entity and check

The /events/:entity/:check API endpoint provides HTTP POST access to create an event and
send it to the Sensu pipeline.

Example

In the following example, an HTTP POST request is submitted to the /events/:entity/:check API
endpoint to create an event for the server1 entity and the server-health check and process it
using the slack event handler.
The event includes a status code of 1 , indicating a warning, and an
output message of Server error .

 "output": "Server error",

 "state": "failing",

 "status": 1,

 "total_state_change": 0,

 "last_ok": 0,

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "env_vars": null,

 "metadata": {

 "name": "server-health",

 "namespace": "default",

 "created_by": "admin"

 }

 },

 "metadata": {}

}

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

You can use sensuctl or the Sensu web UI to see the event:

You should see the event with the status and output specifed in the request:

API Specifcation

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

HTTP/1.1 201 Created

NOTE: A namespace is not required to create the event.
The event will use the namespace in the
URL by default.

sensuctl event list

 Entity Check Output Status Silenced Timestamp
────────────── ───────────── ─────────────────────────────────── ──────── ──────────
───────────────────────────────

 server1 server-health Server error 1 false 2019-03-14 16:56:09 +0000 UTC

/events/:entity/:che
ck (POST)

description Creates an event for the specifed entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/server1/ser
ver-health

payload

response codes

Create or update an event for an entity and check

The /events/:entity/:check API endpoint provides HTTP PUT access to create or update an

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}

Success: 201 (Created)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

event and send it to the Sensu pipeline.

Example

In the following example, an HTTP PUT request is submitted to the /events/:entity/:check API
endpoint to create an event for the server1 entity and the server-health check and process it
using the slack event handler.
The event includes a status code of 1 , indicating a warning, and an
output message of Server error .

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

HTTP/1.1 201 Created

NOTE: A namespace is not required to create the event.
The event will use the namespace in the
URL by default.

You can use sensuctl or the Sensu web UI to see the event:

You should see the event with the status and output specifed in the request:

API Specifcation

/events/:entity/:che
ck (PUT)

description Creates an event for the specifed entity and check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/server1/ser
ver-health

payload

sensuctl event list

 Entity Check Output Status Silenced Timestamp
────────────── ───────────── ─────────────────────────────────── ──────── ──────────
───────────────────────────────

 server1 server-health Server error 1 false 2019-03-14 16:56:09 +0000 UTC

{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

payload parameters See the payload parameters section below.

response codes

Payload parameters

The /events/:entity/:check PUT endpoint requires a request payload that contains an entity

scope and a check scope.

Example request with minimum required event attributes

 }

 }

}

Success: 201 (Created)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

The entity scope contains information about the component of your infrastructure
represented by the event.
At minimum, Sensu requires the entity scope to contain the
entity_class (agent or proxy) and the entity name and namespace within a
metadata scope.
For more information about entity attributes, see the entity specifcation.

The check scope contains information about the event status and how the event was created.
At minimum, Sensu requires the check scope to contain a name within a metadata scope
and either an interval or cron attribute.
For more information about check attributes, see
the check specifcation.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1"

 }

 },

The minimum required attributes let you create an event using the /events/:entity/:check PUT
endpoint, but the request can include any attributes defned in the event specifcation.
To create useful,
actionable events, we recommend adding check attributes such as the event status (0 for OK, 1
for warning, 2 for critical), an output message, and one or more event handlers .
For more
information about these attributes and their available values, see the event specifcation.

Example request with minimum recommended event attributes

 "check": {

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "output": "Server error",

 "status": 1,

 "handlers": ["slack"],

 "interval": 60,

 "metadata": {

 "name": "server-health"

 }

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-health

Create metrics events

In addition to the entity and check scopes, Sensu events can include a metrics scope that
contains metrics in Sensu metric format.
See the events reference and for more information about
Sensu metric format.

Example request including metrics

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "entity": {

 "entity_class": "proxy",

 "metadata": {

 "name": "server1",

 "namespace": "default"

 }

 },

 "check": {

 "status": 0,

 "output_metric_handlers": ["infuxdb"],

 "interval": 60,

 "metadata": {

 "name": "server-metrics"

 }

 },

 "metrics": {

 "handlers": [

 "infuxdb"

],

 "points": [

 {

 "name": "server1.server-metrics.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "server1.server-metrics.time_namelookup",

Delete an event

Example

The following example shows a request to the /events/:entity/:check API endpoint to delete the
event produced by the sensu-go-sandbox entity and check-cpu check, resulting in a successful
HTTP 204 No Content response.

API Specifcation

/events/:entity/:che
ck (DELETE)

description Deletes the event created by the specifed entity using the specifed
check.

example url http://hostname:8080/api/core/v2/namespaces/default/events/sensu-go-
sandbox/check-cpu

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/server1/server-metrics

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/events/sensu-go-sandbox/check-

cpu \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 204 No Content

response codes
Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Federation API

COMMERCIAL FEATURE : Access federation in the packaged Sensu Go distribution.
For more
information, see Get started with commercial features.

Get all replicators

The /etcd-replicators API endpoint provides HTTP GET access to a list of replicators.

Example

The following example demonstrates a request to the /etcd-replicators API endpoint, resulting in
a list of replicators.

NOTE: Requests to the federation API require you to authenticate with a Sensu access token or
API key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

NOTE: The etcd-replicators datatype is only accessible for users who have a cluster role that
permits access to replication resources.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator",

 "created_by": "admin"

 },

API Specifcation

/etcd-replicators
(GET)

description Returns the list of replicators.

example url http://hostname:8080/api/enterprise/federation/v1/etcd-replicators

response type Array

response codes

output

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator",

 "created_by": "admin"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-

Create a new replicator

The /etcd-replicators API endpoint provides HTTP POST access to create replicators.

Example

The following example demonstrates a request to the /etcd-replicators API endpoint to create the
replicator my_replicator .

authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

 }

]

NOTE: Create a replicator for each resource type you want to replicate.
Replicating namespace

resources will not replicate the resources that belong to those namespaces.

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

API Specifcation

/etcd-replicators
(POST)

description Creates a new replicator (if none exists).

example URL http://hostname:8080/api/enterprise/federation/v1/etcd-replicators

payload

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}' \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators

HTTP/1.1 200 OK

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-

authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

response codes

Get a specifc replicator

The /etcd-replicators/:etcd-replicator API endpoint provides HTTP GET access to data for a
specifc :etcd-replicator , by replicator name.

Example

In the following example, querying the /etcd-replicators/:etcd-replicator API endpoint returns
a JSON map that contains the requested :etcd-replicator .

}

Success: 200 (OK)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: The etcd-replicators datatype is only accessible for users who have a cluster role that
permits access to replication resources.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators/my_replicator \

-H "Authorization: Key $SENSU_API_KEY"

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator",

 "created_by": "admin"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

API Specifcation

/etcd-
replicators/:etcd-
replicator (GET)

description Returns the specifed replicator.

example url http://hostname:8080/api/enterprise/federation/v1/etcd-
replicators/my_replicator

response type Map

response codes

output

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator",

 "created_by": "admin"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-

authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

Create or update a replicator

The /etcd-replicators/:etcd-replicator API endpoint provides HTTP PUT access to create or
update a specifc :etcd-replicator , by replicator name.

Example

The following example demonstrates a request to the /etcd-replicators/:etcd-replicator API
endpoint to update the replicator my_replicator .

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

API Specifcation

/etcd-
replicators/:etcd-
replicator (PUT)

description Creates or updates the specifed replicator. The replicator resource and
API version cannot be altered.

example URL http://hostname:8080/api/enterprise/federation/v1/etcd-
replicators/my_replicator

payload

response codes

 }

}' \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators/my-replicator

HTTP/1.1 200 OK

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "my_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-

authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://remote-etcd.example.com:2379",

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

Delete a replicator

The /etcd-replicators/:etcd-replicator API endpoint provides HTTP DELETE access to delete
the specifed replicator from Sensu.

Example

The following example shows a request to the /etcd-replicators/:etcd-replicator API endpoint
to delete the replicator my_replicator , resulting in a successful HTTP 204 No Content response.

API Specifcation

/etcd-
replicators/:etcd-
replicator
(DELETE)

description Deletes the specifed replicator from Sensu.

example url http://hostname:8080/api/enterprise/federation/v1/etcd-
replicators/my_replicator

response codes

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/federation/v1/etcd-replicators/my_replicator

HTTP/1.1 204 No Content

Success: 204 (No Content)

Get all clusters

The /clusters API endpoint provides HTTP GET access to a list of clusters.

Example

The following example demonstrates a request to the /clusters API endpoint, resulting in a list of
clusters.

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/enterprise/federation/v1/clusters \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a",

 "created_by": "admin"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

 }

]

API Specifcation

/clusters (GET)

description Returns the list of clusters.

example url http://hostname:8080/api/enterprise/federation/v1/clusters

response type Array

response codes

output

Get a specifc cluster

The /clusters/:cluster API endpoint provides HTTP GET access to data for a specifc cluster ,

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a",

 "created_by": "admin"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

 }

]

by cluster name.

Example

In the following example, querying the /clusters/:cluster API endpoint returns a JSON map that
contains the requested :etcd-replicator .

API Specifcation

/clusters/:cluster
(GET)

description Returns the specifed cluster.

example url http://hostname:8080/api/enterprise/federation/v1/clusters/us-west-2a

curl -X GET \

http://127.0.0.1:8080/api/enterprise/federation/v1/clusters/us-west-2a \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a",

 "created_by": "admin"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

}

response type Map

response codes

output

Create or update a cluster

The /clusters/:cluster API endpoint provides HTTP PUT access to create or update a specifc
cluster , by cluster name.

Example

The following example demonstrates a request to the /clusters/:cluster API endpoint to update
the cluster us-west-2a .

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a",

 "created_by": "admin"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

}

NOTE: Only cluster admins have PUT access to clusters.

API Specifcation

/clusters/:cluster
(PUT)

description Creates or updates the specifed cluster.

example URL http://hostname:8080/api/enterprise/federation/v1/clusters/us-west-2a

payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a"

 },

 "spec": {

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

}' \

http://127.0.0.1:8080/api/enterprise/federation/v1/clusters/us-west-2a

HTTP/1.1 200 OK

{

 "type": "Cluster",

 "api_version": "federation/v1",

 "metadata": {

 "name": "us-west-2a"

 },

 "spec": {

response codes

Delete a cluster

The /clusters/:cluster API endpoint provides HTTP DELETE access to delete the specifed
cluster from Sensu.

Example

The following example shows a request to the /clusters/:cluster API endpoint to delete the
cluster us-west-2a , resulting in a successful HTTP 204 No Content response.

API Specifcation

 "api_urls": [

 "http://10.0.0.1:8080",

 "http://10.0.0.2:8080",

 "http://10.0.0.3:8080"

]

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

NOTE: Only cluster admins have DELETE access to clusters.

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/federation/v1/clusters/us-west-2a

HTTP/1.1 204 No Content

/clusters/:cluster
(DELETE)

description Deletes the specifed cluster from Sensu.

example url http://hostname:8080/api/enterprise/federation/v1/clusters/us-west-2a

response codes
Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Filters API

Get all event flters

The /flters API endpoint provides HTTP GET access to event flter data.

Example

The following example demonstrates a request to the /flters API endpoint, resulting in a JSON
array that contains event flter defnitions.

NOTE: Requests to the flters API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters \

-H "Authorization: Bearer $TOKEN"

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": null

 },

 {

API Specifcation

/flters (GET)

description Returns the list of event flters.

example url http://hostname:8080/api/core/v2/namespaces/default/flters

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "metadata": {

 "name": "state_change_only",

 "namespace": "default"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "created_by": "admin"

 },

Create a new event flter

The /flters API endpoint provides HTTP POST access to create an event flter.

Example

In the following example, an HTTP POST request is submitted to the /flters API endpoint to create
the event flter development_flter .
The request returns a successful HTTP 201 Created response

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": null

 },

 {

 "metadata": {

 "name": "state_change_only",

 "namespace": "default"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

API Specifcation

/flters (POST)

description Creates a Sensu event flter.

example URL http://hostname:8080/api/core/v2/namespaces/default/flters

payload

response codes

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": []

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters

HTTP/1.1 201 Created

{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": []

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Get a specifc event flter

The /flters/:flter API endpoint provides HTTP GET access to event flter data for specifc
:flter defnitions, by flter name.

Example

In the following example, querying the /flters/:flter API endpoint returns a JSON map that
contains the requested :flter defnition (in this example, for the :flter named
state_change_only).

API Specifcation

/flters/:flter (GET)

description Returns the specifed event flter.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/state_change_only \

-H "Authorization: Bearer $TOKEN"

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

}

example url http://hostname:8080/api/core/v2/namespaces/default/flters/state_chang
e_only

response type Map

response codes

output

Create or update an event flter

The /flters/:flter API endpoint provides HTTP PUT access to create or update an event flter.

Example

In the following example, an HTTP PUT request is submitted to the /flters API endpoint to create
the event flter development_flter .
The request returns a successful HTTP 200 OK response.

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "created_by": "admin"

 },

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": null

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

API Specifcation

/flters/:flter (PUT)

description Creates or updates the specifed Sensu event flter.

example URL http://hostname:8080/api/core/v2/namespaces/default/flters/developmen
t_flter

payload

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": []

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/development_flter

HTTP/1.1 201 Created

{

 "metadata": {

 "name": "development_flter",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "action": "deny",

 "expressions": [

 "event.entity.metadata.namespace == 'development'"

],

 "runtime_assets": []

response codes

Delete an event flter

The /flters/:flter API endpoint provides HTTP DELETE access to delete an event flter from
Sensu (specifed by the flter name).

Example

The following example shows a request to the /flters/:flter API endpoint to delete the event flter
development_flter , resulting in a successful HTTP 204 No Content response.

API Specifcation

/flters/:flter
(DELETE)

description Removes the specifed event flter from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/flters/developmen
t_flter

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/flters/development_flter \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 204 No Content

response codes
Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Handlers API

Get all handlers

The /handlers API endpoint provides HTTP GET access to handler data.

Example

The following example demonstrates a request to the /handlers API endpoint, resulting in a JSON
array that contains handler defnitions.

NOTE: Requests to the handlers API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "created_by": "admin"

 },

 "type": "pipe",

 "command": "sensu-infuxdb-handler -d sensu",

 "timeout": 0,

 "handlers": null,

 "flters": null,

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

API Specifcation

/handlers (GET)

description Returns the list of handlers.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "runtime_assets": ["sensu/sensu-infuxdb-handler"]

 },

 {

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "created_by": "admin"

 },

 "type": "pipe",

 "command": "sensu-slack-handler --channel '#monitoring'",

 "timeout": 0,

 "handlers": null,

 "flters": [

 "is_incident",

 "not_silenced"

],

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "runtime_assets": ["sensu/sensu-infuxdb-handler"]

 }

]

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "created_by": "admin"

 },

 "type": "pipe",

 "command": "sensu-infuxdb-handler -d sensu",

 "timeout": 0,

 "handlers": null,

 "flters": null,

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:808

6",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "runtime_assets": ["sensu/sensu-infuxdb-handler"]

 },

 {

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "type": "pipe",

 "command": "sensu-slack-handler --channel

'#monitoring'",

 "timeout": 0,

 "handlers": null,

 "flters": [

 "is_incident",

 "not silenced"

Create a new handler

The /handlers API endpoint provides HTTP POST access to create a handler.

Example

In the following example, an HTTP POST request is submitted to the /handlers API endpoint to
create the event handler infux-db .
The request returns a successful HTTP 201 Created response.

],

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T000000

00/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX"

],

 "runtime_assets": ["sensu/sensu-slack-handler"]

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

API Specifcation

/handlers (POST)

description Creates a Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers

payload

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers

HTTP/1.1 201 Created

{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:808

6",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

response codes

Get a specifc handler

The /handlers/:handler API endpoint provides HTTP GET access to handler data for specifc
:handler defnitions, by handler name .

Example

In the following example, querying the /handlers/:handler API endpoint returns a JSON map that
contains the requested :handler defnition (in this example, for the :handler named slack).

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

API Specifcation

/handlers/:handler
(GET)

description Returns a handler.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

response type Map

response codes

output

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "slack",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T000000

00/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX"

Create or update a handler

The /handlers/:handler API endpoint provides HTTP GET access to create or update a specifc
:handler defnition, by handler name .

Example

In the following example, an HTTP PUT request is submitted to the /handlers/:handler API
endpoint to create the handler infux-dbdevelopment_flter .
The request returns a successful HTTP
201 Created response.

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

API Specifcation

/handlers/:handler
(PUT)

description Creates or updates the specifed Sensu handler.

example URL http://hostname:8080/api/core/v2/namespaces/default/handlers/infux-db

payload

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": ["sensu/sensu-infuxdb-handler"],

 "timeout": 0,

 "type": "pipe"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/infux-db

HTTP/1.1 201 Created

{

 "metadata": {

 "name": "infux-db",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

"INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:808

6",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [],

 "handlers": [],

 "runtime_assets": [],

response codes

Delete a handler

The /handlers/:handler API endpoint provides HTTP DELETE access to delete a handler from
Sensu (specifed by the handler name).

Example

The following example shows a request to the /handlers/:handler API endpoint to delete the
handler slack , resulting in a successful HTTP 204 No Content response.

API Specifcation

/handlers/:handler
(DELETE)

description Removes the specifed handler from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/handlers/slack

 "timeout": 0,

 "type": "pipe"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/handlers/slack \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 204 No Content

response codes
Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Health API

Get health data

The /health API endpoint provides HTTP GET access to health data for your Sensu instance.

Example

The following example demonstrates a request to the /health API endpoint, resulting in a JSON
map that contains Sensu health data.

curl -X GET \

http://127.0.0.1:8080/health

HTTP/1.1 200 OK

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 2882886652148554927,

 "MemberIDHex": "8923110df66458af",

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 4255616344056076734,

 "member_id": 2882886652148554927,

 "raft_term": 26

 },

 "PostgresHealth": [

 {

 "Name": "my-postgres",

 "Active": false,

API Specifcation

/health (GET)

description Returns health information about the Sensu instance.

example url http://hostname:8080/health

query parameters timeout : Defnes the timeout when querying etcd. Default is 3 .

response type Map

response codes

output

 "Healthy": false

 }

]

}

Success: 200 (OK)

Error: 400 (Bad Request)

NOTE: The HTTP response codes for the health endpoint indicate
whether your request reached Sensu rather than the health of your
Sensu instance.
To determine the health of your Sensu instance, you
must process the JSON response body for your request.
The health
specifcation describes each attribute in the response body.

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 2882886652148554927,

 "MemberIDHex": "8923110df66458af",

 "Name": "default",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 4255616344056076734,

 "member_id": 2882886652148554927,

 "raft_term": 26

 },

 "PostgresHealth": [

 {

 "Name": "my-postgres",

 "Active": false,

 "Healthy": false

 }

]

}

Hooks API

Get all hooks

The /hooks API endpoint provides HTTP GET access to hook data.

Example

The following example demonstrates a request to the /hooks API endpoint, resulting in a JSON array
that contains hook defnitions.

NOTE: Requests to the hooks API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "nginx-log",

 "namespace": "default",

 "created_by": "admin"

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

 },

 {

 "metadata": {

API Specifcation

/hooks (GET)

description Returns the list of hooks.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "name": "process-tree",

 "namespace": "default",

 "created_by": "admin"

 },

 "command": "ps -eo user,pid,cmd:50,%cpu --sort=-%cpu | head -n 6",

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "nginx-log",

 "namespace": "default",

 "created_by": "admin"

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

Create a new hook

The /hooks API endpoint provides HTTP POST access to create a hook.

Example

In the following example, an HTTP POST request is submitted to the /hooks API endpoint to create
the hook process-tree .
The request returns a successful HTTP 201 Created response.

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

 },

 {

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "created_by": "admin"

 },

 "command": "ps -eo user,pid,cmd:50,%cpu --sort=-%cpu |

head -n 6",

 "timeout": 10,

 "stdin": false,

 "runtime_assets": null

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

API Specifcation

/hooks (POST)

description Creates a Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks

payload

response codes

Get a specifc hook

 "command": "ps -eo user,pid,cmd:50,%cpu --sort=-%cpu | head -n 6",

 "timeout": 10,

 "stdin": false

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks

HTTP/1.1 201 Created

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

The /hooks/:hook API endpoint provides HTTP GET access to hook data for specifc :hook
defnitions, by hook name.

Example

In the following example, querying the /hooks/:hook API endpoint returns a JSON map that
contains the requested :hook defnition (in this example, for the :hook named process-tree).

API Specifcation

/hooks/:hook
(GET)

description Returns the specifed hook.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

response type Map

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

response codes

output

Create or update a hook

The /hooks/:hook API endpoint provides HTTP PUT access to create or update specifc :hook

defnitions, by hook name.

Example

In the following example, an HTTP PUT request is submitted to the /hooks/:hook API endpoint to
create the hook nginx-log .
The request returns a successful HTTP 201 Created response.

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "process-tree",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "ps aux",

 "timeout": 10,

 "stdin": false

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "nginx-log",

API Specifcation

/hooks/:hook
(PUT)

description Creates or updates the specifed Sensu hook.

example URL http://hostname:8080/api/core/v2/namespaces/default/hooks/nginx-log

payload

response codes

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

 "timeout": 10,

 "stdin": false

 }' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/nginx-log

HTTP/1.1 201 Created

{

 "metadata": {

 "name": "nginx-log",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "tail -n 100 /var/log/nginx/error.log",

 "timeout": 10,

 "stdin": false

 }

Success: 201 (Created)

Malformed: 400 (Bad Request)

Delete a hook

The /hooks/:hook API endpoint provides HTTP DELETE access to delete a check hook from Sensu
(specifed by the hook name).

Example

The following example shows a request to the /hooks/:hook API endpoint to delete the hook
process-tree , resulting in a successful HTTP 204 No Content response.

API Specifcation

/hooks/:hook
(DELETE)

description Removes the specifed hook from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/hooks/process-
tree

response codes

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/hooks/process-tree \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

License management API

For more information about commercial features designed for enterprises, see Get started with
commercial features.

Get the active license confguration

The /license API endpoint provides HTTP GET access to the active license confguration.

Example

The following example demonstrates a request to the /license API endpoint, resulting in a JSON
array that contains the license defnition.

NOTE: Requests to the license API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/license \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json'

HTTP/1.1 200 OK

{

 "type": "LicenseFile",

 "api_version": "licensing/v2",

 "metadata": {

 "labels": {

 "sensu.io/entity-count": "10",

 "sensu.io/entity-limit": "100"

 }

 },

 "spec": {

API Specifcation

/license (GET)

description Returns the active commercial license confguration. To download your
license, log in to your Sensu account or contact the Sensu sales team for
a free trial.

example url http://hostname:8080/api/enterprise/licensing/v2/license

response type Map

response codes

output

 "license": {

 "version": 1,

 "issuer": "Sensu, Inc.",

 "accountName": "my_account",

 "accountID": 1234567,

 "issued": "2019-01-01T13:40:25-08:00",

 "validUntil": "2020-01-01T13:40:25-08:00",

 "plan": "managed",

 "features": [

 "all"

],

 "signature": {

 "algorithm": "PSS",

 "hashAlgorithm": "SHA256",

 "saltLength": 20

 }

 },

 "signature": "XXXXXXXXXX",

 "metadata": {}

 }

}

Success: 200 (OK)

Error: 500 (Internal Server Error)

https://account.sensu.io/
https://sensu.io/contact?subject=contact-sales
https://sensu.io/contact?subject=contact-sales

Activate a commercial license

The /license API endpoint provides HTTP PUT access to activate a commercial license.

Example

{

 "type": "LicenseFile",

 "api_version": "licensing/v2",

 "metadata": {

 "labels": {

 "sensu.io/entity-count": "10",

 "sensu.io/entity-limit": "100"

 }

 },

 "spec": {

 "license": {

 "version": 1,

 "issuer": "Sensu, Inc.",

 "accountName": "my_account",

 "accountID": 1234567,

 "issued": "2019-01-01T13:40:25-08:00",

 "validUntil": "2020-01-01T13:40:25-08:00",

 "plan": "managed",

 "features": [

 "all"

],

 "signature": {

 "algorithm": "PSS",

 "hashAlgorithm": "SHA256",

 "saltLength": 20

 }

 },

 "signature": "XXXXXXXXXX",

 "metadata": {}

 }

}

In the following example, an HTTP PUT request is submitted to the /license API endpoint to create
the license defnition.
The request returns a successful HTTP 201 Created response.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "LicenseFile",

 "api_version": "licensing/v2",

 "metadata": {

 "labels": {

 "sensu.io/entity-count": "10",

 "sensu.io/entity-limit": "100"

 }

 },

 "spec": {

 "license": {

 "version": 1,

 "issuer": "Sensu, Inc.",

 "accountName": "my_account",

 "accountID": 1234567,

 "issued": "2019-01-01T13:40:25-08:00",

 "validUntil": "2020-01-01T13:40:25-08:00",

 "plan": "managed",

 "features": [

 "all"

],

 "signature": {

 "algorithm": "PSS",

 "hashAlgorithm": "SHA256",

 "saltLength": 20

 }

 },

 "signature": "XXXXXXXXXX",

 "metadata": {}

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/license

HTTP/1.1 201 Created

API Specifcation

/license (PUT)

description Activates a commercial license or updates an existing license
confguration. To download your license, log in to your Sensu account or
contact the Sensu sales team for a free trial.

example url http://hostname:8080/api/enterprise/licensing/v2/license

payload
{

 "type": "LicenseFile",

 "api_version": "licensing/v2",

 "metadata": {

 "labels": {

 "sensu.io/entity-count": "10",

 "sensu.io/entity-limit": "100"

 }

 },

 "spec": {

 "license": {

 "version": 1,

 "issuer": "Sensu, Inc.",

 "accountName": "my_account",

 "accountID": 1234567,

 "issued": "2019-01-01T13:40:25-08:00",

 "validUntil": "2020-01-01T13:40:25-08:00",

 "plan": "managed",

 "features": [

 "all"

],

 "signature": {

 "algorithm": "PSS",

 "hashAlgorithm": "SHA256",

 "saltLength": 20

 }

 },

 "signature": "XXXXXXXXXX",

 "metadata": {}

https://account.sensu.io/
https://sensu.io/contact?subject=contact-sales

response codes

Delete a commercial license

The /license API endpoint provides HTTP DELETE access to remove a commercial license.

Example

The following example shows a request to the /license API endpoint to delete the commercial
license, resulting in a successful HTTP 204 No Content response.

API Specifcation

/license (DELETE)

description Removes the commercial license.

example url http://hostname:8080/api/enterprise/licensing/v2/license

response codes

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/enterprise/licensing/v2/license \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Metrics API

Get Sensu metrics

The /metrics API endpoint provides HTTP GET access to internal Sensu metrics in Prometheus
format, including embedded etcd, memory usage, garbage collection, and gRPC metrics.

Example

The following example demonstrates a request to the /metrics API endpoint, resulting in plaintext
output that contains internal Sensu metrics.

curl -X GET \

http://127.0.0.1:8080/metrics

HTTP/1.1 200 OK

HELP etcd_debugging_mvcc_compact_revision The revision of the last compaction in

store.

TYPE etcd_debugging_mvcc_compact_revision gauge

etcd_debugging_mvcc_compact_revision 300

HELP etcd_debugging_mvcc_current_revision The current revision of store.

TYPE etcd_debugging_mvcc_current_revision gauge

etcd_debugging_mvcc_current_revision 316

HELP etcd_debugging_mvcc_db_compaction_keys_total Total number of db keys

compacted.

TYPE etcd_debugging_mvcc_db_compaction_keys_total counter

etcd_debugging_mvcc_db_compaction_keys_total 274

HELP etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds Bucketed

histogram of db compaction pause duration.

TYPE etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds histogram

etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds_bucket{le="1"} 0

etcd_debugging_mvcc_db_compaction_pause_duration_milliseconds_bucket{le="2"} 0

...

https://prometheus.io/docs/concepts/data_model/

API Specifcation

/metrics (GET)

description Returns internal Sensu metrics in Prometheus format, including
embedded etcd, memory usage, garbage collection, and gRPC metrics.

example url http://hostname:8080/metrics

response type Prometheus-formatted plaintext

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

HELP etcd_debugging_mvcc_compact_revision The revision of

the last compaction in store.

TYPE etcd_debugging_mvcc_compact_revision gauge

etcd_debugging_mvcc_compact_revision 300

HELP etcd_debugging_mvcc_current_revision The current

revision of store.

TYPE etcd_debugging_mvcc_current_revision gauge

etcd_debugging_mvcc_current_revision 316

HELP etcd_debugging_mvcc_db_compaction_keys_total Total

number of db keys compacted.

TYPE etcd_debugging_mvcc_db_compaction_keys_total counter

etcd_debugging_mvcc_db_compaction_keys_total 274

HELP

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds Bucketed histogram of db compaction pause duration.

TYPE

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds histogram

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds_bucket{le="1"} 0

etcd_debugging_mvcc_db_compaction_pause_duration_millisecon

ds_bucket{le="2"} 0

...

https://prometheus.io/docs/concepts/data_model/

Mutators API

Get all mutators

The /mutators API endpoint provides HTTP GET access to mutator data.

Example

The following example demonstrates a request to the /mutators API endpoint, resulting in a JSON
array that contains mutator defnitions.

NOTE: Requests to the mutators API require you to authenticate with a Sensu access token or
API key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

 }

API Specifcation

/mutators (GET)

description Returns the list of mutators.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

 }

]

Create a new mutator

The /mutators API endpoint provides HTTP POST access to create mutators.

Example

In the following example, an HTTP POST request is submitted to the /mutators API endpoint to
create the mutator example-mutator .
The request returns a successful HTTP 201 Created

response.

API Specifcation

/mutators (POST)

description Creates a Sensu mutator.

example URL http://hostname:8080/api/core/v2/namespaces/default/mutators

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators

HTTP/1.1 201 Created

payload

response codes

Get a specifc mutator

The /mutators/:mutator API endpoint provides HTTP GET access to mutator data for specifc
:mutator defnitions, by mutator name.

Example

In the following example, querying the /mutators/:mutator API endpoint returns a JSON map that
contains the requested :mutator defnition (in this example, for the :mutator named example-
mutator).

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator \

-H "Authorization: Key $SENSU_API_KEY"

API Specifcation

/mutators/:mutator
(GET)

description Returns the specifed mutator.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators/mutator-
name

response type Map

response codes

output

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

Create or update a mutator

The /mutators/:mutator API endpoint provides HTTP PUT access to mutator data to create or
update specifc :mutator defnitions, by mutator name.

Example

In the following example, an HTTP PUT request is submitted to the /mutators/:mutator API
endpoint to create the mutator example-mutator .
The request returns a successful HTTP 201

Created response.

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator

HTTP/1.1 201 Created

API Specifcation

/mutators/:mutator
(PUT)

description Creates or updates a Sensu mutator.

example URL http://hostname:8080/api/core/v2/namespaces/default/mutators/example-
mutator

payload

response codes

Delete a mutator

The /mutators/:mutator API endpoint provides HTTP DELETE access to delete a mutator from
Sensu (specifed by the mutator name).

{

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Example

The following example shows a request to the /mutators/:mutator API endpoint to delete the
mutator example-mutator , resulting in a successful HTTP 204 No Content response.

API Specifcation

/mutators/:mutator
(DELETE)

description Removes the specifed mutator from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/mutators/example-
mutator

response codes

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/mutators/example-mutator \

-H "Authorization: Key $SENSU_API_KEY" \

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Namespaces API

Get all namespaces

The /namespaces API endpoint provides HTTP GET access to namespace data.

Example

The following example demonstrates a request to the /namespaces API endpoint, resulting in a
JSON array that contains namespace defnitions.

API Specifcation

NOTE: Requests to the namespaces API require you to authenticate with a Sensu access token or
API key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

/namespaces
(GET)

description Returns the list of namespaces.

example url http://hostname:8080/api/core/v2/namespaces

pagination This endpoint supports pagination using the limit query parameter.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Create a new namespace

The /namespaces API endpoint provides HTTP POST access to create Sensu namespaces.

Example

In the following example, an HTTP POST request is submitted to the /namespaces API endpoint to
create the namespace development .
The request returns a successful HTTP 201 Created

response.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

API Specifcation

/namespaces
(POST)

description Creates a Sensu namespace.

example URL http://hostname:8080/api/core/v2/namespaces

payload

response codes

Create or update a namespace

The /namespaces/:namespace API endpoint provides HTTP PUT access to create or update specifc
Sensu namespaces, by namespace name.

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "name": "development"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces

HTTP/1.1 201 Created

{

 "name": "development"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Example

In the following example, an HTTP PUT request is submitted to the /namespaces/:namespace API
endpoint to create the namespace development .
The request returns a successful HTTP 201

Created response.

API Specifcation

/namespaces/:na
mespace (PUT)

description Creates or updates a Sensu namespace.

example URL http://hostname:8080/api/core/v2/namespaces/development

payload

response codes

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "name": "development"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/development

HTTP/1.1 201 Created

{

 "name": "development"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Delete a namespace

The /namespaces/:namespace API endpoint provides HTTP DELETE access to delete a namespace
from Sensu (specifed by the namespace name).

Example

The following example shows a request to the /namespaces/:namespace API endpoint to delete the
namespace development , resulting in a successful HTTP 204 No Content response.

API Specifcation

/namespaces/:na
mespace
(DELETE)

description Removes the specifed namespace from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/development

response codes

Get all namespaces for a specifc user

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/development \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

The /user-namespaces API endpoint provides HTTP GET access to the namespaces the user has
access to.

Example

The following example demonstrates a request to the /user-namespaces API endpoint, resulting in a
JSON array that contains the namespaces the user has access to.

API Specifcation

/user-namespaces
(GET)

description Returns the list of namespaces a user has access to.

example url http://hostname:8080/api/enterprise/user-namespaces

response type Array

response codes

curl -X GET \

http://127.0.0.1:8080/api/enterprise/user-namespaces \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

output
[

 {

 "name": "default"

 },

 {

 "name": "development"

 }

]

Prune API

COMMERCIAL FEATURE : Access the prune API in the packaged Sensu Go distribution. For more
information, see Get started with commercial features.

Create a new pruning command

The /prune/v1alpha API endpoint provides HTTP POST access to create a pruning command to
delete resources that are not specifed in the request body.

Example

In the following example, an HTTP POST request is submitted to the /prune/v1alpha API endpoint
to create a pruning command for the checks specifed in the request body in the dev namespace
created by any user.

The request returns a successful HTTP 201 Created response and a list of the resources that were
pruned.

IMPORTANT : The prune API is an alpha feature and may include breaking changes.

NOTE: Requests to the prune API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

NOTE: The prune API requires cluster-level privileges, even when all resources belong to the
same namespace.

curl -X POST \

http://127.0.0.1:8080/api/enterprise/prune/v1alpha\?types\=core/v2.CheckConfg\&allUs

ers\=true\&namespaces\=dev \

API Specifcation

/prune/v1alpha
(POST)

description Creates a pruning command to delete the specifed resources.

example URL http://hostname:8080/api/enterprise/prune/v1alpha

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "name": "check-echo",

 "namespace": "dev",

 "labels": {

 "region": "us-west-2",

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

}'

HTTP/1.1 201 Created

[

 {

 "type": "CheckConfg",

 "api_version": "core/v2",

 "name": "check-echo",

 "namespace": "dev",

 "labels": {

 "region": "us-west-2",

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 }

]

example payload

query parameters

To use multiple values for the parameters that allow them, you must
specify the parameter multiple times (for example, ?
users=admin&users=dev) rather than using a comma-separated list.

payload

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "name": "check-echo",

 "namespace": "dev",

 "labels": {

 "region": "us-west-2",

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

}

type : The fully-qualifed name of the resource you want to
prune. Example: ?type=core/v2.CheckConfg .

allUsers : Prune resources created by all users. Mutually
exclusive with the users parameter. Defaults to false. Example:
?allUsers=true .

clusterWide : Prune any cluster-wide (non-namespaced)
resources that are not defned in the confguration. Defaults to
false. Example: ?clusterWide=true .

dryRun : Print the resources that will be pruned but does not
actually delete them. Defaults to false. Example: ?
dryRun=true .

labelSelector : Prune only resources that match the specifed
labels (accepts multiple values). Labels are a commercial feature.
Example: ?labelSelector=[...] .

namespaces : The namespace where you want to apply pruning.
Example: ?namespaces=dev .

users : Prune only resources that were created by the specifed
users (accepts multiple values). Defaults to the currently
confgured sensuctl user. Example: ?users=admin .

response codes

[

 {

 "type": "CheckConfg",

 "api_version": "core/v2",

 "name": "check-echo",

 "namespace": "dev",

 "labels": {

 "region": "us-west-2",

 "sensu.io/managed_by": "sensuctl"

 },

 "created_by": "admin"

 }

]

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Role bindings API

Get all role bindings

The /rolebindings API endpoint provides HTTP GET access to role binding data.

Example

The following example demonstrates a request to the /rolebindings API endpoint, resulting in a
JSON array that contains role binding defnitions.

NOTE: Requests to the role bindings API require you to authenticate with a Sensu access token or
API key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

API Specifcation

/rolebindings
(GET)

description Returns the list of role bindings.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

Create a new role binding

The /rolebindings API endpoint provides HTTP POST access to create Sensu role bindings.

Example

In the following example, an HTTP POST request is submitted to the /rolebindings API endpoint to
create a role binding named readers-group-binding .
The request returns a successful HTTP 201

Created response.

API Specifcation

/rolebindings
(POST)

description Creates a Sensu role binding.

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "name": "development"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings

HTTP/1.1 201 Created

example URL http://hostname:8080/api/core/v2/namespaces/default/rolebindings

payload

response codes

Get a specifc role binding

The /rolebindings/:rolebinding API endpoint provides HTTP GET access to role binding data for
specifc :rolebinding defnitions, by role binding name .

Example

In the following example, querying the /rolebindings/:rolebinding API endpoint returns a JSON
map that contains the requested :rolebinding defnition (in this example, for the :rolebinding
named readers-group-binding).

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

API Specifcation

/rolebindings/:role
binding (GET)

description Returns the specifed role binding.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings/reade
rs-group-binding

response type Map

response codes

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/readers-group-

binding \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default",

 "created_by": "admin"

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

output

Create or update a role binding

The /rolebindings/:rolebinding API endpoint provides HTTP PUT access to create or update
role binding data for specifc :rolebinding defnitions, by role binding name .

Example

In the following example, an HTTP PUT request is submitted to the /rolebindings/:rolebinding

API endpoint to create the role binding dev-binding .
The request returns a successful HTTP 201

Created response.

Error: 500 (Internal Server Error)

{

 "subjects": [

 {

 "type": "Group",

 "name": "readers"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "read-only"

 },

 "metadata": {

 "name": "readers-group-binding",

 "namespace": "default",

 "created_by": "admin"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

API Specifcation

/rolebindings/:role
binding (PUT)

description Creates or updates a Sensu role binding.

example URL http://hostname:8080/api/core/v2/namespaces/default/rolebindings/dev-
binding

payload

 "subjects": [

 {

 "type": "Group",

 "name": "devs"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "workfow-creator"

 },

 "metadata": {

 "name": "dev-binding",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/dev-binding

HTTP/1.1 201 Created

{

 "subjects": [

 {

 "type": "Group",

 "name": "devs"

 }

],

 "role_ref": {

 "type": "Role",

 "name": "workfow-creator"

response codes

Delete a role binding

The /rolebindings/:rolebinding API endpoint provides HTTP DELETE access to delete a role
binding from Sensu (specifed by the role binding name).

Example

The following example shows a request to the /rolebindings/:rolebinding API endpoint to delete
the role binding dev-binding , resulting in a successful HTTP 204 No Content response.

API Specifcation

/rolebindings/:role
binding (DELETE)

 },

 "metadata": {

 "name": "dev-binding",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/rolebindings/dev-binding \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 204 No Content

description Removes the specifed role binding from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/rolebindings/dev-
binding

response codes
Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Roles API

Get all roles

The /roles API endpoint provides HTTP GET access to role data.

Example

The following example demonstrates a request to the /roles API endpoint, resulting in a JSON array
that contains role defnitions.

NOTE: Requests to the roles API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

],

API Specifcation

/roles (GET)

description Returns the list of roles.

example url http://hostname:8080/api/core/v2/namespaces/default/roles

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

 "metadata": {

 "name": "event-reader",

 "namespace": "default",

 :created_by": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default",

 "created_by": "admin"

 }

 }

]

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default",

 "created_by": "admin"

 }

 },

 {

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default",

 "created by": "admin"

Create a new role

The /roles API endpoint provides HTTP POST access to create Sensu roles.

Example

In the following example, an HTTP POST request is submitted to the /roles API endpoint to create
a role named event-reader .
The request returns a successful HTTP 201 Created response.

 }

 }

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": []

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles

API Specifcation

/roles (POST)

description Creates a Sensu role.

example URL http://hostname:8080/api/core/v2/namespaces/default/roles

payload

response codes

HTTP/1.1 201 Created

{

 "rules": [

 {

 "verbs": [

 "get",

 "list"

],

 "resources": [

 "events"

],

 "resource_names": []

 }

],

 "metadata": {

 "name": "event-reader",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Get a specifc role

The /roles/:role API endpoint provides HTTP GET access to role data for specifc :role
defnitions, by role name.

Example

In the following example, querying the /roles/:role API endpoint returns a JSON map that
contains the requested :role defnition (in this example, for the :role named read-only).

API Specifcation

/roles/:role (GET)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/read-only \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default",

 "created_by": "admin"

 }

}

description Returns the specifed Sensu role.

example url http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

response type Map

response codes

output

Create or update a role

The /roles/:role API endpoint provides HTTP PUT access to create or update specifc :role

defnitions, by role name.

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default",

 "created_by": "admin"

 }

}

Example

In the following example, an HTTP PUT request is submitted to the /roles/:role API endpoint to
create the role read-only .
The request returns a successful HTTP 201 Created response.

API Specifcation

/roles/:role (PUT)

description Creates or updates the specifed Sensu role.

example URL http://hostname:8080/api/core/v2/namespaces/default/roles/event-reader

payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/read-only

HTTP/1.1 201 Created

{

response codes

Delete a role

The /roles/:role API endpoint provides HTTP DELETE access to delete a role from Sensu
(specifed by the role name).

Example

The following example shows a request to the /roles/:role API endpoint to delete the role read-

only , resulting in a successful HTTP 204 No Content response.

 "rules": [

 {

 "verbs": [

 "read"

],

 "resources": [

 "*"

],

 "resource_names": null

 }

],

 "metadata": {

 "name": "read-only",

 "namespace": "default"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

http://127.0.0.1:8080/api/core/v2/namespaces/default/roles/read-only \

-H "Authorization: Key $SENSU_API_KEY"

API Specifcation

/roles/:role
(DELETE)

description Removes the specifed role from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/roles/read-only

response codes

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Searches API

COMMERCIAL FEATURE : Access the searches API in the packaged Sensu Go distribution.
For more
information, see Get started with commercial features.

Get all searches

The /searches API endpoint provides HTTP GET access to the list of saved searches.

Example

The following example demonstrates a request to the /search API endpoint, resulting in a JSON
array that contains saved search defnitions.

NOTE: Requests to the searches API require you to authenticate with a Sensu access token or
API key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/searches/v1/namespaces/default/searches \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "incidents-us-west",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "labelSelector:region == \"us-west-1\"",

API Specifcation

/searches (GET)

 "status:incident"

],

 "resource": "core.v2/Event"

 }

 },

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

 },

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "web-agent",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "class:agent",

 "subscription:web"

],

 "resource": "core.v2/Entity"

 }

 }

]

description Returns the list of saved searches.

example url http://hostname:8080/api/enterprise/searches/v1/namespaces/default/se
arches

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "incidents-us-west",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "labelSelector:region == \"us-west-1\"",

 "status:incident"

],

 "resource": "core.v2/Event"

 }

 },

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

Get a specifc search

The /searches/:search API endpoint provides HTTP GET access to a specifc :search defnition,
by the saved search name .

Example

In the following example, querying the /searches/:search API endpoint returns a JSON map that
contains the requested :search defnition (in this example, for the :search named silenced-
events).

 "resource": "core.v2/Event"

 }

 },

 {

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "web-agent",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "class:agent",

 "subscription:web"

],

 "resource": "core.v2/Entity"

 }

 }

]

curl -X GET \

http://127.0.0.1:8080/api/enterprise/searches/v1/namespaces/default/searches/silence

d-events \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

API Specifcation

/searches/:search
(GET)

description Returns the specifed search.

example url http://hostname:8080/api/enterprise/searches/v1/namespaces/default/se
arches/silenced-events

response type Map

response codes

output

{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

Create or update a search

The /searches/:search API endpoint provides HTTP PUT access to create or update a saved
search by the saved search name .

Example

In the following example, an HTTP PUT request is submitted to the /searches/:search API
endpoint to create or update a saved search for events that are silenced.
The request includes the
saved search defnition in the request body and returns a successful HTTP 200 OK response and the
created or updated saved search defnition.

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

API Specifcation

/searches/:search
(PUT)

description Creates or updates the specifed saved search.

example URL http://hostname:8080/api/enterprise/searches/v1/namespaces/default/se
arches/silenced-events

payload

response codes

}' \

http://127.0.0.1:8080/api/enterprise/searches/v1/namespaces/default/searches/silence

d-events

HTTP/1.1 200 OK

{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "silenced-events",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "silenced:true"

],

 "resource": "core.v2/Event"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Delete a search

The /searches/:search API endpoint provides HTTP DELETE access to delete a saved search
from Sensu (specifed by the saved search name).

Example

The following example shows a request to the /searches/:search API endpoint to delete the saved
search silenced-events , resulting in a successful HTTP 204 No Content response.

API Specifcation

/searches/:search
(DELETE)

description Removes a saved search from Sensu (specifed by the search name).

example url http://hostname:8080/api/enterprise/searches/v1/namespaces/default/se
arches/silenced-events

response codes

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/searches/v1/namespaces/default/searches/silence

d-events

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Secrets API

COMMERCIAL FEATURE : Access secrets management in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Get all secrets providers

The /providers API endpoint provides HTTP GET access to a list of secrets providers.

Example

The following example demonstrates a request to the /providers API endpoint, resulting in a list of
secrets providers.

NOTE: Requests to the secrets API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers \

-H "Authorization: Key $SENSU_API_KEY"

[

 {

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

API Specifcation

/providers (GET)

description Returns the list of secrets providers.

example url http://hostname:8080/api/enterprise/secrets/v1/providers

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

 }

]

NOTE: In addition to the VaultProvider type, the secrets API also includes a built-in Env

secrets provider type that can retrieve backend environment variables as secrets.
Learn more in the
secrets providers reference.

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "VaultProvider",

Get a specifc secrets provider

The /providers/:provider API endpoint provides HTTP GET access to data for a specifc secrets
:provider , by provider name.

Example

In the following example, querying the /providers/:provider API endpoint returns a JSON map
that contains the requested :provider , my_vault .

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

 }

]

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers/my_vault \

-H "Authorization: Key $SENSU_API_KEY"

API Specifcation

/providers/:provide
r (GET)

description Returns the specifed secrets provider.

example url http://hostname:8080/api/enterprise/secrets/v1/providers/my_vault

response type Map

response codes

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

output

Create or update a secrets provider

The /providers/:provider API endpoint provides HTTP PUT access to create or update a specifc
:provider , by provider name.

Example

The following example demonstrates a request to the /providers/:provider API endpoint to
update the provider my_vault .

Error: 500 (Internal Server Error)

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault",

 "created_by": "admin"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

}

API Specifcation

/providers/:provide
r (PUT)

description Creates or updates the specifed secrets provider. The provider resource
and API version cannot be altered.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

}' \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers/my_vault

HTTP/1.1 200 OK

example URL http://hostname:8080/api/enterprise/secrets/v1/providers/my_vault

payload

response codes

Delete a secrets provider

The /providers/:provider API endpoint provides HTTP DELETE access to delete the specifed
provider from Sensu.

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "my_vault"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 }

 }

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Example

The following example shows a request to the /providers/:provider API endpoint to delete the
provider my_vault , resulting in a successful HTTP 204 No Content response.

API Specifcation

/providers/:provide
r (DELETE)

description Deletes the specifed provider from Sensu.

example url http://hostname:8080/api/enterprise/secrets/v1/providers/my_vault

response codes

Get all secrets

The /secrets API endpoint provides HTTP GET access to a list of secrets.

Example

The following example demonstrates a request to the /secrets API endpoint, resulting in a list of
secrets for the specifed namespace.

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers/my_vault

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

API Specifcation

/secrets (GET)

description Returns the list of secrets for the specifed namespace.

example url http://hostname:8080/api/enterprise/secrets/v1/namespaces/default/secr
ets

response fltering This endpoint supports API response fltering.

response type Array

response codes

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/namespaces/default/secrets \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

output

Get a specifc secret

The /secrets/:secret API endpoint provides HTTP GET access to data for a specifc secret , by
secret name.

Example

In the following example, querying the /secrets/:secret API endpoint returns a JSON map that
contains the requested :secret .

[

 {

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

 }

]

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/namespaces/default/secrets/sensu-

ansible-token \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

API Specifcation

/secrets/:secret
(GET)

description Returns the specifed secret.

example url http://hostname:8080/api/enterprise/secrets/v1/namespaces/default/secr
ets/sensu-ansible-token

response type Map

response codes

output

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

 },

 "spec": {

 "id": "secret/ansible#token",

Create or update a secret

The /secrets/:secret API endpoint provides HTTP PUT access to create or update a specifc
secret , by secret name.

Example

The following example demonstrates a request to the /secrets/:secret API endpoint to update the
secret sensu-ansible-token .

API Specifcation

 "provider": "ansible_vault"

 }

}

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

}' \

http://127.0.0.1:8080/api/enterprise/secrets/v1/namespaces/default/secrets/sensu-

ansible-token

HTTP/1.1 200 OK

/secrets/:secret
(PUT)

description Creates or updates the specifed secret.

example URL http://hostname:8080/api/enterprise/secrets/v1/namespaces/default/secr
ets/sensu-ansible-token

payload

response codes

Delete a secret

The /secrets/:secret API endpoint provides HTTP DELETE access to delete the specifed secret
from Sensu.

Example

The following example shows a request to the /secrets/:secret API endpoint to delete the secret

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default"

 },

 "spec": {

 "id": "secret/ansible#token",

 "provider": "ansible_vault"

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

sensu-ansible-token , resulting in a successful HTTP 204 No Content response.

API Specifcation

/secrets/:secret
(DELETE)

description Deletes the specifed secret from Sensu.

example url http://hostname:8080/api/enterprise/secrets/v1/namespaces/default/secr
ets/sensu-ansible-token

response codes

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/secrets/v1/namespaces/default/secrets/sensu-

ansible-token

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Silencing API

Get all silences

The /silenced API endpoint provides HTTP GET access to silencing entry data.

Example

The following example demonstrates a request to the /silenced API endpoint, resulting in a JSON
array that contains silencing entry defnitions.

NOTE: Requests to the silencing API require you to authenticate with a Sensu access token or
API key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "*:http",

 "namespace": "default",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "check": "http",

 "reason": "Testing",

 "begin": 1605024595,

 "expire_at": 0

API Specifcation

/silenced (GET)

description Returns the list of silences.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced

pagination This endpoint does not support pagination.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 },

 {

 "metadata": {

 "name": "linux:*",

 "namespace": "default",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205,

 "expire_at": 0

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

Create a new silence

The /silenced API endpoint provides HTTP POST access to create silencing entries.

Example

In the following example, an HTTP POST request is submitted to the /silenced API endpoint to
create the silencing entry linux:check-cpu .
The request returns a successful HTTP 201 Created

response.

 "name": "*:http",

 "namespace": "default",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "check": "http",

 "reason": "Testing",

 "begin": 1605024595,

 "expire_at": 0

 },

 {

 "metadata": {

 "name": "linux:*",

 "namespace": "default",

 "created_by": "admin"

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205,

 "expire_at": 0

 }

]

Here’s another example that shows an HTTP POST request to the /silenced API endpoint to create
the silencing entry *:http , which will create a silence for any event with the check name http ,
regardless of the originating entities’ subscriptions.
The request returns a successful HTTP 201

Created response.

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced

HTTP/1.1 201 Created

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "*:http",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

API Specifcation

/silenced (POST)

description Creates a Sensu silencing entry.

example URL http://hostname:8080/api/core/v2/namespaces/default/silenced

payload

response codes

 "check": "http",

 "reason": "Testing"

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced

HTTP/1.1 201 Created

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Get a specifc silence

The /silenced/:silenced API endpoint provides HTTP GET access to silencing entry data for
specifc :silenced defnitions, by silencing entry name.

Example

In the following example, querying the /silenced/:silenced API endpoint returns a JSON map that
contains the requested silencing entry defnition (in this example, for the silencing entry named
linux:check-cpu).
Silencing entry names are generated from the combination of a subscription name

and check name.

API Specifcation

/silenced/:silenced
(GET)

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

HTTP/1.1 200 OK

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}

description Returns the specifed silencing entry.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:che
ck-cpu

response type Map

response codes

output

Create or update a silence

The /silenced/:silenced API endpoint provides HTTP PUT access to create or update specifc
:silenced defnitions, by silencing entry name.

Example

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}

In the following example, an HTTP PUT request is submitted to the /silenced/:silenced API
endpoint to create the silencing entry linux:check-server .
The request returns a successful HTTP
201 Created response.

API Specifcation

/silenced/:silenced
(PUT)

description Creates or updates a Sensu silencing entry.

example URL http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:che
ck-server

payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "metadata": {

 "name": "linux:check-server",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}' \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check-server

HTTP/1.1 201 Created

{

 "metadata": {

 "name": "linux:check-server",

response codes

Delete a silence

The /silenced/:silenced API endpoint provides HTTP DELETE access to delete a silencing entry
(specifed by the silencing entry name).

Example

In the following example, querying the /silenced/:silenced API endpoint to delete the the silencing
entry named linux:check-cpu results in a successful HTTP 204 No Content response.

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/linux:check-cpu

HTTP/1.1 204 No Content

API Specifcation

/silenced/:silenced
(DELETE)

description Removes the specifed silencing entry from Sensu.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/linux:che
ck-cpu

response codes

Get all silences for a specifc subscription

The /silenced/subscriptions/:subscription API endpoint provides HTTP GET access to
silencing entry data by subscription name.

Example

In the following example, querying the silenced/subscriptions/:subscription API endpoint
returns a JSON array that contains the requested silences for the given subscription (in this example,
for the linux subscription).

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/subscriptions/linux

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

API Specifcation

/silenced
/subscriptions
/:subscription
(GET)

description Returns all silences for the specifed subscription.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/subscripti
ons/linux

pagination This endpoint supports pagination using the limit and continue
query parameters.

response type Array

response codes

output

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

 }

]

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

Get all silences for a specifc check

The /silenced/checks/:check API endpoint provides HTTP GET access to silencing entry data by
check name.

Example

In the following example, querying the silenced/checks/:check API endpoint returns a JSON array
that contains the requested silences for the given check (in this example, for the check-cpu check).

 "name": "linux:check-cpu",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "subscription": "linux",

 "begin": 1542671205

 }

]

curl -X GET \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/namespaces/default/silenced/checks/check-cpu

HTTP/1.1 200 OK

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

API Specifcation

/silenced/checks
/:check (GET)

description Returns all silences for the specifed check.

example url http://hostname:8080/api/core/v2/namespaces/default/silenced/checks/c
heck-cpu

pagination This endpoint supports pagination using the limit and continue
query parameters.

response type Array

response codes

output

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "check": "linux",

 "begin": 1542671205

 }

]

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

[

 {

 "metadata": {

 "name": "linux:check-cpu",

 "namespace": "default",

 "created_by": "admin",

 "labels": null,

 "annotations": null

 },

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": "reason for silence",

 "check": "linux",

 "begin": 1542671205

 }

]

Tessen API

The Tessen API provides HTTP access to manage Tessen confguration.
Access to the Tessen API is
restricted to the default admin user.

Get the active Tessen confguration

The /tessen API endpoint provides HTTP GET access to the active Tessen confguration.

Example

The following example demonstrates an HTTP GET request to the /tessen API endpoint.
The request
returns an HTTP 200 OK response and a JSON map that contains the active Tessen confguration,
indicating whether Tessen is enabled.

API Specifcation

/tessen (GET)

NOTE: Requests to the Tessen API require you to authenticate with a Sensu access token or API
key.
The code examples in this document use the environment variable $SENSU_API_KEY to
represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/tessen \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

{

 "opt_out": false

}

description Returns the active Tessen confguration. An "opt_out": false

response indicates that Tessen is enabled. An "opt_out": true

response indicates that Tessen is disabled.

example url http://hostname:8080/api/core/v2/tessen

response type Map

response codes

example output

Opt in to or out of Tessen

The /tessen API endpoint provides HTTP PUT access to opt in to or opt out of Tessen for
unlicensed Sensu instances.

Example

In the following example, an HTTP PUT request is submitted to the /tessen API endpoint to opt in to
Tessen using the opt_out attribute.
The request returns an HTTP 200 OK response and the
resulting Tessen confguration.

Success: 200 (OK)

Error: 500 (Internal Server Error)

{

 "opt_out": false

}

NOTE: Tessen is enabled by default on Sensu backends and required for licensed Sensu
instances.
If you have a licensed instance and want to opt out of Tessen, contact your account
manager.

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

http://localhost:1313/sensu-go/5.20/operations/maintain-sensu/license

API Specifcation

/tessen (PUT)

description Updates the active Tessen confguration for unlicensed Sensu instances.
Tessen is enabled by default on Sensu backends and required for
licensed Sensu instances.

example url http://hostname:8080/api/core/v2/tessen

request parameters Required: opt_out (for unlicensed instances, set to false to enable
Tessen; set to true to opt out of Tessen).

response codes

example output

-H 'Content-Type: application/json' \

-d '{

 "opt_out": false

}' \

http://127.0.0.1:8080/api/core/v2/tessen

HTTP/1.1 200 OK

{

 "opt_out": false

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "opt_out": false

}

Users API

Get all users

The /users API endpoint provides HTTP GET access to user data.

Example

The following example demonstrates a request to the /users API, resulting in a JSON array that
contains user defnitions.

NOTE: The users API allows you to create and manage user credentials with Sensu’s built-in basic
authentication provider. To confgure user credentials with external provider like Lightweight
Directory Access Protocol (LDAP), Active Directory (AD), or OpenID Connect 1.0 protocol (OIDC),
use Sensu’s authentication providers API.

curl -X GET \

http://127.0.0.1:8080/api/core/v2/users \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

[

 {

 "username": "admin",

 "groups": [

 "cluster-admins"

],

 "disabled": false

 },

 {

 "username": "agent",

 "groups": [

 "system:agents"

],

API Specifcation

/users (GET)

description Returns the list of users.

example url http://hostname:8080/api/core/v2/users

pagination This endpoint supports pagination using the limit and continue
query parameters.

response fltering This endpoint supports API response fltering.

response type Array

response codes

output

 "disabled": false

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "username": "admin",

 "groups": [

 "cluster-admins"

],

 "disabled": false

 },

 {

 "username": "agent",

 "groups": [

 "system:agents"

],

 "disabled": false

 }

Create a new user

The /users API endpoint provides HTTP POST access to create a user using Sensu’s basic
authentication provider.

Example

The following example demonstrates a POST request to the /users API endpoint to create the user
alice , resulting in an HTTP 201 Created response and the created user defnition.

API Specifcation

/users (POST)

description Creates a Sensu user.

example URL http://hostname:8080/api/core/v2/users

]

curl -X POST \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "temporary",

 "disabled": false

}' \

http://127.0.0.1:8080/api/core/v2/users

HTTP/1.1 201 Created

payload parameters Required: username (string), groups (array; sets of shared
permissions that apply to this user), password (string; at least eight
characters), and disabled (when set to true , invalidates user
credentials and permissions).

payload

response codes

Get a specifc user

The /users/:user API endpoint provides HTTP GET access to user data for a specifc user by
username .

Example

In the following example, querying the /users/:user API returns a JSON map that contains the
requested :user defnition (in this example, for the alice user).

{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "temporary",

 "disabled": false

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X GET \

http://127.0.0.1:8080/api/core/v2/users/alice \

-H "Authorization: Key $SENSU_API_KEY"

HTTP/1.1 200 OK

API Specifcation

/users/:user (GET)

description Returns the specifed user.

example url http://hostname:8080/api/core/v2/users/alice

response type Map

response codes

output

Create or update a user

The /users/:user API endpoint provides HTTP PUT access to create or update user data for a

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

Success: 200 (OK)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "username": "alice",

 "groups": [

 "ops"

],

 "disabled": false

}

specifc user by username .

Example

The following example demonstrates a PUT request to the /users API endpoint to update the user
alice (in this case, to reset the user’s password), resulting in an HTTP 201 Created response and

the updated user defnition.

API Specifcation

/users/:user (PUT)

description Creates or updates user data for the specifed Sensu user.

example URL http://hostname:8080/api/core/v2/users/alice

payload

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "reset-password",

 "disabled": false

}' \

http://127.0.0.1:8080/api/core/v2/users/alice

HTTP/1.1 201 Created

{

 "username": "alice",

 "groups": [

 "ops"

],

 "password": "reset-password",

response codes

Delete a user

The /users/:user API endpoint provides HTTP DELETE access to disable a specifc user by
username .

Example

In the following example, an HTTP DELETE request is submitted to the /users/:user API endpoint
to disable the user alice , resulting in a successful HTTP 204 No Content response.

API Specifcation

/users/:user
(DELETE)

 "disabled": false

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/users/alice

HTTP/1.1 204 No Content

NOTE: This endpoint disables but does not delete the user.
You can reinstate disabled users.

description Disables the specifed user.

example url http://hostname:8080/api/core/v2/users/alice

response codes

Update a user password

The /users/:user/password API endpoint provides HTTP PUT access to update a user’s
password.

Example

In the following example, an HTTP PUT request is submitted to the /users/:user/password API
endpoint to update the password for the user alice , resulting in an HTTP 201 Created response.

API Specifcation

/users/:user/passw
ord (PUT)

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "username": "alice",

 "password": "newpassword"

}' \

http://127.0.0.1:8080/api/core/v2/users/alice/password

HTTP/1.1 201 Created

description Updates the password for the specifed Sensu user.

example URL http://hostname:8080/api/core/v2/users/alice/password

payload parameters Required: username (string; the username for the Sensu user) and
password (string; the user’s new password).

payload

response codes

Reinstate a disabled user

The /users/:user/reinstate API endpoint provides HTTP PUT access to reinstate a disabled
user.

Example

In the following example, an HTTP PUT request is submitted to the /users/:user/reinstate API
endpoint to reinstate the disabled user alice , resulting in an HTTP 201 Created response.

{

 "username": "admin",

 "password": "newpassword"

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

http://127.0.0.1:8080/api/core/v2/users/alice/reinstate

HTTP/1.1 201 Created

API Specifcation

/users/:user/reinst
ate (PUT)

description Reinstates a disabled user.

example URL http://hostname:8080/api/core/v2/users/alice/reinstate

response codes

Remove a user from all groups

The /users/:user/groups API endpoint provides HTTP DELETE access to remove the specifed
user from all groups.

Example

In the following example, an HTTP DELETE request is submitted to the /users/:user/groups API
endpoint to remove the user alice from all groups within Sensu, resulting in a successful HTTP 204

No Content response.

API Specifcation

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups

HTTP/1.1 204 No Content

/users/:user/group
s (DELETE)

description Removes the specifed user from all groups.

example url http://hostname:8080/api/core/v2/users/alice/groups

response codes

Assign a user to a group

The /users/:user/groups/:group API endpoint provides HTTP PUT access to assign a user to a
group.

Example

In the following example, an HTTP PUT request is submitted to the /users/:user/groups/:group

API endpoint to add the user alice to the group ops , resulting in a successful HTTP 201

Created response.

API Specifcation

/users/:user/group
s/:group (PUT)

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups/ops

HTTP/1.1 201 Created

description Adds the specifed user to the specifed group.

example URL http://hostname:8080/api/core/v2/users/alice/groups/ops

response codes

Remove a user from a specifc group

The /users/:user/groups/:group API endpoint provides HTTP DELETE access to remove the
specifed user from a specifc group.

Example

In the following example, an HTTP DELETE request is submitted to the
/users/:user/groups/:group API endpoint to remove the user alice from the group ops ,

resulting in a successful HTTP 204 No Content response.

API Specifcation

/users/:user/group
s/:group
(DELETE)

description Removes the specifed user from the specifed group.

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/core/v2/users/alice/groups/ops

HTTP/1.1 204 No Content

example url http://hostname:8080/api/core/v2/users/alice/groups/ops

response codes
Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Version API

Get the Sensu backend and etcd versions

The /version API endpoint provides HTTP GET access to the Sensu backend and etcd versions for
the Sensu instance.

Example

The following example demonstrates a request to the /version API endpoint, resulting in a JSON
map that contains Sensu version data.

API Specifcation

/version (GET)

description Returns the Sensu backend and etcd version for the Sensu instance.

example url http://hostname:8080/version

response type Map

curl -X GET \

http://127.0.0.1:8080/version

HTTP/1.1 200 OK

{

 "etcd": {

 "etcdserver": "3.3.17",

 "etcdcluster": "3.3.0"

 },

 "sensu_backend": "5.x.x#yyyyyyy"

}

response codes

response parameters Required:

Optional:

output

Success: 200 (OK)

Error: 500 (Internal Server Error)

etcd.etcdserver (string). Etcd server version.

sensu_backend (string). Sensu backend version in the format
x.x.x#yyyyyyy where x.x.x is the Sensu version and yyyyyyy is
the release SHA

etcd.etcdcluster (string). Etcd cluster version for Sensu
instances with the default embedded etcd. Not required to match
the etcd server version or the cluster versions of other backends
in the cluster.

{

 "etcd": {

 "etcdserver": "3.3.17",

 "etcdcluster": "3.3.0"

 },

 "sensu_backend": "5.x.x#yyyyyyy"

}

Web UI confguration API

COMMERCIAL FEATURE : Access web UI confguration in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Get the web UI confguration

The /confg API endpoint provides HTTP GET access to the global web UI confguration.

Example

The following example demonstrates a request to the /confg API endpoint, resulting in a JSON array
that contains the global web UI confguration.

NOTE: Requests to the web UI confguration API require you to authenticate with a Sensu access
token or API key.
The code examples in this document use the environment variable
$SENSU_API_KEY to represent a valid API key in API requests.

curl -X GET \

http://127.0.0.1:8080/api/enterprise/web/v1/confg \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json'

HTTP/1.1 200 OK

[

 {

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

API Specifcation

/web (GET)

description Returns the list of global web UI confgurations.

example url http://hostname:8080/api/enterprise/web/v1/confg

response type Map

response codes

output

 "default_preferences": {

 "page_size": 50,

 "theme": "sensu"

 },

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

 }

 }

 }

]

Success: 200 (OK)

Error: 500 (Internal Server Error)

[

 {

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

Get a specifc web UI confguration

The /confg/:globalconfg API endpoint provides HTTP GET access to global web UI confguration
data, specifed by confguration name.

Example

In the following example, querying the /confg/:globalconfg API endpoint returns a JSON map that
contains the requested :globalconfg defnition (in this example, for the :globalconfg named
custom-web-ui).

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "default_preferences": {

 "page_size": 50,

 "theme": "sensu"

 },

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

 }

 }

 }

]

curl -X GET \

http://127.0.0.1:8080/api/enterprise/web/v1/confg/custom-web-ui \

-H "Authorization: Key $SENSU_API_KEY"

API Specifcation

/confg/:globalconf
g (GET)

description Returns the specifed global web UI confguration.

example url http://hostname:8080/api/enterprise/web/v1/confg/custom-web-ui

response type Map

response codes

HTTP/1.1 200 OK

{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "default_preferences": {

 "page_size": 50,

 "theme": "sensu"

 },

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

 }

 }

}

Success: 200 (OK)

output

Create and update a web UI confguration

The /confg/:globalconfg API endpoint provides HTTP PUT access to create and update global
web UI confgurations, specifed by confguration name.

Example

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "default_preferences": {

 "page_size": 50,

 "theme": "sensu"

 },

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

 }

 }

}

In the following example, an HTTP PUT request is submitted to the /confg/:globalconfg API
endpoint to update the custom-web-ui confguration, resulting in an HTTP 200 OK response and
the updated confguration defnition.

API Specifcation

curl -X PUT \

-H "Authorization: Key $SENSU_API_KEY" \

-H 'Content-Type: application/json' \

-d '{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "default_preferences": {

 "page_size": 50,

 "theme": "sensu"

 },

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

 }

 }

}' \

http://127.0.0.1:8080/api/enterprise/web/v1/confg/custom-web-ui

HTTP/1.1 201 Created

/confg/:globalconf
g (PUT)

description Creates or updates the specifed global web UI confguration.

example URL http://hostname:8080/api/enterprise/web/v1/confg/custom-web-ui

payload

response codes

{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "default_preferences": {

 "page_size": 50,

 "theme": "sensu"

 },

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

 }

 }

}

Success: 201 (Created)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

Delete a web UI confguration

The /confg/:globalconfg API endpoint provides HTTP DELETE access to delete a global web UI
confguration from Sensu, specifed by the confguration name.

Example

The following example shows a request to the /confg/:globalconfg API endpoint to delete the
global web UI confguration named custom-web-ui , resulting in a successful HTTP 204 No

Content response.

API Specifcation

/confg/:globalconf
g (DELETE)

description Removes the specifed global web UI confguration from Sensu.

example url http://hostname:8080/api/enterprise/web/v1/confg/custom-web-ui

response codes

curl -X DELETE \

-H "Authorization: Key $SENSU_API_KEY" \

http://127.0.0.1:8080/api/enterprise/web/v1/confg/custom-web-ui

HTTP/1.1 204 No Content

Success: 204 (No Content)

Missing: 404 (Not Found)

Error: 500 (Internal Server Error)

Reference

The reference documentation includes specifcations, examples, confguration notes, and other details
about each Sensu resource, the Sensu agent and backend, and Sensu query expressions.

Agent

Apikeys

Assets

Backend

Checks

Datastore

Entities

Etcdreplicators

Events

Filters

Handlers

Health

Hooks

License

Mutators

Rbac

Searches

Secrets-Providers

Secrets

Sensu-Query-Expressions

Silencing

Tessen

Tokens

Webconfg

Sensu agent

Example Sensu agent confguration fle (download)

The Sensu agent is a lightweight client that runs on the infrastructure components you want to monitor.
Agents register with the Sensu backend as monitoring entities with type: "agent" .
Agent entities are
responsible for creating check and metrics events to send to the backend event pipeline.
The Sensu
agent is available for Linux, macOS, and Windows.
See the installation guide to install the agent.

Communication between the agent and backend

The Sensu agent uses WebSocket (ws) protocol to send and receive JSON messages with the Sensu
backend.
For optimal network throughput, agents will attempt to negotiate the use of Protobuf
serialization when communicating with a Sensu backend that supports it.
This communication is via
clear text by default.
Follow Secure Sensu to confgure the backend and agent for WebSocket Secure
(wss) encrypted communication.

Create monitoring events using service checks

Sensu uses the publish/subscribe pattern of communication, which allows automated registration and
deregistration of ephemeral systems.
At the core of this model are Sensu agent subscriptions.

Each Sensu agent has a defned set of subscriptions : a list of roles and responsibilities assigned to
the system (for example, a webserver or database).
These subscriptions determine which monitoring
checks the agent will execute.
Agent subscriptions allow Sensu to request check executions on a group
of systems at a time instead of a traditional 1:1 mapping of confgured hosts to monitoring checks.
For
an agent to execute a service check, you must specify the same subscription in the agent confguration
and the check defnition.

After receiving a check request from the Sensu backend, the agent:

1. Applies any tokens that match attribute values in the check defnition.
2. Fetches assets and stores them in its local cache.
By default, agents cache asset data at

/var/cache/sensu/sensu-agent (C:\ProgramData\sensu\cache\sensu-agent on
Windows systems) or as specifed by the the cache-dir fag.

3. Executes the check command .

http://localhost:1313/sensu-go/5.20/files/agent.yml
https://en.m.wikipedia.org/wiki/WebSocket
https://en.m.wikipedia.org/wiki/Protocol_Buffers
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

4. Executes any hooks specifed by the check based on the exit status.
5. Creates an event that contains information about the applicable entity, check, and metric.

Subscription confguration

To confgure subscriptions for an agent, set the subscriptions fag.
To confgure subscriptions for a
check, set the check defnition attribute subscriptions .

In addition to the subscriptions defned in the agent confguration, Sensu agent entities also subscribe
automatically to subscriptions that match their entity name .
For example, an agent entity with name:

"i-424242" subscribes to check requests with the subscription entity:i-424242 .
This makes it
possible to generate ad hoc check requests that target specifc entities via the API.

Proxy entities

Sensu proxy entities allow Sensu to monitor external resources on systems or devices where a Sensu
agent cannot be installed (such a network switch).
The Sensu backend stores proxy entity defnitions
(unlike agent entities, which the agent stores).
When the backend requests a check that includes a
proxy_entity_name , the agent includes the provided entity information in the event data in place of

the agent entity data.
See the entity reference and Monitor external resources for more information
about monitoring proxy entities.

Create monitoring events using the agent API

The Sensu agent API allows external sources to send monitoring data to Sensu without requiring the
external sources to know anything about Sensu’s internal implementation.
The agent API listens on the
address and port specifed by the API confguration fags.
Only unsecured HTTP (no HTTPS) is
supported at this time.
Any requests for unknown endpoints result in an HTTP 404 Not Found

response.

/events (POST)

The /events API provides HTTP POST access to publish monitoring events to the Sensu backend
pipeline via the agent API.
The agent places events created via the /events POST endpoint into a
queue stored on disk.
In case of a loss of connection with the backend or agent shutdown, the agent
preserves queued event data.
When the connection is reestablished, the agent sends the queued
events to the backend.

The /events API uses a confgurable burst limit and rate limit for relaying events to the backend.
See
API confguration fags to confgure the events-burst-limit and events-rate-limit fags.

Example POST request to events API

The following example submits an HTTP POST request to the /events API.
The request creates
event for a check named check-mysql-status with the output could not connect to mysql and
a status of 1 (warning).
The agent responds with an HTTP 202 Accepted response to indicate that
the event has been added to the queue to be sent to the backend.

The event will be handled according to an email handler defnition.

Detect silent failures

NOTE: For HTTP POST requests to the agent /events API, check spec attributes are not required.
When doing so, the spec attributes (including handlers) are listed as individual top-level
attributes in the check defnition instead.

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "check-mysql-status"

 },

 "handlers": ["email"],

 "status": 1,

 "output": "could not connect to mysql"

 }

}' \

http://127.0.0.1:3031/events

HTTP/1.1 202 Accepted

PRO TIP: To use the agent API /events endpoint to create proxy entities, include a
proxy_entity_name attribute within the check scope.

You can use the Sensu agent API in combination with the check time-to-live (TTL) attribute to detect
silent failures.
This creates what’s commonly referred to as a “dead man’s switch”.

With check TTLs, Sensu can set an expectation that a Sensu agent will publish additional events for a
check within the period of time specifed by the TTL attribute.
If a Sensu agent fails to publish an event
before the check TTL expires, the Sensu backend creates an event with a status of 1 (warning) to
indicate the expected event was not received.
For more information about check TTLs, see the the
check reference.

You can use the Sensu agent API to enable tasks that run outside of Sensu’s check scheduling to emit
events.
Using the check TTL attribute, these events create a dead man’s switch: if the task fails for any
reason, the lack of an “all clear” event from the task will notify operators of a silent failure (which might
otherwise be missed).
If an external source sends a Sensu event with a check TTL to the Sensu agent
API, Sensu expects another event from the same external source before the TTL expires.

In this example, external event input via the Sensu agent API uses a check TTL to create a dead
man’s switch for MySQL backups.
Assume that a MySQL backup script runs periodically, and you
expect the job to take a little less than 7 hours to complete.

This script sends an event that tells the Sensu backend to expect an additional event with the same
name within 7 hours of the frst event:

If the job completes successfully, you want a record of it, but you don’t need to receive an alert.

If the job fails or continues running longer than the expected 7 hours, you do need to receive
an alert.

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "mysql-backup-job"

 },

 "status": 0,

 "output": "mysql backup initiated",

 "ttl": 25200

 }

}' \

http://127.0.0.1:3031/events

http://en.wikipedia.org/wiki/Dead_man%27s_switch

With this initial event submitted to the agent API, you recorded in the Sensu backend that your script
started.
You also confgured the dead man’s switch so that you’ll receive an alert if the job fails or runs
for too long.
Although it is possible for your script to handle errors gracefully and emit additional
monitoring events, this approach allows you to worry less about handling every possible error case.
A
lack of additional events before the 7-hour period elapses results in an alert.

If your backup script runs successfully, you can send an additional event without the TTL attribute,
which removes the dead man’s switch:

When you omit the TTL attribute from this event, you also remove the dead man’s switch being
monitored by the Sensu backend.
This effectively sounds the “all clear” for this iteration of the task.

API specifcation

/events (POST)

description Accepts JSON event data and passes the event to the Sensu backend
event pipeline for processing.

example url http://hostname:3031/events

payload example

curl -X POST \

-H 'Content-Type: application/json' \

-d '{

 "check": {

 "metadata": {

 "name": "mysql-backup-job"

 },

 "status": 0,

 "output": "mysql backup ran successfully!"

 }

}' \

http://127.0.0.1:3031/events

{

 "check": {

 "metadata": {

 "name": "check-mysql-status"

payload attributes
Required:

Optional:

response codes

/healthz (GET)

The /healthz API provides HTTP GET access to the status of the Sensu agent via the agent API.

Example

In the following example, an HTTP GET request is submitted to the /healthz API:

The request results in a healthy response:

 },

 "status": 1,

 "output": "could not connect to mysql"

 }

}

check : All check data must be within the check scope

metadata : The check scope must contain a metadata
scope

name : The metadata scope must contain the name attribute
with a string that represents the name of the monitoring check

Any other attributes supported by the Sensu check specifcation

Success: 202 (Accepted)

Malformed: 400 (Bad Request)

Error: 500 (Internal Server Error)

curl http://127.0.0.1:3031/healthz

API specifcation

/healthz (GET)

description Returns the agent status: ok if the agent is active and connected to a
Sensu backend or sensu backend unavailable if the agent cannot
connect to a backend.

example url http://hostname:3031/healthz

Create monitoring events using the StatsD listener

Sensu agents include a listener to send StatsD metrics to the event pipeline.
By default, Sensu agents
listen on UDP socket 8125 for messages that follow the StatsD line protocol and send metric events for
handling by the Sensu backend.

For example, you can use the Netcat utility to send metrics to the StatsD listener:

Sensu does not store metrics received through the StatsD listener, so it’s important to confgure event
handlers.

StatsD line protocol

The Sensu StatsD listener accepts messages formatted according to the StatsD line protocol:

ok

echo 'abc.def.g:10|c' | nc -w1 -u localhost 8125

<metricname>:<value>|<type>

https://github.com/etsy/statsd
https://github.com/etsy/statsd
http://nc110.sourceforge.net/

For more information, see the StatsD documentation.

Confgure the StatsD listener

To confgure the StatsD listener, specify the statsd-event-handlers confguration fag in the agent
confguration, and start the agent.

Use the StatsD confguration fags to change the default settings for the StatsD listener address, port,
and fush interval.

Create monitoring events using the agent TCP and UDP
sockets

Sensu agents listen for external monitoring data using TCP and UDP sockets.
The agent sockets accept
JSON event data and pass events to the Sensu backend event pipeline for processing.
The TCP and
UDP sockets listen on the address and port specifed by the socket confguration fags.

Use the TCP socket

This example demonstrates external monitoring data input via the Sensu agent TCP socket.
The
example uses Bash’s built-in /dev/tcp fle to communicate with the Sensu agent socket:

Start an agent that sends StatsD metrics to InfuxDB

sensu-agent --statsd-event-handlers infux-db

Start an agent with a customized address and fush interval

sensu-agent --statsd-event-handlers infux-db --statsd-fush-interval 1 --statsd-

metrics-host 123.4.5.11 --statsd-metrics-port 8125

NOTE: The agent TCP and UDP sockets are deprecated in favor of the agent API.

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' >

https://github.com/etsy/statsd
https://github.com/statsd/statsd#key-concepts

You can also use the Netcat utility to send monitoring data to the agent socket:

Use the UDP socket

This example demonstrates external monitoring data input via the Sensu agent UDP socket.
The
example uses Bash’s built-in /dev/udp fle to communicate with the Sensu agent socket:

You can also use the Netcat utility to send monitoring data to the agent socket:

Socket event format

The agent TCP and UDP sockets use a special event data format designed for backward compatibility
with Sensu Core 1.x check results.
Attributes specifed in socket events appear in the resulting event
data passed to the Sensu backend.

Example socket input: Minimum required attributes

/dev/tcp/localhost/3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' | nc

localhost 3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' >

/dev/udp/127.0.0.1/3030

echo '{"name": "check-mysql-status", "status": 1, "output": "error!"}' | nc -u -v

127.0.0.1 3030

{

 "name": "check-mysql-status",

 "status": 1,

 "output": "error!"

}

http://nc110.sourceforge.net/
http://nc110.sourceforge.net/

Example socket input: All attributes

Socket event specifcation

name

description Check name.

required true

type String

example

status

description Check execution exit status code. An exit status code of 0 (zero)
indicates OK , 1 indicates WARNING , and 2 indicates CRITICAL .
Exit status codes other than 0 , 1 , and 2 indicate an UNKNOWN or
custom status.

{

 "name": "check-http",

 "status": 1,

 "output": "404",

 "source": "sensu-docs-site",

 "executed": 1550013435,

 "duration": 1.903135228,

 "handlers": ["slack", "infuxdb"]

}

NOTE: The Sensu agent socket ignores any attributes that are not included in this specifcation.

"name": "check-mysql-status"

required true

type Integer

example

output

description Output produced by the check command .

required true

type String

example

source

description Name of the Sensu entity associated with the event. Use this attribute to
tie the event to a proxy entity. If no matching entity exists, Sensu creates
a proxy entity with the name provided by the source attribute.

required false

default The agent entity that receives the event data.

type String

example

client

description Name of the Sensu entity associated with the event. Use this attribute to

"status": 0

"output": "CheckHttp OK: 200, 78572 bytes"

"source": "sensu-docs-site"

tie the event to a proxy entity. If no matching entity exists, Sensu creates
a proxy entity with the name provided by the client attribute.

required false

default The agent entity that receives the event data.

type String

example

executed

description Time at which the check was executed. In seconds since the Unix epoch.

required false

default The time the event was received by the agent.

type Integer

example

duration

description Amount of time it took to execute the check. In seconds.

required false

type Float

example

NOTE: The client attribute is deprecated in favor of the source
attribute (see above).

"client": "sensu-docs-site"

"executed": 1458934742

command

description Command executed to produce the event. Use the command attribute to
add context to the event data. Sensu does not execute the command
included in this attribute.

required false

type String

example

interval

description Interval used to produce the event. Use the interval attribute to add
context to the event data. Sensu does not act on the value provided in
this attribute.

required false

default 1

type Integer

example

handlers

description Array of Sensu handler names to use for handling the event. Each
handler name in the array must be a string.

required false

"duration": 1.903135228

"command": "check-http.rb -u https://sensuapp.org"

"interval": 60

type Array

example

Keepalive monitoring

Sensu keepalives are the heartbeat mechanism used to ensure that all registered agents are
operational and able to reach the Sensu backend.
Sensu agents publish keepalive events containing
entity confguration data to the Sensu backend according to the interval specifed by the keepalive-
interval fag.

If a Sensu agent fails to send keepalive events over the period specifed by the keepalive-critical-
timeout fag, the Sensu backend creates a keepalive critical alert in the Sensu web UI.
The
keepalive-critical-timeout is set to 0 (disabled) by default to help ensure that it will not

interfere with your keepalive-warning-timeout setting.

If a Sensu agent fails to send keepalive events over the period specifed by the keepalive-warning-
timeout fag, the Sensu backend creates a keepalive warning alert in the Sensu web UI.
The value
you specify for keepalive-warning-timeout must be lower than the value you specify for
keepalive-critical-timeout .

You can use keepalives to identify unhealthy systems and network partitions, send notifcations, and
trigger auto-remediation, among other useful actions.
In addition, the agent maps keepalive-
critical-timeout and keepalive-warning-timeout values to certain event check attributes, so
you can create time-based event flters to reduce alert fatigue for agent keepliave events.

"handlers": ["slack", "infuxdb"]

NOTE: If you set the deregister fag to true , when a Sensu agent process stops, the Sensu
backend will deregister the corresponding entity.
Deregistration prevents and clears alerts for failing
keepalives — the backend does not distinguish between intentional shutdown and failure.
As a
result, if you set the deregister fag to true and an agent process stops for any reason, you will
not see alerts for keepalive events in the web UI.
If you want to see alerts for failing keepalives, set
the deregister fag to false .

NOTE: Automatic keepalive monitoring is not supported for proxy entities because they cannot run
a Sensu agent.
Use the events API to send manual keepalive events for proxy entities.

Handle keepalive events

You can use a keepalive handler to connect keepalive events to your monitoring workfows.
Sensu looks
for an event handler named keepalive and automatically uses it to process keepalive events.

Suppose you want to receive Slack notifcations for keepalive alerts, and you already have a Slack
handler set up to process events.
To process keepalive events using the Slack pipeline, create a
handler set named keepalive and add the slack handler to the handlers array.
The resulting
keepalive handler set confguration looks like this:

type: Handler

api_version: core/v2

metadata:

 name: keepalive

 namespace: default

spec:

 handlers:

 - slack

 type: set

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata" : {

 "name": "keepalive",

 "namespace": "default"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "slack"

]

 }

}

JSON

You can also use the keepalive-handlers fag to send keepalive events to any handler you have
confgured.
If you do not specify a keepalive handler with the keepalive-handlers fag, the Sensu
backend will use the default keepalive handler and create an event in sensuctl and the Sensu web
UI.

Connection failure

Although connection failure may be due to different kinds of socket errors (such as unexpectedly
closed connections and TLS handshake failures), the Sensu agent generally keeps retrying
connections to each URL in the backend-url list until it is successfully connected to a backend URL
or you stop the process.

When you start up a Sensu agent confgured with multiple backend-url values, the agent shuffes
the backend-url list and attempts to connect to the frst URL in the shuffed list.

If the agent cannot establish a WebSocket connection with the frst URL within the number of seconds
specifed for the backend-handshake-timeout , the agent abandons the connection attempt and tries
the next URL in the shuffed list.

When the agent establishes a WebSocket connection with a backend URL within the backend-

handshake-timeout period, the agent sends a heartbeat message to the backend at the specifed
backend-heartbeat-interval .
For every heartbeat the agent sends, the agent expects the

connected backend to send a heartbeat response within the number of seconds specifed for the
backend-heartbeat-timeout .
If the connected backend does not respond within the backend-

heartbeat-timeout period, the agent closes the connection and attempts to connect to the next
backend URL in the shuffed list.

The agent iterates through the shuffed backend-url list until it successfully establishes a
WebSocket connection with a backend, returning to the frst URL if it fails to connect with the last URL
in the list.

NOTE: Sensu’s WebSocket connection heartbeat message and keepalive monitoring mechanism
are different, although they have similar purposes.

The WebSocket backend-heartbeat-interval and backend-heartbeat-timeout are
specifcally confgured for the WebSocket connection heartbeat message the agent sends when it
connects to a backend URL.

Keepalive monitoring is more fuid — it permits agents to reconnect any number of times within the
confgured timeout.
As long as the agent can successfully send one event to any backend within the
timeout, the keepalive logic is satisfed.

Service management

Start the service

Use the sensu-agent tool to start the agent and apply confguration fags.

Linux

To start the agent with confguration fags:

To see available confguration fags and defaults:

To start the agent using a service manager:

If you do not provide any confguration fags, the agent loads confguration from the location specifed
by the confg-fle attribute (default is /etc/sensu/agent.yml).

Windows

Run the following command as an admin to install and start the agent:

sensu-agent start --subscriptions disk-checks --log-level debug

sensu-agent start --help

sudo service sensu-agent start

sensu-agent service install

By default, the agent loads confguration from %ALLUSERSPROFILE%\sensu\confg\agent.yml (for
example, C:\ProgramData\sensu\confg\agent.yml) and stores service logs to
%ALLUSERSPROFILE%\sensu\log\sensu-agent.log (for example,
C:\ProgramData\sensu\log\sensu-agent.log).

Confgure the confguration fle and log fle locations using the confg-fle and log-fle fags:

Stop the service

To stop the agent service using a service manager:

Linux

Windows

Restart the service

You must restart the agent to implement any confguration updates.

To restart the agent using a service manager:

Linux

sensu-agent service install --confg-fle 'C:\\monitoring\\sensu\\confg\\agent.yml' --

log-fle 'C:\\monitoring\\sensu\\log\\sensu-agent.log'

sudo service sensu-agent stop

sc.exe stop SensuAgent

sudo service sensu-agent restart

Windows

Enable on boot

To enable the agent to start on system boot:

Linux

To disable the agent from starting on system boot:

Windows

The service is confgured to start automatically on boot by default.

Get service status

To see the status of the agent service using a service manager:

Linux

sc.exe stop SensuAgent

sc.exe start SensuAgent

sudo systemctl enable sensu-agent

sudo systemctl disable sensu-agent

NOTE: On older distributions of Linux, use sudo chkconfg sensu-agent on to enable the agent
and sudo chkconfg sensu-agent off to disable the agent.

service sensu-agent status

Windows

Get service version

There are two ways to get the current agent version: the sensu-agent tool and the agent version
API.

To get the version of the current sensu-agent tool:

To get the version of the running sensu-agent service:

Uninstall the service

Windows

Get help

The sensu-agent tool provides general and command-specifc help fags:

sc.exe query SensuAgent

sensu-agent version

curl http://127.0.0.1:3031/version

sensu-agent service uninstall

Show sensu-agent commands

sensu-agent help

Registration

In practice, agent registration happens when a Sensu backend processes an agent keepalive event for
an agent that is not already registered in the Sensu agent registry (based on the confgured agent
name).
The Sensu backend stores this agent registry, and it is accessible via sensuctl entity

list .

All Sensu agent data provided in keepalive events gets stored in the agent registry and used to add
context to Sensu events and detect Sensu agents in an unhealthy state.

Registration events

If a Sensu event handler named registration is confgured, the Sensu backend creates and
processes an event for agent registration, applying any confgured flters and mutators before
executing the confgured handler.

You can use registration events to execute one-time handlers for new Sensu agents.
For example, you
can use registration event handlers to update external confguration management databases (CMDBs)
such as ServiceNow.

The handlers reference includes an example registration event handler.

Deregistration events

As with registration events, the Sensu backend can create and process a deregistration event when
the Sensu agent process stops.
You can use deregistration events to trigger a handler that updates
external CMDBs or performs an action to update ephemeral infrastructures.
To enable deregistration
events, use the deregister fag, and specify the event handler using the deregistration-
handler fag.
You can specify a deregistration handler per agent using the deregistration-handler

Show options for the sensu-agent start subcommand

sensu-agent start --help

PRO TIP: Use a handler set to execute multiple handlers in response to registration events.

WARNING: Registration events are not stored in the event registry, so they are not accessible via
the Sensu API. However, all registration events are logged in the Sensu backend log.

https://en.wikipedia.org/wiki/Configuration_management_database
https://www.servicenow.com/products/it-operations-management.html

agent fag or by setting a default for all agents using the deregistration-handler backend
confguration fag.

Cluster

Agents can connect to a Sensu cluster by specifying any Sensu backend URL in the cluster in the
backend-url confguration fag. For more information about clustering, see Backend datastore

confguration fags and Run a Sensu cluster.

Synchronize time

System clocks between agents and the backend should be synchronized to a central NTP server.
If
system time is out-of-sync, it may cause issues with keepalive, metric, and check alerts.

Confguration via fags

The agent loads confguration upon startup, so you must restart the agent for any confguration
updates to take effect.

Linux

Specify the agent confguration with either a .yml fle or sensu-agent start command line fags.
Confguration via command line fags overrides attributes specifed in a confguration fle.
See the
Example Sensu agent confguration fle for fags and defaults.

Certifcate bundles or chains

The Sensu agent supports all types of certifcate bundles (or chains) as long as the agent (or leaf)
certifcate is the frst certifcate in the bundle.
This is because the Go standard library assumes that the
frst certifcate listed in the PEM fle is the leaf certifcate — the certifcate that the program will use to
show its own identity.

If you send the leaf certifcate alone instead of sending the whole bundle with the leaf certifcate frst,
you will see a certifcate not signed by trusted authority error.
You must present the whole
chain to the remote so it can determine whether it trusts the presented certifcate through the chain.

http://localhost:1313/sensu-go/5.20/files/windows/agent.yml

Confguration summary

IMPORTANT : Process discovery is disabled in release 5.20.2.
As of 5.20.2, the --discover-

processes fag is not available, and new events will not include data in the processes attributes.
Instead, the feld will be empty: "processes": null .

$ sensu-agent start --help

start the sensu agent

Usage:

 sensu-agent start [fags]

Flags:

 --allow-list string path to agent execution allow list

confguration fle

 --annotations stringToString entity annotations map (default [])

 --api-host string address to bind the Sensu client HTTP

API to (default "127.0.0.1")

 --api-port int port the Sensu client HTTP API listens

on (default 3031)

 --assets-burst-limit int asset fetch burst limit (default 100)

 --assets-rate-limit foat maximum number of assets fetched per

second

 --backend-handshake-timeout int number of seconds the agent should

wait when negotiating a new WebSocket connection (default 15)

 --backend-heartbeat-interval int interval at which the agent should

send heartbeats to the backend (default 30)

 --backend-heartbeat-timeout int number of seconds the agent should

wait for a response to a hearbeat (default 45)

 --backend-url strings ws/wss URL of Sensu backend server (to

specify multiple backends use this fag multiple times) (default

[ws://127.0.0.1:8081])

 --cache-dir string path to store cached data (default

"/var/cache/sensu/sensu-agent")

 --cert-fle string TLS certifcate in PEM format

 -c, --confg-fle string path to sensu-agent confg fle

 --deregister ephemeral agent

 --deregistration-handler string deregistration handler that should

process the entity deregistration event.

 --detect-cloud-provider enable cloud provider detection

mechanisms

 --disable-assets disable check assets on this agent

 --disable-api disable the Agent HTTP API

 --disable-sockets disable the Agent TCP and UDP event

sockets

 --discover-processes indicates whether process discovery

should be enabled

 --events-burst-limit /events api burst limit

 --events-rate-limit maximum number of events transmitted

to the backend through the /events api

 -h, --help help for start

 --insecure-skip-tls-verify skip ssl verifcation

 --keepalive-critical-timeout uint32 number of seconds until agent is

considered dead by backend to create a critical event (default 0)

 --keepalive-handlers string comma-delimited list of keepalive

handlers for this entity. This fag can also be invoked multiple times

 --keepalive-interval uint32 number of seconds to send between

keepalive events (default 20)

 --keepalive-warning-timeout uint32 number of seconds until agent is

considered dead by backend to create a warning event (default 120)

 --key-fle string TLS certifcate key in PEM format

 --labels stringToString entity labels map (default [])

 --log-level string logging level [panic, fatal, error,

warn, info, debug] (default "warn")

 --name string agent name (defaults to hostname)

(default "my-hostname")

 --namespace string agent namespace (default "default")

 --password string agent password (default "P@ssw0rd!")

 --redact string comma-delimited customized list of

felds to redact

 --socket-host string address to bind the Sensu client

socket to (default "127.0.0.1")

 --socket-port int port the Sensu client socket listens

on (default 3030)

 --statsd-disable disables the statsd listener and

metrics server

 --statsd-event-handlers strings comma-delimited list of event handlers

for statsd metrics

 --statsd-fush-interval int number of seconds between statsd fush

(default 10)

 --statsd-metrics-host string address used for the statsd metrics

server (default "127.0.0.1")

Windows

You can specify the agent confguration using a .yml fle.
See the example agent confguration fle
(also provided with Sensu packages at %ALLUSERSPROFILE%\sensu\confg\agent.yml.example ;
default C:\ProgramData\sensu\confg\agent.yml.example).

General confguration fags

allow-list

description Path to yaml or json fle that contains the allow list of check or hook
commands the agent can execute. See allow list confguration
commands and the example allow list confguration fle for information
about building a confguration fle.

type String

default ""

environment variable SENSU_ALLOW_LIST

example

annotations

 --statsd-metrics-port int port used for the statsd metrics

server (default 8125)

 --subscriptions string comma-delimited list of agent

subscriptions

 --trusted-ca-fle string tls certifcate authority

 --user string agent user (default "agent")

Command line example

sensu-agent start --allow-list /etc/sensu/check-allow-

list.yaml

/etc/sensu/agent.yml example

allow-list: /etc/sensu/check-allow-list.yaml

http://localhost:1313/sensu-go/5.20/files/windows/agent.yml

description Non-identifying metadata to include with event data that you can access
with event flters and tokens. You can use annotations to add data that is
meaningful to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI view fltering.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

environment variable SENSU_ANNOTATIONS

example

assets-burst-limit

description Maximum amount of burst allowed in a rate interval when fetching
assets.

type Integer

default 100

environment variable SENSU_ASSETS_BURST_LIMIT

Command line examples

sensu-agent start --annotations

sensu.io/plugins/slack/confg/webhook-

url=https://hooks.slack.com/services/T00000000/B00000000/XX

XXXXXXXXXXXXXXXXXXXXXX

sensu-agent start --annotations example-key="example value"

--annotations example-key2="example value"

/etc/sensu/agent.yml example

annotations:

 sensu.io/plugins/slack/confg/webhook-url:

"https://hooks.slack.com/services/T00000000/B00000000/XXXXX

XXXXXXXXXXXXXXXXXXX"

example

assets-rate-limit

description Maximum number of assets to fetch per second. The default value
1.39 is equivalent to approximately 5000 user-to-server requests per

hour.

type Float

default 1.39

environment variable SENSU_ASSETS_RATE_LIMIT

example

backend-
handshake-
timeout

description Number of seconds the Sensu agent should wait when negotiating a new
WebSocket connection.

type Integer

default 15

environment variable SENSU_BACKEND_HANDSHAKE_TIMEOUT

Command line example

sensu-agent start --assets-burst-limit 100

/etc/sensu/agent.yml example

assets-burst-limit: 100

Command line example

sensu-agent start --assets-rate-limit 1.39

/etc/sensu/agent.yml example

assets-rate-limit: 1.39

example

backend-
heartbeat-interval

description Interval at which the agent should send heartbeats to the Sensu
backend. In seconds.

type Integer

default 30

environment variable SENSU_BACKEND_HEARTBEAT_INTERVAL

example

backend-
heartbeat-timeout

description Number of seconds the agent should wait for a response to a hearbeat
from the Sensu backend.

type Integer

default 45

environment variable SENSU_BACKEND_HEARTBEAT_TIMEOUT

Command line example

sensu-agent start --backend-handshake-timeout 20

/etc/sensu/agent.yml example

backend-handshake-timeout: 20

Command line example

sensu-agent start --backend-heartbeat-interval 45

/etc/sensu/agent.yml example

backend-heartbeat-interval: 45

example

backend-url

description ws or wss URL of the Sensu backend server. To specify multiple
backends with sensu-agent start , use this fag multiple times.

type List

default ws://127.0.0.1:8081

environment variable SENSU_BACKEND_URL

example

cache-dir

description Path to store cached data.

Command line example

sensu-agent start --backend-heartbeat-timeout 60

/etc/sensu/agent.yml example

backend-heartbeat-timeout: 60

NOTE: If you do not specify a port for your backend-url values, the
agent will automatically append the default backend port (8081).

Command line examples

sensu-agent start --backend-url ws://0.0.0.0:8081

sensu-agent start --backend-url ws://0.0.0.0:8081 --

backend-url ws://0.0.0.0:8082

/etc/sensu/agent.yml example

backend-url:

 - "ws://0.0.0.0:8081"

 - "ws://0.0.0.0:8082"

type String

default

environment variable SENSU_CACHE_DIR

example

confg-fle

description Path to Sensu agent confguration fle.

type String

default

environment variable The confg fle path cannot be set by an environment variable.

example

disable-assets

Linux: /var/cache/sensu/sensu-agent

Windows: C:\ProgramData\sensu\cache\sensu-agent

Command line example

sensu-agent start --cache-dir /cache/sensu-agent

/etc/sensu/agent.yml example

cache-dir: "/cache/sensu-agent"

Linux: /etc/sensu/agent.yml

FreeBSD: /usr/local/etc/sensu/agent.yml

Windows: C:\ProgramData\sensu\confg\agent.yml

Command line example

sensu-agent start --confg-fle /sensu/agent.yml

sensu-agent start -c /sensu/agent.yml

description When set to true , disables assets for the agent. If an agent attempts to
execute a check that requires an asset, the agent will respond with a
status of 3 and a message that indicates the agent could not execute
the check because assets are disabled.

type Boolean

default false

environment variable SENSU_DISABLE_ASSETS

example

discover-
processes

description When set to true , the agent populates the processes feld in
entity.system and updates every 20 seconds.

COMMERCIAL FEATURE : Access the discover-processes fag in
the packaged Sensu Go distribution. For more information, see Get
started with commercial features.

type Boolean

default false

environment variable SENSU_DISCOVER_PROCESSES

Command line example

sensu-agent start --disable-assets

/etc/sensu/agent.yml example

disable-assets: true

IMPORTANT : Process discovery is disabled in release 5.20.2.
As of
5.20.2, the --discover-processes fag is not available, and new
events will not include data in the processes attributes.
Instead, the
feld will be empty: "processes": null .

example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

environment variable SENSU_LABELS

example

Command line example

sensu-agent start --discover-processes

/etc/sensu/agent.yml example

discover-processes: true

Command line examples

sensu-agent start --labels proxy_type=website

sensu-agent start --labels example_key1="example value"

example_key2="example value"

/etc/sensu/agent.yml example

labels:

 proxy_type: "website"

name

description Entity name assigned to the agent entity.

type String

default Defaults to hostname (for example, sensu-centos).

environment variable SENSU_NAME

example

log-level

description Logging level: panic , fatal , error , warn , info , or debug .

type String

default warn

environment variable SENSU_LOG_LEVEL

example

subscriptions

description Array of agent subscriptions that determine which monitoring checks the

Command line example

sensu-agent start --name agent-01

/etc/sensu/agent.yml example

name: "agent-01"

Command line example

sensu-agent start --log-level debug

/etc/sensu/agent.yml example

log-level: "debug"

agent will execute. The subscriptions array items must be strings.

type List

environment variable SENSU_SUBSCRIPTIONS

example

API confguration fags

api-host

description Bind address for the Sensu agent HTTP API.

type String

default 127.0.0.1

environment variable SENSU_API_HOST

example

Command line examples

sensu-agent start --subscriptions disk-checks,process-

checks

sensu-agent start --subscriptions disk-checks --

subscriptions process-checks

/etc/sensu/agent.yml example

subscriptions:

 - disk-checks

 - process-checks

Command line example

sensu-agent start --api-host 0.0.0.0

/etc/sensu/agent.yml example

api-host: "0.0.0.0"

api-port

description Listening port for the Sensu agent HTTP API.

type Integer

default 3031

environment variable SENSU_API_PORT

example

disable-api

description true to disable the agent HTTP API. Otherwise, false .

type Boolean

default false

environment variable SENSU_DISABLE_API

example

events-burst-limit

description Maximum amount of burst allowed in a rate interval for the agent events
API.

Command line example

sensu-agent start --api-port 4041

/etc/sensu/agent.yml example

api-port: 4041

Command line example

sensu-agent start --disable-api

/etc/sensu/agent.yml example

disable-api: true

type Integer

default 10

environment variable SENSU_EVENTS_BURST_LIMIT

example

events-rate-limit

description Maximum number of events per second that can be transmitted to the
backend with the agent events API.

type Float

default 10.0

environment variable SENSU_EVENTS_RATE_LIMIT

example

Ephemeral agent confguration fags

deregister

description true if a deregistration event should be created upon Sensu agent
process stop. Otherwise, false .

Command line example

sensu-agent start --events-burst-limit 20

/etc/sensu/agent.yml example

events-burst-limit: 20

Command line example

sensu-agent start --events-rate-limit 20.0

/etc/sensu/agent.yml example

events-rate-limit: 20.0

type Boolean

default false

environment variable SENSU_DEREGISTER

example

deregistration-
handler

description Name of a deregistration handler that processes agent deregistration
events. This fag overrides any handlers applied by the
deregistration-handler backend confguration fag.

type String

environment variable SENSU_DEREGISTRATION_HANDLER

example

detect-cloud-
provider

NOTE: To see alerts for failing keepalives, set to false .

Command line example

sensu-agent start --deregister

/etc/sensu/agent.yml example

deregister: true

Command line example

sensu-agent start --deregistration-handler deregister

/etc/sensu/agent.yml example

deregistration-handler: "deregister"

description true to enable cloud provider detection mechanisms. Otherwise,
false . When this fag is enabled, the agent will attempt to read fles,

resolve hostnames, and make HTTP requests to determine what cloud
environment it is running in.

type Boolean

default false

environment variable SENSU_DETECT_CLOUD_PROVIDER

example

Keepalive confguration fags

keepalive-critical-
timeout

description Number of seconds after a missing keepalive event until the agent is
considered unresponsive by the Sensu backend to create a critical event.
Set to disabled (0) by default. If the value is not 0 , it must be greater
than or equal to 5 .

type Integer

default 0

environment variable SENSU_KEEPALIVE_CRITICAL_TIMEOUT

Command line example

sensu-agent start --detect-cloud-provider false

/etc/sensu/agent.yml example

detect-cloud-provider: "false"

NOTE: The agent maps the keepalive-critical-timeout value to
the event.check.ttl attribute when keepalive events are generated
for the Sensu backend to process. The event.check.ttl attribute is
useful for using time-based event flters to reduce alert fatigue for agent
keepalive events.

example

keepalive-handlers

description Keepalive event handlers to use for the entity, specifed in a comma-
delimited list. You can specify any confgured handler and invoke the
keepalive-handlers fag multiple times. If keepalive handlers are not

specifed, the Sensu backend will use the default keepalive handler
and create an event in sensuctl and the Sensu web UI.

type List

default keepalive

environment variable SENSU_KEEPALIVE_HANDLERS

example

keepalive-interval

description Number of seconds between keepalive events.

type Integer

default 20

environment variable SENSU_KEEPALIVE_INTERNAL

Command line example

sensu-agent start --keepalive-critical-timeout 300

/etc/sensu/agent.yml example

keepalive-critical-timeout: 300

Command line example

sensu-agent start --keepalive-handlers slack,email

/etc/sensu/agent.yml example

keepalive-handlers: slack,email

example

keepalive-warning-
timeout

description Number of seconds after a missing keepalive event until the agent is
considered unresponsive by the Sensu backend to create a warning
event. Value must be lower than the keepalive-critical-timeout

value. Minimum value is 5 .

type Integer

default 120

environment variable SENSU_KEEPALIVE_WARNING_TIMEOUT

example

Security confguration fags

Command line example

sensu-agent start --keepalive-interval 30

/etc/sensu/agent.yml example

keepalive-interval: 30

NOTE: The agent maps the keepalive-warning-timeout value to
the event.check.timeout attribute when keepalive events are
generated for the Sensu backend to process. The
event.check.timeout attribute is useful for using time-based

event flters to reduce alert fatigue for agent keepalive events.

Command line example

sensu-agent start --keepalive-warning-timeout 300

/etc/sensu/agent.yml example

keepalive-warning-timeout: 300

namespace

description Agent namespace.

type String

default default

environment variable SENSU_NAMESPACE

example

user

description Sensu RBAC username used by the agent. Agents require get, list,
create, update, and delete permissions for events across all
namespaces.

type String

default agent

environment variable SENSU_USER

example

NOTE: Agents are represented in the backend as a class of entity.
Entities can only belong to a single namespace.

Command line example

sensu-agent start --namespace ops

/etc/sensu/agent.yml example

namespace: "ops"

Command line example

sensu-agent start --user agent-01

/etc/sensu/agent.yml example

user: "agent-01"

password

description Sensu RBAC password used by the agent.

type String

default P@ssw0rd!

environment variable SENSU_PASSWORD

example

redact

description List of felds to redact when displaying the entity.

type List

default By default, Sensu redacts the following felds: password , passwd ,
pass , api_key , api_token , access_key , secret_key ,
private_key , secret .

environment variable SENSU_REDACT

example

Command line example

sensu-agent start --password secure-password

/etc/sensu/agent.yml example

password: "secure-password"

NOTE: Redacted secrets are sent via the WebSocket connection
and stored in etcd.
They are not logged or displayed via the Sensu
API.

Command line example

sensu-agent start --redact secret,ec2_access_key

cert-fle

description Path to the agent certifcate fle used in mutual TLS authentication.
Sensu supports certifcate bundles (or chains) as long as the agent (or
leaf) certifcate is the frst certifcate in the bundle.

type String

default ""

environment variable SENSU_CERT_FILE

example

trusted-ca-fle

description SSL/TLS certifcate authority.

type String

default ""

environment variable SENSU_TRUSTED_CA_FILE

example

/etc/sensu/agent.yml example

redact:

 - secret

 - ec2_access_key

Command line example

sensu-agent start --cert-fle /path/to/agent.pem

/etc/sensu/agent.yml example

cert-fle: "/path/to/agent.pem"

Command line example

sensu-agent start --trusted-ca-fle /path/to/trusted-

certifcate-authorities.pem

key-fle

description Path to the agent key fle used in mutual TLS authentication.

type String

default ""

environment variable SENSU_KEY_FILE

example

insecure-skip-tls-
verify

description Skip SSL verifcation.

type Boolean

default false

environment variable SENSU_INSECURE_SKIP_TLS_VERIFY

example

/etc/sensu/agent.yml example

trusted-ca-fle: "/path/to/trusted-certifcate-

authorities.pem"

Command line example

sensu-agent start --key-fle /path/to/agent-key.pem

/etc/sensu/agent.yml example

key-fle: "/path/to/agent-key.pem"

WARNING: This confguration fag is intended for use in
development systems only. Do not use this fag in production.

Socket confguration fags

socket-host

description Address to bind the Sensu agent socket to.

type String

default 127.0.0.1

environment variable SENSU_SOCKET_HOST

example

socket-port

description Port the Sensu agent socket listens on.

type Integer

default 3030

environment variable SENSU_SOCKET_PORT

example

Command line example

sensu-agent start --insecure-skip-tls-verify

/etc/sensu/agent.yml example

insecure-skip-tls-verify: true

Command line example

sensu-agent start --socket-host 0.0.0.0

/etc/sensu/agent.yml example

socket-host: "0.0.0.0"

Command line example

sensu-agent start --socket-port 4030

disable-sockets

description true to disable the agent TCP and UDP event sockets. Othewise,
false .

type Boolean

default false

environment variable SENSU_DISABLE_SOCKETS

example

StatsD confguration fags

statsd-disable

description true to disable the StatsD listener and metrics server. Otherwise,
false .

type Boolean

default false

environment variable SENSU_STATSD_DISABLE

example

/etc/sensu/agent.yml example

socket-port: 4030

Command line example

sensu-agent start --disable-sockets

/etc/sensu/agent.yml example

disable-sockets: true

Command line example

https://github.com/etsy/statsd

statsd-event-
handlers

description List of event handlers for StatsD metrics.

type List

environment variable SENSU_STATSD_EVENT_HANDLERS

example

statsd-fush-
interval

description Number of seconds between StatsD fushes.

type Integer

default 10

environment variable SENSU_STATSD_FLUSH_INTERVAL

example

sensu-agent start --statsd-disable

/etc/sensu/agent.yml example

statsd-disable: true

Command line examples

sensu-agent start --statsd-event-handlers infuxdb,opentsdb

sensu-agent start --statsd-event-handlers infuxdb --statsd-

event-handlers opentsdb

/etc/sensu/agent.yml example

statsd-event-handlers:

 - infuxdb

 - opentsdb

Command line example

https://github.com/statsd/statsd#key-concepts

statsd-metrics-
host

description Address used for the StatsD metrics server.

type String

default 127.0.0.1

environment variable SENSU_STATSD_METRICS_HOST

example

statsd-metrics-port

description Port used for the StatsD metrics server.

type Integer

default 8125

environment variable SENSU_STATSD_METRICS_PORT

example

sensu-agent start --statsd-fush-interval 30

/etc/sensu/agent.yml example

statsd-fush-interval: 30

Command line example

sensu-agent start --statsd-metrics-host 0.0.0.0

/etc/sensu/agent.yml example

statsd-metrics-host: "0.0.0.0"

Command line example

sensu-agent start --statsd-metrics-port 6125

/etc/sensu/agent.yml example

statsd-metrics-port: 6125

Allow list confguration commands

The allow list includes check and hook commands the agent can execute.
Use the allow-list fag to
specify the path to the yaml or json fle that contains your allow list.

Use these commands to build your allow list confguration fle.

exec

description Command to allow the Sensu agent to run as a check or a hook.

required true

type String

example

sha512

description Checksum of the check or hook executable.

required false

type String

example

args

description Arguments for the exec command.

required true

"exec": "/usr/local/bin/check_memory.sh"

"sha512": "4f926bf4328..."

type Array

example

enable_env

description true to enable environment variables. Otherwise, false .

required false

type Boolean

example

Example allow list confguration fle

"args": ["foo"]

"enable_env": true

- exec: /usr/local/bin/check_memory.sh

 args:

 - ""

 sha512:

736ac120323772543fd3a08ee54afdd54d214e58c280707b63ce652424313ef9084ca5b247d226aa09be

8f831034ff4991bfb95553291c8b3dc32cad034b4706

 enable_env: true

 foo: bar

- exec: /usr/local/bin/show_process_table.sh

 args:

 - ""

 sha512:

28d61f303136b16d20742268a896bde194cc99342e02cdffc1c2186f81c5adc53f8550635156bebeed7d

87a0c19a7d4b7a690f1a337cc4737e240b62b827f78a

- exec: echo-asset.sh

 args:

 - "foo"

 sha512:

YML

Confguration via environment variables

cce3d16e5881ba829f271df778f9014f7c3659917f7acfd7a60a91bfcabb472eea72f9781194d310388b

a046c21790364ad0308a5a897cde50022195ba90924b

[

 {

 "exec": "/usr/local/bin/check_memory.sh",

 "args": [

 ""

],

 "sha512":

"736ac120323772543fd3a08ee54afdd54d214e58c280707b63ce652424313ef9084ca5b247d226aa09b

e8f831034ff4991bfb95553291c8b3dc32cad034b4706",

 "enable_env": true,

 "foo": "bar"

 },

 {

 "exec": "/usr/local/bin/show_process_table.sh",

 "args": [

 ""

],

 "sha512":

"28d61f303136b16d20742268a896bde194cc99342e02cdffc1c2186f81c5adc53f8550635156bebeed7

d87a0c19a7d4b7a690f1a337cc4737e240b62b827f78a"

 },

 {

 "exec": "echo-asset.sh",

 "args": [

 "foo"

],

 "sha512":

"cce3d16e5881ba829f271df778f9014f7c3659917f7acfd7a60a91bfcabb472eea72f9781194d310388

ba046c21790364ad0308a5a897cde50022195ba90924b"

 }

]

JSON

Instead of using confguration fags, you can use environment variables to confgure your Sensu agent.
Each agent confguration fag has an associated environment variable.
You can also create your own
environment variables, as long as you name them correctly and save them in the correct place.
Here’s
how.

1. Create the fles from which the sensu-agent service confgured by our supported packages
will read environment variables: /etc/default/sensu-agent for Debian/Ubuntu systems or
/etc/sysconfg/sensu-agent for RHEL/CentOS systems.

2. Make sure the environment variable is named correctly.
All environment variables controlling
Sensu confguration begin with SENSU_ .

To rename a confguration fag you wish to specify as an environment variable, prepend
SENSU_ , convert dashes to underscores, and capitalize all letters.
For example, the

environment variable for the fag api-host is SENSU_API_HOST .

For a custom test variable, the environment variable name might be SENSU_TEST_VAR .

3. Add the environment variable to the environment fle (/etc/default/sensu-agent for
Debian/Ubuntu systems or /etc/sysconfg/sensu-agent for RHEL/CentOS systems).

In this example, the api-host fag is confgured as an environment variable and set to
"0.0.0.0" :

$ sudo touch /etc/default/sensu-agent

SHELL

$ sudo touch /etc/sysconfg/sensu-agent

SHELL

$ echo 'SENSU_API_HOST="0.0.0.0"' | sudo tee -a /etc/default/sensu-agent

SHELL

$ echo 'SENSU_API_HOST="0.0.0.0"' | sudo tee -a /etc/sysconfg/sensu-agent

SHELL

4. Restart the sensu-agent service so these settings can take effect.

Format for label and annotation environment variables

To use labels and annotations as environment variables in your check and plugin confgurations, you
must use a specifc format when you create the SENSU_LABELS and SENSU_ANNOTATIONS
environment variables.

For example, to create the labels "region": "us-east-1" and "type": "website" as an
environment variable:

To create the annotations "maintainer": "Team A" and "webhook-url":
"https://hooks.slack.com/services/T0000/B00000/XXXXX" as an environment variable:

$ sudo systemctl restart sensu-agent

SHELL

$ sudo systemctl restart sensu-agent

SHELL

NOTE: Sensu includes an environment variable for each agent confguration fag.
They are listed in
the confguration fag description tables.

$ echo 'SENSU_LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/default/sensu-agent

SHELL

$ echo 'SENSU_LABELS='{"region": "us-east-1", "type": "website"}'' | sudo tee -a

/etc/sysconfg/sensu-agent

SHELL

SHELL

Use environment variables with the Sensu agent

Any environment variables you create in /etc/default/sensu-agent (Debian/Ubuntu) or
/etc/sysconfg/sensu-agent (RHEL/CentOS) will be available to check and hook commands

executed by the Sensu agent.
This includes your checks and plugins.

For example, if you create a SENSU_TEST_VAR variable in your sensu-agent fle, it will be available to
use in your check confgurations as $SENSU_TEST_VAR .

Use environment variables to specify an HTTP proxy for agent use

If an HTTP proxy is required to access the internet in your compute environment, you may need to
confgure the Sensu agent to successfully download dynamic runtime assets or execute commands
that depend on internet access.

For Sensu agents that require a proxy server, defne HTTP_PROXY and HTTPS_PROXY environment
variables in your sensu-agent fle.

You can use the same proxy server URL for HTTP_PROXY and HTTPS_PROXY .
The proxy server URL
you specify for HTTPS_PROXY does not need to use https:// .

After you add the HTTP_PROXY and HTTPS_PROXY environment variables and restart sensu-agent,
they will be available to check and hook commands executed by the Sensu agent.
You can then use

$ echo 'SENSU_ANNOTATIONS='{"maintainer": "Team A", "webhook-url":

"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'' | sudo tee -a

/etc/default/sensu-agent

$ echo 'SENSU_ANNOTATIONS='{"maintainer": "Team A", "webhook-url":

"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'' | sudo tee -a

/etc/sysconfg/sensu-agent

SHELL

HTTP_PROXY="http://YOUR_PROXY_SERVER:PORT"

HTTPS_PROXY="http://YOUR_PROXY_SERVER:PORT"

HTTP_PROXY and HTTPS_PROXY to add dynamic runtime assets, run checks, and complete other
tasks that typically require an internet connection for your unconnected entities.

NOTE: If you defne the HTTP_PROXY and HTTPS_PROXY environment variables, the agent
WebSocket connection will also use the proxy URL you specify.

Sensu backend

Example Sensu backend confguration fle (download)

The Sensu backend is a service that manages check requests and event data.
Every Sensu backend
includes an integrated transport for scheduling checks using subscriptions, an event processing
pipeline that applies flters, mutators, and handlers, an embedded etcd datastore for storing
confguration and state, a Sensu API, a Sensu web UI, and the sensu-backend command line tool.
The Sensu backend is available for Ubuntu/Debian and RHEL/CentOS distributions of Linux.
See the
installation guide to install the backend.

Create event pipelines

The backend processes event data and executes flters, mutators, and handlers.
These pipelines are
powerful tools to automate your monitoring workfows.
To learn more about flters, mutators, and
handlers, see:

Schedule checks

The backend is responsible for storing check defnitions and scheduling check requests.
Check
scheduling is subscription-based: the backend sends check requests to subscriptions. where they’re
picked up by subscribing agents.

For information about creating and managing checks, see:

Guide to sending Slack alerts with handlers

Guide to reducing alerting fatigue with flters

Filters reference documentation

Mutators reference documentation

Handlers reference documentation

Monitor server resources with checks

Collect metrics with checks

http://localhost:1313/sensu-go/5.20/files/backend.yml
https://etcd.io/docs

Initialization

For a new installation, the backend database must be initialized by providing a username and
password for the user to be granted administrative privileges.
Although initialization is required for every
new installation, the implementation differs depending on your method of installation:

This step bootstraps the frst admin user account for your Sensu installation.
This account will be
granted the cluster admin role.

Docker initialization

For Docker installations, set administrator credentials with environment variables when you confgure
and start the backend as shown below, replacing YOUR_USERNAME and YOUR_PASSWORD with the
username and password you want to use:

Checks reference documentation

If you are using Docker, you can use environment variables to override the default admin
username (admin) and password (P@ssw0rd!) during step 2 of the backend installation
process.

If you are using Ubuntu/Debian or RHEL/CentOS, you must specify admin credentials during
step 3 of the backend installation process. Sensu does not apply a default admin username or
password for Ubuntu/Debian or RHEL/CentoOS installations.

IMPORTANT : If you plan to run a Sensu cluster, make sure that each of your backend nodes is
confgured, running, and a member of the cluster before you initialize.

docker run -v /var/lib/sensu:/var/lib/sensu \

-d --name sensu-backend \

-p 3000:3000 -p 8080:8080 -p 8081:8081 \

-e SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=YOUR_USERNAME \

-e SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=YOUR_PASSWORD \

sensu/sensu:latest \

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug

DOCKER

If you did not use environment variables to override the default admin credentials in step 2 of the
backend installation process, we recommend changing your default admin password as soon as you
have installed sensuctl.

Ubuntu/Debian or RHEL/CentOS initialization

For Ubuntu/Debian or RHEL/CentOS, set administrator credentials with environment variables at
initialization as shown below, replacing YOUR_USERNAME and YOUR_PASSWORD with the username and
password you want to use:

version: "3"

services:

 sensu-backend:

 ports:

 - 3000:3000

 - 8080:8080

 - 8081:8081

 volumes:

 - "sensu-backend-data:/var/lib/sensu/sensu-backend/etcd"

 command: "sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-

level debug"

 environment:

 - SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=YOUR_USERNAME

 - SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=YOUR_PASSWORD

 image: sensu/sensu:latest

volumes:

 sensu-backend-data:

 driver: local

DOCKER

export SENSU_BACKEND_CLUSTER_ADMIN_USERNAME=YOUR_USERNAME

export SENSU_BACKEND_CLUSTER_ADMIN_PASSWORD=YOUR_PASSWORD

sensu-backend init

You can also run the sensu-backend init command in interactive mode if you prefer to respond to
prompts for your username and password:

To see available initialization fags:

Operation and service management

Start the service

Use the sensu-backend tool to start the backend and apply confguration fags.

To start the backend with confguration fags:

To see available confguration fags and defaults:

NOTE: Make sure the Sensu backend is running before you run sensu-backend init .

sensu-backend init --interactive

Admin Username: YOUR_USERNAME

Admin Password: YOUR_PASSWORD

NOTE: If you are already using Sensu, you do not need to initialize.
Your installation has already
seeded the admin username and password you have set up.
Running sensu-backend init on a
previously initialized cluster has no effect — it will not change the admin credentials.

sensu-backend init --help

NOTE: Commands in this section may require administrative privileges.

sensu-backend start --state-dir /var/lib/sensu/sensu-backend --log-level debug

If you do not provide any confguration fags, the backend loads confguration from
/etc/sensu/backend.yml by default.

To start the backend using a service manager:

Stop the service

To stop the backend service using a service manager:

Restart the service

You must restart the backend to implement any confguration updates.

To restart the backend using a service manager:

Enable on boot

To enable the backend to start on system boot:

sensu-backend start --help

service sensu-backend start

service sensu-backend stop

service sensu-backend restart

systemctl enable sensu-backend

To disable the backend from starting on system boot:

Get service status

To see the status of the backend service using a service manager:

Get service version

To get the current backend version using the sensu-backend tool:

Get help

The sensu-backend tool provides general and command-specifc help fags:

systemctl disable sensu-backend

NOTE: On older distributions of Linux, use sudo chkconfg sensu-server on to enable the
backend and sudo chkconfg sensu-server off to disable the backend.

service sensu-backend status

sensu-backend version

Show sensu-backend commands

sensu-backend help

Show options for the sensu-backend start subcommand

sensu-backend start --help

Cluster

You can run the backend as a standalone service, but running a cluster of backends makes Sensu
more highly available, reliable, and durable.
Sensu backend clusters build on the etcd clustering system
Clustering lets you synchronize data between backends and get the benefts of a highly available
confguration.

To confgure a cluster, see:

Synchronize time

System clocks between agents and the backend should be synchronized to a central NTP server. If
system time is out-of-sync, it may cause issues with keepalive, metric, and check alerts.

Confguration

You can specify the backend confguration with either a /etc/sensu/backend.yml fle or sensu-
backend start confguration fags.
The backend requires that the state-dir fag is set before
starting.
All other required fags have default values.
See the example backend confguration fle for fags
and defaults.
The backend loads confguration upon startup, so you must restart the backend for any
confguration updates to take effect.

Certifcate bundles or chains

The Sensu backend supports all types of certifcate bundles (or chains) as long as the server (or leaf)
certifcate is the frst certifcate in the bundle.
This is because the Go standard library assumes that the
frst certifcate listed in the PEM fle is the server certifcate — the certifcate that the program will use
to show its own identity.

If you send the server certifcate alone instead of sending the whole bundle with the server certifcate
frst, you will see a certifcate not signed by trusted authority error.
You must present the
whole chain to the remote so it can determine whether it trusts the server certifcate through the chain.

Confguration summary

Datastore confguration fags

Run a Sensu cluster

https://etcd.io/docs
http://localhost:1313/sensu-go/5.20/files/backend.yml

$ sensu-backend start --help

start the sensu backend

Usage:

 sensu-backend start [fags]

General Flags:

 --agent-auth-cert-fle string TLS certifcate in PEM format for agent

certifcate authentication

 --agent-auth-crl-urls strings URLs of CRLs for agent certifcate

authentication

 --agent-auth-key-fle string TLS certifcate key in PEM format for

agent certifcate authentication

 --agent-auth-trusted-ca-fle string TLS CA certifcate bundle in PEM format

for agent certifcate authentication

 --agent-host string agent listener host (default "[::]")

 --agent-port int agent listener port (default 8081)

 --agent-write-timeout int timeout in seconds for agent writes

(default 15)

 --annotations stringToString entity annotations map (default [])

 --api-listen-address string address to listen on for API traffc

(default "[::]:8080")

 --api-url string URL of the API to connect to (default

"http://localhost:8080")

 --assets-burst-limit int asset fetch burst limit (default 100)

 --assets-rate-limit foat maximum number of assets fetched per

second

 --cache-dir string path to store cached data (default

"/var/cache/sensu/sensu-backend")

 --cert-fle string TLS certifcate in PEM format

 -c, --confg-fle string path to sensu-backend confg fle

 --dashboard-cert-fle string dashboard TLS certifcate in PEM format

 --dashboard-host string dashboard listener host (default "[::]")

 --dashboard-key-fle string dashboard TLS certifcate key in PEM

format

 --dashboard-port int dashboard listener port (default 3000)

 --debug enable debugging and profling features

 --deregistration-handler string default deregistration handler

 --event-log-buffer-size int buffer size of the event logger (default

100000)

 --event-log-fle string path to the event log fle

 --eventd-buffer-size int number of incoming events that can be

buffered (default 100)

 --eventd-workers int number of workers spawned for processing

incoming events (default 100)

 -h, --help help for start

 --insecure-skip-tls-verify skip TLS verifcation (not recommended!)

 --jwt-private-key-fle string path to the PEM-encoded private key to

use to sign JSON Web Tokens (JWTs)

 --jwt-public-key-fle string path to the PEM-encoded public key to use

to verify JWT signatures

 --keepalived-buffer-size int number of incoming keepalives that can

be buffered (default 100)

 --keepalived-workers int number of workers spawned for processing

incoming keepalives (default 100)

 --key-fle string TLS certifcate key in PEM format

 --labels stringToString entity labels map (default [])

 --log-level string logging level [panic, fatal, error,

warn, info, debug] (default "warn")

 --pipelined-buffer-size int number of events to handle that can be

buffered (default 100)

 --pipelined-workers int number of workers spawned for handling

events through the event pipeline (default 100)

 -d, --state-dir string path to sensu state storage (default

"/var/lib/sensu/sensu-backend")

 --trusted-ca-fle string TLS CA certifcate bundle in PEM format

Store Flags:

 --etcd-advertise-client-urls strings list of this member's client URLs

to advertise to the rest of the cluster (default [http://localhost:2379])

 --etcd-cert-fle string path to the client server TLS cert

fle

 --etcd-cipher-suites strings list of ciphers to use for etcd

TLS confguration

 --etcd-client-urls string client URLs to use when operating

as an etcd client

 --etcd-client-cert-auth enable client cert authentication

 --etcd-discovery use the dynamic cluster

confguration method etcd

discovery instead of the static `--initial-cluster method`

 --etcd-discovery-srv use the dynamic cluster

confguration method DNS SRV

discovery instead of the static `--initial-cluster method`

General confguration fags

 --etcd-election-timeout uint time in ms a follower node will

go without hearing a heartbeat before attempting to become leader itself (default

1000)

 --etcd-heartbeat-interval uint interval in ms with which the

etcd leader will notify followers that it is still the leader (default 100)

 --etcd-initial-advertise-peer-urls strings list of this member's peer URLs

to advertise to the rest of the cluster (default [http://127.0.0.1:2380])

 --etcd-initial-cluster string initial cluster confguration for

bootstrapping (default "default=http://127.0.0.1:2380")

 --etcd-initial-cluster-state string initial cluster state ("new" or

"existing"; default "new")

 --etcd-initial-cluster-token string initial cluster token for the

etcd cluster during bootstrap

 --etcd-key-fle string path to the client server TLS key

fle

 --etcd-listen-client-urls strings list of URLs to listen on for

client traffc (default [http://127.0.0.1:2379])

 --etcd-listen-peer-urls strings list of URLs to listen on for

peer traffc (default [http://127.0.0.1:2380])

 --etcd-max-request-bytes uint maximum etcd request size in

bytes (use with caution; default 1572864)

 --etcd-name string human-readable name for this

member (default "default")

 --etcd-peer-cert-fle string path to the peer server TLS cert

fle

 --etcd-peer-client-cert-auth enable peer client cert

authentication

 --etcd-peer-key-fle string path to the peer server TLS key

fle

 --etcd-peer-trusted-ca-fle string path to the peer server TLS

trusted CA fle

 --etcd-quota-backend-bytes int maximum etcd database size in

bytes (use with caution; default 4294967296)

 --etcd-trusted-ca-fle string path to the client server TLS

trusted CA cert fle

 --no-embed-etcd don't embed etcd; use external

etcd instead

annotations

description Non-identifying metadata to include with entity data for backend assets
(e.g. handler and mutator assets).

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

environment variable SENSU_BACKEND_ANNOTATIONS

example

api-listen-address

description Address the API daemon will listen for requests on.

type String

default [::]:8080

environment variable SENSU_BACKEND_API_LISTEN_ADDRESS

example

Command line examples

sensu-backend start --annotations

sensu.io/plugins/slack/confg/webhook-

url=https://hooks.slack.com/services/T00000000/B00000000/XX

XXXXXXXXXXXXXXXXXXXXXX

sensu-backend start --annotations example-key="example

value" --annotations example-key2="example value"

/etc/sensu/backend.yml example

annotations:

 sensu.io/plugins/slack/confg/webhook-url:

"https://hooks.slack.com/services/T00000000/B00000000/XXXXX

XXXXXXXXXXXXXXXXXXX"

Command line example

sensu-backend start --api-listen-address [::]:8080

api-url

description URL used to connect to the API.

type String

default http://localhost:8080

environment variable SENSU_BACKEND_API_URL

example

assets-burst-limit

description Maximum amount of burst allowed in a rate interval when fetching
assets.

type Integer

default 100

environment variable SENSU_BACKEND_ASSETS_BURST_LIMIT

example

/etc/sensu/backend.yml example

api-listen-address: "[::]:8080"

Command line example

sensu-backend start --api-url http://localhost:8080

/etc/sensu/backend.yml example

api-url: "http://localhost:8080"

Command line example

sensu-backend start --assets-burst-limit 100

/etc/sensu/backend.yml example

assets-burst-limit: 100

assets-rate-limit

description Maximum number of assets to fetch per second. The default value
1.39 is equivalent to approximately 5000 user-to-server requests per

hour.

type Float

default 1.39

environment variable SENSU_BACKEND_ASSETS_RATE_LIMIT

example

cache-dir

description Path to store cached data.

type String

default /var/cache/sensu/sensu-backend

environment variable SENSU_BACKEND_CACHE_DIR

example

Command line example

sensu-backend start --assets-rate-limit 1.39

/etc/sensu/backend.yml example

assets-rate-limit: 1.39

Command line example

sensu-backend start --cache-dir /cache/sensu-backend

/etc/sensu/backend.yml example

cache-dir: "/cache/sensu-backend"

confg-fle

description Path to Sensu backend confg fle.

type String

default /etc/sensu/backend.yml

environment variable The confg fle path cannot be set by an environment variable.

example

debug

description If true , enable debugging and profling features for use with the Go
pprof package. Otherwise, false .

type Boolean

default false

environment variable SENSU_BACKEND_DEBUG

example

deregistration-
handler

description Default event handler to use when processing agent deregistration
events.

Command line example

sensu-backend start --confg-fle /etc/sensu/backend.yml

sensu-backend start -c /etc/sensu/backend.yml

Command line example

sensu-backend start --debug

/etc/sensu/backend.yml example

debug: true

https://golang.org/pkg/net/http/pprof/
https://golang.org/pkg/net/http/pprof/

type String

default ""

environment variable SENSU_BACKEND_DEREGISTRATION_HANDLER

example

labels

description Custom attributes to include with entity data for backend assets (e.g.
handler and mutator assets).

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

environment variable SENSU_BACKEND_LABELS

example

Command line example

sensu-backend start --deregistration-handler

/path/to/handler.sh

/etc/sensu/backend.yml example

deregistration-handler: "/path/to/handler.sh"

Command line examples

sensu-backend start --labels security_zone=us-west-2a

sensu-backend start --labels example_key1="example value"

example_key2="example value"

/etc/sensu/backend.yml example

labels:

 security_zone: "us-west-2a"

log-level

description Logging level: panic , fatal , error , warn , info , or debug .

type String

default warn

environment variable SENSU_BACKEND_LOG_LEVEL

example

state-dir

description Path to Sensu state storage: /var/lib/sensu/sensu-backend .

type String

required true

environment variable SENSU_BACKEND_STATE_DIR

example

Agent communication confguration fags

Command line example

sensu-backend start --log-level debug

/etc/sensu/backend.yml example

log-level: "debug"

Command line example

sensu-backend start --state-dir /var/lib/sensu/sensu-

backend

sensu-backend start -d /var/lib/sensu/sensu-backend

/etc/sensu/backend.yml example

state-dir: "/var/lib/sensu/sensu-backend"

agent-auth-cert-fle

description TLS certifcate in PEM format for agent certifcate authentication. Sensu
supports certifcate bundles (or chains) as long as the server (or leaf)
certifcate is the frst certifcate in the bundle.

type String

default ""

environment variable SENSU_BACKEND_AGENT_AUTH_CERT_FILE

example

agent-auth-crl-urls

description URLs of CRLs for agent certifcate authentication.

type String

default ""

environment variable SENSU_BACKEND_AGENT_AUTH_CRL_URLS

example

Command line example

sensu-backend start --agent-auth-cert-fle

/path/to/ssl/cert.pem

/etc/sensu/backend.yml example

agent-auth-cert-fle: /path/to/ssl/cert.pem

Command line example

sensu-backend start --agent-auth-crl-urls

http://localhost/CARoot.crl

/etc/sensu/backend.yml example

agent-auth-crl-urls: http://localhost/CARoot.crl

agent-auth-key-fle

description TLS certifcate key in PEM format for agent certifcate authentication.

type String

default ""

environment variable SENSU_BACKEND_AGENT_AUTH_KEY_FILE

example

agent-auth-
trusted-ca-fle

description TLS CA certifcate bundle in PEM format for agent certifcate
authentication.

type String

default ""

environment variable SENSU_BACKEND_AGENT_AUTH_TRUSTED_CA_FILE

example

Command line example

sensu-backend start --agent-auth-key-fle

/path/to/ssl/key.pem

/etc/sensu/backend.yml example

agent-auth-key-fle: /path/to/ssl/key.pem

Command line example

sensu-backend start --agent-auth-trusted-ca-fle

/path/to/ssl/ca.pem

/etc/sensu/backend.yml example

agent-auth-trusted-ca-fle: /path/to/ssl/ca.pem

agent-host

description Agent listener host. Listens on all IPv4 and IPv6 addresses by default.

type String

default [::]

environment variable SENSU_BACKEND_AGENT_HOST

example

agent-port

description Agent listener port.

type Integer

default 8081

environment variable SENSU_BACKEND_AGENT_PORT

example

Security confguration fags

cert-fle

Command line example

sensu-backend start --agent-host 127.0.0.1

/etc/sensu/backend.yml example

agent-host: "127.0.0.1"

Command line example

sensu-backend start --agent-port 8081

/etc/sensu/backend.yml example

agent-port: 8081

description Path to the primary backend certifcate fle. Specifes a fallback SSL/TLS
certifcate if the fag dashboard-cert-fle is not used. This certifcate
secures communications between the Sensu web UI and end user web
browsers, as well as communication between sensuctl and the Sensu
API. Sensu supports certifcate bundles (or chains) as long as the server
(or leaf) certifcate is the frst certifcate in the bundle.

type String

default ""

environment variable SENSU_BACKEND_CERT_FILE

example

insecure-skip-tls-
verify

description If true , skip SSL verifcation. Otherwise, false .

type Boolean

default false

environment variable SENSU_BACKEND_INSECURE_SKIP_TLS_VERIFY

example

Command line example

sensu-backend start --cert-fle /path/to/ssl/cert.pem

/etc/sensu/backend.yml example

cert-fle: "/path/to/ssl/cert.pem"

WARNING: This confguration fag is intended for use in
development systems only. Do not use this fag in production.

Command line example

sensu-backend start --insecure-skip-tls-verify

/etc/sensu/backend.yml example

jwt-private-key-fle

description Path to the PEM-encoded private key to use to sign JSON Web Tokens
(JWTs).

type String

default ""

environment variable SENSU_BACKEND_JWT_PRIVATE_KEY_FILE

example

jwt-public-key-fle

description Path to the PEM-encoded public key to use to verify JSON Web Token
(JWT) signatures.

type String

insecure-skip-tls-verify: true

NOTE: The internal symmetric secret key is used by default to sign
all JWTs unless a private key is specifed via this attribute.

Command line example

sensu-backend start --jwt-private-key-fle

/path/to/key/private.pem

/etc/sensu/backend.yml example

jwt-private-key-fle: /path/to/key/private.pem

NOTE: JWTs signed with the internal symmetric secret key will
continue to be verifed with that key.

default ""

environment variable SENSU_BACKEND_JWT_PUBLIC_KEY_FILE

required false, unless jwt-private-key-fle is defned

example

key-fle

description Path to the primary backend key fle. Specifes a fallback SSL/TLS key if
the fag dashboard-key-fle is not used. This key secures
communication between the Sensu web UI and end user web browsers,
as well as communication between sensuctl and the Sensu API.

type String

default ""

environment variable SENSU_BACKEND_KEY_FILE

example

trusted-ca-fle

description Path to the primary backend CA fle. Specifes a fallback SSL/TLS
certifcate authority in PEM format used for etcd client (mutual TLS)
communication if the etcd-trusted-ca-fle is not used. This CA fle is

Command line example

sensu-backend start --jwt-public-key-fle

/path/to/key/public.pem

/etc/sensu/backend.yml example

jwt-public-key-fle: /path/to/key/public.pem

Command line example

sensu-backend start --key-fle /path/to/ssl/key.pem

/etc/sensu/backend.yml example

key-fle: "/path/to/ssl/key.pem"

used in communication between the Sensu web UI and end user web
browsers, as well as communication between sensuctl and the Sensu
API.

type String

default ""

environment variable SENSU_BACKEND_TRUSTED_CA_FILE

example

Web UI confguration fags

dashboard-cert-fle

description Web UI TLS certifcate in PEM format. This certifcate secures
communication with the Sensu web UI. If the dashboard-cert-fle is
not provided in the backend confguration, Sensu uses the certifcate
specifed in the cert-fle fag for the web UI. Sensu supports
certifcate bundles (or chains) as long as the server (or leaf) certifcate is
the frst certifcate in the bundle.

type String

default ""

environment variable SENSU_BACKEND_DASHBOARD_CERT_FILE

example

Command line example

sensu-backend start --trusted-ca-fle /path/to/trusted-

certifcate-authorities.pem

/etc/sensu/backend.yml example

trusted-ca-fle: "/path/to/trusted-certifcate-

authorities.pem"

Command line example

sensu-backend start --dashboard-cert-fle

/path/to/tls/cert.pem

dashboard-host

description Web UI listener host.

type String

default [::]

environment variable SENSU_BACKEND_DASHBOARD_HOST

example

dashboard-key-fle

description Web UI TLS certifcate key in PEM format. This key secures
communication with the Sensu web UI. If the dashboard-key-fle is
not provided in the backend confguration, Sensu uses the key specifed
in the key-fle fag for the web UI.

type String

default ""

environment variable SENSU_BACKEND_DASHBOARD_KEY_FILE

example

/etc/sensu/backend.yml example

dashboard-cert-fle: "/path/to/tls/cert.pem"

Command line example

sensu-backend start --dashboard-host 127.0.0.1

/etc/sensu/backend.yml example

dashboard-host: "127.0.0.1"

Command line example

sensu-backend start --dashboard-key-fle

/path/to/tls/key.pem

dashboard-port

description Web UI listener port.

type Integer

default 3000

environment variable SENSU_BACKEND_DASHBOARD_PORT

example

Datastore and cluster confguration fags

etcd-advertise-
client-urls

description List of this member’s client URLs to advertise to the rest of the cluster.

type List

default http://localhost:2379

environment variable SENSU_BACKEND_ETCD_ADVERTISE_CLIENT_URLS

example

/etc/sensu/backend.yml example

dashboard-key-fle: "/path/to/tls/key.pem"

Command line example

sensu-backend start --dashboard-port 4000

/etc/sensu/backend.yml example

dashboard-port: 4000

Command line examples

sensu-backend start --etcd-advertise-client-urls

http://localhost:2378,http://localhost:2379

sensu-backend start --etcd-advertise-client-urls

etcd-cert-fle

description Path to the etcd client API TLS certifcate fle. Secures communication
between the embedded etcd client API and any etcd clients. Sensu
supports certifcate bundles (or chains) as long as the server (or leaf)
certifcate is the frst certifcate in the bundle.

type String

default ""

environment variable SENSU_BACKEND_ETCD_CERT_FILE

example

etcd-cipher-suites

description List of allowed cipher suites for etcd TLS confguration. Sensu supports
TLS 1.0-1.2 cipher suites as listed in the Go TLS documentation. You
can use this attribute to defend your TLS servers from attacks on weak
TLS ciphers. Go determines the default cipher suites based on the
hardware used.

http://localhost:2378 --etcd-advertise-client-urls

http://localhost:2379

/etc/sensu/backend.yml example

etcd-advertise-client-urls:

 - http://localhost:2378

 - http://localhost:2379

Command line example

sensu-backend start --etcd-cert-fle ./client.pem

/etc/sensu/backend.yml example

etcd-cert-fle: "./client.pem"

NOTE: To use TLS 1.3, add the following environment variable:
GODEBUG="tls13=1" .

https://golang.org/pkg/crypto/tls/#pkg-constants

recommended

type List

environment variable SENSU_BACKEND_ETCD_CIPHER_SUITES

example

etcd-client-cert-
auth

description If true , enable client certifcate authentication. Otherwise, false .

type Boolean

default false

environment variable SENSU_BACKEND_ETCD_CLIENT_CERT_AUTH

etcd-cipher-suites:

 - TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

 - TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305

 - TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305

Command line examples

sensu-backend start --etcd-cipher-suites

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AE

S_256_GCM_SHA384

sensu-backend start --etcd-cipher-suites

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 --etcd-cipher-suites

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

/etc/sensu/backend.yml example

etcd-cipher-suites:

 - TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256

 - TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

example

etcd-client-urls

description List of client URLs to use when a sensu-backend is not operating as an
etcd member. To confgure sensu-backend for use with an external etcd
instance, use this fag in conjunction with --no-embed-etcd when
executing sensu-backend start or sensu-backend init. If you do not use
this fag when using --no-embed-etcd , sensu-backend start and
sensu-backend-init will fall back to –etcd-listen-client-urls.

type List

default http://127.0.0.1:2379

environment variable SENSU_BACKEND_ETCD_CLIENT_URLS

example

etcd-discovery

Command line example

sensu-backend start --etcd-client-cert-auth

/etc/sensu/backend.yml example

etcd-client-cert-auth: true

Command line examples

sensu-backend start --etcd-client-urls

https://10.0.0.1:2379,https://10.1.0.1:2379

sensu-backend start --etcd-client-urls

https://10.0.0.1:2379 --etcd-client-urls

https://10.1.0.1:2379

/etc/sensu/backend.yml example

etcd-client-urls:

 - https://10.0.0.1:2379

 - https://10.1.0.1:2379

description Exposes etcd’s embedded auto-discovery features. Attempts to use etcd
discovery to get the cluster confguration.

type String

default "”

environment variable SENSU_BACKEND_ETCD_DISCOVERY

example

etcd-discovery-srv

description Exposes etcd’s embedded auto-discovery features. Attempts to use a
DNS SRV record to get the cluster confguration.

type String

default "”

environment variable SENSU_BACKEND_ETCD_DISCOVERY_SRV

example

Command line example

sensu-backend start --etcd-discovery

https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579c

bf573de

/etc/sensu/backend.yml example

etcd-discovery:

 -

https://discovery.etcd.io/3e86b59982e49066c5d813af1c2e2579c

bf573de

Command line example

sensu-backend start --etcd-discovery-srv example.org

/etc/sensu/backend.yml example

etcd-discovery-srv:

 - example.org

https://etcd.io/docs/latest/op-guide/clustering/#discovery
https://etcd.io/docs/latest/op-guide/clustering/#etcd-discovery
https://etcd.io/docs/latest/op-guide/clustering/#etcd-discovery
http://localhost:1313/sensu-go/5.20/files/backend.yml
https://etcd.io/docs/latest/op-guide/clustering/#dns-discovery

etcd-initial-
advertise-peer-urls

description List of this member’s peer URLs to advertise to the rest of the cluster.

type List

default http://127.0.0.1:2380

environment variable SENSU_BACKEND_ETCD_INITIAL_ADVERTISE_PEER_URLS

example

etcd-initial-cluster

description Initial cluster confguration for bootstrapping.

type String

default default=http://127.0.0.1:2380

environment variable SENSU_BACKEND_ETCD_INITIAL_CLUSTER

example

Command line examples

sensu-backend start --etcd-initial-advertise-peer-urls

https://10.0.0.1:2380,https://10.1.0.1:2380

sensu-backend start --etcd-initial-advertise-peer-urls

https://10.0.0.1:2380 --etcd-initial-advertise-peer-urls

https://10.1.0.1:2380

/etc/sensu/backend.yml example

etcd-initial-advertise-peer-urls:

 - https://10.0.0.1:2380

 - https://10.1.0.1:2380

Command line example

sensu-backend start --etcd-initial-cluster backend-

0=https://10.0.0.1:2380,backend-

1=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380

etcd-initial-cluster-
state

description Initial cluster state (new or existing).

type String

default new

environment variable SENSU_BACKEND_ETCD_INITIAL_CLUSTER_STATE

example

etcd-initial-cluster-
token

description Initial cluster token for the etcd cluster during bootstrap.

type String

default ""

environment variable SENSU_BACKEND_ETCD_INITIAL_CLUSTER_TOKEN

example

/etc/sensu/backend.yml example

etcd-initial-cluster: "backend-

0=https://10.0.0.1:2380,backend-

1=https://10.1.0.1:2380,backend-2=https://10.2.0.1:2380"

Command line example

sensu-backend start --etcd-initial-cluster-state existing

/etc/sensu/backend.yml example

etcd-initial-cluster-state: "existing"

Command line example

sensu-backend start --etcd-initial-cluster-token sensu

etcd-key-fle

description Path to the etcd client API TLS key fle. Secures communication between
the embedded etcd client API and any etcd clients.

type String

environment variable SENSU_BACKEND_ETCD_KEY_FILE

example

etcd-listen-client-
urls

description List of URLs to listen on for client traffc.

type List

default http://127.0.0.1:2379

environment variable SENSU_BACKEND_ETCD_LISTEN_CLIENT_URLS

example

/etc/sensu/backend.yml example

etcd-initial-cluster-token: "sensu"

Command line example

sensu-backend start --etcd-key-fle ./client-key.pem

/etc/sensu/backend.yml example

etcd-key-fle: "./client-key.pem"

Command line examples

sensu-backend start --etcd-listen-client-urls

https://10.0.0.1:2379,https://10.1.0.1:2379

sensu-backend start --etcd-listen-client-urls

https://10.0.0.1:2379 --etcd-listen-client-urls

https://10.1.0.1:2379

etcd-listen-peer-
urls

description List of URLs to listen on for peer traffc.

type List

default http://127.0.0.1:2380

environment variable SENSU_BACKEND_ETCD_LISTEN_PEER_URLS

example

etcd-name

description Human-readable name for this member.

type String

default default

environment variable SENSU_BACKEND_ETCD_NAME

/etc/sensu/backend.yml example

etcd-listen-client-urls:

 - https://10.0.0.1:2379

 - https://10.1.0.1:2379

Command line examples

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380,https://10.1.0.1:2380

sensu-backend start --etcd-listen-peer-urls

https://10.0.0.1:2380 --etcd-listen-peer-urls

https://10.1.0.1:2380

/etc/sensu/backend.yml example

etcd-listen-peer-urls:

 - https://10.0.0.1:2380

 - https://10.1.0.1:2380

example

etcd-peer-cert-fle

description Path to the peer server TLS certifcate fle. Sensu supports certifcate
bundles (or chains) as long as the server (or leaf) certifcate is the frst
certifcate in the bundle.

type String

environment variable SENSU_BACKEND_ETCD_PEER_CERT_FILE

example

etcd-peer-client-
cert-auth

description Enable peer client certifcate authentication.

type Boolean

default false

environment variable SENSU_BACKEND_ETCD_PEER_CLIENT_CERT_AUTH

example

Command line example

sensu-backend start --etcd-name backend-0

/etc/sensu/backend.yml example

etcd-name: "backend-0"

Command line example

sensu-backend start --etcd-peer-cert-fle ./backend-0.pem

/etc/sensu/backend.yml example

etcd-peer-cert-fle: "./backend-0.pem"

Command line example

sensu-backend start --etcd-peer-client-cert-auth

etcd-peer-key-fle

description Path to the etcd peer API TLS key fle. Secures communication between
etcd cluster members.

type String

environment variable SENSU_BACKEND_ETCD_PEER_KEY_FILE

example

etcd-peer-trusted-
ca-fle

description Path to the etcd peer API server TLS trusted CA fle. Secures
communication between etcd cluster members.

type String

environment variable SENSU_BACKEND_ETCD_PEER_TRUSTED_CA_FILE

example

/etc/sensu/backend.yml example

etcd-peer-client-cert-auth: true

Command line example

sensu-backend start --etcd-peer-key-fle ./backend-0-key.pem

/etc/sensu/backend.yml example

etcd-peer-key-fle: "./backend-0-key.pem"

Command line example

sensu-backend start --etcd-peer-trusted-ca-fle ./ca.pem

/etc/sensu/backend.yml example

etcd-peer-trusted-ca-fle: "./ca.pem"

etcd-trusted-ca-fle

description Path to the client server TLS trusted CA certifcate fle. Secures
communication with the etcd client server.

type String

default ""

environment variable SENSU_BACKEND_ETCD_TRUSTED_CA_FILE

example

no-embed-etcd

description If true , do not embed etcd (use external etcd instead). Otherwise,
false .

type Boolean

default false

environment variable SENSU_BACKEND_NO_EMBED_ETCD

example

Advanced confguration options

Command line example

sensu-backend start --etcd-trusted-ca-fle ./ca.pem

/etc/sensu/backend.yml example

etcd-trusted-ca-fle: "./ca.pem"

Command line example

sensu-backend start --no-embed-etcd

/etc/sensu/backend.yml example

no-embed-etcd: true

eventd-buffer-size

description Number of incoming events that can be buffered before being processed
by an eventd worker.

type Integer

default 100

environment variable SENSU_BACKEND_EVENTD_BUFFER_SIZE

example

eventd-workers

description Number of workers spawned for processing incoming events that are
stored in the eventd buffer.

type Integer

default 100

environment variable SENSU_BACKEND_EVENTD_WORKERS

WARNING: Modify with caution. Increasing this value may result in
greater memory usage.

Command line example

sensu-backend start --eventd-buffer-size 100

/etc/sensu/backend.yml example

eventd-buffer-size: 100

WARNING: Modify with caution. Increasing this value may result in
greater CPU usage.

example

keepalived-buffer-
size

description Number of incoming keepalives that can be buffered before being
processed by a keepalived worker.

type Integer

default 100

environment variable SENSU_BACKEND_KEEPALIVED_BUFFER_SIZE

example

keepalived-
workers

description Number of workers spawned for processing incoming keepalives that are
stored in the keepalived buffer.

Command line example

sensu-backend start --eventd-workers 100

/etc/sensu/backend.yml example

eventd-workers: 100

WARNING: Modify with caution. Increasing this value may result in
greater memory usage.

Command line example

sensu-backend start --keepalived-buffer-size 100

/etc/sensu/backend.yml example

keepalived-buffer-size: 100

WARNING: Modify with caution. Increasing this value may result in

type Integer

default 100

environment variable SENSU_BACKEND_KEEPALIVED_WORKERS

example

pipelined-buffer-
size

description Number of events to handle that can be buffered before being processed
by a pipelined worker.

type Integer

default 100

environment variable SENSU_BACKEND_PIPELINED_BUFFER_SIZE

example

greater CPU usage.

Command line example

sensu-backend start --keepalived-workers 100

/etc/sensu/backend.yml example

keepalived-workers: 100

WARNING: Modify with caution. Increasing this value may result in
greater memory usage.

Command line example

sensu-backend start --pipelined-buffer-size 100

/etc/sensu/backend.yml example

pipelined-buffer-size: 100

pipelined-workers

description Number of workers spawned for handling events through the event
pipeline that are stored in the pipelined buffer.

type Integer

default 100

environment variable SENSU_BACKEND_PIPELINED_WORKERS

example

etcd-election-
timeout

description Time that a follower node will go without hearing a heartbeat before
attempting to become leader itself. In milliseconds (ms). See etcd time
parameter documentation for details and other considerations.

type Integer

default 1000

WARNING: Modify with caution. Increasing this value may result in
greater CPU usage.

Command line example

sensu-backend start --pipelined-workers 100

/etc/sensu/backend.yml example

pipelined-workers: 100

WARNING: Make sure to set the same election timeout value for all
etcd members in one cluster. Setting different values for etcd
members may reduce cluster stability.

https://github.com/etcd-io/etcd/blob/master/Documentation/tuning.md#time-parameters
https://github.com/etcd-io/etcd/blob/master/Documentation/tuning.md#time-parameters

environment variable SENSU_BACKEND_ETCD_ELECTION_TIMEOUT

example

etcd-heartbeat-
interval

description Interval at which the etcd leader will notify followers that it is still the
leader. In milliseconds (ms). Best practice is to set the interval based on
round-trip time between members. See etcd time parameter
documentation for details and other considerations.

type Integer

default 100

environment variable SENSU_BACKEND_ETCD_HEARTBEAT_INTERVAL

example

etcd-max-request-

Command line example

sensu-backend start --etcd-election-timeout 1000

/etc/sensu/backend.yml example

etcd-election-timeout: 1000

WARNING: Make sure to set the same heartbeat interval value for
all etcd members in one cluster. Setting different values for etcd
members may reduce cluster stability.

Command line example

sensu-backend start --etcd-heartbeat-interval 100

/etc/sensu/backend.yml example

etcd-heartbeat-interval: 100

https://github.com/etcd-io/etcd/blob/master/Documentation/tuning.md#time-parameters
https://github.com/etcd-io/etcd/blob/master/Documentation/tuning.md#time-parameters

bytes

description Maximum etcd request size in bytes that can be sent to an etcd server by
a client. Increasing this value allows etcd to process events with large
outputs at the cost of overall latency.

type Integer

default 1572864

environment variable SENSU_BACKEND_ETCD_MAX_REQUEST_BYTES

example

etcd-quota-
backend-bytes

description Maximum etcd database size in bytes. Increasing this value allows for a
larger etcd database at the cost of performance.

type Integer

default 4294967296

WARNING: Use with caution. This confguration option requires
familiarity with etcd. Improper use of this option can result in a non-
functioning Sensu instance.

Command line example

sensu-backend start --etcd-max-request-bytes 1572864

/etc/sensu/backend.yml example

etcd-max-request-bytes: 1572864

WARNING: Use with caution. This confguration option requires
familiarity with etcd. Improper use of this option can result in a non-
functioning Sensu instance.

environment variable SENSU_BACKEND_ETCD_QUOTA_BACKEND_BYTES

example

Confguration via environment variables

Instead of using confguration fags, you can use environment variables to confgure your Sensu
backend.
Each backend confguration fag has an associated environment variable.
You can also create
your own environment variables, as long as you name them correctly and save them in the correct
place.
Here’s how.

1. Create the fles from which the sensu-backend service confgured by our supported packages
will read environment variables: /etc/default/sensu-backend for Debian/Ubuntu systems or
/etc/sysconfg/sensu-backend for RHEL/CentOS systems.

2. Make sure the environment variable is named correctly.
All environment variables controlling
Sensu backend confguration begin with SENSU_BACKEND_ .

To rename a confguration fag you wish to specify as an environment variable, prepend
SENSU_BACKEND_ , convert dashes to underscores, and capitalize all letters.
For example, the

environment variable for the fag api-listen-address is
SENSU_BACKEND_API_LISTEN_ADDRESS .

For a custom test variable, the environment variable name might be
SENSU_BACKEND_TEST_VAR .

Command line example

sensu-backend start --etcd-quota-backend-bytes 4294967296

/etc/sensu/backend.yml example

etcd-quota-backend-bytes: 4294967296

$ sudo touch /etc/default/sensu-backend

SHELL

$ sudo touch /etc/sysconfg/sensu-backend

SHELL

3. Add the environment variable to the environment fle (/etc/default/sensu-backend for
Debian/Ubuntu systems or /etc/sysconfg/sensu-backend for RHEL/CentOS systems).

For example, to create api-listen-address as an environment variable and set it to
192.168.100.20:8080 :

4. Restart the sensu-backend service so these settings can take effect.

Format for label and annotation environment variables

To use labels and annotations as environment variables in your handler confgurations, you must use a
specifc format when you create the SENSU_BACKEND_LABELS and SENSU_BACKEND_ANNOTATIONS
environment variables.

$ echo 'SENSU_BACKEND_API_LISTEN_ADDRESS=192.168.100.20:8080' | sudo tee -a

/etc/default/sensu-backend

SHELL

$ echo 'SENSU_BACKEND_API_LISTEN_ADDRESS=192.168.100.20:8080' | sudo tee -a

/etc/sysconfg/sensu-backend

SHELL

$ sudo systemctl restart sensu-backend

SHELL

$ sudo systemctl restart sensu-backend

SHELL

NOTE: Sensu includes an environment variable for each backend confguration fag.
They are listed
in the confguration fag description tables.

For example, to create the labels "region": "us-east-1" and "type": "website" as an
environment variable:

To create the annotations "maintainer": "Team A" and "webhook-url":
"https://hooks.slack.com/services/T0000/B00000/XXXXX" as an environment variable:

Use environment variables with the Sensu backend

Any environment variables you create in /etc/default/sensu-backend (Debian/Ubuntu) or
/etc/sysconfg/sensu-backend (RHEL/CentOS) will be available to handlers executed by the Sensu

backend.

For example, if you create a SENSU_BACKEND_TEST_VAR variable in your sensu-backend fle, it will be
available to use in your handler confgurations as $SENSU_BACKEND_TEST_VAR .

$ echo 'SENSU_BACKEND_LABELS='{"region": "us-east-1", "type": "website"}'' | sudo

tee -a /etc/default/sensu-backend

SHELL

$ echo 'SENSU_BACKEND_LABELS='{"region": "us-east-1", "type": "website"}'' | sudo

tee -a /etc/sysconfg/sensu-backend

SHELL

$ echo 'SENSU_BACKEND_ANNOTATIONS='{"maintainer": "Team A", "webhook-url":

"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'' | sudo tee -a

/etc/default/sensu-backend

SHELL

$ echo 'SENSU_BACKEND_ANNOTATIONS='{"maintainer": "Team A", "webhook-url":

"https://hooks.slack.com/services/T0000/B00000/XXXXX"}'' | sudo tee -a

/etc/sysconfg/sensu-backend

SHELL

Event logging

COMMERCIAL FEATURE : Access event logging in the packaged Sensu Go distribution.
For more
information, see Get started with commercial features.

If you wish, you can log all Sensu events to a fle in JSON format.
You can use this fle as an input
source for your favorite data lake solution.
The event logging functionality provides better performance
and reliability than event handlers.

event-log-buffer-
size

description Buffer size of the event logger. Corresponds to the maximum number of
events kept in memory in case the log fle is temporarily unavailable or
more events have been received than can be written to the log fle.

type Integer

default 100000

environment variable SENSU_BACKEND_EVENT_LOG_BUFFER_SIZE

example

event-log-fle

description Path to the event log fle.

type String

Command line example

sensu-backend start --event-log-buffer-size 100000

/etc/sensu/backend.yml example

event-log-buffer-size: 100000

WARNING: The log fle should be located on a local drive. Logging
directly to network drives is not supported.

environment variable SENSU_BACKEND_EVENT_LOG_FILE

example

Log rotation

To manually rotate event logs, frst rename (move) the current log fle.
Then, send the SIGHUP signal to
the sensu-backend process so it creates a new log fle and starts logging to it.
Most Linux distributions
include logrotate to automatically rotate log fles as a standard utility, confgured to run once per
day by default.

Because event log fles can grow quickly for larger Sensu installations, we recommend using
logrotate to automatically rotate log fles more frequently.
To use the example log rotation

confgurations listed below, you may need to confgure logrotate to run once per hour.

Log rotation for systemd

In this example, the postrotate script will reload the backend after log rotate is complete.

Command line example

sensu-backend start --event-log-fle

/var/log/sensu/events.log

/etc/sensu/backend.yml example

event-log-fle: "/var/log/sensu/events.log"

/var/log/sensu/events.log

{

 rotate 3

 hourly

 missingok

 notifempty

 compress

 postrotate

 /bin/systemctl reload sensu-backend.service > /dev/null 2>/dev/null || true

 endscript

}

https://unix.stackexchange.com/questions/29574/how-can-i-set-up-logrotate-to-rotate-logs-hourly
https://unix.stackexchange.com/questions/29574/how-can-i-set-up-logrotate-to-rotate-logs-hourly
https://unix.stackexchange.com/questions/29574/how-can-i-set-up-logrotate-to-rotate-logs-hourly

Without the postrotate script, the backend will not reload.
This will cause sensu-backend (and
sensu-agent, if translated for the Sensu agent) to no longer write to the log fle, even if logrotate
recreates the log fle.

In this script, systemctl reload sends a SIGHUP signal to the sensu-backend process.
The SIGHUP
signal causes the backend component to reload instead of restarting the process.

Log rotation for sysvinit

NOTE: Event logs do not include log messages produced by sensu-backend service. To write
Sensu service logs to fat fles on disk, read Log Sensu services with systemd.

/var/log/sensu/events.log

{

 rotate 3

 hourly

 missingok

 notifempty

 compress

 postrotate

 kill -HUP `cat /var/run/sensu/sensu-backend.pid 2> /dev/null` 2> /dev/null ||

true

 endscript

}

API keys reference

API keys are long-lived authentication tokens that make it more convenient for Sensu plugins and
other Sensu-adjacent applications to authenticate with the Sensu API.
Unlike authentication tokens, API
keys are persistent and do not need to be refreshed every 15 minutes.

The Sensu backend generates API keys, and you can provide them to applications that want to
interact with the Sensu API.

Use the APIKey API to create, retrieve, and delete API keys.

Authorization header format

Use the following header format to authenticate with API keys, replacing API_KEY with your API key
value:

This is different from the authentication token, which uses the Authorization: Bearer header
format.

When you specify an API key in a request, the system resolves it to an authentication token and
continues through the regular authentication process.

API key resource structure

Authorization: Key API_KEY

NOTE: The API key resource is not compatible with sensuctl create .

type: APIKey

api_version: core/v2

metadata:

YML

API key specifcation

Top-level attributes

type

description Top-level attribute that specifes the resource type. API keys should
always be type APIKey .

required true

type String

example

 name: 19803eb8-36a6-4203-a225-28ec4e9f4444

spec:

 created_at: 1570732266

 username: admin

{

 "type": "APIKey",

 "api_version": "core/v2",

 "metadata" : {

 "name": "19803eb8-36a6-4203-a225-28ec4e9f4444"

 },

 "spec": {

 "created_at": 1570732266,

 "username": "admin"

 }

}

JSON

"type": "APIKey"

api_version

description Top-level attribute that specifes the Sensu API group and version. The
api_version should always be core/v2 .

required true

type String

example

metadata

description Top-level collection of metadata about the API key, including name and
created_by . The metadata map is always at the top level of the API

key defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes the API key’s spec attributes.

required true

type Map of key-value pairs

example

"api_version": "core/v2"

"metadata": {

 "name": "19803eb8-36a6-4203-a225-28ec4e9f4444",

 "created_by": "admin"

}

"spec": {

Metadata attributes

name

description Unique string used to identify the API key. Sensu randomly generates a
UUID for the name value — users cannot provide a name for an API
key.

required true

type String

example

created_by

description Username of the Sensu user who created the API key or last updated the
API key. Sensu automatically populates the created_by feld when the
API key is created or updated.

required false

type String

example

Spec attributes

 "created_at": 1570732266,

 "username": "admin"

 }

"name": "19803eb8-36a6-4203-a225-28ec4e9f4444"

"created_by": "admin"

username

description User associated with the API key.

required true

type Array

example

created_at

description Time at which the API key was created. Unix timestamp that is
automatically generated when the API key is created.

required true

type Integer

example

Examples

"username": "admin"

"created_at": 1234567890

type: APIKey

api_version: core/v2

metadata:

 name: 19803eb8-36a6-4203-a225-28ec4e9f4444

spec:

 created_at: 1570732266

 username: admin

YML

{

JSON

 "type": "APIKey",

 "api_version": "core/v2",

 "metadata": {

 "name": "19803eb8-36a6-4203-a225-28ec4e9f4444"

 },

 "spec": {

 "created_at": 1570732266,

 "username": "admin"

 }

}

Assets

You can discover, download, and share assets using Bonsai, the Sensu asset hub.
Read Install plugins
with assets to get started.

Assets are shareable, reusable packages that make it easier to deploy Sensu plugins.
You can use
assets to provide the plugins, libraries, and runtimes you need to automate your monitoring workfows.
Sensu supports runtime assets for checks, flters, mutators, and handlers.

The Sensu backend executes handler, flter, and mutator assets.
The Sensu agent executes check
assets.
At runtime, the backend or agent sequentially evaluates assets that appear in the
runtime_assets attribute of the handler, flter, mutator, or check being executed.

Asset builds

An asset build is the combination of an artifact URL, SHA512 checksum, and optional Sensu query
expression flters.
Each asset defnition may describe one or more builds.

Asset build evaluation

For each build provided in an asset, Sensu will evaluate any defned flters to determine whether any
build matches the agent or backend service’s environment.
If all flters specifed on a build evaluate to
true , that build is considered a match.
For assets with multiple builds, only the frst build which

matches will be downloaded and installed.

NOTE: Assets are not required to use Sensu Go.
You can install Sensu plugins using the sensu-
install tool or a confguration management solution.

NOTE: Assets that provide url and sha512 attributes at the top level of the spec scope are
single-build assets, and this form of asset defntion is deprecated.
We recommend using multiple-
build asset defntions, which specify one or more builds under the spec scope.

https://bonsai.sensu.io/
http://localhost:1313/plugins/latest/reference/

Asset build download

Sensu downloads the asset build on the host system where the asset contents are needed to execute
the requested command.
For example, if a check defnition references an asset, the Sensu agent that
executes the check will download the asset the frst time it executes the check.
The asset build the
agent downloads will depend on the flter rules associated with each build defned for the asset.

Sensu backends follow a similar process when pipeline elements (flters, mutators, and handlers)
request runtime asset installation as part of operation.

When Sensu fnds a matching build, it downloads the build artifact from the specifed URL.
If the asset
defnition includes headers, they are passed along as part of the HTTP request.
If the downloaded
artifact’s SHA512 checksum matches the checksum provided by the build, it is unpacked into the
Sensu service’s local cache directory.

Set the backend or agent’s local cache path with the --cache-dir fag.
Disable assets for an agent
with the agent --disable-assets confguration fag.

Use the --assets-rate-limit and --assets-burst-limit fags for the agent and backend to
confgure a global rate limit for fetching assets.

Asset build execution

The directory path of each asset defned in runtime_assets is appended to the PATH before the
handler, flter, mutator, or check command is executed.
Subsequent handler, flter, mutator, or check
executions look for the asset in the local cache and ensure that the contents match the confgured
checksum.

See the example asset with a check for a use case with a Sensu resource (a check) and an asset.

Asset format specifcation

NOTE: Asset builds are not downloaded until they are needed for command execution.

NOTE: Asset builds are unpacked into the cache directory that is confgured with the --cache-

dir fag.

Sensu expects an asset to be a tar archive (optionally gzipped) that contains one or more executables
within a bin folder.
Any scripts or executables should be within a bin/ folder in the archive.
See the
Sensu Go Plugin template for an example asset and Bonsai confguration.

The following are injected into the execution context:

Default cache directory

system sensu-backend sensu-agent

Linux /var/cache/sensu/sensu-

backend

/var/cache/sensu/sensu-agent

Windows N/A C:\ProgramData\sensu\cache\sens

u-agent

If the requested asset is not in the local cache, it is downloaded from the asset URL.
The Sensu
backend does not currently provide any storage for assets.
Sensu expects assets to be retrieved over
HTTP or HTTPS.

Example asset structure

{PATH_TO_ASSET}/bin is injected into the PATH environment variable

{PATH_TO_ASSET}/lib is injected into the LD_LIBRARY_PATH environment variable

{PATH_TO_ASSET}/include is injected into the CPATH environment variable

NOTE: You cannot create an asset by creating an archive of an existing project (as in previous
versions of Sensu for plugins from the Sensu Plugins community).
Follow the steps outlined in
Contributing Assets for Existing Ruby Sensu Plugins, a Sensu Discourse guide.
For further
examples of Sensu users who have added the ability to use a community plugin as an asset, see
this Discourse post.

sensu-example-handler_1.0.0_linux_amd64
├── CHANGELOG.md
├── LICENSE
├── README.md
└── bin

https://github.com/sensu/sensu-go-plugin/
https://github.com/sensu-plugins/
https://discourse.sensu.io/t/contributing-assets-for-existing-ruby-sensu-plugins/1165
https://discourse.sensu.io/t/how-to-use-the-sensu-plugins-kubernetes-plugin/1286

Asset hello world example

In this example, you’ll run a script that outputs Hello World :

The frst step is to ensure that your directory structure is in place.
As noted in Example asset structure,
your script could live in three potential directories in the project: /bin , /lib , or /include .
For this
example, put your script in the /bin directory.
Create the directories sensu-go-hello-world and
/bin :

 └── my-check.sh
└── lib
└── include

hello-world.sh

#!/bin/sh

STRING="Hello World"

echo $STRING

if [$? -eq 0]; then

 exit 0

else

 exit 2

f

$ mkdir sensu-go-hello-world

$ cd sensu-go-hello-world

$ mkdir bin

$ cp hello-world.sh bin/

$ tree

.
└──

Next, make sure that the script is marked as executable:

Now that the script is in the directory, move on to the next step: packaging the sensu-go-hello-

world directory as an asset tarball.

Package the asset

Assets are archives, so the frst step in packaging the asset is to create a tar.gz archive of your project.
This assumes you’re in the directory you want to tar up:

Now that you’ve created an archive, you need to generate a SHA512 sum for it (this is required for the
asset to work):

From here, you can host your asset wherever you’d like. To make the asset available via Bonsai, you’ll
need to host it on Github. Learn more in The “Hello World” of Sensu Assets on Discourse.

To host your asset on a different platform like Gitlab or Bitbucket, upload your asset there. You can
also use Artifactory or even Apache or Nginx to serve your asset. All that’s required for your asset to
work is the URL to the asset and the SHA512 sum for the asset to be downloaded.

 bin

 └── hello-world.sh

$ chmod +x bin/hello-world.sh

mode of 'hello-world.sh' changed from 0644 (rw-r--r--) to 0755 (rwxr-xr-x)

$ cd ..

$ tar -C sensu-go-hello-world -cvzf sensu-go-hello-world-0.0.1.tar.gz .

...

sha512sum sensu-go-hello-world-0.0.1.tar.gz | tee sha512sum.txt

dbfd4a714c0c51c57f77daeb62f4a21141665ae71440951399be2d899bf44b3634dad2e6f2516fff1ef4

b154c198b9c7cdfe1e8867788c820db7bb5bcad83827 sensu-go-hello-world-0.0.1.tar.gz

https://bonsai.sensu.io/
https://discourse.sensu.io/t/the-hello-world-of-sensu-assets/1422

Asset specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Assets should always be type Asset .

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
assets in this version of Sensu, the api_version should always be
core/v2 .

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the asset, including name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

"type": "Asset"

"api_version": "core/v2"

asset defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. See metadata
attributes for details.

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the asset spec attributes.

required Required for asset defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example (multiple
builds)

"metadata": {

 "name": "check_script",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "playbook" : "www.example.url"

 }

}

"spec": {

 "builds": [

 {

 "url": "http://example.com/asset-linux-amd64.tar.gz",

 "sha512":

"487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58

a72b786ef0ca396a0a12c8d006ac7fa21923e0e9ae63419a4d56aec41fc

cb574c1a5d3",

 "flters": [

example (single
build, deprecated)

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

 },

 {

 "url": "http://example.com/asset-linux-

armv7.tar.gz",

 "sha512":

"70df8b7e9aa36cf942b972e1781af04815fa560441fcdea1d153837406

6a4603fc5566737bfd6c7ffa18314edb858a9f93330a57d430deeb7fd6f

75670a8c68b",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'arm'",

 "entity.system.arm_version == 7"

]

 }

],

 "headers": {

 "Authorization": "Bearer {{ .annotations.asset_token |

default \"N/A\" }}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

}

"spec": {

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a

3ef3c2e8d154812246e5dda4a87450576b2c58ad9ab40c9e2edc31b288d

066b195b21b",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer {{ .annotations.asset_token |

default \"N/A\" }}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

Metadata attributes

name

description Unique name of the asset, validated with Go regex \A[\w\.\-]+\z .

required true

type String

example

namespace

description Sensu RBAC namespace that the asset belongs to.

required false

type String

default default

example

created_by

description Username of the Sensu user who created the asset or last updated the
asset. Sensu automatically populates the created_by feld when the
asset is created or updated.

required false

}

"name": "check_script"

"namespace": "production"

https://regex101.com/r/zo9mQU/2

type String

example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

"created_by": "admin"

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

builds

description List of asset builds used to defne multiple artifacts that provide the
named asset.

required true, if url , sha512 and flters are not provided

type Array

example

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

"builds": [

 {

 "url": "http://example.com/asset-linux-amd64.tar.gz",

 "sha512":

"487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58

a72b786ef0ca396a0a12c8d006ac7fa21923e0e9ae63419a4d56aec41fc

cb574c1a5d3",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

 },

 {

url

description URL location of the asset. You can use token substitution in the URLs of
your asset defnitions so each backend or agent can download assets
from the appropriate URL without duplicating your assets (for example, if
you want to host your assets at different datacenters).

required true, unless builds are provided

type String

example

sha512

description Checksum of the asset.

required true, unless builds are provided

type String

example

 "url": "http://example.com/asset-linux-

armv7.tar.gz",

 "sha512":

"70df8b7e9aa36cf942b972e1781af04815fa560441fcdea1d153837406

6a4603fc5566737bfd6c7ffa18314edb858a9f93330a57d430deeb7fd6f

75670a8c68b",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'arm'",

 "entity.system.arm_version == 7"

]

 }

]

"url": "http://example.com/asset.tar.gz"

"sha512": "4f926bf4328..."

flters

description Set of Sensu query expressions used to determine if the asset should be
installed. If multiple expressions are included, each expression must
return true for Sensu to install the asset.

Filters for check assets should match agent entity platforms. Filters for
handler and flter assets should match your Sensu backend platform.
You can create asset flter expressions using any supported
entity.system attributes, including os , arch , platform , and
platform_family .

required false

type Array

example

headers

description HTTP headers to apply to asset retrieval requests. You can use headers
to access secured assets. For headers that require multiple values,
separate the values with a comma. You can use token substitution in
your asset headers (for example, to include secure information for
authentication).

required false

type Map of key-value string pairs

PRO TIP: Asset flters let you reuse checks across platforms safely.
Assign assets for multiple platforms to a single check, and rely on
asset flters to ensure that only the appropriate asset is installed on
each agent.

"flters": ["entity.system.os=='linux'",

"entity.system.arch=='amd64'"]

example

Asset flters based on entity.system attributes

Use the entity.system attributes in asset flters to specify which systems and confgurations an asset or
asset builds can be used with.

For example, the Sensu Go Ruby Runtime asset defnition includes several builds, each with flters for
several entity.system attributes:

"headers": {

 "Authorization": "Bearer {{ .annotations.asset_token |

default \"N/A\" }}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

}

type: Asset

api_version: core/v2

metadata:

 name: sensu-ruby-runtime

 labels:

 annotations:

 io.sensu.bonsai.url: https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

 io.sensu.bonsai.api_url: https://bonsai.sensu.io/api/v1/assets/sensu/sensu-ruby-

runtime

 io.sensu.bonsai.tier: Community

 io.sensu.bonsai.version: 0.0.10

 io.sensu.bonsai.namespace: sensu

 io.sensu.bonsai.name: sensu-ruby-runtime

 io.sensu.bonsai.tags: ''

spec:

 builds:

 - url:

https://assets.bonsai.sensu.io/5123017d3dadf2067fa90fc28275b92e9b586885/sensu-ruby-

runtime_0.0.10_ruby-2.4.4_centos6_linux_amd64.tar.gz

 sha512:

cbee19124b7007342ce37ff9dfd4a1dde03beb1e87e61ca2aef606a7ad3c9bd0bba4e53873c07afa5ac4

https://bonsai.sensu.io/assets/sensu/sensu-ruby-runtime

In this example, if you install the asset on a system running Linux AMD64 Alpine version 3.xx, Sensu
will ignore the frst two builds and install the third.

All of the asset flter expressions must evaluate as true for Sensu to download and install the asset and
run the check, handler, or flter that references the asset.

To continue this example, if you try to install the asset on a system running Linux AMD64 Alpine
version 2.xx, the entity.system.platform_version argument will evaluate as false .
In this case,

6b0861967a9224511b4504dadb1a5e8fb687e9495304

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 - entity.system.platform_family == 'rhel'

 - parseInt(entity.system.platform_version.split('.')[0]) == 6

 - url:

https://assets.bonsai.sensu.io/5123017d3dadf2067fa90fc28275b92e9b586885/sensu-ruby-

runtime_0.0.10_ruby-2.4.4_debian_linux_amd64.tar.gz

 sha512:

a28952fd93fc63db1f8988c7bc40b0ad815eb9f35ef7317d6caf5d77ecfbfd824a9db54184400aa0c81c

29b34cb48c7e8c6e3f17891aaf84cafa3c134266a61a

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 - entity.system.platform_family == 'debian'

 - url:

https://assets.bonsai.sensu.io/5123017d3dadf2067fa90fc28275b92e9b586885/sensu-ruby-

runtime_0.0.10_ruby-2.4.4_alpine_linux_amd64.tar.gz

 sha512:

8d768d1fba545898a8d09dca603457eb0018ec6829bc5f609a1ea51a2be0c4b2d13e1aa46139ecbb0487

3449e4c76f463f0bdfbaf2107caf37ab1c8db87d5250

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 - entity.system.platform == 'alpine'

 - entity.system.platform_version.split('.')[0] == '3'

NOTE: Sensu downloads and installs the frst build whose flter expressions all evaluate as true .
If your system happens to match all of the flters for more than one build of an asset, Sensu will
only install the frst build.

the asset will not be downloaded and the check, handler, or flter that references the asset will fail to
run.

Add asset flters to specify that an asset is compiled for any of the entity.system attributes, including
operating system, platform, platform version, and architecture.
Then, you can rely on asset flters to
ensure that you install only the appropriate asset for each of your agents.

Examples

Minimum required asset attributes

type: Asset

api_version: core/v2

metadata:

 name: check_script

 namespace: default

spec:

 builds:

 - sha512:

4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a8

7450576b2c58ad9ab40c9e2edc31b288d066b195b21b

 url: http://example.com/asset.tar.gz

YML

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_script",

 "namespace": "default"

 },

 "spec": {

 "builds": [

 {

 "url": "http://example.com/asset.tar.gz",

 "sha512":

"4f926bf4328fbad2b9cac873d117f771914f4b837c9c85584c38ccf55a3ef3c2e8d154812246e5dda4a

JSON

Asset defnition (single-build, deprecated)

87450576b2c58ad9ab40c9e2edc31b288d066b195b21b"

 }

]

 }

}

type: Asset

api_version: core/v2

metadata:

 name: check_cpu_linux_amd64

 namespace: default

 labels:

 origin: bonsai

 annotations:

 project_url: https://bonsai.sensu.io/assets/asachs01/sensu-go-cpu-check

 version: 0.0.3

spec:

 url:

https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_linux_amd64.tar.gz

 sha512:

487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58a72b786ef0ca396a0a12c8d006

ac7fa21923e0e9ae63419a4d56aec41fccb574c1a5d3

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 headers:

 Authorization: 'Bearer {{ .annotations.asset_token | default "N/A" }}'

 X-Forwarded-For: client1, proxy1, proxy2

YML

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu_linux_amd64",

JSON

Asset defnition (multiple-builds)

 "namespace": "default",

 "labels": {

 "origin": "bonsai"

 },

 "annotations": {

 "project_url": "https://bonsai.sensu.io/assets/asachs01/sensu-go-cpu-check",

 "version": "0.0.3"

 }

 },

 "spec": {

 "url":

"https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_linux_amd64.tar.gz",

 "sha512":

"487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58a72b786ef0ca396a0a12c8d00

6ac7fa21923e0e9ae63419a4d56aec41fccb574c1a5d3",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer {{ .annotations.asset_token | default \"N/A\" }}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

}

type: Asset

api_version: core/v2

metadata:

 name: check_cpu

 namespace: default

 labels:

 origin: bonsai

 annotations:

 project_url: https://bonsai.sensu.io/assets/asachs01/sensu-go-cpu-check

 version: 0.0.3

spec:

YML

 builds:

 - url:

https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_linux_amd64.tar.gz

 sha512:

487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58a72b786ef0ca396a0a12c8d006

ac7fa21923e0e9ae63419a4d56aec41fccb574c1a5d3

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

 headers:

 Authorization: 'Bearer {{ .annotations.asset_token | default "N/A" }}'

 X-Forwarded-For: client1, proxy1, proxy2

 - url:

https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_linux_armv7.tar.gz

 sha512:

70df8b7e9aa36cf942b972e1781af04815fa560441fcdea1d1538374066a4603fc5566737bfd6c7ffa18

314edb858a9f93330a57d430deeb7fd6f75670a8c68b

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'arm'

 - entity.system.arm_version == 7

 headers:

 Authorization: 'Bearer {{ .annotations.asset_token | default "N/A" }}'

 X-Forwarded-For: client1, proxy1, proxy2

 - url:

https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_windows_amd64.tar.gz

 sha512:

10d6411e5c8bd61349897cf8868087189e9ba59c3c206257e1ebc1300706539cf37524ac976d0ed9c809

9bdddc50efadacf4f3c89b04a1a8bf5db581f19c157f

 flters:

 - entity.system.os == 'windows'

 - entity.system.arch == 'amd64'

 headers:

 Authorization: 'Bearer {{ .annotations.asset_token | default "N/A" }}'

 X-Forwarded-For: client1, proxy1, proxy2

JSON

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "check_cpu",

 "namespace": "default",

 "labels": {

 "origin": "bonsai"

 },

 "annotations": {

 "project_url": "https://bonsai.sensu.io/assets/asachs01/sensu-go-cpu-check",

 "version": "0.0.3"

 }

 },

 "spec": {

 "builds": [

 {

 "url":

"https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_linux_amd64.tar.gz",

 "sha512":

"487ab34b37da8ce76d2657b62d37b35fbbb240c3546dd463fa0c37dc58a72b786ef0ca396a0a12c8d00

6ac7fa21923e0e9ae63419a4d56aec41fccb574c1a5d3",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer {{ .annotations.asset_token | default \"N/A\"

}}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 },

 {

 "url":

"https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_linux_armv7.tar.gz",

 "sha512":

"70df8b7e9aa36cf942b972e1781af04815fa560441fcdea1d1538374066a4603fc5566737bfd6c7ffa1

8314edb858a9f93330a57d430deeb7fd6f75670a8c68b",

 "flters": [

 "entity.system.os == 'linux'",

Example asset with a check

 "entity.system.arch == 'arm'",

 "entity.system.arm_version == 7"

],

 "headers": {

 "Authorization": "Bearer {{ .annotations.asset_token | default \"N/A\"

}}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 },

 {

 "url":

"https://assets.bonsai.sensu.io/981307deb10ebf1f1433a80da5504c3c53d5c44f/sensu-go-

cpu-check_0.0.3_windows_amd64.tar.gz",

 "sha512":

"10d6411e5c8bd61349897cf8868087189e9ba59c3c206257e1ebc1300706539cf37524ac976d0ed9c80

99bdddc50efadacf4f3c89b04a1a8bf5db581f19c157f",

 "flters": [

 "entity.system.os == 'windows'",

 "entity.system.arch == 'amd64'"

],

 "headers": {

 "Authorization": "Bearer {{ .annotations.asset_token | default \"N/A\"

}}",

 "X-Forwarded-For": "client1, proxy1, proxy2"

 }

 }

]

 }

}

type: Asset

api_version: core/v2

metadata:

 name: sensu-prometheus-collector

 namespace: default

spec:

 builds:

YML

 - url:

https://assets.bonsai.sensu.io/ef812286f59de36a40e51178024b81c69666e1b7/sensu-

prometheus-collector_1.1.6_linux_amd64.tar.gz

 sha512:

a70056ca02662fbf2999460f6be93f174c7e09c5a8b12efc7cc42ce1ccb5570ee0f328a2dd8223f506df

3b5972f7f521728f7bdd6abf9f6ca2234d690aeb3808

 flters:

 - entity.system.os == 'linux'

 - entity.system.arch == 'amd64'

type: CheckConfg

api_version: core/v2

metadata:

 name: prometheus_collector

 namespace: default

spec:

 command: "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-query

up"

 interval: 10

 publish: true

 output_metric_handlers:

 - infuxdb

 output_metric_format: infuxdb_line

 runtime_assets:

 - sensu-prometheus-collector

 subscriptions:

 - system

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-email-handler",

 "namespace": default

 },

 "spec": {

 "builds": [

 {

 "url":

JSON

Share an asset on Bonsai

"https://assets.bonsai.sensu.io/45eaac0851501a19475a94016a4f8f9688a280f6/sensu-

email-handler_0.2.0_linux_amd64.tar.gz",

 "sha512":

"d69df76612b74acd64aef8eed2ae10d985f6073f9b014c8115b7896ed86786128c20249fd370f30672b

f9a11b041a99adb05e3a23342d3ad80d0c346ec23a946",

 "flters": [

 "entity.system.os == 'linux'",

 "entity.system.arch == 'amd64'"

]

 }

]

 }

}

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "prometheus_collector",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-

query up",

 "handlers": [

 "infuxdb"

],

 "interval": 10,

 "publish": true,

 "output_metric_format": "infuxdb_line",

 "runtime_assets": [

 "sensu-prometheus-collector"

],

 "subscriptions": [

 "system"

]

 }

}

Share your open-source assets on Bonsai and connect with the Sensu community.
Bonsai supports
assets hosted on GitHub and released using GitHub releases.
For more information about creating
Sensu Plugins, see the Sensu Plugin specifcation.

Bonsai requires a bonsai.yml confguration fle in the root directory of your repository that includes
the project description, platforms, asset flenames, and SHA-512 checksums.
For a Bonsai-compatible
asset template using Go and GoReleaser, see the Sensu Go plugin skeleton.

To share your asset on Bonsai, log in to Bonsai with your GitHub account and authorize Sensu.
After
you are logged in, you can register your asset on Bonsai by adding the GitHub repository, a
description, and tags.
Make sure to provide a helpful README for your asset with confguration
examples.

bonsai.yml example

bonsai.yml specifcation

description

description: "#{repo}"

builds:

- platform: "linux"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

- platform: "Windows"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_windows_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'windows'"

 - "entity.system.arch == 'amd64'"

https://bonsai.sensu.io/
https://github.com/
https://help.github.com/articles/about-releases/
http://localhost:1313/plugins/latest/reference/
https://goreleaser.com/
https://github.com/sensu/sensu-go-plugin/
https://bonsai.sensu.io/sign-in
https://bonsai.sensu.io/new

description Project description.

required true

type String

example

builds

description Array of asset details per platform.

required true

type Array

example

Builds specifcation

platform

description Platform supported by the asset.

required true

type String

example

description: "#{repo}"

builds:

- platform: "linux"

 arch: "amd64"

 asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

 sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

arch

description Architecture supported by the asset.

required true

type String

example

asset_flename

description File name of the archive that contains the asset.

required true

type String

example

sha_flename

description SHA-512 checksum for the asset archive.

required true

type String

example

- platform: "linux"

 arch: "amd64"

asset_flename: "#{repo}_#{version}_linux_amd64.tar.gz"

sha_flename: "#{repo}_#{version}_sha512-checksums.txt"

flter

description Filter expressions that describe the operating system and architecture
supported by the asset.

required false

type Array

example

Delete assets

As of Sensu Go 5.12, you can delete assets with the /assets (DELETE) endpoint or via sensuctl
(sensuctl asset delete).
When you remove an asset from Sensu, this does not remove references
to the deleted asset in any other resource (including checks, flters, mutators, handlers, and hooks).
You
must also update resources and remove any reference to the deleted asset.
Failure to do so will result
in errors like sh: asset.sh: command not found .

Errors as a result of failing to remove the asset from checks and hooks will surface in the event data.
Errors as a result of failing to remove the asset reference on a mutator, handler, or flter will only
surface in the backend logs.

Deleting an asset does not delete the archive or downloaded fles on disk.
You must remove the archive
and downloaded fles from the asset cache manually.

 flter:

 - "entity.system.os == 'linux'"

 - "entity.system.arch == 'amd64'"

Checks

Checks work with Sensu agents to produce monitoring events automatically.
You can use checks to
monitor server resources, services, and application health as well as collect and analyze metrics.
Read
Monitor server resources to get started.
Use Bonsai, the Sensu asset hub, to discover, download, and
share Sensu check assets.

Check commands

Each Sensu check defnition specifes a command and the schedule at which it should be executed.
Check commands are executable commands that the Sensu agent executes.

A command may include command line arguments for controlling the behavior of the command
executable.
Many common checks are available as assets from Bonsai and support command line
arguments so different check defnitions can use the same executable.

Check command execution

All check commands are executed by Sensu agents as the sensu user.
Commands must be
executable fles that are discoverable on the Sensu agent system (for example, installed in a system
$PATH directory).

Check result specifcation

Although Sensu agents attempt to execute any command defned for a check, successful check result
processing requires adherence to a simple specifcation.

NOTE: Sensu advises against requiring root privileges to execute check commands or scripts.
The
Sensu user is not permitted to kill timed-out processes invoked by the root user, which could result
in zombie processes.

Result data is output to STDOUT or STDERR.

For service checks, this output is typically a human-readable message.

https://bonsai.sensu.io/
https://bonsai.sensu.io/
https://en.wikipedia.org/wiki/Standard_streams

At every execution of a check command, regardless of success or failure, the Sensu agent publishes
the check’s result for eventual handling by the event processor (the Sensu backend).

Check scheduling

The Sensu backend schedules checks and publishes check execution requests to entities via a
publish-subscribe model.

Subscriptions

Checks have a defned set of subscriptions: transport topics to which the Sensu backend publishes
check requests.
Sensu entities become subscribers to these topics (called subscriptions) via their
individual subscriptions attribute.
Subscriptions typically correspond to a specifc role or
responsibility (for example. a webserver or database).

Subscriptions are powerful primitives in the monitoring context because they allow you to effectively
monitor for specifc behaviors or characteristics that correspond to the function provided by a particular
system.
For example, disk capacity thresholds might be more important (or at least different) on a
database server than on a webserver.
Conversely, CPU or memory usage thresholds might be more
important on a caching system than on a fle server.

Subscriptions also allow you to confgure check requests for an entire group or subgroup of systems
rather than requiring a traditional one-to-one mapping.

To confgure subscriptions for a check, use the subscriptions attribute to specify an array of one or

For metric checks, this output contains the measurements gathered by the
check.

Exit status code indicates state.

0 indicates OK.

1 indicates WARNING.

2 indicates CRITICAL.

Exit status codes other than 0 , 1 , and 2 indicate an UNKNOWN or custom status

PRO TIP: If you’re familiar with the Nagios monitoring system, you may recognize this
specifcation — it is the same one that Nagios plugins use. As a result, you can use Nagios plugins
with Sensu without any modifcation.

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

more subscription names.
Sensu schedules checks once per interval for each agent with a matching
subscription.
For example, if we have three agents confgured with the system subscription, a check
confgured with the system subscription results in three monitoring events per interval: one check
execution per agent per interval.
For Sensu to execute a check, the check defnition must include a
subscription that matches the subscription of at least one Sensu agent.

Round robin checks

By default, Sensu schedules checks once per interval for each agent with a matching subscription: one
check execution per agent per interval.
Sensu also supports deduplicated check execution when
confgured with the round_robin check attribute.
For checks with round_robin set to true , Sensu
executes the check once per interval, cycling through the available agents alphabetically according to
agent name.

For example, for three agents confgured with the system subscription (agents A, B, and C), a check
confgured with the system subscription and round_robin set to true results in one monitoring
event per interval, with the agent creating the event following the pattern A -> B -> C -> A -> B -> C for
the frst six intervals.

In the diagram above, the standard check is executed by agents A, B, and C every 60 seconds.
The
round robin check cycles through the available agents, resulting in each agent executing the check
every 180 seconds.

To use check ttl and round_robin together, your check confguration must also specify a
proxy_entity_name .
If you do not specify a proxy_entity_name when using check ttl and
round_robin together, your check will stop executing.

Scheduling

You can schedule checks using the interval , cron , and publish attributes.
Sensu requires that
checks include either an interval attribute (interval scheduling) or a cron attribute (cron
scheduling).

Interval scheduling

You can schedule a check to be executed at regular intervals using the interval and publish
check attributes.
For example, to schedule a check to execute every 60 seconds, set the interval
attribute to 60 and the publish attribute to true .

Example interval check

PRO TIP: Use round robin to distribute check execution workload across multiple agents when
using proxy checks.

NOTE: When creating an interval check, Sensu calculates an initial offset to splay the check’s frst
scheduled request.
This helps balance the load of both the backend and the agent and may result
in a delay before initial check execution.

type: CheckConfg

api_version: core/v2

metadata:

 name: interval_check

 namespace: default

spec:

 command: check-cpu.sh -w 75 -c 90

 handlers:

 - slack

 interval: 60

 publish: true

 subscriptions:

 - system

YML

JSON

Cron scheduling

You can also schedule checks using cron syntax.

Examples of valid cron values include:

Example cron checks

To schedule a check to execute once a minute at the start of the minute, set the cron attribute to *
* * * * and the publish attribute to true :

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "interval_check",

 "namespace": "default"

 },

 "spec": {

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true

 }

}

cron: CRON_TZ=Asia/Tokyo * * * * *

cron: TZ=Asia/Tokyo * * * * *

cron: '* * * * *'

NOTE: If you’re using YAML to create a check that uses cron scheduling and the frst character of
the cron schedule is an asterisk (*), place the entire cron schedule inside single or double
quotes (e.g. cron: '* * * * *').

type: CheckConfg

YML

https://en.wikipedia.org/wiki/Cron#CRON_expression

Use a prefx of TZ= or CRON_TZ= to set a timezone for the cron attribute:

api_version: core/v2

metadata:

 name: cron_check

 namespace: default

spec:

 command: check-cpu.sh -w 75 -c 90

 cron: '* * * * *'

 handlers:

 - slack

 publish: true

 subscriptions:

 - system

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "cron_check",

 "namespace": "default"

 },

 "spec": {

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "cron": "* * * * *",

 "publish": true

 }

}

JSON

type: CheckConfg

api_version: core/v2

metadata:

 name: cron_check

 namespace: default

YML

https://en.wikipedia.org/wiki/Cron#Timezone_handling

spec:

 check_hooks: null

 command: hi

 cron: CRON_TZ=Asia/Tokyo * * * * *

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 0

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: null

 stdin: false

 subdue: null

 subscriptions:

 - sys

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "cron_check",

 "namespace": "default"

 },

 "spec": {

 "check_hooks": null,

 "command": "hi",

 "cron": "CRON_TZ=Asia/Tokyo * * * * *",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 0,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

JSON

Ad hoc scheduling

In addition to automatic execution, you can create checks to be scheduled manually using the checks
API.
To create a check with ad-hoc scheduling, set the publish attribute to false in addition to an
interval or cron schedule.

Example ad hoc check

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "sys"

],

 "timeout": 0,

 "ttl": 0

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 name: ad_hoc_check

 namespace: default

spec:

 command: check-cpu.sh -w 75 -c 90

 handlers:

 - slack

 interval: 60

 publish: false

 subscriptions:

 - system

YML

JSON

Proxy checks

Sensu supports running proxy checks where the results are considered to be for an entity that isn’t
actually the one executing the check, regardless of whether that entity is a Sensu agent entity or a
proxy entity.
Proxy entities allow Sensu to monitor external resources on systems and devices where a
Sensu agent cannot be installed, like a network switch or a website.
You can create a proxy check using
the proxy_entity_name attribute or the proxy_requests attributes.

Use a proxy check to monitor a proxy entity

When executing checks that include a proxy_entity_name , Sensu agents report the resulting events
under the specifed proxy entity instead of the agent entity.
If the proxy entity doesn’t exist, Sensu
creates the proxy entity when the event is received by the backend.
To avoid duplicate events, we
recommend using the round_robin attribute with proxy checks.

Example proxy check using a proxy_entity_name

The following proxy check runs every 60 seconds, cycling through the agents with the proxy
subscription alphabetically according to the agent name, for the proxy entity sensu-site .

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "ad_hoc_check",

 "namespace": "default"

 },

 "spec": {

 "command": "check-cpu.sh -w 75 -c 90",

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": false

 }

}

type: CheckConfg

YML

Use a proxy check to monitor multiple proxy entities

The proxy_requests check attributes allow Sensu to run a check for each entity that matches the
defnitions specifed in the entity_attributes , resulting in monitoring events that represent each
matching proxy entity.
The entity attributes must match exactly as stated.
No variables or directives have

api_version: core/v2

metadata:

 name: proxy_check

 namespace: default

spec:

 command: http_check.sh https://sensu.io

 handlers:

 - slack

 interval: 60

 proxy_entity_name: sensu-site

 publish: true

 round_robin: true

 subscriptions:

 - proxy

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "proxy_check",

 "namespace": "default"

 },

 "spec": {

 "command": "http_check.sh https://sensu.io",

 "subscriptions": ["proxy"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true,

 "round_robin": true,

 "proxy_entity_name": "sensu-site"

 }

}

JSON

any special meaning, but you can still use Sensu query expressions to perform more complicated
fltering on the available value, such as fnding entities with particular subscriptions.

The proxy_requests attributes are a great way to monitor multiple entities using a single check
defnition when combined with token substitution.
Because checks that include proxy_requests

attributes need to be executed for each matching entity, we recommend using the round_robin

attribute to distribute the check execution workload evenly across your Sensu agents.

Example proxy check using proxy_requests

The following proxy check runs every 60 seconds, cycling through the agents with the proxy
subscription alphabetically according to the agent name, for all existing proxy entities with the custom
label proxy_type set to website .

This check uses token substitution to import the value of the custom entity label url to complete the
check command.
See the entity reference for information about using custom labels.

type: CheckConfg

api_version: core/v2

metadata:

 name: proxy_check_proxy_requests

 namespace: default

spec:

 command: http_check.sh {{ .labels.url }}

 handlers:

 - slack

 interval: 60

 proxy_requests:

 entity_attributes:

 - entity.labels.proxy_type == 'website'

 publish: true

 round_robin: true

 subscriptions:

 - proxy

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

JSON

Fine-tune proxy check scheduling with splay

Sensu supports distributing proxy check executions across an interval using the splay and
splay_coverage attributes.
For example, if you assume that the proxy_check_proxy_requests

check in the example above matches three proxy entities, you’d expect to see a burst of three events
every 60 seconds.
If you add the splay attribute (set to true) and the splay_coverage attribute
(set to 90) to the proxy_requests scope, Sensu will distribute the three check executions over
90% of the 60-second interval, resulting in three events splayed evenly across a 54-second period.

Check token substitution

Sensu check defnitions may include attributes that you wish to override on an entity-by-entity basis.
For
example, check commands, which may include command line arguments for controlling the behavior of
the check command, may beneft from entity-specifc thresholds.
Sensu check tokens are check
defnition placeholders that the Sensu agent will replace with the corresponding entity defnition
attribute values (including custom attributes).

Learn how to use check tokens with the Sensu tokens reference documentation.

 "metadata": {

 "name": "proxy_check_proxy_requests",

 "namespace": "default"

 },

 "spec": {

 "command": "http_check.sh {{ .labels.url }}",

 "subscriptions": ["proxy"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true,

 "proxy_requests": {

 "entity_attributes": [

 "entity.labels.proxy_type == 'website'"

]

 },

 "round_robin": true

 }

}

Check hooks

Check hooks are commands run by the Sensu agent in response to the result of check command
execution. The Sensu agent will execute the appropriate confgured hook command, depending on the
check execution status (e.g. 0 , 1 , or 2).

Learn how to use check hooks with the Sensu hooks reference documentation.

Check specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Checks should always be type CheckConfg .

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For

NOTE: Check tokens are processed before check execution, so token substitutions will not apply
to check data delivered via the local agent socket input.

NOTE: In Sensu Go, the occurrences attribute is not part of the check defnition like it was in
Sensu Core.

"type": "CheckConfg"

checks in Sensu backend version 5.4 and later, this attribute should
always be core/v2 .

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the check, including name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

check defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. See metadata
attributes for details.

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

"api_version": "core/v2"

"metadata": {

 "name": "collect-metrics",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

spec

description Top-level map that includes the check spec attributes.

required Required for check defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Metadata attributes

name

description Unique string used to identify the check. Check names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each check must have a unique name within its namespace.

required true

type String

example

namespace

description Sensu RBAC namespace that the check belongs to.

"spec": {

 "command": "/etc/sensu/plugins/check-chef-client.go",

 "interval": 10,

 "publish": true,

 "subscriptions": [

 "production"

]

}

"name": "check-cpu"

https://regex101.com/r/zo9mQU/2

required false

type String

default default

example

created_by

description Username of the Sensu user who created the check or last updated the
check. Sensu automatically populates the created_by feld when the
check is created or updated.

required false

type String

example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8

"namespace": "production"

"created_by": "admin"

string.

default null

example

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

"annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

NOTE: Spec attributes are not required when sending an HTTP POST request to the agent or
backend /events API.
When doing so, the spec attributes are listed as individual top-level attributes
in the check defnition instead.

command

description Check command to be executed.

required true

type String

example

subscriptions

description Array of Sensu entity subscriptions that check requests will be sent to.
The array cannot be empty and its items must each be a string.

required true

type Array

example

handlers

description Array of Sensu event handlers (names) to use for events created by the
check. Each array item must be a string.

required false

type Array

example

interval

"command": "/etc/sensu/plugins/check-chef-client.go"

"subscriptions": ["production"]

"handlers": ["pagerduty", "email"]

description How often the check is executed. In seconds.

required true (unless cron is confgured)

type Integer

example

cron

description When the check should be executed, using cron syntax or these
predefned schedules. Use a prefx of TZ= or CRON_TZ= to set a
timezone for the cron attribute.

required true (unless interval is confgured)

type String

example

publish

description true if check requests are published for the check. Otherwise, false .

required false

type Boolean

default false

"interval": 60

NOTE: If you’re using YAML to create a check that uses cron
scheduling and the frst character of the cron schedule is an asterisk
(*), place the entire cron schedule inside single or double quotes
(e.g. cron: '* * * * *').

"cron": "0 0 * * *"

https://en.wikipedia.org/wiki/Cron#CRON_expression
https://godoc.org/github.com/robfig/cron#hdr-Predefined_schedules
https://godoc.org/github.com/robfig/cron#hdr-Predefined_schedules
https://en.wikipedia.org/wiki/Cron#Timezone_handling

example

timeout

description Check execution duration timeout (hard stop). In seconds.

required false

type Integer

example

ttl

description The time-to-live (TTL) until check results are considered stale. In
seconds. If an agent stops publishing results for the check and the TTL
expires, an event will be created for the agent’s entity.

The check ttl must be greater than the check interval and should
allow enough time for the check execution and result processing to
complete. For example, for a check that has an interval of 60
(seconds) and a timeout of 30 (seconds), the appropriate ttl is at
least 90 (seconds).

To use check ttl and round_robin together, your check
confguration must also specify a proxy_entity_name . If you do not
specify a proxy_entity_name when using check ttl and
round_robin together, your check will stop executing.

required false

"publish": false

"timeout": 30

NOTE: Adding TTLs to checks adds overhead, so use the ttl

attribute sparingly.

type Integer

example

stdin

description true if the Sensu agent writes JSON serialized Sensu entity and check
data to the command process’ STDIN. The command must expect the
JSON data via STDIN, read it, and close STDIN. Otherwise, false .
This attribute cannot be used with existing Sensu check plugins or
Nagios plugins because the Sensu agent will wait indefnitely for the
check process to read and close STDIN.

required false

type Boolean

default false

example

low_fap_threshold

description Flap detection low threshold (% state change) for the check. Sensu uses
the same fap detection algorithm as Nagios. Read the event reference to
learn more about how Sensu uses the low_fap_threshold value.

required false

type Integer

example

"ttl": 100

"stdin": true

"low_fap_threshold": 20

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html

high_fap_threshol
d

description Flap detection high threshold (% state change) for the check. Sensu
uses the same fap detection algorithm as Nagios. Read the event
reference to learn more about how Sensu uses the
low_fap_threshold value.

required true (if low_fap_threshold is confgured)

type Integer

example

runtime_assets

description Array of Sensu assets (names). Required at runtime for the execution of
the command .

required false

type Array

example

check_hooks

description Array of check response types with respective arrays of Sensu hook
names. Sensu hooks are commands run by the Sensu agent in response
to the result of the check command execution. Hooks are executed in
order of precedence based on their severity type: 1 to 255 , ok ,
warning , critical , unknown , and fnally non-zero .

required false

type Array

"high_fap_threshold": 60

"runtime_assets": ["ruby-2.5.0"]

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html

example

proxy_entity_nam
e

description Entity name. Used to create a proxy entity for an external resource (e.g.
a network switch).

required false

type String

validated \A[\w\.\-]+\z

example

proxy_requests

description Assigns a check to run for multiple entities according to their
entity_attributes . In the example below, the check executes for all

entities with entity class proxy and the custom proxy type label
website . Proxy requests are a great way to reuse check defnitions for

a group of entities. For more information, see the proxy requests
specifcation and Monitor external resources.

"check_hooks": [

 {

 "0": [

 "passing-hook","always-run-this-hook"

]

 },

 {

 "critical": [

 "failing-hook","collect-diagnostics","always-run-

this-hook"

]

 }

]

"proxy_entity_name": "switch-dc-01"

https://regex101.com/r/zo9mQU/2

required false

type Hash

example

silenced

description Silences that apply to the check.

type Array

example

env_vars

description Array of environment variables to use with command execution.

required false

type Array

example

"proxy_requests": {

 "entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

],

 "splay": true,

 "splay_coverage": 90

}

"silenced": ["*:routers"]

NOTE: To add env_vars to a check, use sensuctl create .

"env_vars": ["RUBY_VERSION=2.5.0",

"CHECK_HOST=my.host.internal"]

output_metric_for
mat

description Metric format generated by the check command. Sensu supports the
following metric formats:
nagios_perfdata (Nagios Performance Data)
graphite_plaintext (Graphite Plaintext Protocol)
infuxdb_line (InfuxDB Line Protocol)
opentsdb_line (OpenTSDB Data Specifcation)

When a check includes an output_metric_format , Sensu will extract
the metrics from the check output and add them to the event data in
Sensu metric format. Read Collect metrics with Sensu checks.

required false

type String

example

output_metric_han
dlers

description Array of Sensu handlers to use for events created by the check. Each
array item must be a string. Use output_metric_handlers in place of
the handlers attribute if output_metric_format is confgured. Metric
handlers must be able to process Sensu metric format. For an example,
see the Sensu InfuxDB handler.

required false

type Array

example

"output_metric_format": "graphite_plaintext"

"output_metric_handlers": ["infux-db"]

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/perfdata.html
http://graphite.readthedocs.io/en/latest/feeding-carbon.html#the-plaintext-protocol
https://docs.influxdata.com/influxdb/v1.4/write_protocols/line_protocol_tutorial/#measurement
http://opentsdb.net/docs/build/html/user_guide/writing/index.html#data-specification
https://github.com/sensu/sensu-influxdb-handler

round_robin

description When set to true , Sensu executes the check once per interval, cycling
through each subscribing agent in turn. See round robin checks for more
information.

Use the round_robin attribute with proxy checks to avoid duplicate
events and distribute proxy check executions evenly across multiple
agents. See proxy checks for more information.

To use check ttl and round_robin together, your check
confguration must also specify a proxy_entity_name . If you do not
specify a proxy_entity_name when using check ttl and
round_robin together, your check will stop executing.

required false

type Boolean

default false

example

subdue

description Check subdues are not yet implemented in Sensu Go. Although the
subdue attribute appears in check defnitions by default, it is a

placeholder and should not be modifed.

example

secrets

description Array of the name/secret pairs to use with command execution.

required false

"round_robin": true

"subdue": null

type Array

example

Proxy requests attributes

entity_attributes

description Sensu entity attributes to match entities in the registry using Sensu query
expressions.

required false

type Array

example

splay

description true if proxy check requests should be splayed, published evenly over
a window of time, determined by the check interval and a confgurable
splay coverage percentage. Otherwise, false . For example, if a check

"secrets": [

 {

 "name": "ANSIBLE_HOST",

 "secret": "sensu-ansible-host"

 },

 {

 "name": "ANSIBLE_TOKEN",

 "secret": "sensu-ansible-token"

 }

]

"entity_attributes": [

 "entity.entity_class == 'proxy'",

 "entity.labels.proxy_type == 'website'"

]

has an interval of 60 seconds and a confgured splay coverage of
90 %, its proxy check requests would be splayed evenly over a time

window of 60 seconds * 90 %, 54 seconds, leaving 6 seconds for
the last proxy check execution before the the next round of proxy check
requests for the same check.

required false

type Boolean

default false

example

splay_coverage

description Percentage of the check interval over which Sensu can execute the
check for all applicable entities, as defned in the entity attributes. Sensu
uses the splay coverage attribute to determine the amount of time check
requests can be published over (before the next check interval).

required Required if splay attribute is set to true

type Integer

example

Check output truncation attributes

max_output_size

description Maximum size of stored check outputs. In bytes. When set to a non-zero
value, the Sensu backend truncates check outputs larger than this value
before storing to etcd. max_output_size does not affect data sent to
Sensu flters, mutators, and handlers.

"splay": true

"splay_coverage": 90

required false

type Integer

example

discard_output

description If true , discard check output after extracting metrics. No check output
will be sent to the Sensu backend. Otherwise, false .

required false

type Boolean

example

secrets attributes

name

description Name of the secret defned in the executable command. Becomes the
environment variable presented to the check. See Use secrets
management in Sensu for more information.

required true

type String

example

secret

"max_output_size": 1024

"discard_output": true

"name": "ANSIBLE_HOST"

description Name of the Sensu secret resource that defnes how to retrieve the
secret.

required true

type String

example

Examples

Minimum recommended check attributes

"secret": "sensu-ansible-host"

NOTE: The attribute interval is not required if a valid cron schedule is defned.

type: CheckConfg

api_version: core/v2

metadata:

 name: check_minimum

 namespace: default

spec:

 command: collect.sh

 handlers:

 - slack

 interval: 10

 publish: true

 subscriptions:

 - system

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

JSON

Metric check

 "metadata": {

 "namespace": "default",

 "name": "check_minimum"

 },

 "spec": {

 "command": "collect.sh",

 "subscriptions": [

 "system"

],

 "handlers": [

 "slack"

],

 "interval": 10,

 "publish": true

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 annotations:

 slack-channel: '#monitoring'

 labels:

 region: us-west-1

 name: collect-metrics

 namespace: default

spec:

 check_hooks: null

 command: collect.sh

 discard_output: true

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: graphite_plaintext

 output_metric_handlers:

 - infux-db

YML

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: null

 stdin: false

 subscriptions:

 - system

 timeout: 0

 ttl: 0

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "collect-metrics",

 "namespace": "default",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

 },

 "spec": {

 "command": "collect.sh",

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "publish": true,

 "runtime_assets": null,

 "subscriptions": [

 "system"

],

 "proxy_entity_name": "",

 "check_hooks": null,

 "stdin": false,

 "ttl": 0,

 "timeout": 0,

JSON

Check with secret

Learn more about secrets management for your Sensu confguration in the secrets and secrets
providers references.

 "round_robin": false,

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

 "env_vars": null,

 "discard_output": true

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 name: ping-github-api

 namespace: default

spec:

 check_hooks: null

 command: ping-github-api.sh $GITHUB_TOKEN

 secrets:

 - name: GITHUB_TOKEN

 secret: github-token-vault

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "ping-github-api",

 "namespace": "default"

 },

 "spec": {

JSON

PowerShell script in check commands

If you use a PowerShell script in your check command, make sure to include the -f fag in the
command.
The -f fag ensures that the proper exit code is passed into Sensu.
For example:

 "check_hooks": null,

 "command": "ping-github-api.sh $GITHUB_TOKEN",

 "secrets": [

 {

 "name": "GITHUB_TOKEN",

 "secret": "github-token-vault"

 }

]

 }

}

type: CheckConfg

api_version: core/v2

metadata:

 name: interval_test

 namespace: default

spec:

 command: powershell.exe -f c:\\users\\tester\\test.ps1

 subscriptions:

 - system

 handlers:

 - slack

 interval: 60

 publish: true

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "interval_test",

 "namespace": "default"

JSON

 },

 "spec": {

 "command": "powershell.exe -f c:\\users\\tester\\test.ps1",

 "subscriptions": ["system"],

 "handlers": ["slack"],

 "interval": 60,

 "publish": true

 }

}

Datastore

Sensu stores the most recent event for each entity and check pair using either an embedded etcd
(default) or an external etcd instance.
You can access event data with the Sensu web UI Events page,
sensuctl event commands, and the events API.
For longer retention of event data, integrate Sensu

with a time series database like InfuxDB or a searchable index like ElasticSearch or Splunk.

Scale event storage

COMMERCIAL FEATURE : Access enterprise-scale event storage in the packaged Sensu Go
distribution.
For more information, see Get started with commercial features.

Sensu supports using an external PostgreSQL instance for event storage in place of etcd.
PostgreSQL
can handle signifcantly higher volumes of Sensu events, which allows you to scale Sensu beyond
etcd’s 8-GB limit.

When confgured with a PostgreSQL event store, Sensu connects to PostgreSQL to store and retrieve
event data in place of etcd.
Etcd continues to store Sensu entity and confguration data.
You can access
event data stored in PostgreSQL using the same Sensu web UI, API, and sensuctl processes as etcd-
stored events.

Requirements

Sensu supports PostgreSQL 9.5 and later, including Amazon Relational Database Service (Amazon
RDS) when confgured with the PostgreSQL engine.
See the PostgreSQL docs to install and confgure
PostgreSQL.

Confguration

At the time when you enable the PostgreSQL event store, event data cuts over from etcd to
PostgreSQL.
This results in a loss of recent event history.
No restarts or Sensu backend confguration
changes are required to enable the PostgreSQL event store.

When you successfully enable PostgreSQL as the Sensu Go event store, the Sensu backend log will

https://aws.amazon.com/rds/
https://www.postgresql.org/

include a message like this:

After you install and confgure PostgreSQL, confgure Sensu by creating a PostgresConfg resource.
See Datastore specifcation for more information.

With the PostgresConfg resource defnition saved to a fle (for example, postgres.yml), use

Mar 10 17:44:45 sensu-centos sensu-backend[1365]: {"component":"store-

providers","level":"warning","msg":"switched event store to postgres","time":"2020-

03-10T17:44:45Z"}

type: PostgresConfg

api_version: store/v1

metadata:

 name: my-postgres

spec:

 dsn: "postgresql://user:secret@host:port/dbname"

 max_conn_lifetime: 5m

 max_idle_conns: 2

 pool_size: 20

YML

{

 "type": "PostgresConfg",

 "api_version": "store/v1",

 "metadata": {

 "name": "my-postgres"

 },

 "spec": {

 "dsn": "postgresql://user:secret@host:port/dbname",

 "max_conn_lifetime": "5m",

 "max_idle_conns": 2,

 "pool_size": 20

 }

}

JSON

sensuctl, confgured as the admin user, to activate the PostgreSQL event store.

To update your Sensu PostgreSQL confguration, repeat the sensuctl create process.
You can
expect to see PostgreSQL status updates in the Sensu backend logs at the warn log level and
PostgreSQL error messages in the Sensu backend logs at the error log level.

Disable the PostgreSQL event store

To disable the PostgreSQL event store, use sensuctl delete with your PostgresConfg resource
defnition:

The Sensu backend log will include a message to record that you successfully disabled PostgreSQL
as the Sensu Go event store:

When you disable the PostgreSQL event store, event data cuts over from PostgreSQL to etcd, which
results in a loss of recent event history.
No restarts or Sensu backend confguration changes are
required to disable the PostgreSQL event store.

Datastore specifcation

Top-level attributes

type

sensuctl create --fle postgres.yml

sensuctl delete --fle postgres.yml

Mar 10 17:35:04 sensu-centos sensu-backend[1365]: {"component":"store-

providers","level":"warning","msg":"switched event store to etcd","time":"2020-03-

10T17:35:04Z"}

description Top-level attribute that specifes the sensuctl create resource type.
PostgreSQL datastore confgs should always be type PostgresConfg .

required true

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
PostgreSQL datastore confgs, the api_version should be
store/v1 .

required true

type String

example

metadata

description Top-level scope that contains the PostgreSQL datastore name and
created_by feld.

required true

type Map of key-value pairs

example

type: PostgresConfg

api_version: store/v1

metadata:

 name: my-postgres

 created_by: admin

spec

description Top-level map that includes the PostgreSQL datastore confg spec
attributes.

required true

type Map of key-value pairs

example

Metadata attributes

name

description PostgreSQL datastore name used internally by Sensu.

required true

type String

example

created_by

description Username of the Sensu user who created the datastore or last updated
the datastore. Sensu automatically populates the created_by feld
when the datastore is created or updated.

required false

spec:

 dsn: "postgresql://user:secret@host:port/dbname"

 max_conn_lifetime: 5m

 max_idle_conns: 2

 pool_size: 20

name: my-postgres

type String

example

Spec attributes

dsn

description Data source names. Specifed as a URL or PostgreSQL connection
string. The Sensu backend uses the golang pq library, which supports a
subset of the PostgreSQL libpq connection string parameters.

required true

type String

example

max_conn_lifetime

description Maximum time a connection can persist before being destroyed. Specify
values with a numeral and a letter indicator: s to indicate seconds, m
to indicate minutes, and h to indicate hours. For example, 1m , 2h ,
and 2h1m3s are valid.

required false

type String

example

max_idle_conns

created_by: admin

dsn: "postgresql://user:secret@host:port/dbname"

max_conn_lifetime: 5m

https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://pkg.go.dev/github.com/lib/pq@v1.2.0#hdr-Connection_String_Parameters

description Maximum number of number of idle connections to retain.

required false

default 2

type Integer

example

pool_size

description Maximum number of connections to hold in the PostgreSQL connection
pool. We recommend 20 for most instances.

required false

default 0 (unlimited)

type Integer

example

max_idle_conns: 2

pool_size: 20

Entities

An entity represents anything that needs to be monitored, such as a server, container, or network
switch, including the full range of infrastructure, runtime, and application types that compose a
complete monitoring environment (from server hardware to serverless functions).
We call these
monitored parts of an infrastructure “entities.”

An entity provides context for event data — what and where the event is from — and an event’s
uniqueness is determined by the check name and the name of the entity upon which the check ran.
Entities can also contain system information like the hostname, operating system, platform, and
version.

Agent entities are monitoring agents that are installed and run on every system that needs to be
monitored.
The agent entity registers the system with the Sensu backend service, sends keepalive
messages (the Sensu heartbeat mechanism), and executes monitoring checks.
Each entity is a member
of one or more subscriptions : a list of roles and responsibilities assigned to the agent entity (e.g. a
webserver or a database).
Sensu entities “subscribe” to (or watch for) check requests published by the
Sensu backend (via the Sensu transport), execute the corresponding requests locally, and publish the
results of the check back to the transport (to be processed by a Sensu backend).

Proxy entities are dynamically created entities that are added to the entity store if an entity does not
already exist for a check result.
Proxy entities allow Sensu to monitor external resources on systems
where a Sensu agent cannot be installed (like a network switch or website) using the defned check
ProxyEntityName to create a proxy entity for the external resource.

Usage limits

Sensu’s free entity limit is 100 entities.
All commercial features are available for free in the packaged
Sensu Go distribution up to an entity limit of 100.
If your Sensu instance includes more than 100 entities,
contact us to learn how to upgrade your installation and increase your limit.
See the announcement on
our blog for more information about our usage policy.

Commercial licenses may include an entity limit and entity class limits:

Entity limit: the maximum number of entities of all classes your license includes. Both agent
and proxy entities count toward the overall entity limit.

Entity class limits: the maximum number of a specifc class of entities (e.g. agent or proxy) that

https://sensu.io/contact
https://sensu.io/blog/one-year-of-sensu-go
https://sensu.io/blog/one-year-of-sensu-go

For example, if your license has an entity limit of 10,000 and an agent entity class limit of 3,000, you
cannot run more than 10,000 entities (agent and proxy) total.
At the same time, you cannot run more
than 3,000 agents.
If you use only 1,500 agent entities, you can have 8,500 proxy entities before you
reach the overall entity limit of 10,000.

Use sensuctl or the license API to view your overall entity count and limit.

Proxy entities

Proxy entities [formerly known as proxy clients or just-in-time (JIT) clients] are dynamically created
entities that are added to the entity store if an entity does not already exist for a check result.
Proxy
entities allow Sensu to monitor external resources on systems and devices where a Sensu agent
cannot be installed (like a network switch or website) using the defned check ProxyEntityName to
create a proxy entity for the external resource.

Proxy entity registration differs from keepalive-based registration because the registration event
happens while processing a check result (not a keepalive message).

See Monitor external resources to learn how to use a proxy entity to monitor a website.

Proxy entities and round robin scheduling

Proxy entities make round robin scheduling more useful.
Proxy entities allow you to combine all round
robin events into a single event.
Instead of having a separate event for each agent entity, you have a
single event for the entire round robin.

If you don’t use a proxy entity for round robin scheduling, you could have several failures in a row, but
each event will only be aware of one of the failures.

If you use a proxy entity without round robin scheduling, and several agents share the subscription,
they will all execute the check for the proxy entity and you’ll get duplicate results.
When you enable
round robin, you’ll get one agent per interval executing the proxy check, but the event will always be
listed under the proxy entity.
If you don’t create a proxy entity, it is created when the check is executed.
You can modify the proxy entity later if needed.

Use proxy entity flters to establish a many-to-many relationship between agent entities and proxy
entities if you want even more power over the grouping.

your license includes.

Manage entity labels

Labels are custom attributes that Sensu includes with event data that you can use for response and
web UI view fltering.
In contrast to annotations, you can use labels to flter API responses, sensuctl
responses, and web UI views.

Limit labels to metadata you need to use for response fltering.
For complex, non-identifying metadata
that you will not need to use in response fltering, use annotations rather than labels.

Proxy entity labels

For entities with class proxy , you can create and manage labels with sensuctl.
For example, to create
a proxy entity with a url label using sensuctl create , create a fle called example.json with an
entity defnition that includes labels :

type: Entity

api_version: core/v2

metadata:

 labels:

 url: docs.sensu.io

 name: sensu-docs

 namespace: default

spec:

 deregister: false

 deregistration: {}

 entity_class: proxy

 last_seen: 0

 subscriptions:

 - proxy

 system:

 network:

 interfaces: null

 sensu_agent_version: 1.0.0

YML

{

JSON

Then run sensuctl create to create the entity based on the defnition:

To add a label to an existing entity, use sensuctl edit .
For example, run sensuctl edit to add a
url label to a sensu-docs entity:

And update the metadata scope to include labels :

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs",

 "namespace": "default",

 "labels": {

 "url": "docs.sensu.io"

 }

 },

 "spec": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "proxy",

 "last_seen": 0,

 "subscriptions": [

 "proxy"

],

 "system": {

 "network": {

 "interfaces": null

 }

 },

 "sensu_agent_version": "1.0.0"

 }

}

sensuctl create --fle entity.json

sensuctl edit entity sensu-docs

Proxy entity checks

Proxy entities allow Sensu to monitor external resources on systems or devices where a Sensu agent
cannot be installed, like a network switch, website, or API endpoint.
You can confgure a check with a
proxy entity name to associate the check results with that proxy entity.
On the frst check result, if the
proxy entity does not exist, Sensu will create the entity as a proxy entity.

After you create a proxy entity check, defne which agents will run the check by confguring a
subscription.
See proxy entities for details about creating a proxy check for a proxy entity.

type: Entity

api_version: core/v2

metadata:

 labels:

 url: docs.sensu.io

 name: sensu-docs

 namespace: default

spec:

 '...': '...'

YML

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-docs",

 "namespace": "default",

 "labels": {

 "url": "docs.sensu.io"

 }

 },

 "spec": {

 "...": "..."

 }

}

JSON

Agent entity labels

For entities with class agent , you can defne entity attributes in the /etc/sensu/agent.yml
confguration fle.
For example, to add a url label, open /etc/sensu/agent.yml and add
confguration for labels :

Or, use sensu-agent start confguration fags:

Entities specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Entities should always be type Entity .

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For

labels:

 url: sensu.docs.io

sensu-agent start --labels url=sensu.docs.io

"type": "Entity"

entities in this version of Sensu, this attribute should always be
core/v2 .

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the entity, including name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

entity defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. See metadata
attributes for details.

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

"api_version": "core/v2"

"metadata": {

 "name": "webserver01",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

spec

description Top-level map that includes the entity spec attributes.

required Required for entity defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example
"spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu2-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "entity:webserver01"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

Metadata attributes

name

description Unique name of the entity, validated with Go regex \A[\w\.\-]+\z .

required true

type String

example

namespace

description Sensu RBAC namespace that this entity belongs to.

required false

type String

default default

example

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

"name": "example-hostname"

"namespace": "production"

https://regex101.com/r/zo9mQU/2

created_by

description Username of the Sensu user who created the entity or last updated the
entity. Sensu automatically populates the created_by feld when the
entity is created or updated.

required false

type String

example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

"created_by": "admin"

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

entity_class

description Entity type, validated with Go regex \A[\w\.\-]+\z . Class names have
special meaning. An entity that runs an agent is class agent and is
reserved. Setting the value of entity_class to proxy creates a
proxy entity. For other types of entities, the entity_class attribute isn’t
required, and you can use it to indicate an arbitrary type of entity (like
lambda or switch).

required true

type String

example

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

"entity_class": "agent"

https://regex101.com/r/zo9mQU/2

subscriptions

description List of subscription names for the entity. The entity by default has an
entity-specifc subscription, in the format of entity:{name} where
name is the entity’s hostname.

required false

type Array

default The entity-specifc subscription.

example

system

description System information about the entity, such as operating system and
platform. See system attributes for more information.

required false

type Map

example

"subscriptions": ["web", "prod", "entity:example-entity"]

IMPORTANT : Process discovery is disabled in release 5.20.2.
As of
5.20.2, new events will not include data in the processes attributes.
Instead, the feld will be empty: "processes": null .

system:

 arch: amd64

 libc_type: glibc

 vm_system: kvm

 vm_role: host

 cloud_provider: null

 processes:

YML

 - name: Slack

 pid: 1349

 ppid: 0

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 1.09932518

 cpu_percent: 0.3263987595984941

 - name: Slack Helper

 pid: 1360

 ppid: 1349

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 0.146866455

 cpu_percent: 0.30897618146109257

 hostname: example-hostname

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 93.184.216.34/24

 - 2606:2800:220:1:248:1893:25c8:1946/10

 mac: 52:54:00:20:1b:3c

 name: eth0

 os: linux

 platform: ubuntu

 platform_family: debian

 platform_version: "16.04"

{

 "system": {

 "hostname": "example-hostname",

 "os": "linux",

JSON

 "platform": "ubuntu",

 "platform_family": "debian",

 "platform_version": "16.04",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

sensu_agent_versi
on

description Sensu Semantic Versioning (SemVer) version of the agent entity.

required true

type String

example

last_seen

description Timestamp the entity was last seen. In seconds since the Unix epoch.

required false

type Integer

example

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 }

}

"sensu_agent_version": "1.0.0"

"last_seen": 1522798317

deregister

description true if the entity should be removed when it stops sending keepalive
messages. Otherwise, false .

required false

type Boolean

default false

example

deregistration

description Map that contains a handler name to use when an entity is deregistered.
See deregistration attributes for more information.

required false

type Map

example

redact

"deregister": false

deregistration:

 handler: email-handler

YML

{

 "deregistration": {

 "handler": "email-handler"

 }

}

JSON

description List of items to redact from log messages. If a value is provided, it
overwrites the default list of items to be redacted.

required false

type Array

default [“password”, “passwd”, “pass”, “api_key”, “api_token”, “access_key”,
“secret_key”, “private_key”, “secret”]

example

user

description Sensu RBAC username used by the entity. Agent entities require get,
list, create, update, and delete permissions for events across all
namespaces.

type String

default agent

example

System attributes

redact:

- extra_secret_tokens

YML

{

 "redact": [

 "extra_secret_tokens"

]

}

JSON

"user": "agent"

hostname

description Hostname of the entity.

required false

type String

example

os

description Entity’s operating system.

required false

type String

example

platform

description Entity’s operating system distribution.

required false

type String

example

platform_family

"hostname": "example-hostname"

"os": "linux"

"platform": "ubuntu"

description Entity’s operating system family.

required false

type String

example

platform_version

description Entity’s operating system version.

required false

type String

example

network

description Entity’s network interface list. See network attributes for more
information.

required false

type Map

example

"platform_family": "debian"

"platform_version": "16.04"

network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 93.184.216.34/24

 - 2606:2800:220:1:248:1893:25c8:1946/10

YML

arch

description Entity’s system architecture. This value is determined by the Go binary
architecture as a function of runtime.GOARCH. An amd system running
a 386 binary will report the arch as 386 .

required false

type String

example

 mac: 52:54:00:20:1b:3c

 name: eth0

{

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

 }

}

JSON

libc_type

description Entity’s libc type. Automatically populated upon agent startup.

required false

type String

example

vm_system

description Entity’s virtual machine system. Automatically populated upon agent
startup.

required false

type String

example

vm_role

description Entity’s virtual machine role. Automatically populated upon agent startup.

required false

type String

example

"arch": "amd64"

"libc_type": "glibc"

"vm_system": "kvm"

"vm_role": "host"

cloud_provider

description Entity’s cloud provider environment. Automatically populated upon agent
startup if the --detect-cloud-provider fag is set. Returned empty
unless the agent runs on Amazon Elastic Compute Cloud (EC2), Google
Cloud Platform (GCP), or Microsoft Azure.

required false

type String

example

processes

description List of processes on the local agent. See processes attributes for more
information.

required false

type Map

example

NOTE: This feature can result in several HTTP requests or DNS
lookups being performed, so it may not be appropriate for all
environments.

"cloud_provider": ""

IMPORTANT : Process discovery is disabled in release 5.20.2.
As of
5.20.2, new events will not include data in the processes attributes.
Instead, the feld will be empty: "processes": null .

processes:

- name: Slack

 pid: 1349

YML

 ppid: 0

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 1.09932518

 cpu_percent: 0.3263987595984941

- name: Slack Helper

 pid: 1360

 ppid: 1349

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 0.146866455

 cpu_percent: 0.30897618146109257

{

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

JSON

Network attributes

network_interface

description List of network interfaces available on the entity, with their associated
MAC and IP addresses.

required false

type Array NetworkInterface

example

 }

]

}

interfaces:

- addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

- addresses:

 - 93.184.216.34/24

 - 2606:2800:220:1:248:1893:25c8:1946/10

 mac: 52:54:00:20:1b:3c

 name: eth0

YML

{

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

JSON

NetworkInterface attributes

name

description Network interface name.

required false

type String

example

mac

description Network interface’s MAC address.

required false

type string

example

 },

 {

 "name": "eth0",

 "mac": "52:54:00:20:1b:3c",

 "addresses": [

 "93.184.216.34/24",

 "2606:2800:220:1:248:1893:25c8:1946/10"

]

 }

]

}

"name": "eth0"

"mac": "52:54:00:20:1b:3c"

addresses

description List of IP addresses for the network interface.

required false

type Array

example

Deregistration attributes

handler

description Name of the handler to call when an entity is deregistered.

required false

type String

example

Processes attributes

COMMERCIAL FEATURE : Access processes attributes with the discover-processes fag in the
packaged Sensu Go distribution. For more information, see Get started with commercial features.

 "addresses": ["93.184.216.34/24",

"2606:2800:220:1:248:1893:25c8:1946/10"]

"handler": "email-handler"

IMPORTANT : Process discovery is disabled in release 5.20.2.
As of 5.20.2, new events will not
include data in the processes attributes.
Instead, the feld will be empty: "processes": null .

name

description Name of the process.

required false

type String

example

pid

description Process ID of the process.

required false

type Integer

example

ppid

description Parent process ID of the process.

required false

type Integer

example

NOTE: The processes feld is populated in the packaged Sensu Go distributions.
In OSS builds,
the feld will be empty: "processes": null .

"name": "Slack"

"pid": 1349

"ppid": 0

status

description Status of the process. See the Linux top manual page for examples.

required false

type String

example

background

description If true , the process is a background process. Otherwise, false .

required false

type Boolean

example

running

description If true , the process is running. Otherwise, false .

required false

type Boolean

example

created

description Timestamp when the process was created. In seconds since the Unix

"status": "Ss"

"background": true

"running": true

http://man7.org/linux/man-pages/man1/top.1.html
http://man7.org/linux/man-pages/man1/top.1.html
http://man7.org/linux/man-pages/man1/top.1.html

epoch.

required false

type Integer

example

memory_percent

description Percent of memory the process is using. The value is returned as a
foating-point number where 0.0 = 0% and 1.0 = 100%. For example, the
memory_percent value 0.19932 equals 19.932%.

required false

type foat

example

cpu_percent

description Percent of CPU the process is using. The value is returned as a foating-
point number where 0.0 = 0% and 1.0 = 100%. For example, the
cpu_percent value 0.12639 equals 12.639%.

required false

"created": 1586138786

NOTE: The memory_percent attribute is supported on Linux and
macOS.
It is not supported on Windows.

"memory_percent": 0.19932

NOTE: The cpu_percent attribute is supported on Linux and
macOS.
It is not supported on Windows.

type foat

example

Examples

Entity defnition

"cpu_percent": 0.12639

type: Entity

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: webserver01

 namespace: default

spec:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1542667231

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:webserver01

 system:

 arch: amd64

 libc_type: glibc

YML

 vm_system: kvm

 vm_role: host

 cloud_provider: null

 processes:

 - name: Slack

 pid: 1349

 ppid: 0

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 1.09932518

 cpu_percent: 0.3263987595984941

 - name: Slack Helper

 pid: 1360

 ppid: 1349

 status: Ss

 background: true

 running: true

 created: 1582137786

 memory_percent: 0.146866455

 cpu_percent: 0.30897618146109257

 hostname: sensu2-centos

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::26a5:54ec:cf0d:9704/64

 mac: 08:00:27:11:ad:d2

 name: enp0s3

 - addresses:

 - 172.28.128.3/24

 - fe80::a00:27ff:febc:be60/64

 mac: 08:00:27:bc:be:60

 name: enp0s8

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.4.1708

 sensu_agent_version: 1.0.0

 user: agent

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "webserver01",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "sensu2-centos",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

JSON

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64",

 "libc_type": "glibc",

 "vm_system": "kvm",

 "vm_role": "host",

 "cloud_provider": "",

 "processes": [

 {

 "name": "Slack",

 "pid": 1349,

 "ppid": 0,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 1.09932518,

 "cpu_percent": 0.3263987595984941

 },

 {

 "name": "Slack Helper",

 "pid": 1360,

 "ppid": 1349,

 "status": "Ss",

 "background": true,

 "running": true,

 "created": 1582137786,

 "memory_percent": 0.146866455,

 "cpu_percent": 0.308976181461092553

 }

]

 },

 "sensu_agent_version": "1.0.0",

 "subscriptions": [

 "entity:webserver01"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

}

Etcd replicators

COMMERCIAL FEATURE : Access the etcd-replicators datatype in the packaged Sensu Go
distribution.
For more information, see Get started with commercial features.

Etcd replicators allow you to manage RBAC resources in one place and mirror the changes to follower
clusters.
The API sets up etcd mirrors for one-way key replication.

The etcd-replicators datatype will not use a namespace because it applies cluster-wide.
Therefore, only
cluster role RBAC bindings will apply to it.

Create a replicator

You can use sensuctl create or the Sensu web UI to create replicators.

When you create or update a replicator, an entry is added to the store and a new replicator process will
spin up.
The replicator process watches the keyspace of the resource to be replicated and replicates all
keys to the specifed cluster in a last-write-wins fashion.

When the cluster starts up, each sensu-backend scans the stored replicator defnitions and starts a
replicator process for each replicator defnition.
Source clusters with more than one sensu-backend will
cause redundant writes.
This is harmless, but you should consider it when designing a replicated
system.

Delete a replicator

When you delete a replicator, the replicator will issue delete events to the remote cluster for all of the

NOTE: etcd-replicators is a datatype in the federation API, which is only accessible for users who
have a cluster role that permits access to replication resources.

NOTE: Create a replicator for each resource type you want to replicate.
Replicating namespace

resources will not replicate the resources that belong to those namespaces.

keys in its prefx.
It will not issue a delete of the entire key prefx (just in case the prefx is shared by
keys that are local to the remote cluster).

Rather than altering an existing replicator’s connection details, delete and recreate the replicator with
the new connection details.

Replicator confguration

Etcd replicators are etcd key space replicators.
Replicators contain confguration for forwarding a set of
keys from one etcd cluster to another.
Replicators are confgured by specifying the TLS details of the
remote cluster, its URL, and a resource type.

etcd-replicators specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Always EtcdReplicator.

required true

type String

example

api_version

description Top-level attribute that specifes the Sensu API version of the etcd-
replicators API. Always federation/v1 .

required true

type String

type: EtcdReplicator

example

metadata

description Top-level scope that contains the replicator name and created_by
value. Namespace is not supported in the metadata because etcd
replicators are cluster-wide resources.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes the replicator spec attributes.

required true

type Map of key-value pairs

example

api_version: federation/v1

metadata:

 name: my_replicator

 created_by: admin

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 key: /path/to/ssl/key.pem

 insecure: false

 url: http://127.0.0.1:2379

 api_version: core/v2

 resource: Role

 replication_interval_seconds: 30

Metadata attributes

name

description Replicator name used internally by Sensu.

required true

type String

example

created_by

description Username of the Sensu user who created the replicator or last updated
the replicator. Sensu automatically populates the created_by feld
when the replicator is created or updated.

required false

type String

example

Spec attributes

ca_cert

description Path to an the PEM-format CA certifcate to use for TLS client
authentication.

required true if insecure: false (which is the default confguration). If
insecure: true , ca_cert is not required.

name: my_replicator

created_by: admin

type String

example

cert

description Path to the PEM-format certifcate to use for TLS client authentication.

required true if insecure: false (which is the default confguration). If
insecure: true , cert is not required.

type String

example

key

description Path to the PEM-format key fle associated with the cert to use for TLS
client authentication.

required true if insecure: false (which is the default confguration). If
insecure: true , key is not required.

type String

example

insecure

description true to disable transport security. Otherwise, false .

ca_cert: /path/to/trusted-certifcate-authorities.pem

cert: /path/to/ssl/cert.pem

key: /path/to/ssl/key.pem

NOTE: Disable transport security with care.

required false

type Boolean

default false

example

url

description Destination cluster URL. If specifying more than one, use a comma to
separate.

required true

type String

example

api_version

description Sensu API version of the resource to replicate.

required false

type String

default core/v2

example

resource

insecure: false

url: http://127.0.0.1:2379

api_version: core/v2

description Name of the resource to replicate.

required true

type String

example

namespace

description Namespace to constrain replication to. If you do not include namespace ,
all namespaces for a given resource are replicated.

required false

type String

example

replication_interval
_seconds

description Interval at which the resource will be replicated. In seconds.

required false

type String

default 30

example

resource: Role

namespace: default

replication_interval_seconds: 30

Example EtcdReplicator resources

If you replicate the following four examples for Role , RoleBinding , ClusterRole , and
ClusterRoleBinding resources, you can expect a full replication of RBAC policy.

Example Role resource

NOTE: If you do not specify a namespace when you create a replicator, all namespaces for a
given resource are replicated.

api_version: federation/v1

type: EtcdReplicator

metadata:

 name: role_replicator

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 key: /path/to/ssl/key.pem

 insecure: false

 url: http://127.0.0.1:2379

 api_version: core/v2

 resource: Role

 replication_interval_seconds: 30

YML

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "role_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://127.0.0.1:2379",

JSON

Example RoleBinding resource

 "api_version": "core/v2",

 "resource": "Role",

 "replication_interval_seconds": 30

 }

}

api_version: federation/v1

type: EtcdReplicator

metadata:

 name: rolebinding_replicator

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 key: /path/to/ssl/key.pem

 insecure: false

 url: http://127.0.0.1:2379

 api_version: core/v2

 resource: RoleBinding

 replication_interval_seconds: 30

YML

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "rolebinding_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://127.0.0.1:2379",

 "api_version": "core/v2",

 "resource": "RoleBinding",

 "replication_interval_seconds": 30

JSON

Example ClusterRole resource

 }

}

api_version: federation/v1

type: EtcdReplicator

metadata:

 name: clusterrole_replicator

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 key: /path/to/ssl/key.pem

 insecure: false

 url: http://127.0.0.1:2379

 api_version: core/v2

 resource: ClusterRole

 replication_interval_seconds: 30

YML

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "clusterrole_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://127.0.0.1:2379",

 "api_version": "core/v2",

 "resource": "ClusterRole",

 "replication_interval_seconds": 30

 }

}

JSON

Example ClusterRoleBinding resource

Critical success factors for etcd replication

api_version: federation/v1

type: EtcdReplicator

metadata:

 name: clusterrolebinding_replicator

spec:

 ca_cert: /path/to/ssl/trusted-certifcate-authorities.pem

 cert: /path/to/ssl/cert.pem

 key: /path/to/ssl/key.pem

 insecure: false

 url: http://127.0.0.1:2379

 api_version: core/v2

 resource: Role

 replication_interval_seconds: 30

YML

{

 "api_version": "federation/v1",

 "type": "EtcdReplicator",

 "metadata": {

 "name": "clusterrolebinding_replicator"

 },

 "spec": {

 "ca_cert": "/path/to/ssl/trusted-certifcate-authorities.pem",

 "cert": "/path/to/ssl/cert.pem",

 "key": "/path/to/ssl/key.pem",

 "insecure": false,

 "url": "http://127.0.0.1:2379",

 "api_version": "core/v2",

 "resource": "ClusterRoleBinding",

 "replication_interval_seconds": 30

 }

}

JSON

Before you implement etcd replicators, review these details — they are critical to your success.

Bind your etcd listener to an external port that is not the default.

Use only addresses that clients can route to for etcd-client-advertise-urls .

Put the certifcate and key of the follower cluster in fles that the leader can access.

For self-signed certifcates, supply the CA certifcate in the replicator defnition.

If you’re using insecure mode, use TLS mutual authentication.

Create a replicator for each resource type you want to replicate.

Replication will not work if you bind your etcd listener to the default port.

If you use addresses that clients cannot route to for etcd-client-advertise-urls ,
replication may be inconsistent: it may work at frst but then stop working later.

If the leader cannot access the follower cluster fles that contain the certifcate and key,
replication will not work.

If you have a self-signed certifcate and you do not supply the CA certifcate in the replicator
defnition, replication will not work.

Never use insecure mode without TLS mutual authentication outside of a testbed.

Replicating namespace resources will not replicate the resources that belong to those
namespaces.

WARNING: Make sure to confrm your confguration. The server will accept incorrect
EtcdReplicator defnitions without sending a warning. If your confguration is incorrect, replication
will not work.

Events

An event is a generic container used by Sensu to provide context to checks and metrics.
The context,
called event data, contains information about the originating entity and the corresponding check or
metric result.
An event must contain a check or metrics.
In certain cases, an event can contain both.
Thes
generic containers allow Sensu to handle different types of events in the pipeline.
Because events are
polymorphic in nature, it is important to never assume their contents (or lack of content).

Check-only events

A Sensu event is created every time a check result is processed by the Sensu server, regardless of the
status indicated by the check result.
The agent creates an event upon receipt of the check execution
result.
The agent will execute any confgured hooks the check might have.
From there, the result is
forwarded to the Sensu backend for processing.
Potentially noteworthy events may be processed by
one or more event handlers, for example to send an email or invoke an automated action.

Metric-only events

Sensu events can also be created when the agent receives metrics through the StatsD listener.
The
agent will translate the StatsD metrics to Sensu metric format and place them inside an event.
Because
these events do not contain checks, they bypass the store and are sent to the event pipeline and
corresponding event handlers.

Check and metric events

Events that contain both a check and metrics most likely originated from check output metric extraction.
If a check is confgured for metric extraction, the agent will parse the check output and transform it to
Sensu metric format.
Both the check results and resulting (extracted) metrics are stored inside the event
Event handlers from event.Check.Handlers and event.Metrics.Handlers will be invoked.

Create events using the Sensu agent

The Sensu agent is a powerful event producer and monitoring automation tool.
You can use Sensu
agents to produce events automatically using service checks and metric checks.
Sensu agents can also
act as a collector for metrics throughout your infrastructure.

Create events using the events API

You can send events directly to the Sensu pipeline using the events API.
To create an event, send a
JSON event defnition to the events API PUT endpoint.

If you use the events API to create a new event referencing an entity that does not already exist, the
sensu-backend will automatically create a proxy entity when the event is published.

Manage events

You can manage events using the Sensu web UI, events API, and sensuctl command line tool.

View events

To list all events:

To show event details in the default output format:

Create events using service checks

Create events using metric checks

Create events using the agent API

Create events using the agent TCP and UDP sockets

Create events using the StatsD listener

sensuctl event list

sensuctl event info entity-name check-name

With both the list and info commands, you can specify an output format using the --format
fag:

Delete events

To delete an event:

You can use the --skip-confrm fag to skip the confrmation step:

You should see a confrmation message upon success:

Resolve events

You can use sensuctl to change the status of an event to 0 (OK).
Events resolved by sensuctl include
the output message Resolved manually by sensuctl .

You should see a confrmation message upon success:

yaml or wrapped-json formats for use with sensuctl create

json format for use with the events API

sensuctl event info entity-name check-name --format yaml

sensuctl event delete entity-name check-name

sensuctl event delete entity-name check-name --skip-confrm

Deleted

sensuctl event resolve entity-name check-name

Event format

Sensu events contain:

Use event data

Event data is a powerful tool for automating monitoring workfows.
For example, the state attribute
provides handlers with a high-level description of check status.
Filtering events based on this attribute
can help reduce alert fatigue.

State attribute

The state event attribute adds meaning to the check status:

Resolved

entity scope (required)

Information about the source of the event, including any attributes defned in the entity
specifcation

check scope (optional if the metrics scope is present)

Information about how the event was created, including any attributes defned in the
check specifcation

Information about the event and its history, including any check attributes defned in the
event specifcation on this page

metrics scope (optional if the check scope is present)

Metric points in Sensu metric format

timestamp

Time that the event occurred in seconds since the Unix epoch

event_id

Universally unique identifer (UUID) for the event

Flapping typically indicates intermittent problems with an entity, provided your low and high fap
threshold settings are properly confgured.
Although some teams choose to flter out fapping events to
reduce unactionable alerts, we suggest sending fapping events to a designated handler for later
review.
If you repeatedly observe events in fapping state, Sensu’s per-check fap threshold
confguration allows you to adjust the sensitivity of the fap detection algorithm.

Flap detection algorithm

Sensu uses the same fap detection algorithm as Nagios.
Every time you run a check, Sensu records
whether the status value changed since the previous check.
Sensu stores the last 21 status

values and uses them to calculate the percent state change for the entity/check pair.
Then, Sensu’s
algorithm applies a weight to these status changes: more recent changes have more value than older
changes.

After calculating the weighted total percent state change, Sensu compares it with the low and high fap
thresholds set in the check attributes.

Depending on the result of this comparison, Sensu will trigger the appropriate event flters based on
check attributes like event.check.high_fap_threshold and event.check.low_fap_threshold .

Occurrences and occurrences watermark

The occurrences and occurrences_watermark event attributes give you context about recent
events for a given entity and check.
You can use these attributes within event flters to fne-tune incident
notifcations and reduce alert fatigue.

Starting at 1 , the occurrences attribute increments for events with the same status as the
preceding event (OK, WARNING, CRITICAL, or UNKNOWN) and resets whenever the status changes.

passing means the check status is 0 (OK).

failing means the check status is non-zero (WARNING or CRITICAL).

fapping indicates an unsteady state in which the check result status (determined based on
per-check low and high fap thresholds attributes) is not settling on passing or failing
according to the fap detection algorithm.

If the entity was not already fapping and the weighted total percent state change for the
entity/check pair is greater than or equal to the high_fap_threshold setting, the entity has
started fapping.

If the entity was already fapping and the weighted total percent state change for the
entity/check pair is less than the low_fap_threshold setting, the entity has stopped fapping.

https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/flapping.html

You can use the occurrences attribute to create a state-change-only flter or an interval flter.

The occurrences_watermark attribute gives you useful information when looking at events that
change status between non-OK (WARNING, CRITICAL, or UNKNOWN) and OK.
For these resolution
events, the occurrences_watermark attribute tells you the number of preceding events with a non-
OK status.
Sensu resets occurrences_watermark to 1 on the frst non-OK event.
Within a sequence
of only OK or only non-OK events, Sensu increments occurrences_watermark when the
occurrences attribute is greater than the preceding occurrences_watermark .

The following table shows the occurrences attributes for a series of example events:

event sequence occurrences occurrences_watermark

1. OK event occurrences: 1 occurrences_watermark: 1

2. OK event occurrences: 2 occurrences_watermark: 2

3. WARNING event occurrences: 1 occurrences_watermark: 1

4. WARNING event occurrences: 2 occurrences_watermark: 2

5. WARNING event occurrences: 3 occurrences_watermark: 3

6. CRITICAL event occurrences: 1 occurrences_watermark: 3

7. CRITICAL event occurrences: 2 occurrences_watermark: 3

8. CRITICAL event occurrences: 3 occurrences_watermark: 3

9. CRITICAL event occurrences: 4 occurrences_watermark: 4

10. OK event occurrences: 1 occurrences_watermark: 4

11. CRITICAL event occurrences: 1 occurrences_watermark: 1

Events specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Events should always be type Event .

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
events in this version of Sensu, api_version should always be
core/v2 .

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type String

example

metadata

description Top-level scope that contains the event namespace and created_by
feld. The metadata map is always at the top level of the check
defnition. This means that in wrapped-json and yaml formats, the
metadata scope occurs outside the spec scope. See the metadata

attributes for details.

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

"type": "Event"

"api_version": "core/v2"

example

spec

description Top-level map that includes the event spec attributes.

required Required for events in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

"metadata": {

 "namespace": "default",

 "created_by": "admin"

}

"spec": {

 "check": {

 "check_hooks": null,

 "command": "/opt/sensu-plugins-

ruby/embedded/bin/metrics-curl.rb -u \"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "silenced": [

 "webserver:*"

],

 "output": "sensu-go-sandbox.curl_timings.time_total

0.005 1552506033\nsensu-go-

sandbox.curl_timings.time_namelookup 0.004",

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "processes": null

 },

 "user": "agent"

 },

Metadata attributes

namespace

description Sensu RBAC namespace that this event belongs to.

required false

type String

default default

example

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-

sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552506033,

 "event_id": "431a0085-96da-4521-863f-c38b480701e9"

}

"namespace": "production"

created_by

description Username of the Sensu user who created the event or last updated the
event. Sensu automatically populates the created_by feld when the
event is created or updated.

required false

type String

example

Spec attributes

timestamp

description Time that the event occurred. In seconds since the Unix epoch.

required false

type Integer

default Time that the event occurred

example

event_id

description Universally unique identifer (UUID) for the event.

required false

type String

"created_by": "admin"

"timestamp": 1522099512

example

entity

description Entity attributes from the originating entity (agent or proxy). If you use the
events API to create a new event referencing an entity that does not
already exist, the sensu-backend will automatically create a proxy entity
when the event is published.

type Map

required true

example

"event_id": "431a0085-96da-4521-863f-c38b480701e9"

"entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

check

description Check defnition used to create the event and information about the
status and history of the event. The check scope includes attributes
described in the event specifcation and the check specifcation.

type Map

required true

example

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804"

 },

 "user": "agent"

}

"check": {

 "check_hooks": null,

 "command": "/opt/sensu-plugins-ruby/embedded/bin/metrics-

curl.rb -u \"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

 "executed": 1552505843,

 "status": 0

 }

],

 "interval": 10,

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "silenced": [

 "webserver:*"

],

 "output": "sensu-go-sandbox.curl_timings.time_total

0.005",

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

metrics

description Metrics collected by the entity in Sensu metric format. See the metric
attributes.

type Map

required false

example

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

}

"metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-

sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

Check attributes

Sensu events include a check scope that contains information about how the event was created,
including any attributes defned in the check specifcation, and information about the event and its
history, including the attributes defned below.

duration

description Command execution time. In seconds.

required false

type Float

example

executed

description Time at which the check request was executed. In seconds since the
Unix epoch.

required false

type Integer

example

history

description Check status history for the last 21 check executions. See history
attributes.

}

"duration": 1.903135228

"executed": 1522100915

required false

type Array

example

issued

description Time that the check request was issued. In seconds since the Unix
epoch.

required false

type Integer

example

last_ok

description Last time that the check returned an OK status (0). In seconds since
the Unix epoch.

required false

type Integer

example

"history": [

 {

 "executed": 1552505983,

 "status": 0

 },

 {

 "executed": 1552505993,

 "status": 0

 }

]

"issued": 1552506033

occurrences

description Number of preceding events with the same status as the current event
(OK, WARNING, CRITICAL, or UNKNOWN). Starting at 1 , the
occurrences attribute increments for events with the same status as

the preceding event and resets whenever the status changes. See Use
event data for more information.

required false

type Integer greater than 0

example

occurrences_wate
rmark

description For incident and resolution events, the number of preceding events with
an OK status (for incident events) or non-OK status (for resolution
events). The occurrences_watermark attribute gives you useful
information when looking at events that change status between OK
(0)and non-OK (1 -WARNING, 2 -CRITICAL, or UNKNOWN).

Sensu resets occurrences_watermark to 1 whenever an event for a
given entity and check transitions between OK and non-OK. Within a
sequence of only OK or only non-OK events, Sensu increments
occurrences_watermark only when the occurrences attribute is

greater than the preceding occurrences_watermark . See Use event
data for more information.

required false

type Integer greater than 0

example

"last_ok": 1552506033

"occurrences": 1

"occurrences_watermark": 1

silenced

description Array of silencing entries that match the event. The silenced attribute
is only present for events if one or more silencing entries matched the
event at time of processing. If the silenced attribute is not present in
an event, the event was not silenced at the time of processing.

required false

type Array

example

output

description Output from the execution of the check command.

required false

type String

example

state

description State of the check: passing (status 0), failing (status other than
0), or fapping . You can use the low_fap_threshold and
high_fap_threshold check attributes to confgure fapping state

detection.

required false

"silenced": [

 "webserver:*"

]

"output": "sensu-go-sandbox.curl_timings.time_total 0.005"

type String

example

status

description Exit status code produced by the check.

Exit status codes other than 0 , 1 , or 2 indicate an “UNKNOWN” or
custom status.

required false

type Integer

example

total_state_chang
e

description Total state change percentage for the check’s history.

required false

type Integer

example

"state": "passing"

0 indicates “OK”

1 indicates “WARNING”

2 indicates “CRITICAL”

"status": 0

"total_state_change": 0

History attributes

executed

description Time at which the check request was executed. In seconds since the
Unix epoch.

required false

type Integer

example

status

description Exit status code produced by the check.

Exit status codes other than 0 , 1 , or 2 indicate an “UNKNOWN” or
custom status.

required false

type Integer

example

Metric attributes

handlers

"executed": 1522100915

0 indicates “OK”

1 indicates “WARNING”

2 indicates “CRITICAL”

"status": 0

description Array of Sensu handlers to use for events created by the check. Each
array item must be a string.

required false

type Array

example

points

description Metric data points, including a name, timestamp, value, and tags. See
points attributes.

required false

type Array

example

"handlers": [

 "infux-db"

]

"points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [

 {

 "name": "response_time_in_ms",

 "value": "101"

 }

],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-

sandbox.curl_timings.time_namelookup",

 "tags": [

 {

 "name": "namelookup_time_in_ms",

 "value": "57"

Points attributes

name

description Metric name in the format $entity.$check.$metric where $entity
is the entity name, $check is the check name, and $metric is the
metric name.

required false

type String

example

tags

description Optional tags to include with the metric. Each element of the array must
be a hash that contains two key value pairs: the name of the tag and the
value . Both values of the pairs must be strings.

required false

type Array

example

 }

],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

"name": "sensu-go-sandbox.curl_timings.time_total"

"tags": [

 {

 "name": "response_time_in_ms",

 "value": "101"

 }

timestamp

description Time at which the metric was collected. In seconds since the Unix epoch.

required false

type Integer

example

value

description Metric value.

required false

type Float

example

Examples

Example check-only event data

]

"timestamp": 1552506033

"value": 0.005

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

YML

 check:

 check_hooks: null

 command: check-cpu.sh -w 75 -c 90

 duration: 1.07055808

 env_vars: null

 executed: 1552594757

 handlers: []

 high_fap_threshold: 0

 history:

 - executed: 1552594757

 status: 0

 interval: 60

 issued: 1552594757

 last_ok: 1552594758

 low_fap_threshold: 0

 metadata:

 name: check-cpu

 namespace: default

 occurrences: 1

 occurrences_watermark: 1

 output: |

 CPU OK - Usage:3.96

 output_metric_format: ""

 output_metric_handlers: []

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: []

 state: passing

 status: 0

 stdin: false

 subdue: null

 subscriptions:

 - linux

 timeout: 0

 total_state_change: 0

 ttl: 0

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1552594641

 metadata:

 name: sensu-centos

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - linux

 - entity:sensu-centos

 system:

 arch: amd64

 hostname: sensu-centos

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::9688:67ca:3d78:ced9/64

 mac: 08:00:27:11:ad:d2

 name: enp0s3

 - addresses:

 - 172.28.128.3/24

 - fe80::a00:27ff:fe6b:c1e9/64

 mac: 08:00:27:6b:c1:e9

 name: enp0s8

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.4.1708

 processes: null

 user: agent

 timestamp: 1552594758

 event_id: 3a5948f3-6ffd-4ea2-a41e-334f4a72ca2f

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "check-cpu.sh -w 75 -c 90",

 "duration": 1.07055808,

 "env_vars": null,

 "executed": 1552594757,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552594757,

 "status": 0

 }

],

 "interval": 60,

 "issued": 1552594757,

 "last_ok": 1552594758,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "check-cpu",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "CPU OK - Usage:3.96\n",

 "output_metric_format": "",

 "output_metric_handlers": [],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

JSON

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "linux"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552594641,

 "metadata": {

 "name": "sensu-centos",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "linux",

 "entity:sensu-centos"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-centos",

 "network": {

 "interfaces": [

 {

 "addresses": [

Example event with check and metric data

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::9688:67ca:3d78:ced9/64"

],

 "mac": "08:00:27:11:ad:d2",

 "name": "enp0s3"

 },

 {

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:fe6b:c1e9/64"

],

 "mac": "08:00:27:6b:c1:e9",

 "name": "enp0s8"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "processes": null

 },

 "user": "agent"

 },

 "timestamp": 1552594758,

 "event_id": "3a5948f3-6ffd-4ea2-a41e-334f4a72ca2f"

 }

}

type: Event

api_version: core/v2

YML

metadata:

 namespace: default

spec:

 check:

 check_hooks: null

 command: /opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u

"http://localhost"

 duration: 0.060790838

 env_vars: null

 executed: 1552506033

 handlers: []

 high_fap_threshold: 0

 history:

 - executed: 1552505833

 status: 0

 - executed: 1552505843

 status: 0

 interval: 10

 issued: 1552506033

 last_ok: 1552506033

 low_fap_threshold: 0

 metadata:

 name: curl_timings

 namespace: default

 occurrences: 1

 occurrences_watermark: 1

 output: |-

 sensu-go-sandbox.curl_timings.time_total 0.005 1552506033

 sensu-go-sandbox.curl_timings.time_namelookup 0.004

 output_metric_format: graphite_plaintext

 output_metric_handlers:

 - infux-db

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: []

 state: passing

 status: 0

 stdin: false

 subdue: null

 subscriptions:

 - entity:sensu-go-sandbox

 timeout: 0

 total_state_change: 0

 ttl: 0

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1552495139

 metadata:

 name: sensu-go-sandbox

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:sensu-go-sandbox

 system:

 arch: amd64

 hostname: sensu-go-sandbox

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::5a94:f67a:1bfc:a579/64

 mac: 08:00:27:8b:c9:3f

 name: eth0

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.5.1804

 processes: null

 user: agent

 metrics:

 handlers:

 - infux-db

 points:

 - name: sensu-go-sandbox.curl_timings.time_total

 tags: []

 timestamp: 1552506033

 value: 0.005

 - name: sensu-go-sandbox.curl_timings.time_namelookup

 tags: []

 timestamp: 1552506033

 value: 0.004

 timestamp: 1552506033

 event_id: 431a0085-96da-4521-863f-c38b480701e9

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "check": {

 "check_hooks": null,

 "command": "/opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u

\"http://localhost\"",

 "duration": 0.060790838,

 "env_vars": null,

 "executed": 1552506033,

 "handlers": [],

 "high_fap_threshold": 0,

 "history": [

 {

 "executed": 1552505833,

 "status": 0

 },

 {

 "executed": 1552505843,

 "status": 0

JSON

 }

],

 "interval": 10,

 "issued": 1552506033,

 "last_ok": 1552506033,

 "low_fap_threshold": 0,

 "metadata": {

 "name": "curl_timings",

 "namespace": "default"

 },

 "occurrences": 1,

 "occurrences_watermark": 1,

 "output": "sensu-go-sandbox.curl_timings.time_total 0.005 1552506033\nsensu-

go-sandbox.curl_timings.time_namelookup 0.004",

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": [],

 "state": "passing",

 "status": 0,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "timeout": 0,

 "total_state_change": 0,

 "ttl": 0

 },

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "processes": null

 },

Example metric-only event

 "user": "agent"

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552506033,

 "event_id": "431a0085-96da-4521-863f-c38b480701e9"

 }

}

type: Event

api_version: core/v2

metadata:

 namespace: default

spec:

 entity:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1552495139

 metadata:

 name: sensu-go-sandbox

YML

 namespace: default

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:sensu-go-sandbox

 system:

 arch: amd64

 hostname: sensu-go-sandbox

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::5a94:f67a:1bfc:a579/64

 mac: 08:00:27:8b:c9:3f

 name: eth0

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.5.1804

 processes: null

 user: agent

 metrics:

 handlers:

 - infux-db

 points:

 - name: sensu-go-sandbox.curl_timings.time_total

 tags: []

 timestamp: 1552506033

 value: 0.005

 - name: sensu-go-sandbox.curl_timings.time_namelookup

 tags: []

 timestamp: 1552506033

 value: 0.004

 timestamp: 1552506033

 event_id: 47ea07cd-1e50-4897-9e6d-09cd39ec5180

{

 "type": "Event",

 "api_version": "core/v2",

 "metadata": {

 "namespace": "default"

 },

 "spec": {

 "entity": {

 "deregister": false,

 "deregistration": {},

 "entity_class": "agent",

 "last_seen": 1552495139,

 "metadata": {

 "name": "sensu-go-sandbox",

 "namespace": "default"

 },

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

],

 "subscriptions": [

 "entity:sensu-go-sandbox"

],

 "system": {

 "arch": "amd64",

 "hostname": "sensu-go-sandbox",

 "network": {

JSON

 "interfaces": [

 {

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

],

 "name": "lo"

 },

 {

 "addresses": [

 "10.0.2.15/24",

 "fe80::5a94:f67a:1bfc:a579/64"

],

 "mac": "08:00:27:8b:c9:3f",

 "name": "eth0"

 }

]

 },

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.5.1804",

 "processes": null

 },

 "user": "agent"

 },

 "metrics": {

 "handlers": [

 "infux-db"

],

 "points": [

 {

 "name": "sensu-go-sandbox.curl_timings.time_total",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.005

 },

 {

 "name": "sensu-go-sandbox.curl_timings.time_namelookup",

 "tags": [],

 "timestamp": 1552506033,

 "value": 0.004

 }

]

 },

 "timestamp": 1552506033,

 "event_id": "47ea07cd-1e50-4897-9e6d-09cd39ec5180"

 }

}

Filters

Sensu event flters are applied when you confgure event handlers to use one or more flters.
Before
executing a handler, the Sensu backend will apply any event flters confgured for the handler to the
event data.
If the flters do not remove the event, the handler will be executed.

The flter analysis performs these steps:

Event flters can be inclusive (only matching events are handled) or exclusive (matching events are not
handled).

As soon as a flter removes an event, no further analysis is performed and the event handler will not be
executed.

Inclusive and exclusive event flters

Event flters can be inclusive ("action": "allow" ; replaces "negate": false in Sensu Core) or
exclusive ("action": "deny" ; replaces "negate": true in Sensu Core).
Confguring a handler to
use multiple inclusive event flters is the equivalent of using an AND query operator (only handle
events if they match the inclusive flter: x AND y AND z).
Confguring a handler to use multiple
exclusive event flters is the equivalent of using an OR operator (only handle events if they don’t
match x OR y OR z).

In inclusive fltering, by setting the event flter defnition attribute "action": "allow" , only events
that match the defned flter expressions are handled.

When the Sensu backend is processing an event, it checks for the defnition of a handler (or
handlers).
Before executing each handler, the Sensu server frst applies any confgured
flters for the handler.

If multiple flters are confgured for a handler, they are executed sequentially.

Filter expressions are compared with event data.

NOTE: Filters specifed in a handler set defnition have no effect.
Filters must be specifed in
individual handler defnitions.

In exclusive fltering, by setting the event flter defnition attribute "action": "deny" , events are
only handled if they do not match the defned flter expressions.

Filter expression comparison

Event flter expressions are compared directly with their event data counterparts.
For inclusive event
flter defnitions ("action": "allow"), matching expressions will result in the flter returning a true
value.
For exclusive event flter defnitions ("action": "deny"), matching expressions will result in the
flter returning a false value, and the event will not pass through the flter.
Event flters that return a
true value will continue to be processed via additional flters (if defned), mutators (if defned), and

handlers.

Filter expression evaluation

When more complex conditional logic is needed than direct flter expression comparison, Sensu event
flters provide support for expression evaluation using Otto.
Otto is an ECMAScript 5 (JavaScript) virtual
machine that evaluates JavaScript expressions provided in an event flter.
There are some caveats to
using Otto: not all of the regular expressions specifed in ECMAScript 5 will work.
See the Otto
README for more details.

Filter assets

Sensu event flters can have assets that are included in their execution context.
When valid assets are
associated with an event flter, Sensu evaluates any fles it fnds that have a “.js” extension before
executing the flter.
The result of evaluating the scripts is cached for a given asset set for the sake of
performance.
For an example of how to implement an event flter as an asset, see Reduce alert fatigue.

Built-in event flters

Sensu includes built-in event flters to help you customize event pipelines for metrics and alerts.
To start
using built-in event flters, see Send Slack alerts and Plan maintenance.

Built-in flter: is_incident

NOTE: Sensu Go does not include the built-in occurrence-based event flter in Sensu Core 1.x, but
you can replicate its functionality with the repeated events flter defnition.

https://github.com/robertkrimen/otto
https://github.com/robertkrimen/otto/blob/master/README.markdown
https://github.com/robertkrimen/otto/blob/master/README.markdown

The is_incident event flter is included in every installation of the Sensu backend.
You can use the
is_incident flter to allow only high-priority events through a Sensu pipeline.
For example, you can use
the is_incident flter to reduce noise when sending notifcations to Slack.
When applied to a handler, the
is_incident flter allows warning ("status": 1), critical ("status": 2), other (unknown or custom
status), and resolution events to be processed.

To use the is_incident event flter, include is_incident in the handler confguration flters array:

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 flters:

 - is_incident

 handlers: []

 runtime_assets: []

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

JSON

The is_incident event flter applies the following fltering logic:

status allow discard

0

1

2

other (unknown or
custom status)

resolution event
such as 1 –> 0
or 3 –> 0

Built-in flter: not_silenced

Sensu silencing lets you suppress execution of event handlers on an on-demand basis so you can
quiet incoming alerts and plan maintenance.

To allow silencing for an event handler, add not_silenced to the handler confguration flters
array:

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

YML

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 flters:

 - is_incident

 - not_silenced

 handlers: []

 runtime_assets: []

 timeout: 0

 type: pipe

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

JSON

When applied to a handler confguration, the not_silenced event flter silences events that include the
silenced attribute.
The handler in the example above uses both the not_silenced and is_incident

event flters, preventing low-priority and silenced events from being sent to Slack.

Built-in flter: has_metrics

The has_metrics event flter is included in every installation of the Sensu backend.
When applied to a
handler, the has_metrics flter allows only events that contain Sensu metrics to be processed.
You can
use the has_metrics flter to prevent handlers that require metrics from failing in case of an error in
metric collection.

To use the has_metrics event flter, include has_metrics in the handler confguration flters array:

 "timeout": 0,

 "type": "pipe"

 }

}

type: Handler

api_version: core/v2

metadata:

 name: infux-db

 namespace: default

spec:

 command: sensu-infuxdb-handler -d sensu

 env_vars:

 - INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086

 - INFLUXDB_USER=sensu

 - INFLUXDB_PASSWORD=password

 flters:

 - has_metrics

 handlers: []

 runtime_assets: []

 timeout: 0

 type: pipe

YML

JSON

When applied to a handler confguration, the has_metrics event flter allows only events that include a
metrics scope.

Build event flter expressions

You can write custom event flter expressions as Sensu query expressions using the event data
attributes described in this section.
For more information about event attributes, see the event
reference.

Syntax quick reference

operator description

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "infux-db",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-infuxdb-handler -d sensu",

 "env_vars": [

 "INFLUXDB_ADDR=http://infuxdb.default.svc.cluster.local:8086",

 "INFLUXDB_USER=sensu",

 "INFLUXDB_PASSWORD=password"

],

 "flters": [

 "has_metrics"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

=== / !== Identity operator / Nonidentity operator

== / != Equality operator / Inequality operator

&& / || Logical AND / Logical OR

< / > Less than / Greater than

<= / >= Less than or equal to / Greater than or equal to

Event attributes available to flters

attribute ty
p
e

description

event.has_check B
o
ol
e
a
n

Returns true if the event contains check data

event.has_metric

s

B
o
ol
e
a
n

Returns true if the event contains metrics

event.is_inciden

t

B
o
ol
e
a
n

Returns true for critical alerts (status 2), warnings (status 1),
and resolution events (status 0 transitioning from status 1 or
2)

event.is_resoluti

on

B
o
ol
e
a

Returns true if the event status is OK (0) and the previous event
was of a non-zero status

n

event.is_silence

d

B
o
ol
e
a
n

Returns true if the event matches an active silencing entry

event.timestamp int
e
g
er

Time that the event occurred in seconds since the Unix epoch

Check attributes available to flters

attribute t
y
p
e

description

event.check.annot

ations

m
a
p

Custom annotations applied to the check

event.check.comma

nd

st
ri
n
g

The command executed by the check

event.check.cron st
ri
n
g

Check execution schedule using cron syntax

event.check.disca

rd_output

B
o
ol
e
a
n

Whether the check is confgured to discard check output from
event data

event.check.durat

ion

f
o
at

Command execution time in seconds

event.check.env_v

ars

ar
ra
y

Environment variables used with command execution

event.check.execu

ted

in
te
g
er

Time that the check was executed in seconds since the Unix epoch

event.check.handl

ers

ar
ra
y

Sensu event handlers assigned to the check

event.check.high_

fap_threshold

in
te
g
er

The check’s fap detection high threshold in percent state change

event.check.histo

ry

ar
ra
y

Check status history for the last 21 check executions

event.check.hook

s

ar
ra
y

Check hook execution data

event.check.inter

val

in
te
g
er

The check execution frequency in seconds

event.check.issue

d

in
te
g
er

Time that the check request was issued in seconds since the Unix
epoch

event.check.label

s

m
a
p

Custom labels applied to the check

event.check.last_

ok

in
te
g
er

The last time that the check returned an OK status (0) in seconds
since the Unix epoch

event.check.low_f

ap_threshold

in
te
g
er

The check’s fap detection low threshold in percent state change

event.check.max_o

utput_size

in
te
g
er

Maximum size of stored check outputs in bytes

event.check.name st
ri
n
g

Check name

event.check.occur

rences

in
te
g
er

The number of preceding events with the same status as the
current event

event.check.occur

rences_watermark

in
te
g
er

For resolution events, the number of preceding events with a non-
OK status

event.check.outpu

t

st
ri
n
g

The output from the execution of the check command

event.check.outpu

t_metric_format

st
ri
n
g

The metric format generated by the check command:
nagios_perfdata , graphite_plaintext , infuxdb_line , or
opentsdb_line

event.check.outpu

t_metric_handlers

ar
ra
y

Sensu metric handlers assigned to the check

event.check.proxy

_entity_name

st
ri
n
g

The entity name, used to create a proxy entity for an external
resource

event.check.proxy

_requests

m
a
p

Proxy request confguration

event.check.publi

sh

B
o
ol
e
a
n

Whether the check is scheduled automatically

event.check.round

_robin

B
o
ol
e
a
n

Whether the check is confgured to be executed in a round-robin
style

event.check.runti

me_assets

ar
ra
y

Sensu assets used by the check

event.check.stat

e

st
ri
n
g

The state of the check: passing (status 0), failing (status
other than 0), or fapping

event.check.statu

s

in
te
g
er

Exit status code produced by the check: 0 (OK), 1 (warning),
2 (critical), or other status (unknown or custom status)

event.check.stdi

n

B
o
ol
e
a
n

Whether the Sensu agent writes JSON-serialized entity and check
data to the command process’ STDIN

event.check.subsc

riptions

ar
ra
y

Subscriptions that the check belongs to

event.check.timeo

ut

in
te
g
er

The check execution duration timeout in seconds

event.check.total

_state_change

in
te
g
er

The total state change percentage for the check’s history

event.check.ttl in
te
g
er

The time-to-live (TTL) until the event is considered stale, in
seconds

event.metrics.han

dlers

ar
ra
y

Sensu metric handlers assigned to the check

event.metrics.poi

nts

ar
ra
y

Metric data points including a name, timestamp, value, and tags

Entity attributes available to flters

attribute typ
e

description

event.entity.anno

tations

map Custom annotations assigned to the entity

event.entity.dere

gister

Bool
ean

Whether the agent entity should be removed when it stops
sending keepalive messages

event.entity.dere

gistration

map A map that contains a handler name for use when an entity is
deregistered

event.entity.enti strin The entity type: usually agent or proxy

ty_class g

event.entity.labe

ls

map Custom labels assigned to the entity

event.entity.last

_seen

integ
er

Timestamp the entity was last seen in seconds since the Unix
epoch

event.entity.nam

e

strin
g

Entity name

event.entity.reda

ct

arra
y

List of items to redact from log messages

event.entity.subs

criptions

arra
y

List of subscriptions assigned to the entity

event.entity.syst

em

map Information about the entity’s system

event.entity.syst

em.arch

strin
g

The entity’s system architecture

event.entity.syst

em.hostname

strin
g

The entity’s hostname

event.entity.syst

em.network

map The entity’s network interface list

event.entity.syst

em.os

strin
g

The entity’s operating system

event.entity.syst

em.platform

strin
g

The entity’s operating system distribution

event.entity.syst

em.platform_famil

y

strin
g

The entity’s operating system family

event.entity.syst

em.platform_versio

n

strin
g

The entity’s operating system version

event.entity.use

r

strin
g

Sensu RBAC username used by the agent entity

Event flter specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Event flters should always be type EventFilter .

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
event flters in this version of Sensu, this attribute should always be
core/v2 .

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the event flter, including name ,

"type": "EventFilter"

"api_version": "core/v2"

namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

flter defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. See metadata
attributes for details.

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the event flter spec attributes.

required Required for flter defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

"metadata": {

 "name": "flter-weekdays-only",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

"spec": {

 "action": "allow",

 "expressions": [

 "event.entity.namespace == 'production'"

],

 "runtime_assets": []

}

Metadata attributes

name

description Unique string used to identify the event flter. Filter names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each flter must have a unique name within its namespace.

required true

type String

example

namespace

description Sensu RBAC namespace that the event flter belongs to.

required false

type String

default default

example

created_by

description Username of the Sensu user who created the flter or last updated the
flter. Sensu automatically populates the created_by feld when the
flter is created or updated.

"name": "flter-weekdays-only"

"namespace": "production"

https://regex101.com/r/zo9mQU/2

required false

type String

example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

"created_by": "admin"

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

action

description Action to take with the event if the event flter expressions match. See
Inclusive and exclusive event flters for more information.

required true

type String

allowed values allow , deny

example

expressions

description Event flter expressions to be compared with event data. You can
reference event metadata without including the metadata scope (for
example, event.entity.namespace).

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

"action": "allow"

required true

type Array

example

runtime_assets

description Assets to apply to the event flter’s execution context. JavaScript fles in
the lib directory of the asset will be evaluated.

required false

type Array of string

default []

example

Event flter examples

Minimum required flter attributes

"expressions": [

 "event.check.team == 'ops'"

]

"runtime_assets": ["underscore"]

type: EventFilter

api_version: core/v2

metadata:

 name: flter_minimum

 namespace: default

spec:

 action: allow

 expressions:

 - event.check.occurrences == 1

YML

Handle production events

The following event flter allows handling for only events with a custom entity label "environment":
"production" :

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "flter_minimum",

 "namespace": "default"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

]

 }

}

JSON

type: EventFilter

api_version: core/v2

metadata:

 name: production_flter

 namespace: default

spec:

 action: allow

 expressions:

 - event.entity.labels['environment'] == 'production'

YML

{

 "type": "EventFilter",

JSON

Handle non-production events

The following event flter discards events with a custom entity label "environment": "production" ,
allowing handling only for events without an environment label or events with environment set to
something other than production .

 "api_version": "core/v2",

 "metadata": {

 "name": "production_flter",

 "namespace": "default"

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.entity.labels['environment'] == 'production'"

]

 }

}

NOTE: action is deny , so this is an exclusive event flter.
If evaluation returns false, the event is
handled.

type: EventFilter

api_version: core/v2

metadata:

 name: not_production

 namespace: default

spec:

 action: deny

 expressions:

 - event.entity.labels['environment'] == 'production'

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

JSON

Handle state change only

This example demonstrates how to use the state_change_only inclusive event flter to reproduce
the behavior of a monitoring system that alerts only on state change:

 "name": "not_production",

 "namespace": "default"

 },

 "spec": {

 "action": "deny",

 "expressions": [

 "event.entity.labels['environment'] == 'production'"

]

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: state_change_only

 namespace: default

spec:

 action: allow

 expressions:

 - event.check.occurrences == 1

 runtime_assets: []

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "state_change_only",

 "namespace": "default",

 "labels": null,

JSON

Handle repeated events

In this example, the flter_interval_60_hourly event flter will match event data with a check
interval of 60 seconds AND an occurrences value of 1 (the frst occurrence) OR any
occurrences value that is evenly divisible by 60 via a modulo operator calculation (calculating the

remainder after dividing occurrences by 60):

 "annotations": null

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.occurrences == 1"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: flter_interval_60_hourly

 namespace: default

spec:

 action: allow

 expressions:

 - event.check.interval == 60

 - event.check.occurrences == 1 || event.check.occurrences % 60 == 0

 runtime_assets: []

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

JSON

https://en.wikipedia.org/wiki/Modulo_operation

This example will apply the same logic as the previous example but for checks with a 30-second
interval :

 "name": "flter_interval_60_hourly",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.interval == 60",

 "event.check.occurrences == 1 || event.check.occurrences % 60 == 0"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: flter_interval_30_hourly

 namespace: default

spec:

 action: allow

 expressions:

 - event.check.interval == 30

 - event.check.occurrences == 1 || event.check.occurrences % 120 == 0

 runtime_assets: []

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

JSON

Handle events during offce hours only

This event flter evaluates the event timestamp to determine if the event occurred between 9 AM and 5
PM UTC on a weekday.
Remember that action is equal to allow , so this is an inclusive event flter.
I
evaluation returns false, the event will not be handled.

 "name": "flter_interval_30_hourly",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "event.check.interval == 30",

 "event.check.occurrences == 1 || event.check.occurrences % 120 == 0"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: nine_to_fver

 namespace: default

spec:

 action: allow

 expressions:

 - weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5

 - hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17

 runtime_assets: []

YML

{

JSON

Use JavaScript libraries with Sensu flters

You can include JavaScript libraries in their event flter execution context with assets.
For instance, if
you package underscore.js into a Sensu asset, you can use functions from the underscore library for
flter expressions:

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "nine_to_fver",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "allow",

 "expressions": [

 "weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5",

 "hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17"

],

 "runtime_assets": []

 }

}

type: EventFilter

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: deny_if_failure_in_history

 namespace: default

spec:

 action: deny

 expressions:

 - _.reduce(event.check.history, function(memo, h) { return (memo || h.status !=

 0); })

 runtime_assets:

 - underscore

YML

{

 "type": "EventFilter",

 "api_version": "core/v2",

 "metadata": {

 "name": "deny_if_failure_in_history",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "action": "deny",

 "expressions": [

 "_.reduce(event.check.history, function(memo, h) { return (memo || h.status !=

0); })"

],

 "runtime_assets": ["underscore"]

 }

}

JSON

Handlers

Handlers are actions the Sensu backend executes on events.
Several types of handlers are available.
The most common are pipe handlers, which work similarly to checks and enable Sensu to interact
with almost any computer program via standard streams.

Discover, download, and share Sensu handlers assets using Bonsai, the Sensu asset hub.
Read Install
plugins with assets to get started.

Pipe handlers

Pipe handlers are external commands that can consume event data via STDIN.

Pipe handler command

Pipe handler defnitions include a command attribute, which is a command for the Sensu backend to
execute.

Pipe handler command arguments

Pipe handler command attributes may include command line arguments for controlling the behavior of
the command executable.

TCP/UDP handlers

TCP and UDP handlers enable Sensu to forward event data to arbitrary TCP or UDP sockets for
external services to consume.

Pipe handlers send event data into arbitrary commands via STDIN

TCP/UDP handlers send event data to a remote socket

Handler sets group event handlers and streamline groups of actions to execute for certain
types of events (also called “set handlers”)

https://en.wikipedia.org/wiki/Standard_streams
https://bonsai.sensu.io/

Handler sets

Handler set defnitions allow you to use a single named handler set to refer to groups of handlers
(individual collections of actions to take on event data).

Keepalive event handlers

Sensu keepalives are the heartbeat mechanism used to ensure that all registered Sensu agents are
operational and can reach the Sensu backend.
You can connect keepalive events to your monitoring
workfows using a keepalive handler.
Sensu looks for an event handler named keepalive and
automatically uses it to process keepalive events.

Suppose you want to receive Slack notifcations for keepalive alerts, and you already have a Slack
handler set up to process events.
To process keepalive events using the Slack pipeline, create a
handler set named keepalive and add the slack handler to the handlers array.
The resulting
keepalive handler set confguration will look like this example:

NOTE: Attributes defned on handler sets do not apply to the handlers they include.
For example,
flters and mutator attributes defned in a handler set will have no effect on handlers.

type: Handler

api_version: core/v2

metadata:

 name: keepalive

 namespace: default

spec:

 handlers:

 - slack

 type: set

YML

{

 "type": "Handler",

 "api_version": "core/v2",

JSON

You can also use the keepalive-handlers fag to send keepalive events to any handler you have
confgured.
If you do not specify a keepalive handler with the keepalive-handlers fag, the Sensu
backend will use the default keepalive handler and create an event in sensuctl and the Sensu web
UI.

Handler specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Handlers should always be type Handler .

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

api_version

 "metadata": {

 "name": "keepalive",

 "namespace": "default"

 },

 "spec": {

 "type": "set",

 "handlers": [

 "slack"

]

 }

}

"type": "Handler"

description Top-level attribute that specifes the Sensu API group and version. For
handlers in this version of Sensu, the api_version should always be
core/v2 .

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the handler that includes name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

handler defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. See
metadata attributes for details.

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

"api_version": "core/v2"

"metadata": {

 "name": "handler-slack",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel": "#monitoring"

 }

}

spec

description Top-level map that includes the handler spec attributes.

required Required for handler defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Metadata attributes

name

description Unique string used to identify the handler. Handler names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each handler must have a unique name within its namespace.

required true

type String

example

"spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 },

 "metadata": {

 "name": "tcp_handler",

 "namespace": "default"

 }

}

"name": "handler-slack"

https://regex101.com/r/zo9mQU/2

namespace

description Sensu RBAC namespace that the handler belongs to.

required false

type String

default default

example

created_by

description Username of the Sensu user who created the handler or last updated the
handler. Sensu automatically populates the created_by feld when the
handler is created or updated.

required false

type String

example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

"namespace": "production"

"created_by": "admin"

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

type

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

description Handler type.

required true

type String

allowed values pipe , tcp , udp & set

example

flters

description Array of Sensu event flters (by names) to use when fltering events for
the handler. Each array item must be a string.

required false

type Array

example

mutator

description Name of the Sensu event mutator to use to mutate event data for the
handler.

required false

type String

example

"type": "pipe"

"flters": ["occurrences", "production"]

"mutator": "only_check_output"

timeout

description Handler execution duration timeout (hard stop). In seconds. Only used by
pipe , tcp , and udp handler types.

required false

type Integer

default 60 (for tcp and udp handlers)

example

command

description Handler command to be executed. The event data is passed to the
process via STDIN .

required true (if type equals pipe)

type String

example

env_vars

description Array of environment variables to use with command execution.

"timeout": 30

NOTE: The command attribute is only supported for pipe handlers
(i.e. handlers confgured with "type": "pipe").

"command": "/etc/sensu/plugins/pagerduty.go"

NOTE: The env_vars attribute is only supported for pipe handlers
(i.e. handlers confgured with "type": "pipe").

required false

type Array

example

socket

description Scope for socket defnition used to confgure the TCP/UDP handler
socket.

required true (if type equals tcp or udp)

type Hash

example

handlers

description Array of Sensu event handlers (by their names) to use for events using
the handler set. Each array item must be a string.

required true (if type equals set)

"env_vars":

["API_KEY=0428d6b8nb51an4d95nbe28nf90865a66af5"]

NOTE: The socket attribute is only supported for TCP/UDP
handlers (i.e. handlers confgured with "type": "tcp" or "type":
"udp").

"socket": {}

NOTE: The handlers attribute is only supported for handler sets
(i.e. handlers confgured with "type": "set").

type Array

example

runtime_assets

description Array of Sensu assets (by names) required at runtime to execute the
command

required false

type Array

example

secrets

description Array of the name/secret pairs to use with command execution.

required false

type Array

example

"handlers": ["pagerduty", "email", "ec2"]

"runtime_assets": ["ruby-2.5.0"]

"secrets": [

 {

 "name": "ANSIBLE_HOST",

 "secret": "sensu-ansible-host"

 },

 {

 "name": "ANSIBLE_TOKEN",

 "secret": "sensu-ansible-token"

 }

]

socket attributes

host

description Socket host address (IP or hostname) to connect to.

required true

type String

example

port

description Socket port to connect to.

required true

type Integer

example

secrets attributes

name

description Name of the secret defned in the executable command. Becomes the
environment variable presented to the check. See Use secrets
management in Sensu for more information.

required true

type String

"host": "8.8.8.8"

"port": 4242

example

secret

description Name of the Sensu secret resource that defnes how to retrieve the
secret.

required true

type String

example

Handler examples

Minimum required pipe handler attributes

"name": "ANSIBLE_HOST"

"secret": "sensu-ansible-host"

type: Handler

api_version: core/v2

metadata:

 name: pipe_handler_minimum

 namespace: default

spec:

 command: command-example

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "pipe_handler_minimum",

JSON

Minimum required TCP/UDP handler attributes

This example demonstrates a tcp type handler.
Change the type from tcp to udp to create the
minimum confguration for a udp type handler.

 "namespace": "default"

 },

 "spec": {

 "command": "command-example",

 "type": "pipe"

 }

}

type: Handler

api_version: core/v2

metadata:

 name: tcp_udp_handler_minimum

 namespace: default

spec:

 socket:

 host: 10.0.1.99

 port: 4444

 type: tcp

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "tcp_udp_handler_minimum",

 "namespace": "default"

 },

 "spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

JSON

Send Slack alerts

This handler will send alerts to a channel named monitoring with the confgured webhook URL,
using the handler-slack executable command.

 }

 }

}

type: Handler

api_version: core/v2

metadata:

 name: slack

 namespace: default

spec:

 command: sensu-slack-handler --channel '#monitoring'

 env_vars:

 -

SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXX

XXXXXXXXXXX

 flters:

 - is_incident

 - not_silenced

 handlers: []

 runtime_assets: []

 timeout: 0

 type: pipe

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "slack",

 "namespace": "default"

 },

 "spec": {

JSON

Send event data to a TCP socket

This handler will send event data to a TCP socket (10.0.1.99:4444) and timeout if an
acknowledgement (ACK) is not received within 30 seconds.

 "command": "sensu-slack-handler --channel '#monitoring'",

 "env_vars": [

"SLACK_WEBHOOK_URL=https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXX

XXXXXXXXXXXX"

],

 "flters": [

 "is_incident",

 "not_silenced"

],

 "handlers": [],

 "runtime_assets": [],

 "timeout": 0,

 "type": "pipe"

 }

}

type: Handler

api_version: core/v2

metadata:

 name: tcp_handler

 namespace: default

spec:

 socket:

 host: 10.0.1.99

 port: 4444

 type: tcp

YML

{

 "type": "Handler",

 "api_version": "core/v2",

JSON

Send event data to a UDP socket

This handler will forward event data to a UDP socket (10.0.1.99:4444) and timeout if an
acknowledgement (ACK) is not received within 30 seconds.

 "metadata": {

 "name": "tcp_handler",

 "namespace": "default"

 },

 "spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 }

 }

}

type: Handler

api_version: core/v2

metadata:

 name: udp_handler

 namespace: default

spec:

 socket:

 host: 10.0.1.99

 port: 4444

 type: udp

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "udp_handler",

 "namespace": "default"

 },

JSON

Send registration events

If you confgure a Sensu event handler named registration , the Sensu backend will create and
process an event for the agent registration, apply any confgured flters and mutators, and execute the
registration handler.

You can use registration events to execute one-time handlers for new Sensu agents to update an
external confguration management database (CMDB).
This example demonstrates how to confgure a
registration event handler to create or update a ServiceNow incident or event with the Sensu Go
ServiceNow Handler:

 "spec": {

 "type": "udp",

 "socket": {

 "host": "10.0.1.99",

 "port": 4444

 }

 }

}

type: Handler

api_version: core/v2

metadata:

 name: registration

 namespace: default

spec:

 handlers:

 - servicenow-cmdb

 type: set

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "registration",

 "namespace": "default"

JSON

https://github.com/sensu/sensu-servicenow-handler
https://github.com/sensu/sensu-servicenow-handler

The agent reference describes agent registration and registration events in more detail.

Execute multiple handlers

The following example handler will execute three handlers: slack , tcp_handler , and
udp_handler .

 },

 "spec": {

 "handlers": [

 "servicenow-cmdb"

],

 "type": "set"

 }

}

type: Handler

api_version: core/v2

metadata:

 name: notify_all_the_things

 namespace: default

spec:

 handlers:

 - slack

 - tcp_handler

 - udp_handler

 type: set

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "notify_all_the_things",

 "namespace": "default"

 },

JSON

Handler with secret

Learn more about secrets management for your Sensu confguration in the secrets and secrets
providers references.

 "spec": {

 "type": "set",

 "handlers": [

 "slack",

 "tcp_handler",

 "udp_handler"

]

 }

}

type: Handler

api_version: core/v2

metadata:

 name: ansible-tower

 namespace: ops

spec:

 type: pipe

 command: sensu-ansible-handler -h $ANSIBLE_HOST -t $ANSIBLE_TOKEN

 secrets:

 - name: ANSIBLE_HOST

 secret: sensu-ansible-host

 - name: ANSIBLE_TOKEN

 secret: sensu-ansible-token

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "ansible-tower",

 "namespace": "ops"

JSON

 },

 "spec": {

 "type": "pipe",

 "command": "sensu-ansible-handler -h $ANSIBLE_HOST -t $ANSIBLE_TOKEN",

 "secrets": [

 {

 "name": "ANSIBLE_HOST",

 "secret": "sensu-ansible-host"

 },

 {

 "name": "ANSIBLE_TOKEN",

 "secret": "sensu-ansible-token"

 }

]

 }

}

Health

Use Sensu’s health API to make sure your backend is up and running and check the health of your
etcd cluster members and PostgreSQL datastore resources.

A request to the health endpoint retrieves a JSON map with health data for your Sensu instance.

Healthy cluster example

In this example, all cluster members are healthy.

curl -X GET \

http://127.0.0.1:8080/health

HTTP/1.1 200 OK

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 9861478486968594000,

 "MemberIDHex": "88db026f7feb72b4",

 "Name": "backend01",

 "Err": "",

 "Healthy": true

 },

 {

 "MemberID": 16828500076473182000,

 "MemberIDHex": "e98ad7a888d16bd6",

 "Name": "backend02",

 "Err": "",

 "Healthy": true

 },

 {

 "MemberID": 848052855499371400,

 "MemberIDHex": "bc4e39432cbb36d",

 "Name": "backend03",

Unhealthy cluster member example

In this example, one cluster member is unhealthy: it cannot communicate with the other cluster
members.

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 17701109828877156000,

 "member_id": 16828500076473182000,

 "raft_term": 42

 }

},

 "PostgresHealth": [

 {

 "Name": "my-frst-postgres",

 "Active": true,

 "Healthy": true

 },

 {

 "Name": "my-other-postgres",

 "Active": false,

 "Healthy": false

 }

]

}

curl -X GET \

http://127.0.0.1:8080/health

HTTP/1.1 200 OK

{

 "Alarms": null,

 "ClusterHealth": [

 {

 "MemberID": 9861478486968594000,

 "MemberIDHex": "88db026f7feb72b4",

 "Name": "backend01",

 "Err": "context deadline exceeded",

 "Healthy": false

 },

 {

 "MemberID": 16828500076473182000,

 "MemberIDHex": "e98ad7a888d16bd6",

 "Name": "backend02",

 "Err": "",

 "Healthy": true

 },

 {

 "MemberID": 848052855499371400,

 "MemberIDHex": "bc4e39432cbb36d",

 "Name": "backend03",

 "Err": "",

 "Healthy": true

 }

],

 "Header": {

 "cluster_id": 17701109828877156000,

 "member_id": 16828500076473182000,

 "raft_term": 42

 }

},

 "PostgresHealth": [

 {

 "Name": "my-frst-postgres",

 "Active": true,

 "Healthy": true

 },

 {

 "Name": "my-other-postgres",

 "Active": false,

 "Healthy": false

 }

]

}

NOTE: The HTTP response codes for the health endpoint indicate whether your request reached

Health specifcation

Top-level attributes

Alarms

description Top-level attribute that lists all active etcd alarms.

required true

type String

example

ClusterHealth

description Top-level attribute that includes health status information for every etcd
cluster member.

required true

type Map of key-value pairs

example

Sensu rather than the health of your Sensu instance.
In this example, even though the cluster is
unhealthy, the request itself reached Sensu, so the response code is 200 OK .
To determine the
health of your Sensu instance, you must process the JSON response body.
The health specifcation
describes each attribute in the response body.

"Alarms": null

"ClusterHealth": [

 {

 "MemberID": 2882886652148554927,

 "MemberIDHex": "8923110df66458af",

 "Name": "default",

 "Err": "",

 "Healthy": true

Header

description Top-level map that includes the response header for the entire cluster
response.

required true

type Map of key-value pairs

example

PostgresHealth

description Top-level map that includes health information for PostgreSQL
resources. If your Sensu instance is not confgured to use a PostgreSQL
datastore, the health payload will not include PostgresHealth .

type Map of key-value pairs

example

 }

]

"Header": {

 "cluster_id": 4255616344056076734,

 "member_id": 2882886652148554927,

 "raft_term": 26

 }

"PostgresHealth": [

 {

 "Name": "postgres-test",

 "Active": false,

 "Healthy": false

 },

 {

 "Name": "postgres",

 "Active": true,

 "Healthy": true

ClusterHealth attributes

Member ID

description The etcd cluster member’s ID.

required true

type Integer

example

MemberIDHex

description The hexadecimal representation of the etcd cluster member’s ID.

required true

type String

example

Name

description The etcd cluster member’s name.

required true

type String

 }

]

"MemberID": 2882886652148554927

"MemberIDHex": "8923110df66458af"

example

Err

description Any errors Sensu encountered while checking the etcd cluster member’s
health.

required true

type String

example

Healthy

description true if the etcd cluster member is connected. Otherwise, false .

required true

type Boolean

default false

example

Header attributes

cluster_id

description The etcd cluster ID.

required true

Name": "default"

"Err": ""

"Healthy": true

type Integer

example

member_id

description The etcd cluster member’s ID.

required true

type Integer

example

raft_term

description The etcd cluster member’s raft term.

required true

type Integer

example

PostgresHealth attributes

Name

description The PostgreSQL confguration resource. Sensu retrieves the Name from
datastore metadata.

required true

"cluster_id": 4255616344056076734

"member_id": 2882886652148554927

"raft_term": 26

https://etcd.io/docs/latest/learning/api/#response-header

type String

example

Active

description true if the datastore is confgured to use the PostgreSQL
confguration. Otherwise, false .

required true

type Boolean

default false

example

Healthy

description true if the PostgreSQL datastore is connected and can query the
events table. Otherwise, false .

required true

type Boolean

default false

example

"Name": "postgres"

"Active": true

"Healthy": true

Hooks

Hooks are reusable commands the agent executes in response to a check result before creating a
monitoring event.
You can create, manage, and reuse hooks independently of checks.
Hooks enrich
monitoring event context by gathering relevant information based on the exit status code of a check
(ex: 1).
Hook commands can also receive JSON serialized Sensu client data via STDIN .

Check response types

Each type of response (ex: non-zero) can contain one or more hooks and correspond to one or
more exit status codes. Hooks are executed in order of precedence, based on their type:

1. 1 to 255
2. ok

3. warning

4. critical

5. unknown

6. non-zero

You can assign one or more hooks to a check in the check defnition.
See the check specifcation to
confgure the check_hooks attribute.

Check hooks

Sensu captures the hook command output, status, executed timestamp, and duration and publishes
them in the resulting event.

You can use sensuctl to view hook command data:

sensuctl event info entity_name check_name --format yaml

type: Event

api_version: core/v2

Hook specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Hooks should always be type HookConfg .

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

api_version

metadata:

 namespace: default

spec:

 check:

 ...

 hooks:

 - command: df -hT / | grep '/'

 duration: 0.002904412

 executed: 1559948435

 issued: 0

 metadata:

 name: root_disk

 namespace: default

 output: "/dev/mapper/centos-root xfs 41G 1.6G 40G 4% /\n"

 status: 0

 stdin: false

 timeout: 60

"type": "HookConfg"

description Top-level attribute that specifes the Sensu API group and version. For
hooks in this version of Sensu, the api_version should always be
core/v2 .

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the hook that includes name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

hook defnition. This means that in wrapped-json and yaml formats,
the metadata scope occurs outside the spec scope. See metadata
attributes for details.

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

"api_version": "core/v2"

"metadata": {

 "name": "process_tree",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

spec

description Top-level map that includes the hook spec attributes.

required Required for hook defnitions in wrapped-json or yaml format for use
with sensuctl create .

type Map of key-value pairs

example

Metadata attributes

name

description Unique string used to identify the hook. Hook names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each hook must have a unique name within its namespace.

required true

type String

example

namespace

description The Sensu RBAC namespace that this hook belongs to.

required false

"spec": {

 "command": "ps aux",

 "timeout": 60,

 "stdin": false

}

"name": "process_tree"

https://regex101.com/r/zo9mQU/2

type String

default default

example

created_by

description Username of the Sensu user who created the hook or last updated the
hook. Sensu automatically populates the created_by feld when the
hook is created or updated.

required false

type String

example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

"namespace": "production"

"created_by": "admin"

default null

example

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

command

description Hook command to be executed.

required true

type String

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

example

timeout

description Hook execution duration timeout (hard stop). In seconds.

required false

type Integer

default 60

example

stdin

description If true , the Sensu agent writes JSON serialized Sensu entity and
check data to the command process STDIN . Otherwise, false . The
command must expect the JSON data via STDIN, read it, and close
STDIN. This attribute cannot be used with existing Sensu check plugins
or Nagios plugins because the Sensu agent will wait indefnitely for the
hook process to read and close STDIN.

required false

type Boolean

default false

example

runtime_assets

"command": "sudo /etc/init.d/nginx start"

"timeout": 30

"stdin": true

description Array of Sensu assets (by their names) required at runtime for execution
of the command .

required false

type Array

example

Examples

Rudimentary auto-remediation

You can use hooks for rudimentary auto-remediation tasks, such as starting a process that is no longer
running.

"runtime_assets": ["log-context"]

NOTE: Use caution with this approach. Hooks used for auto-remediation will run without regard to
the number of event occurrences.

type: HookConfg

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: restart_nginx

 namespace: default

spec:

 command: sudo systemctl start nginx

 stdin: false

 timeout: 60

YML

{

JSON

Capture the process tree

You can use hooks to automate data gathering for incident triage, For example, you can use a check
hook to capture the process tree when a process is not running.

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "restart_nginx",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "sudo systemctl start nginx",

 "timeout": 60,

 "stdin": false

 }

}

type: HookConfg

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: process_tree

 namespace: default

spec:

 command: ps aux

 stdin: false

 timeout: 60

 runtime_assets: null

YML

{

 "type": "HookConfg",

 "api_version": "core/v2",

JSON

Check hook using token substitution

You can create check hooks that use token substitution so you can fne-tune check attributes on a per-
entity level and re-use the check defnition.

 "metadata": {

 "name": "process_tree",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "ps aux",

 "timeout": 60,

 "stdin": false,

 "runtime_assets": null

 }

}

NOTE: Token substitution uses entity-scoped metadata, so make sure to set labels at the entity
level.

type: HookConfg

api_version: core/v2

metadata:

 annotations: null

 labels:

 foo: bar

 name: tokensub

 namespace: default

spec:

 command: tokensub {{ .labels.foo }}

 stdin: false

 timeout: 60

YML

{

JSON

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "annotations": null,

 "labels": {

 "foo": "bar"

 },

 "name": "tokensub",

 "namespace": "default"

 },

 "spec": {

 "command": "tokensub {{ .labels.foo }}",

 "stdin": false,

 "timeout": 60

 }

}

License

Activate your commercial license

If you haven’t already, install the backend, agent, and sensuctl and confgure sensuctl.

Log in to your Sensu account at account.sensu.io and click Download license to download your
license fle.

With the license fle downloaded, you can activate your license with sensuctl or the license API.

To activate your license with sensuctl:

sensuctl create --fle sensu_license.json

https://account.sensu.io/

Use sensuctl to view your license details at any time.

Entity limit

Your commercial license may include the entity limit and entity class limits tied to your Sensu licensing
package.
Contact Sensu to upgrade your commercial license.

Your Sensu license may include two types of entity limits:

For example, if your license has an entity limit of 10,000 and an agent entity class limit of 3,000, you
cannot run more than 10,000 entities (agent and proxy) total.
At the same time, you cannot run more
than 3,000 agents.
If you use only 1,500 agent entities, you can have 8,500 proxy entities before you
reach the overall entity limit of 10,000.

Active license

sensuctl license info

=== You are currently using 10/100 total entities, 5/50 agent entities, and 5/50

proxy entities

Account Name: Training Team - Sensu

Account ID: 123

Plan: managed

Version: 1

Features: all

Issuer: Sensu, Inc.

Issued: 2020-02-15 15:01:44 -0500 -0500

Valid: true

Valid Until: 2021-02-15 00:00:00 -0800 -0800

No license found

sensuctl license info

Error: not found

Entity limit: the maximum number of entities of all classes your license includes. Both agent
and proxy entities count toward the overall entity limit.

Entity class limits: the maximum number of a specifc class of entities (e.g. agent or proxy) that
your license includes.

https://account.sensu.io/support

View entity count and entity limit

Your current entity count and entity limit are included in the sensuctl license info response.

In tabular format, the entity count and limit are included in the response title:

If you have an unlimited entity count, the sensuctl license info response title will still include a
current count for each type of entity you are using.
For example:

In other formats (e.g. yaml), the entity count and limit are included as labels:

sensuctl license info --format tabular

=== You are currently using 10/100 total entities, 5/50 agent entities, and 5/50

proxy entities

Account Name: Training Team - Sensu

Account ID: 123

Plan: managed

Version: 1

Features: all

Issuer: Sensu, Inc.

Issued: 2020-02-15 15:01:44 -0500 -0500

Valid: true

Valid Until: 2021-02-15 00:00:00 -0800 -0800

=== You are currently using 10/unlimited total entities, 5/unlimited agent entities,

and 5/unlimited proxy entities

sensuctl license info --format yaml

type: LicenseFile

api_version: licensing/v2

metadata:

 labels:

 sensu.io/entity-count: "10"

 sensu.io/entity-limit: "100"

spec:

 license:

You can also see your current entity count and limit in the response headers for any /api/core or
/api/enterprise API request. For example:

The response headers will include your current entity count and limit:

License expiration

To see your commercial license expiration date, log in to your Sensu account.

If your license is within 30 days of expiration, Sensu issues regular warnings in the Sensu backend
logs.
If your license expires, you will still have access to commercial features, but your entity limit will
drop back down to the free limit of 100.

Quick links

 version: 1

 issue: Sensu, Inc.

 accountName: Training Team - Sensu

[...]

curl http://127.0.0.1:8080/api/core/v2/namespaces/default/entities -v -H

"Authorization: Bearer $SENSU_ACCESS_TOKEN"

HTTP/1.1 200 OK

Content-Type: application/json

Sensu-Entity-Count: 10

Sensu-Entity-Limit: 100

Log in to your Sensu account

Confgure authentication providers

Use the license management API

Discover enterprise assets

Install plugins with assets

https://account.sensu.io/
https://account.sensu.io/
https://bonsai.sensu.io/assets?tiers%5B%5D=4

Contact Sensu support

Contact Sensu sales

https://account.sensu.io/support
https://sensu.io/contact?subject=contact-sales

Mutators

Handlers can specify a mutator to execute and transform event data before any handlers are applied.

Commands

Each Sensu mutator defnition defnes a command to be executed.
Mutator commands are executable
commands that will be executed on a Sensu backend, run as the sensu user .
Most mutator
commands are provided by Sensu plugins.

Sensu mutator command attributes may include command line arguments for controlling the behavior
of the command executable.
Many Sensu mutator plugins provide support for command line arguments
for reusability.

All mutator commands are executed by a Sensu backend as the sensu user.
Commands must be
executable fles that are discoverable on the Sensu backend system (installed in a system $PATH
directory).

Built-in mutators

When the Sensu backend processes an event, it checks the handler for the presence of a
mutator and executes that mutator before executing the handler.

If the mutator executes successfully (returns an exit status code of 0), the modifed event
data return to the handler and the handler is executed.

If the mutator fails to execute (returns a non-zero exit status code or fails to complete within its
confgured timeout), an error is logged and the handler will not execute.

NOTE: By default, Sensu installer packages will modify the system $PATH for the Sensu
processes to include /etc/sensu/plugins .
As a result, executable scripts (like plugins) located in
/etc/sensu/plugins will be valid commands.
This allows command attributes to use “relative

paths” for Sensu plugin commands (for example, "command": "check-http.go -u
https://sensuapp.org").

Sensu includes built-in mutators to help you customize event pipelines for metrics and alerts.

Built-in mutator: only_check_output

To process an event, some handlers require only the check output, not the entire event defnition.
For
example, when sending metrics to Graphite using a TCP handler, Graphite expects data that follows
the Graphite plaintext protocol.
By using the built-in only_check_output mutator, Sensu reduces the
event to only the check output so Graphite can accept it.

To use only check output, include the only_check_output mutator in the handler confguration
mutator string:

type: Handler

api_version: core/v2

metadata:

 name: graphite

 namespace: default

spec:

 mutator: only_check_output

 socket:

 host: 10.0.1.99

 port: 2003

 type: tcp

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

 "name": "graphite",

 "namespace": "default"

 },

 "spec": {

 "type": "tcp",

 "socket": {

 "host": "10.0.1.99",

 "port": 2003

 },

JSON

Mutator specifcation

Mutators:

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Mutators should always be type Mutator .

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
mutators in this version of Sensu, the api_version should always be

 "mutator": "only_check_output"

 }

}

Accept input/data via STDIN

Can parse JSON event data

Output JSON data (modifed event data) to STDOUT or STDERR

Produce an exit status code to indicate state:

0 indicates OK status

exit codes other than 0 indicate failure

"type": "Mutator"

core/v2 .

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the mutator that includes name ,
namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

mutator defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. See the
metadata attributes reference for details.

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

spec

"api_version": "core/v2"

"metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 },

 "annotations": {

 "slack-channel" : "#monitoring"

 }

}

description Top-level map that includes the mutator spec attributes.

required Required for mutator defnitions in wrapped-json or yaml format for
use with sensuctl create .

type Map of key-value pairs

example

Metadata attributes

name

description Unique string used to identify the mutator. Mutator names cannot contain
special characters or spaces (validated with Go regex \A[\w\.\-]+\z).
Each mutator must have a unique name within its namespace.

required true

type String

example

namespace

description Sensu RBAC namespace that the mutator belongs to.

required false

type String

"spec": {

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

}

"name": "example-mutator"

https://regex101.com/r/zo9mQU/2

default default

example

created_by

description Username of the Sensu user who created the mutator or last updated the
mutator. Sensu automatically populates the created_by feld when the
mutator is created or updated.

required false

type String

example

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

"namespace": "production"

"created_by": "admin"

example

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

example

Spec attributes

command

description Mutator command to be executed by the Sensu backend.

required true

type String

example

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

timeout

description Mutator execution duration timeout (hard stop). In seconds.

required false

type integer

example

env_vars

description Array of environment variables to use with command execution.

required false

type Array

example

runtime_assets

description Array of Sensu assets (by their names) required at runtime for execution
of the command .

required false

type Array

example

"command": "/etc/sensu/plugins/mutated.go"

"timeout": 30

"env_vars": ["RUBY_VERSION=2.5.0"]

"runtime_assets": ["ruby-2.5.0"]

secrets

description Array of the name/secret pairs to use with command execution.

required false

type Array

example

secrets attributes

name

description Name of the secret defned in the executable command. Becomes the
environment variable presented to the mutator. See Use secrets
management in Sensu for more information.

required true

type String

example

secret

"secrets": [

 {

 "name": "ANSIBLE_HOST",

 "secret": "sensu-ansible-host"

 },

 {

 "name": "ANSIBLE_TOKEN",

 "secret": "sensu-ansible-token"

 }

]

"name": "ANSIBLE_HOST"

description Name of the Sensu secret resource that defnes how to retrieve the
secret.

required true

type String

example

Examples

Example mutator defnition

The following Sensu mutator defnition uses an imaginary Sensu plugin, example_mutator.go , to
modify event data prior to handling the event.

"secret": "sensu-ansible-host"

type: Mutator

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: example-mutator

 namespace: default

spec:

 command: example_mutator.go

 env_vars: []

 runtime_assets: []

 timeout: 0

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

JSON

Minimum required mutator attributes

 "metadata": {

 "name": "example-mutator",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "command": "example_mutator.go",

 "timeout": 0,

 "env_vars": [],

 "runtime_assets": []

 }

}

type: Mutator

api_version: core/v2

metadata:

 name: mutator_minimum

 namespace: default

spec:

 command: example_mutator.go

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "mutator_minimum",

 "namespace": "default"

 },

 "spec": {

 "command": "example_mutator.go"

 }

}

JSON

Mutator with secret

Learn more about secrets management for your Sensu confguration in the secrets and secrets
providers references.

type: Mutator

api_version: core/v2

metadata:

 name: ansible-tower

 namespace: ops

spec:

 command: sensu-ansible-mutator -h $ANSIBLE_HOST -t $ANSIBLE_TOKEN

 secrets:

 - name: ANSIBLE_HOST

 secret: sensu-ansible-host

 - name: ANSIBLE_TOKEN

 secret: sensu-ansible-token

YML

{

 "type": "Mutator",

 "api_version": "core/v2",

 "metadata": {

 "name": "ansible-tower",

 "namespace": "ops"

 },

 "spec": {

 "command": "sensu-ansible-mutator -h $ANSIBLE_HOST -t $ANSIBLE_TOKEN",

 "secrets": [

 {

 "name": "ANSIBLE_HOST",

 "secret": "sensu-ansible-host"

 },

 {

 "name": "ANSIBLE_TOKEN",

 "secret": "sensu-ansible-token"

 }

JSON

]

 }

}

Role-based access control (RBAC)
reference

Sensu’s role-based access control (RBAC) helps different teams and projects share a Sensu instance.
RBAC allows you to specify actions users are allowed to take against resources, within namespaces or
across all namespaces, based on roles bound to the user or to one or more groups the user is a
member of.

RBAC confguration applies to sensuctl, the API, and the web UI.

Namespaces

Namespaces help teams use different resources (like entities, checks, and handlers) within Sensu and
impose their own controls on those resources.
A Sensu instance can have multiple namespaces, each
with their own set of managed resources.
Resource names must be unique within a namespace but do
not need to be unique across namespaces.

To create and manage namespaces, confgure sensuctl as the default admin user or create a cluster
role with namespaces permissions.

Default namespaces

Every Sensu backend includes a default namespace.
All resources created without a specifed
namespace are created within the default namespace.

Namespaces partition resources within Sensu. Sensu entities, checks, handlers, and other
namespaced resources belong to a single namespace.

Roles create sets of permissions (e.g. get and delete) tied to resource types. Cluster roles
apply permissions across namespaces and include access to cluster-wide resources like users
and namespaces.

Users represent a person or agent that interacts with Sensu. Users can belong to one or more
groups.

Role bindings assign a role to a set of users and groups within a namespace. Cluster role
bindings assign a cluster role to a set of users and groups cluster-wide.

Manage namespaces

You can use sensuctl to view, create, and delete namespaces.
To get help with managing namespaces
with sensuctl:

View namespaces

You can use sensuctl to view all namespaces within Sensu:

Create namespaces

You can use sensuctl to create a namespace.
For example, the following command creates a
namespace called production :

Namespace names can contain alphanumeric characters and hyphens and must begin and end with
an alphanumeric character.

Delete namespaces

To delete a namespace:

sensuctl namespace help

sensuctl namespace list

NOTE: For users on supported Sensu Go distributions, sensuctl namespace list lists only the
namespaces that the current user has access to.

sensuctl namespace create production

Assign a resource to a namespace

You can assign a resource to a namespace in the resource defnition.
Only resources that belong to a
namespaced resource type (like checks, flters, and handlers) can be assigned to a namespace.

For example, to assign a check called check-cpu to the production namespace, include the
namespace attribute in the check defnition:

sensuctl namespace delete [NAMESPACE-NAME]

type: CheckConfg

api_version: core/v2

metadata:

 name: check-cpu

 namespace: production

spec:

 check_hooks: null

 command: check-cpu.sh -w 75 -c 90

 handlers:

 - slack

 interval: 30

 subscriptions:

 - system

 timeout: 0

 ttl: 0

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-cpu",

 "namespace": "production"

 },

 "spec": {

 "check_hooks": null,

 "command": "check-cpu.sh -w 75 -c 90",

JSON

See the reference docs for the corresponding resource type to create resource defnitions.

Namespace specifcation

Attributes

name

description Name of the namespace. Names can contain alphanumeric characters
and hyphens and must begin and end with an alphanumeric character.

required true

type String

example

Namespace example

This example is in yml and wrapped-json formats for use with sensuctl create :

 "handlers": ["slack"],

 "interval": 30,

 "subscriptions": ["system"],

 "timeout": 0,

 "ttl": 0

 }

}

PRO TIP: If you omit the namespace attribute from resource defnitions, you can use the
senusctl create --namespace fag to specify the namespace for a group of resources at the

time of creation. This allows you to replicate resources across namespaces without manual
editing. See the sensuctl reference for more information.

"name": "production"

Resources

Permissions within Sensu are scoped to resource types, like checks, handlers, and users.
You can use
resource types to confgure permissions in Sensu roles and cluster roles.

Namespaced resource types

Namespaced resources must belong to a single namespace.
You can access namespaced resources
by roles and cluster roles.

type description

assets Dynamic runtime asset resources within a namespace

checks Check resources within a namespace

entities Entity resources within a namespace

events Event resources within a namespace

type: Namespace

api_version: core/v2

metadata: {}

spec:

 name: default

YML

{

 "type": "Namespace",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "name": "default"

 }

}

JSON

extensions Placeholder type

flters Filter resources within a namespace

handlers Handler resources within a namespace

hooks Hook resources within a namespace

mutators Mutator resources within a namespace

rolebindings Namespace-specifc role assigners

roles Namespace-specifc permission sets

searches Saved web UI search queries

silenced Silencing resources within a namespace

Cluster-wide resource types

Cluster-wide resources cannot be assigned to a namespace.
You can access cluster-wide resources
only by cluster roles.

type description

authproviders Authentication provider confguration (commercial feature)

cluster Sensu clusters running multiple Sensu backends

clusterrolebindin

gs

Cluster-wide role assigners

clusterroles Cluster-wide permission sets

etcd-replicators Mirror RBAC resource changes to follower clusters

license Sensu commercial license

namespaces Resource partitions within a Sensu instance

provider PostgreSQL event store provider

providers Secrets providers

secrets Secrets (e.g. username or password)

users People or agents that interact with Sensu

Special resource types

You can access special resource types by both roles and cluster roles.

Type Description

* All resources within Sensu. The * type takes precedence over other
rules within the same role. If you want to deny a certain type, you can’t
use the * type. Instead, you must explicitly allow every type required.
When applied to a role, the * type applies only to namespaced
resource types. When applied to a cluster role, the * type applies to
both namespaced resource types and cluster-wide resource types.

Users

A user represents a person or an agent that interacts with Sensu.
You can assign users and groups to
one or more roles.
Users and groups inherit all permissions from each role assigned to them.

Use your Sensu username and password to confgure sensuctl or log in to the web UI.

Default users

During the Sensu backend installation process, you create an administrator username and password
and a default namespace.

This is the admin user that you can use to manage all aspects of Sensu and create new users.

attribute value

username YOUR_USERNAME

password YOUR_PASSWORD

groups cluster-admins

cluster role cluster-admin

cluster role binding cluster-admin

After you confgure sensuctl, you can change the admin user’s password with the change-password
command.

Sensu also creates a default agent user with the password P@ssw0rd! .
This user/password
combination corresponds to the defaults the Sensu agent uses.
You can confgure the Sensu agent’s
user credentials with the user and password agent confguration fags.

Manage users

To test the password for a user created with Sensu’s built-in basic authentication:

An empty response indicates valid credentials.
A request-unauthorized response indicates invalid
credentials.

To change the password for a user:

You can also use sensuctl to reset a user’s password or generate a password hash.

sensuctl user test-creds USERNAME --password 'password'

NOTE: The sensuctl user test-creds command tests passwords for users created with
Sensu’s built-in basic authentication provider.
It does not test user credentials defned via an
authentication provider like Lightweight Directory Access Protocol (LDAP), Active Directory (AD),
or OpenID Connect 1.0 protocol (OIDC).

sensuctl user change-password USERNAME --current-password CURRENT_PASSWORD --new-

password NEW_PASSWORD

To disable a user:

To re-enable a disabled user:

View users

You can use sensuctl to see a list of all users within Sensu.

To return a list of users in yaml format for use with sensuctl create :

Create users

You can use sensuctl to create users.
For example, the following command creates a user with the
username alice , creates a password, and assigns the user to the ops and dev groups.

Passwords must have at least eight characters.

You can create any number of users, each with their own passwords.
Users are granted permissions by
role bindings or cluster role bindings, but as a general rule, users have no permissions by default.

By default, the agent user belongs to the system:agent group.
The system:agent cluster role
binding grants the system:agent cluster role to the members of this group.
To grant agent users the
permissions they need to report events into any namespace, add agent users to the system:agent
group.

sensuctl user disable USERNAME

sensuctl user reinstate USERNAME

sensuctl user list --format yaml

sensuctl user create alice --password='password' --groups=ops,dev

Assign user permissions

To assign permissions to a user:

1. Create the user.
2. Create a role (or a cluster role for cluster-wide access).
3. Create a role binding (or cluster role binding) to assign the role to the user.

User specifcation

Attributes

username

description Name of the user. Cannot contain special characters.

required true

type String

example

password

description User’s password. Passwords must have at least eight characters.

required true

type String

"username": "alice"

NOTE: You only need to set either the password or the
password_hash (not both). We recommend using the
password_hash because it eliminates the need to store cleartext

passwords.

example

groups

description Groups to which the user belongs.

required false

type Array

example

disabled

description If true , the user’s account is disabled. Otherwise, false .

required false

type Boolean

default false

example

password_hash

description Bcrypt password hash. You can use the password_hash in your user
defnitions instead of storing cleartext passwords.

"password": "USER_PASSWORD"

"groups": ["dev", "ops"]

"disabled": false

NOTE: You only need to set either the password or the
password_hash (not both). We recommend using the
password_hash because it eliminates the need to store cleartext

passwords.

https://en.wikipedia.org/wiki/Bcrypt

required false

type String

example

User example

The following example is in yml and wrapped-json formats for use with sensuctl create .

"password_hash":

"$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAy

Nm"

type: User

api_version: core/v2

metadata: {}

spec:

 disabled: false

 groups:

 - ops

 - dev

 password: USER_PASSWORD

 password_hash: $5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAyNm

 username: alice

YML

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "username": "alice",

 "password": "USER_PASSWORD",

 "password_hash": "$5f$14$.brXRviMZpbaleSq9kjoUuwm67V/s4IziOLGHjEqxJbzPsreQAyNm",

JSON

Groups

A group is a set of users within Sensu.
You can assign groups to one or more roles, and you can assign
users to one or more groups.
Groups inherit all permissions from each role assigned to them.

Groups are not a resource type within Sensu.
You can create and manage groups only within user
defnitions.

Default groups

Sensu includes a default cluster-admins group that contains the default admin user and a
system:agents group used internally by Sensu agents.

Manage groups

Assign a user to a group

Groups are created and managed within user defnitions.
You can use sensuctl to add users to groups.

To add a user to a group:

To set the groups for a user:

 "disabled": false,

 "groups": ["ops", "dev"]

 }

}

sensuctl user add-group USERNAME GROUP

sensuctl user set-groups USERNAME GROUP1[,GROUP2, ...[,GROUPN]]

Remove a user from a group

You can use sensuctl to remove users from groups.

To remove a user from a group:

To remove a user from all groups:

Roles and cluster roles

A role is a set of permissions that control access to Sensu resources.
Roles specify permissions for
resources within a namespace.
Cluster role can include permissions for cluster-wide resources.

You can use role bindings to assign roles to user and groups.
To avoid recreating commonly used roles
in each namespace, create a cluster role and use a role binding (not a cluster role binding) to restrict
permissions within a specifc namespace.

To create and manage roles cluster-wide, confgure sensuctl as the default admin user or create a
cluster role with roles permissions.
To create and manage roles within a namespace, create a role
with roles permissions within that namespace.

Cluster roles

Cluster roles can specify access permissions for cluster-wide resources like users and namespaces as
well as namespaced resources like checks and handlers.
They can also be used to grant access to
namespaced resources across all namespaces (for example, to run sensuctl check list --all-
namespaces) when used in conjunction with cluster role bindings.

Cluster roles use the same specifcation as roles and can be managed using the same sensuctl
commands with cluster-role substituted for role .

To create and manage cluster roles, confgure sensuctl as the default admin user or create a cluster

sensuctl user remove-group USERNAME GROUP

sensuctl user remove-groups USERNAME

role with permissions for clusterroles .

Default roles and cluster roles

Every Sensu backend includes:

role name ty
p
e

description

system:pipeline R

ol

e

Facility that allows the EventFilter engine to load events from
Sensu’s event store. system:pipeline is an implementation
detail and should not be assigned to Sensu users.

cluster-admin C

lu

st

er

Ro

l

e

Full access to all resource types across namespaces, including
access to cluster-wide resource types.

admin C

lu

st

er

Ro

l

e

Full access to all resource types. You can apply this cluster role
within a namespace by using a role binding (not a cluster role
binding).

edit C

lu

st

er

Ro

l

e

Read and write access to most resources except roles and role
bindings. You can apply this cluster role within a namespace by
using a role binding (not a cluster role binding).

view C

lu

st

er

Read-only permission to most resource types with the exception
of roles and role bindings. You can apply this cluster role within a
namespace by using a role binding (not a cluster role binding).

Ro

l

e

system:agent C

lu

st

er

Ro

l

e

Used internally by Sensu agents. You can confgure an agent’s
user credentials using the user and password agent
confguration fags.

system:user C

lu

st

er

Ro

l

e

Get and update permissions for local resources for the current
user.

Manage roles and cluster roles

You can use sensuctl to view, create, edit, and delete roles and cluster roles.

To get help managing roles with sensuctl:

To edit a role:

NOTE: To use any of these example commands with cluster roles, substitute the cluster-role

command for the role command.

sensuctl role help

sensuctl edit role [ROLE-NAME] [fags]

View roles and cluster roles

You can use sensuctl to see a list of roles within Sensu:

To see the permissions and scope for a specifc role:

To view cluster roles, use the cluster-role command:

Create roles

You can use sensuctl to create a role.
For example, the following command creates an admin role
restricted to the production namespace.

After you create a role, create a role binding (or cluster role binding) to assign the role to users and
groups.
For example, to assign the prod-admin role created above to the oncall group, create this
role binding:

Create cluster-wide roles

You can use sensuctl to create a cluster role.
For example, the following command creates a global

sensuctl role list

sensuctl role info admin

sensuctl cluster-role list

sensuctl role create prod-admin --verb='get,list,create,update,delete' --

resource='*' --namespace production

sensuctl role-binding create prod-admin-oncall --role=prod-admin --group=oncall

event reader role that can read only events across all namespaces within Sensu.

Delete roles and cluster roles

To delete a role:

Role and cluster role specifcation

Role and cluster role attributes

name

description Name of the role.

required true

type String

example

namespace

description Namespace the role is restricted to. This attribute is not available for
cluster roles.

required false

type String

sensuctl cluster-role create global-event-reader --verb='get,list' --

resource='events'

sensuctl role delete [ROLE-NAME]

"name": "admin"

example

rules

description Rulesets that the role applies.

required true

type Array

example

Rule attributes

A rule is an explicit statement that grants a particular permission to a resource.

verbs

description Permissions to be applied by the rule: get , list , create , update ,
or delete .

required true

type Array

example

"namespace": "production"

"rules": [

 {

 "verbs": ["get", "list"],

 "resources": ["checks"],

 "resource_names": [""]

 }

]

"verbs": ["get", "list"]

resources

description Type of resource that the rule has permission to access. Roles can only
access namespaced resource types. Cluster roles can access
namespaced and cluster-wide resource types. See resource types for
available types.

required true

type Array

example

resource_names

description Specifc resource names that the rule has permission to access.
Resource name permissions are only taken into account for requests
using get , update , and delete verbs.

required false

type Array

example

Role and cluster role examples

These examples are in yml and wrapped-json formats for use with sensuctl create .

Role example

"resources": ["checks"]

"resource_names": ["check-cpu"]

type: Role

api_version: core/v2

YML

metadata:

 name: namespaced-resources-all-verbs

 namespace: default

spec:

 rules:

 - resource_names: []

 resources:

 - assets

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - rolebindings

 - roles

 - silenced

 verbs:

 - get

 - list

 - create

 - update

 - delete

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "namespaced-resources-all-verbs",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced"

],

JSON

Cluster role example

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

type: ClusterRole

api_version: core/v2

metadata:

 name: all-resources-all-verbs

spec:

 rules:

 - resource_names: []

 resources:

 - assets

 - checks

 - entities

 - events

 - flters

 - handlers

 - hooks

 - mutators

 - rolebindings

 - roles

 - silenced

 - cluster

 - clusterrolebindings

 - clusterroles

 - namespaces

 - users

 - authproviders

 - license

 verbs:

 - get

 - list

 - create

 - update

YML

Role bindings and cluster role bindings

A role binding assigns a role or cluster role to users and groups within a namespace.
A cluster role
binding assigns a cluster role to users and groups across namespaces and resource types.

Cluster role bindings use the same specifcation as role bindings and can be managed using the same
sensuctl commands with cluster-role-binding substituted for role-binding .

To create and manage role bindings within a namespace, create a role with rolebindings
permissions within that namespace, and log in by confguring sensuctl.

To create and manage cluster role bindings, confgure sensuctl as the default admin user or create a
cluster role with permissions for clusterrolebindings .

 - delete

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "all-resources-all-verbs"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced",

 "cluster", "clusterrolebindings", "clusterroles",

 "namespaces", "users", "authproviders", "license"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

JSON

Make sure to include the groups prefx and username prefx for the authentication provider when
creating Sensu role bindings and cluster role bindings.
Without an assigned role or cluster role, users
can sign in to the web UI but can’t access any Sensu resources.
With the correct roles and bindings
confgured, users can log in to sensuctl and the web UI using their single-sign-on username and
password (no prefxes required).

Default role bindings and cluster role bindings

Every Sensu backend includes:

role name type description

system:pipeline Role

Bindi

ng

Facility that allows the EventFilter engine to load events from
Sensu’s event store. system:pipeline is an implementation
detail and should not be applied to Sensu users.

cluster-admin Clus

terRo

leBin

ding

Full access to all resource types across namespaces,
including access to cluster-wide resource types.

system:agent Clus

terRo

leBin

ding

Full access to all events. Used internally by Sensu agents.

system:user Clus

terRo

leBin

ding

Get and update permissions for local resources for the current
user.

Manage role bindings and cluster role bindings

You can use sensuctl to view, create, and delete role bindings and cluster role bindings.

NOTE: To use any of these commands with cluster roles, substitute the cluster-role-binding

command for the role-binding command.

To get help managing role bindings with sensuctl:

View role bindings and cluster role bindings

You can use sensuctl to see a list of role bindings within Sensu:

To see the details for a specifc role binding:

To see a list of cluster role bindings:

Create role bindings and cluster role bindings

You can use sensuctl to see a create a role binding that assigns a role:

To create a role binding that assigns a cluster role:

sensuctl role-binding help

sensuctl role-binding list

sensuctl role-binding info [BINDING-NAME]

sensuctl cluster-role-binding list

sensuctl role-binding create [NAME] --role=NAME [--user=username] [--

group=groupname]

sensuctl role-binding create [NAME] --cluster-role=NAME [--user=username] [--

group=groupname]

To create a cluster role binding:

Delete role bindings and cluster role bindings

To delete a role binding:

Role binding and cluster role binding specifcation

roleRef

description Reference a role in the current namespace or a cluster role.

required true

type Hash

example

subjects

description Users or groups being assigned.

required true

type Array

sensuctl cluster-role-binding create [NAME] --cluster-role=NAME [--user=username] [-

-group=groupname]

sensuctl role-binding delete [ROLE-NAME]

"roleRef": {

 "type": "Role",

 "name": "event-reader"

}

example

roleRef specifcation

type

description Role for a role binding or ClusterRole for a cluster role binding.

required true

type String

example

name

description Name of the role or cluster role being assigned.

required true

type String

example

subjects specifcation

"subjects": [

 {

 "type": "User",

 "name": "alice"

 }

]

"type": "Role"

"name": "event-reader"

type

description User for assigning a user or Group for assigning a group.

required true

type String

example

name

description Username or group name.

required true

type String

example

example with prefx

Role binding and cluster role binding examples

These examples are in yml and wrapped-json formats for use with sensuctl create .

Role binding example

"type": "User"

"name": "alice"

"name": "ad:alice"

type: RoleBinding

api_version: core/v2

metadata:

 name: event-reader-binding

YML

Cluster role binding example

 namespace: default

spec:

 role_ref:

 name: event-reader

 type: Role

 subjects:

 - name: bob

 type: User

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "event-reader-binding",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "event-reader",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "bob",

 "type": "User"

 }

]

 }

}

JSON

type: ClusterRoleBinding

api_version: core/v2

metadata:

 name: cluster-admin

spec:

YML

Role and role binding example

The following role and role binding give a dev group access to create and manage Sensu workfows
within the default namespace.

 role_ref:

 name: cluster-admin

 type: ClusterRole

 subjects:

 - name: cluster-admins

 type: Group

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "cluster-admin"

 },

 "spec": {

 "role_ref": {

 "name": "cluster-admin",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "cluster-admins",

 "type": "Group"

 }

]

 }

}

JSON

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "workfow-creator",

Role and role binding example with a group prefx

In this example, if a groups_prefx of ad is confgured for Active Directory authentication, the role and
role binding will give a dev group access to create and manage Sensu workfows within the
default namespace.

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": ["checks", "hooks", "flters", "events", "flters", "mutators",

"handlers"],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "dev-binding",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "workfow-creator",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "dev",

 "type": "Group"

 }

]

 }

}

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "workfow-creator",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": ["checks", "hooks", "flters", "events", "flters", "mutators",

"handlers"],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "dev-binding-with-groups-prefx",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "workfow-creator",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "ad:dev",

 "type": "Group"

 }

]

 }

}

Example workfows

Assign user permissions within a namespace

To assign permissions to a user:

1. Create the user.
2. Create a role.
3. Create a role binding to assign the role to the user.

For example, the following confguration creates a user alice , a role default-admin , and a role
binding alice-default-admin , giving alice full permissions for namespaced resource types
within the default namespace.
You can add these resources to Sensu using sensuctl create .

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice"

 }

}

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "searches", "silenced"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

Assign group permissions within a namespace

To assign permissions to group of users:

1. Create at least one user assigned to a group.
2. Create a role.
3. Create a role binding to assign the role to the group.

For example, the following confguration creates a user alice assigned to the group ops , a role
default-admin , and a role binding ops-default-admin , giving the ops group full permissions for

namespaced resource types within the default namespace.
You can add these resources to Sensu
using sensuctl create .

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "alice-default-admin",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "alice",

 "type": "User"

 }

]

 }

}

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice"

 }

}

{

 "type": "Role",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin",

 "namespace": "default"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "searches", "silenced"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "RoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops-default-admin",

 "namespace": "default"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "Role"

 },

 "subjects": [

 {

 "name": "ops",

Assign group permissions across all namespaces

To assign cluster-wide permissions to group of users:

1. Create at least one user assigned to a group.
2. Create a cluster role.
3. Create a cluster role binding) to assign the role to the group.

For example, the following confguration creates a user alice assigned to the group ops , a cluster
role default-admin , and a cluster role binding ops-default-admin , giving the ops group full
permissions for namespaced resource types and cluster-wide resource types across all namespaces.
You can add these resources to Sensu using sensuctl create .

 "type": "Group"

 }

]

 }

}

PRO TIP: To avoid recreating commonly used roles in each namespace, create a cluster role and
use a role binding to restrict permissions within a specifc namespace.

{

 "type": "User",

 "api_version": "core/v2",

 "metadata": {},

 "spec": {

 "disabled": false,

 "username": "alice",

 "groups": ["ops"]

 }

}

{

 "type": "ClusterRole",

 "api_version": "core/v2",

 "metadata": {

 "name": "default-admin"

 },

 "spec": {

 "rules": [

 {

 "resource_names": [],

 "resources": [

 "assets", "checks", "entities", "events", "flters", "handlers",

 "hooks", "mutators", "rolebindings", "roles", "silenced",

 "cluster", "clusterrolebindings", "clusterroles",

 "namespaces", "users", "authproviders", "license"

],

 "verbs": ["get", "list", "create", "update", "delete"]

 }

]

 }

}

{

 "type": "ClusterRoleBinding",

 "api_version": "core/v2",

 "metadata": {

 "name": "ops-default-admin"

 },

 "spec": {

 "role_ref": {

 "name": "default-admin",

 "type": "ClusterRole"

 },

 "subjects": [

 {

 "name": "ops",

 "type": "Group"

 }

]

 }

}

Searches

COMMERCIAL FEATURE : Access saved searches in the packaged Sensu Go distribution.
For more
information, see Get started with commercial features.

With the saved searches feature, you can apply search parameters to your entities, events, and
resources and save them to etcd in a namespaced resource named searches .

The saved searches feature is designed to be used directly in the web UI.
However, you can create,
retrieve, update, and delete saved searches with the searches API.

Searches specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Searches should always be type Search .

required Required for search entry defnitions in wrapped-json or yaml format
for use with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
searches in this version of Sensu, the api_version should always be
searches/v1 .

"type": "Search"

required Required for search entry defnitions in wrapped-json or yaml format
for use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the search that includes name

and namespace . The metadata map is always at the top level of the
search defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. See
metadata attributes for details.

required Required for search entry defnitions in wrapped-json or yaml format
for use with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the search spec attributes. The spec
contents will depend on the search parameters you apply and save.

required Required for silences in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

"api_version": "searches/v1"

"metadata": {

 "name": "us-west-server-incidents",

 "namespace": "default"

}

"spec": {

Metadata attributes

name

description Search identifer generated from the combination of a subscription name
and check name.

required true

type String

example

namespace

description Sensu RBAC namespace that the search belongs to.

required false

type String

default default

example

 "parameters": [

 "entity:server-testing",

 "check:server-health",

 "status:incident",

 "labelSelector:region == \"us-west-1\""

],

 "resource": "core.v2/Event"

}

"name": "us-west-server-incidents"

"namespace": "default"

Spec attributes

parameters

description Parameters the search will apply.

required true

type Array

example

resource

description Fully qualifed name of the resource included in the search.

required true

type String

example

Parameters

action

description For flter searches, the type of flter to include in the search: allow or
deny .

"parameters": [

 "entity:server-testing",

 "check:server-health",

 "status:incident",

 "labelSelector:region == \"us-west-1\""

]

"resource": "core.v2/Event"

required false

type String

example

check

description Name of the check to include in the search.

required false

type String

example

class

description For entity searches, the entity class to include in the search: agent or
proxy .

required false

type String

example

entity

description Name of the entity to include in the search.

required false

"action:allow"

"check:server-health"

"class:agent"

type String

example

event

description Name of the event to include in the search.

required false

type String

example

feldSelector

description Field selector to include in the search.

required false

type Filter statement

example

labelSelector

description Label selector to include in the search.

required false

type Filter statement

example

"entity:server-testing"

"event:server-testing"

"feldSelector: entity.name == \"1b04994n\""

"labelSelector:region == \"us-west-1\""

published

description If true , the search will include only published resources. Otherwise,
false .

required false

type Boolean

example

silenced

description If true , the search will include only silenced events. Otherwise,
false .

required false

type Boolean

example

status

description Status of the events, entities, or resources to include in the search.

required false

type String

example

"published:true"

"silenced:true"

"status:incident"

subscription

description Name of the subscription to include in the search.

required false

type String

example

type

description For handler searches, the type of hander to include in the search: pipe ,
set , tcp , or udp .

required false

type String

example

Examples

Search for events with any status except passing

The following saved search will retrieve all events that have any status except passing :

"subscription:web"

"type:pipe"

type: Search

api_version: searches/v1

metadata:

 name: events-not-passing

YML

Search for published checks with a specifc subscription and region

The following saved search will retrieve all published checks for the us-west-1 region with the
linux subscription:

 namespace: default

spec:

 parameters:

 - status:incident

 - status:warning

 - status:critical

 - status:unknown

 resource: core.v2/Event

{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "events-not-passing",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "status:incident",

 "status:warning",

 "status:critical",

 "status:unknown"

],

 "resource": "core.v2/Event"

 }

}

JSON

type: Search

api_version: searches/v1

metadata:

 name: published-checks-linux-uswest

YML

 namespace: default

spec:

 parameters:

 - published:true

 - subscription:linux

 - 'labelSelector: region == "us-west-1"'

 resource: core.v2/CheckConfg

{

 "type": "Search",

 "api_version": "searches/v1",

 "metadata": {

 "name": "published-checks-linux-uswest",

 "namespace": "default"

 },

 "spec": {

 "parameters": [

 "published:true",

 "subscription:linux",

 "labelSelector: region == \"us-west-1\""

],

 "resource": "core.v2/CheckConfg"

 }

}

JSON

Secrets

COMMERCIAL FEATURE : Access the Secret datatype in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Sensu’s secrets management eliminates the need to expose secrets in your Sensu confguration.
When
a Sensu resource defnition requires a secret (e.g. a username or password), Sensu allows you to
obtain secrets from one or more external secrets providers, so you can both refer to external secrets
and consume secrets via backend environment variables.

Only Sensu backends have access to request secrets from a secrets provider.
Sensu backends cache
fetched secrets in memory, with no persistence to a Sensu datastore or fle on disk.
Secrets provided
via a “lease” with a “lease duration” are deleted from Sensu’s in-memory cache after the confgured
number of seconds, prompting the Sensu backend to request the secret again.

Secrets are only transmitted over a transport layer security (TLS) websocket connection.
Unencrypted
connections must not transmit privileged information.
For checks, hooks, and assets, you must enable
mutual TLS (mTLS).
Sensu will not transmit secrets to agents that do not use mTLS.

Sensu only exposes secrets to Sensu services like environment variables and automatically redacts
secrets from all logs, the API, and the web UI.

Secret specifcation

Top-level attributes

type

description Top-level attribute that specifes the resource type. For secrets
confguration, the type should always be Secret .

required Required for secrets confguration in wrapped-json or yaml format.

NOTE: Secrets management is implemented for checks, handlers, and mutators.

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
secrets confguration in this version of Sensu, the api_version should
always be secrets/v1 .

required Required for secrets confguration in wrapped-json or yaml format.

type String

example

metadata

description Top-level scope that contains the secret’s name and namespace as
well as the created_by feld.

required true

type Map of key-value pairs

example

spec

"type": "Secret"

"api_version": "secrets/v1"

"metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default",

 "created_by": "admin"

}

description Top-level map that includes secrets confguration spec attributes.

required Required for secrets confguration in wrapped-json or yaml format.

type Map of key-value pairs

example

Metadata attributes

name

description Name for the secret that is used internally by Sensu.

required true

type String

example

namespace

description Sensu RBAC namespace that the secret belongs to.

required true

type String

example

"spec": {

 "id": "ANSIBLE_TOKEN",

 "provider": "env"

}

"name": "sensu-ansible-token"

"namespace": "default"

created_by

description Username of the Sensu user who created the secret or last updated the
secret. Sensu automatically populates the created_by feld when the
secret is created or updated.

required false

type String

example

Spec attributes

id

description Identifying key for the provider to retrieve the secret. For the Env
secrets provider, the id is the environment variable. For the Vault
secrets provider, the id is the secret path and key name in the form of
secret/path#key .

required true

type String

example

provider

description Name of the provider with the secret.

required true

type String

"created_by": "admin"

"id": "secret/ansible#token"

example

Secret confguration

You can use the Secrets API and sensuctl to create, view, and manage your secrets confguration.
To
manage secrets confguration with sensuctl, confgure sensuctl as the default admin user.

The standard sensuctl subcommands are available for secrets (list, info, and delete).

To list all secrets:

To see a secret’s status:

To delete a secret:

SECRET_NAME is the value specifed in the secret’s name metadata attribute.

Secret examples

A secret resource defnition refers to a secrets id and a secrets provider .
Read the secrets
provider reference for the provider specifcation.

"provider": "vault"

sensuctl secret list

sensuctl secret info SECRET_NAME

sensuctl secret delete SECRET_NAME

YML

Confgure secrets that target a HashiCorp Vault as shown in the following example:

type: Secret

api_version: secrets/v1

metadata:

 name: sensu-ansible-token

 namespace: default

spec:

 id: ANSIBLE_TOKEN

 provider: env

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible-token",

 "namespace": "default"

 },

 "spec": {

 "id": "ANSIBLE_TOKEN",

 "provider": "env"

 }

}

JSON

type: Secret

api_version: secrets/v1

metadata:

 name: sensu-ansible

 namespace: default

spec:

 id: 'secret/database#password'

 provider: vault

YML

JSON

The id value for secrets that target a HashiCorp Vault must start with the name of the secret’s path
in Vault.
Sensu requires the secret/ path for the id value, and the Vault dev server is preconfgured
with the secret keyspace already set up.
In this example, the name of the secret is database .
The
database secret contains a key called password , and its value is the password to our database.

{

 "type": "Secret",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "sensu-ansible",

 "namespace": "default"

 },

 "spec": {

 "id": "secret/database#password",

 "provider": "vault"

 }

}

https://learn.hashicorp.com/vault/getting-started/dev-server

Secrets providers

COMMERCIAL FEATURE : Access the Env and VaultProvider secrets provider datatypes in the
packaged Sensu Go distribution.
For more information, see Get started with commercial features.

Sensu’s secrets management eliminates the need to expose secrets like usernames, passwords, and
access keys in your Sensu confguration.
With Sensu’s secrets management, you can obtain secrets
from one or more external secrets providers, refer to external secrets, and consume secrets via
backend environment variables.

Only Sensu backends have access to request secrets from a secrets provider.
Secrets are only
transmitted over a transport layer security (TLS) websocket connection.
Unencrypted connections must
not transmit privileged information.
For checks, hooks, and assets, you must enable mutual TLS (mTLS)
Sensu will not transmit secrets to agents that do not use mTLS.

The Sensu Go commercial distribution includes a built-in secrets provider, Env , that exposes secrets
from environment variables on your Sensu backend nodes.
You can also use the secrets provider
VaultProvider to authenticate via the HashiCorp Vault integration’s token auth method or TLS

certifcate auth method.

You can confgure any number of VaultProvider secrets providers.
However, you can only have a
single Env secrets provider: the one that is included with the Sensu Go commercial distribution.

Secrets providers are cluster-wide resources and compatible with generic functions.

Secrets providers specifcation

Top-level attributes

NOTE: Secrets management is implemented for checks, handlers, and mutators.

NOTE: The attribute descriptions in this section use the VaultProvider datatype.
The secrets
providers examples section includes an example for the Env datatype.

https://www.vaultproject.io/docs/auth/token/
https://www.vaultproject.io/api/auth/cert/index.html
https://www.vaultproject.io/api/auth/cert/index.html

type

description Top-level attribute that specifes the resource type. May be either Env

(if you are using Sensu’s built-in secrets provider) or VaultProvider (if
you are using HashiCorp Vault as the secrets provider).

required Required for secrets confguration in wrapped-json or yaml format.

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
secrets confguration in this version of Sensu, the api_version should
always be secrets/v1 .

required Required for secrets confguration in wrapped-json or yaml format.

type String

example

metadata

description Top-level scope that contains the secrets provider name and
created_by feld. Namespace is not supported in the metadata

because secrets providers are cluster-wide resources.

required true

type Map of key-value pairs

example

"type": "VaultProvider"

"api_version": "secrets/v1"

"metadata": {

spec

description Top-level map that includes secrets provider confguration spec
attributes.

required Required for secrets confguration in wrapped-json or yaml format.

type Map of key-value pairs

example

Metadata attributes

name

description Provider name used internally by Sensu.

 "name": "vault",

 "created_by": "admin"

}

"spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "max_retries": 2,

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 },

 "timeout": "20s",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "token": "VAULT_TOKEN",

 "version": "v1"

 }

}

required true

type String

example

created_by

description Username of the Sensu user who created the secrets provider or last
updated the secrets provider. Sensu automatically populates the
created_by feld when the secrets provider is created or updated.

required false

type String

example

Spec attributes

client

description Map that includes secrets provider confguration client attributes.

required true

type Map of key-value pairs

example

"name": "vault"

"created_by": "admin"

"client": {

 "address": "https://vaultserver.example.com:8200",

 "max_retries": 2,

 "rate_limiter": {

 "limit": 10.0,

 "burst": 100

 },

Client attributes

address

description Vault server address.

required true

type String

example

max_retries

description Number of times to retry connecting to the vault provider.

required true

type Integer

default 2

example

rate_limiter

 "timeout": "20s",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "token": "VAULT_TOKEN",

 "version": "v1"

}

"address": "https://vaultserver.example.com:8200"

"max_retries": 2

description Maximum rate and burst limits for the secrets API.

required false

type Map of key-value pairs

example

timeout

description Provider connection timeout (hard stop).

required false

type String

default 60s

example

tls

description TLS object. Vault only works with TLS confgured. You may need to set
up a CA cert if it is not already stored in your operating system’s trust
store. To do this, set the TLS object and provide the ca_cert path. You
may also need to set up client_cert , client_key , or cname .

required false

type Map of key-value pairs

example

"rate_limiter": {

 "limit": 10.0,

 "burst": 100

}

"timeout": "20s"

"tls": {

https://www.vaultproject.io/api/auth/cert/index.html#parameters-7

token

description Vault token to use for authentication.

required true

type String

example

version

description HashiCorp Vault key/value store version.

required true

type String

example

Rate limiter attributes

limit

description Maximum number of secrets requests per second that can be transmitted
to the backend with the secrets API.

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem",

 "client_cert": "/etc/ssl/certs/vault_cert.pem",

 "client_key": "/etc/ssl/certs/vault_key.pem",

 "cname": "vault_client.example.com"

}

"token": "VAULT_TOKEN"

"version": "v1"

https://www.vaultproject.io/docs/secrets/kv

required false

type Float

example

burst

description Maximum amount of burst allowed in a rate interval for the secrets API.

required false

type Integer

example

Secrets providers confguration

You can use the Secrets API to create, view, and manage your secrets providers confguration.

For example, to retrieve the list of secrets providers:

Secrets providers examples

VaultProvider example

"limit": 10.0

"burst": 100

curl -X GET \

http://127.0.0.1:8080/api/enterprise/secrets/v1/providers \

-H "Authorization: Bearer $SENSU_ACCESS_TOKEN"

The VaultProvider secrets provider is a vendor-specifc implementation for HashiCorp Vault secrets
management.

type: VaultProvider

api_version: secrets/v1

metadata:

 name: vault

spec:

 client:

 address: https://vaultserver.example.com:8200

 token: VAULT_TOKEN

 version: v1

 tls:

 ca_cert: "/etc/ssl/certs/vault_ca_cert.pem"

 max_retries: 2

 timeout: 20s

 rate_limiter:

 limit: 10

 burst: 100

YML

{

 "type": "VaultProvider",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "vault"

 },

 "spec": {

 "client": {

 "address": "https://vaultserver.example.com:8200",

 "token": "VAULT_TOKEN",

 "version": "v1",

 "tls": {

 "ca_cert": "/etc/ssl/certs/vault_ca_cert.pem"

 },

 "max_retries": 2,

 "timeout": "20s",

 "rate_limiter": {

JSON

https://www.vaultproject.io/docs/what-is-vault/

Env example

Sensu’s built-in Env secrets provider exposes secrets from backend environment variables.
The Env

secrets provider is automatically created with an empty spec when you start your Sensu backend.

Using the Env secrets provider may require you to synchronize environment variables in Sensu
backend clusters.
The Use secrets management guide demonstrates how to confgure the Env secrets
provider.

 "limit": 10.0,

 "burst": 100

 }

 }

 }

}

type: Env

api_version: secrets/v1

metadata:

 name: env

spec: {}

YML

{

 "type": "Env",

 "api_version": "secrets/v1",

 "metadata": {

 "name": "env"

 },

 "spec": {}

}

JSON

Sensu query expressions

Sensu query expressions (SQEs) are JavaScript-based expressions that provide additional
functionality for using Sensu, like nested parameters and custom functions.

SQEs are defned in event flters, so they act in the context of determining whether a given event
should be passed to the handler.
SQEs always receive a single event and some information about that
event, like event.timestamp or event.check.interval .

SQEs always return either true or false .
They are evaluated by the Otto JavaScript VM as
JavaScript programs.

Syntax quick reference

operator description

=== Identity

!== Nonidentity

== Equality

!= Inequality

&& Logical AND

|| Logical OR

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

https://github.com/robertkrimen/otto

Specifcation

SQEs are valid ECMAScript 5 (JavaScript) expressions that return either true or false .
Other
values are not allowed.
If an SQE returns a value besides true or false , an error is recorded in the
Sensu backend log and the flter evaluates to false .

Custom functions

hour

The custom function hour returns the hour of a UNIX epoch time (in UTC and 24-hour time notation).

For example, if an event.timestamp equals 1520275913, which is Monday, March 5, 2018 6:51:53
PM UTC, the following SQE returns true :

weekday

The custom function weekday returns a number that represents the day of the week of a UNIX epoch
time.
Sunday is 0 .

For example, if an event.timestamp equals 1520275913, which is Monday, March 5, 2018 6:51:53
PM UTC, the following SQE returns false :

Examples

Evaluate an event attribute

This SQE returns true if the event’s entity contains a custom attribute named namespace that is
equal to production :

hour(event.timestamp) >= 17

weekday(event.timestamp) == 0

Evaluate an array

To evaluate an attribute that contains an array of elements, use the .indexOf method.
For example,
this expression returns true if an entity includes the subscription system :

Evaluate the day of the week

This expression returns true if the event occurred on a weekday:

Evaluate offce hours

This expression returns true if the event occurred between 9 AM and 5 PM UTC:

Evaluate labels and annotations

Although you can use annotations to create SQEs, we recommend using labels because labels
provide identifying information.

This expression returns true if the event’s entity includes the label webserver :

event.entity.namespace == 'production'

entity.subscriptions.indexOf('system') >= 0

weekday(event.timestamp) >= 1 && weekday(event.timestamp) <= 5

hour(event.timestamp) >= 9 && hour(event.timestamp) <= 17

Likewise, this expression returns true if the event’s entity includes the annotation
www.company.com :

!!event.entity.labels.webserver

!!event.entity.annotations['www.company.com']

Silencing

Sensu’s silencing capability allows you to suppress event handler execution on an ad hoc basis so you
can plan maintenance and reduce alert fatigue.
Silences are created on an ad hoc basis using
sensuctl .
Successfully created silencing entries are assigned a name in the format
$SUBSCRIPTION:$CHECK , where $SUBSCRIPTION is the name of a Sensu entity subscription and
$CHECK is the name of a Sensu check.

You can use silences to silence checks on specifc entities by taking advantage of per-entity
subscriptions (for example, entity:$ENTITY_NAME).
When the check name or subscription described
in a silencing entry matches an event and the handler uses the not_silenced built-in flter, the
handler will not be executed.

These silences are persisted in the Sensu datastore.
When the Sensu server processes subsequent
check results, it retrieves matching silences from the store.
If there are one or more matching entries,
the event is updated with a list of silenced entry names.
The presence of silences indicates that the
event is silenced.

When creating a silencing entry, you can specify a combination of checks and subscriptions, but only
one or the other is strictly required.
For example, if you create a silencing entry specifying only a check,
its name will contain an asterisk (or wildcard) in the $SUBSCRIPTION position.
This indicates that any
event with a matching check name will be marked as silenced, regardless of the originating entities’
subscriptions.

Conversely, a silencing entry that specifes only a subscription will have a name with an asterisk in the
$CHECK position.
This indicates that any event where the originating entities’ subscriptions match the

subscription specifed in the entry will be marked as silenced, regardless of the check name.

Silencing specifcation

Silenced entry names

Silences must contain either a subscription or check name and are identifed by the combination of
$SUBSCRIPTION:$CHECK .
If a check or subscription is not provided, it will be substituted with a wildcard

(asterisk): $SUBSCRIPTION:* or *:$CHECK .

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Silences should always be type Silenced .

required Required for silencing entry defnitions in wrapped-json or yaml
format for use with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
silences in this version of Sensu, the api_version should always be
core/v2 .

required Required for silencing entry defnitions in wrapped-json or yaml
format for use with sensuctl create .

type String

example

metadata

description Top-level collection of metadata about the silencing entry that includes
name , namespace , and created_by as well as custom labels and
annotations . The metadata map is always at the top level of the

silencing entry defnition. This means that in wrapped-json and yaml
formats, the metadata scope occurs outside the spec scope. See
metadata attributes for details.

"type": "Silenced"

"api_version": "core/v2"

required Required for silencing entry defnitions in wrapped-json or yaml
format for use with sensuctl create .

type Map of key-value pairs

example

spec

description Top-level map that includes the silencing entry spec attributes.

required Required for silences in wrapped-json or yaml format for use with
sensuctl create .

type Map of key-value pairs

example

Metadata attributes

name

"metadata": {

 "name": "appserver:mysql_status",

 "namespace": "default",

 "created_by": "admin",

 "labels": {

 "region": "us-west-1"

 }

"spec": {

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": null,

 "check": null,

 "subscription": "entity:i-424242",

 "begin": 1542671205

}

description Silencing identifer generated from the combination of a subscription
name and check name.

required false - This value cannot be modifed.

type String

example

namespace

description Sensu RBAC namespace that the silencing entry belongs to.

required false

type String

default default

example

created_by

description Username of the Sensu user who created the silence or last updated the
silence. Sensu automatically populates the created_by feld when the
silence is created or updated.

required false

type String

example

"name": "appserver:mysql_status"

"namespace": "production"

"created_by": "admin"

labels

description Custom attributes to include with event data that you can use for
response and web UI view fltering.

If you include labels in your event data, you can flter API responses,
sensuctl responses, and web UI views based on them. In other words,
labels allow you to create meaningful groupings for your data.

Limit labels to metadata you need to use for response fltering. For
complex, non-identifying metadata that you will not need to use in
response fltering, use annotations rather than labels.

required false

type Map of key-value pairs. Keys can contain only letters, numbers, and
underscores and must start with a letter. Values can be any valid UTF-8
string.

default null

example

annotations

description Non-identifying metadata to include with event data that you can access
with event flters. You can use annotations to add data that’s meaningful
to people or external tools that interact with Sensu.

In contrast to labels, you cannot use annotations in API response
fltering, sensuctl response fltering, or web UI views.

required false

type Map of key-value pairs. Keys and values can be any valid UTF-8 string.

default null

"labels": {

 "environment": "development",

 "region": "us-west-2"

}

example

Spec attributes

check

description Name of the check the entry should match.

required true, unless subscription is provided

type String

example

subscription

description Name of the subscription the entry should match.

required true, unless check is provided

type String

example

begin

description Time at which silence entry goes into effect. In epoch.

required false

 "annotations": {

 "managed-by": "ops",

 "playbook": "www.example.url"

}

"check": "haproxy_status"

"subscription": "entity:i-424242"

type Integer

example

expire

description Number of seconds until the entry should be deleted.

required false

type Integer

default -1

example

expire_on_resolve

description true if the entry should be deleted when a check begins to return OK
status (resolves). Otherwise, false .

required false

type Boolean

default false

example

creator

description Person, application, or entity responsible for creating the entry.

"begin": 1512512023

"expire": 3600

"expire_on_resolve": true

required false

type String

default null

example

reason

description Explanation of the reason for creating the entry.

required false

type String

default null

example

Examples

Silence all checks on a specifc entity

Suppose you want to silence any alerts on the Sensu entity i-424242 .
To do this, use per-entity
subscriptions:

"creator": "Application Deploy Tool 5.0"

"reason": "rebooting the world"

type: Silenced

api_version: core/v2

metadata:

 annotations: null

 labels: null

 name: entity:i-424242:*

YML

Silence a specifc check on a specifc entity

To continue the previous example, here’s how to silence a check named check_ntp on entity i-
424242 , ensuring the entry is deleted after the underlying issue is resolved:

 namespace: default

spec:

 begin: 1542671205

 check: null

 creator: admin

 expire: -1

 expire_on_resolve: false

 reason: null

 subscription: entity:i-424242

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "entity:i-424242:*",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "expire": -1,

 "expire_on_resolve": false,

 "creator": "admin",

 "reason": null,

 "check": null,

 "subscription": "entity:i-424242",

 "begin": 1542671205

 }

}

JSON

type: Silenced

YML

The optional expire_on_resolve attribute used in this example indicates that when the server
processes a matching check from the specifed entity with status OK, the silencing entry will be
removed automatically.

When used in combination with other attributes (like creator and reason), this gives Sensu
operators a way to acknowledge that they received an alert, suppress additional notifcations, and
automatically clear the silencing entry when the check status returns to normal.

Silence all checks on entities with a specifc subscription

api_version: core/v2

metadata:

 name: entity:i-424242:check_ntp

 namespace: default

 labels:

 annotations:

spec:

 subscription: entity:i-424242

 check: check_ntp

 expire_on_resolve: true

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "entity:i-424242:check_ntp",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "subscription": "entity:i-424242",

 "check": "check_ntp",

 "expire_on_resolve": true

 }

}

JSON

In this example, you’ll completely silence any entities subscribed to appserver .
Just as in the example
of silencing all checks on a specifc entity, you’ll create a silencing entry that specifes only the
appserver subscription:

Silence a specifc check on entities with a specifc subscription

To silence a check mysql_status that is running on Sensu entities with the subscription
appserver :

type: Silenced

api_version: core/v2

metadata:

 name: appserver

 namespace: default

 labels:

 annotations:

spec:

 subscription: appserver

YML

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "appserver",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "subscription": "appserver"

 }

}

JSON

type: Silenced

YML

Silence a specifc check on every entity

To silence the check mysql_status on every entity in your infrastructure, regardless of subscriptions,
you only need to provide the check name:

api_version: core/v2

metadata:

 name: appserver:mysql_status

 namespace: default

 labels:

 annotations:

spec:

 subscription: appserver

 check: mysql_status

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "appserver:mysql_status",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "subscription": "appserver",

 "check": "mysql_status"

 }

}

JSON

type: Silenced

api_version: core/v2

metadata:

 name: mysql_status

 namespace: default

 labels:

YML

Delete a silence

To delete a silencing entry, you must provide its name.

Subscription-only silencing entry names will contain an asterisk (or wildcard) in the $SUBSCRIPTION
position, similar to this example:

Check-only silencing entry names will contain an asterisk (or wildcard) in the $CHECK position, similar

 annotations:

spec:

 check: mysql_status

{

 "type": "Silenced",

 "api_version": "core/v2",

 "metadata": {

 "name": "mysql_status",

 "namespace": "default",

 "labels": null,

 "annotations": null

 },

 "spec": {

 "check": "mysql_status"

 }

}

JSON

name: appserver:*

YML

{

 "name": "appserver:*"

}

JSON

to this example:

name: '*:mysql_status'

YML

{

 "name": "*:mysql_status"

}

JSON

Tessen

Tessen is the Sensu call-home service.
It is enabled by default on Sensu backends.
Tessen sends
anonymized data about Sensu instances to Sensu Inc., including the version, cluster size, number of
events processed, and number of resources created (like checks and handlers).
We rely on Tessen
data to understand how Sensu is being used and make informed decisions about product
improvements.
Read Announcing Tessen, the Sensu call-home service to learn more about Tessen.

All data submissions are logged for complete transparency at the info log level and transmitted over
HTTPS.
See Troubleshooting to set the Sensu backend log level and view logs.

Confgure Tessen

You can use the Tessen API and sensuctl to view your Tessen confguration.
If you are using an
unlicensed Sensu instances, you can also use the Tessen API and sensuctl to opt in or opt out of
Tessen.

To manage Tessen confguration for your unlicensed instance with sensuctl, confgure sensuctl as the
default admin user.

To see Tessen status:

To opt out of Tessen:

NOTE: Tessen is enabled by default on Sensu backends and required for licensed Sensu
instances.
If you have a licensed instance and want to opt out of Tessen, contact your account
manager.

sensuctl tessen info

sensuctl tessen opt-out

https://sensu.io/blog/announcing-tessen-the-sensu-call-home-service

You can use the --skip-confrm fag to skip the confrmation step:

To opt in to Tessen:

Tessen specifcation

Top-level attributes

type

description Top-level attribute that specifes the sensuctl create resource type.
Tessen confguration should always be type TessenConfg .

required Required for Tessen confguration in wrapped-json or yaml format
for use with sensuctl create .

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
Tessen confguration in this version of Sensu, the api_version should

NOTE: For licensed Sensu instances, the Tessen confguration setting will automatically override
to opt-in at runtime.

sensuctl tessen opt-out --skip-confrm

sensuctl tessen opt-in

"type": "TessenConfg"

always be core/v2 .

required Required for Tessen confguration in wrapped-json or yaml format
for use with sensuctl create .

type String

example

spec

description Top-level map that includes Tessen confguration spec attributes.

required Required for Tessen confguration in wrapped-json or yaml format
for use with sensuctl create .

type Map of key-value pairs

example

Spec attributes

opt_out

description true to opt out of Tessen. Otherwise, false . Tessen is enabled by
default on Sensu backends and required for licensed Sensu instances.

required true

type Boolean

default false

example

"api_version": "core/v2"

"spec": {

 "opt_out": false

}

Tessen confguration example

This example is in wrapped-json format for use with sensuctl create .
To manage Tessen for
unlicensed Sensu instances with the Tessen API , use non-wrapped json format as shown in the API
docs.

Tessen metrics log examples

For unlicensed instances that opt in to Tessen and all licensed instances, Sensu sends various metrics
back to the Tessen service.
In the example metrics log below, Sensu is sending the number of check
hooks back to the Tessen service.

opt_out": false

type: TessenConfg

api_version: core/v2

spec:

 opt_out: false

YML

{

 "type": "TessenConfg",

 "api_version": "core/v2",

 "spec": {

 "opt_out": false

 }

}

JSON

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "hook_count",

Sensu also sends other metrics, such as the number of handlers:

Or the number of flters:

Or the number of authentication providers, secrets providers, and secrets:

 "metric_value": 2,

 "msg": "collected a metric for tessen",

 "time": "2019-09-16T09:02:11Z"

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "handler_count",

 "metric_value": 10,

 "msg": "collected a metric for tessen",

 "time": "2019-09-16T09:02:06Z"

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "flter_count",

 "metric_value": 4,

 "msg": "collected a metric for tessen",

 "time": "2019-09-16T09:02:01Z"

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "auth_provider_count",

 "metric_value": 2,

 "msg": "collected a metric for tessen",

 "time": "2020-03-30T15:16:42-04:00"

If you opt into Tessen, you can view all of the metrics in the logs:

To view the events on-disk, see Log Sensu services with systemd.

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "secret_provider_count",

 "metric_value": 1,

 "msg": "collected a metric for tessen",

 "time": "2020-03-30T15:17:12-04:00"

}

{

 "component": "tessend",

 "level": "debug",

 "metric_name": "secret_count",

 "metric_value": 1,

 "msg": "collected a metric for tessen",

 "time": "2020-03-30T15:16:17-04:00"

}

journalctl _COMM=sensu-backend.service

Tokens

Tokens are placeholders in a check defnition that the agent replaces with entity information before
executing the check.
You can use tokens to fne-tune check attributes (like alert thresholds) on a per-
entity level while reusing the check defnition.

When a check is scheduled to be executed by an agent, it frst goes through a token substitution step.
The agent replaces any tokens with matching attributes from the entity defnition, and then the check is
executed.
Invalid templates or unmatched tokens return an error, which is logged and sent to the Sensu
backend message transport.
Checks with token-matching errors are not executed.

Token substitution is supported for check, hook, and asset defnitions.
Only entity attributes are
available for substitution.
Token substitution is not available for event flters because flters already have
access to the entity.

Available attributes will always have string values, such as labels and annotations.

Manage entity labels

You can use token substitution with any defned entity attributes, including custom labels.
See the entity
reference for information about managing entity labels for proxy entities and agent entities.

Manage assets

You can use token substitution in the URLs of your your asset defnitions.
Token substitution allows you
to host your assets at different URLs (such as at different datacenters) without duplicating your assets,
as shown in the following example:

type: Asset

api_version: core/v2

metadata:

 name: sensu-go-hello-world

 namespace: default

spec:

YML

With this asset defnition, which includes the .labels.asset_url token substitution, checks and
hooks can include the sensu-go-hello-world asset as a runtime asset and Sensu Go will use the
token substitution for the agent’s entity.
Handlers and mutators can also include the sensu-go-hello-

world asset as a runtime asset, but Sensu Go will use the token subtitution for the backend’s entity
instead of the agent’s entity.

You can also use token substitution to customize asset headers (for example, to include secure
information for authentication).

 builds:

 - sha512:

07665fda5b7c75e15e4322820aa7ddb791cc9338e38444e976e601bc7d7970592e806a7b88733690a238

b7325437d31f85e98ae2fe47b008ca09c86530da9600

 url: "{{ .labels.asset_url }}/sensu-go-hello-world-0.0.1.tar.gz"

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-go-hello-world",

 "namespace": "default"

 },

 "spec": {

 "builds": [

 {

 "sha512":

"07665fda5b7c75e15e4322820aa7ddb791cc9338e38444e976e601bc7d7970592e806a7b88733690a23

8b7325437d31f85e98ae2fe47b008ca09c86530da9600",

 "url": "{{ .labels.asset_url }}/sensu-go-hello-world-0.0.1.tar.gz"

 }

]

 }

}

JSON

NOTE: To maintain security, you cannot use token substitution for an asset’s SHA512 value.

Token specifcation

Sensu Go uses the Go template package to implement token substitution.
Use double curly braces
around the token and a dot before the attribute to be substituted: {{ .system.hostname }} .

Token substitution syntax

Tokens are invoked by wrapping references to entity attributes and labels with double curly braces,
such as {{ .name }} to substitute an entity’s name.
Access nested Sensu entity attributes dot
notation (for example, system.arch).

Token substitution default values

If an attribute is not provided by the entity, a token’s default value will be substituted.
Token default
values are separated by a pipe character and the word “default” (| default).
Use token default
values to provide a fallback value for entities that are missing a specifed token attribute.

For example, {{.labels.url | default "https://sensu.io"}} would be replaced with a custom
label called url .
If no such attribute called url is included in the entity defnition, the default (or
fallback) value of https://sensu.io will be used to substitute the token.

Token substitution with quoted strings

{{ .name }} would be replaced with the entity name attribute

{{ .labels.url }} would be replaced with a custom label called url

{{ .labels.disk_warning }} would be replaced with a custom label called disk_warning

{{ index .labels "disk_warning" }} would be replaced with a custom label called
disk_warning

{{ index .labels "cpu.threshold" }} would be replaced with a custom label called
cpu.threshold

NOTE: When an annotation or label name has a dot (e.g. cpu.threshold), you must use the
template index function syntax to ensure correct processing because the dot notation is also used
for object nesting.

https://pkg.go.dev/text/template

You can escape quotes to express quoted strings in token substitution templates as shown in the Go
template package examples.
For example, to provide "substitution" as a default value for entities
that are missing the website attribute (including the quotation marks):

Unmatched tokens

If a token is unmatched during check preparation, the agent check handler will return an error, and the
check will not be executed.
Unmatched token errors are similar to this example:

Check confg token errors are logged by the agent and sent to Sensu backend message transport as
check failures.

Token data type limitations

As part of the substitution process, Sensu converts all tokens to strings.
This means that token
substitution cannot be applied to any non-string values like numbers or Booleans, although it can be
applied to strings that are nested inside objects and arrays.

For example, token substitution cannot be used for specifying a check interval because the interval
attribute requires an integer value.
Token substitution can be used for alerting thresholds because thos
values are included within the command string.

Examples

Token substitution for check thresholds

In this example hook and check confguration, the check-disk-usage.go command accepts -w

{{ .labels.website | default "\"substitution\"" }}

error: unmatched token: template: :1:22: executing "" at <.system.hostname>: map has

no entry for key "System"

https://pkg.go.dev/text/template?tab=doc#hdr-Examples
https://pkg.go.dev/text/template?tab=doc#hdr-Examples

(warning) and -c (critical) arguments to indicate the thresholds (as percentages) for creating warning
or critical events.
If no token substitutions are provided by an entity confguration, Sensu will use default
values to create a warning event at 80% disk capacity (i.e. {{ .labels.disk_warning | default 80
}}) and a critical event at 90% capacity (i.e. {{ .labels.disk_critical | default 90 }}).

Hook confguration:

Check confguration:

type: HookConfg

api_version: core/v2

metadata:

 name: disk_usage_details

 namespace: default

spec:

 command: du -h --max-depth=1 -c {{index .labels "disk_usage_root" | default "/"}}

2>/dev/null

 runtime_assets: null

 stdin: false

 timeout: 60

YML

{

 "type": "HookConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "disk_usage_details",

 "namespace": "default"

 },

 "spec": {

 "command": "du -h --max-depth=1 -c {{index .labels \"disk_usage_root\" | default

\"/\"}} 2>/dev/null",

 "runtime_assets": null,

 "stdin": false,

 "timeout": 60

 }

}

JSON

type: CheckConfg

api_version: core/v2

metadata:

 name: check-disk-usage

 namespace: default

spec:

 check_hooks:

 - non-zero:

 - disk_usage_details

 command: check-disk-usage.rb -w {{index .labels "disk_warning" | default 80}} -c

 {{.labels.disk_critical | default 90}}

 env_vars: null

 handlers: []

 high_fap_threshold: 0

 interval: 10

 low_fap_threshold: 0

 output_metric_format: ""

 output_metric_handlers: null

 proxy_entity_name: ""

 publish: true

 round_robin: false

 runtime_assets: null

 stdin: false

 subdue: null

 subscriptions:

 - staging

 timeout: 0

 ttl: 0

YML

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "check-disk-usage",

 "namespace": "default"

 },

 "spec": {

JSON

The following example entity provides the necessary attributes to override the
.labels.disk_warning and labels.disk_critical tokens declared above:

 "check_hooks": [

 {

 "non-zero": [

 "disk_usage_details"

]

 }

],

 "command": "check-disk-usage.rb -w {{index .labels \"disk_warning\" | default

80}} -c {{.labels.disk_critical | default 90}}",

 "env_vars": null,

 "handlers": [],

 "high_fap_threshold": 0,

 "interval": 10,

 "low_fap_threshold": 0,

 "output_metric_format": "",

 "output_metric_handlers": null,

 "proxy_entity_name": "",

 "publish": true,

 "round_robin": false,

 "runtime_assets": null,

 "stdin": false,

 "subdue": null,

 "subscriptions": [

 "staging"

],

 "timeout": 0,

 "ttl": 0

 }

}

type: Entity

api_version: core/v2

metadata:

 annotations: null

 labels:

 disk_critical: "90"

YML

 disk_warning: "80"

 name: example-hostname

 namespace: default

spec:

 deregister: false

 deregistration: {}

 entity_class: agent

 last_seen: 1542667231

 redact:

 - password

 - passwd

 - pass

 - api_key

 - api_token

 - access_key

 - secret_key

 - private_key

 - secret

 subscriptions:

 - entity:example-hostname

 - staging

 system:

 arch: amd64

 hostname: example-hostname

 network:

 interfaces:

 - addresses:

 - 127.0.0.1/8

 - ::1/128

 name: lo

 - addresses:

 - 10.0.2.15/24

 - fe80::26a5:54ec:cf0d:9704/64

 mac: 08:00:27:11:ad:d2

 name: enp0s3

 - addresses:

 - 172.28.128.3/24

 - fe80::a00:27ff:febc:be60/64

 mac: 08:00:27:bc:be:60

 name: enp0s8

 os: linux

 platform: centos

 platform_family: rhel

 platform_version: 7.4.1708

 processes: null

 user: agent

{

 "type": "Entity",

 "api_version": "core/v2",

 "metadata": {

 "name": "example-hostname",

 "namespace": "default",

 "labels": {

 "disk_warning": "80",

 "disk_critical": "90"

 },

 "annotations": null

 },

 "spec": {

 "entity_class": "agent",

 "system": {

 "hostname": "example-hostname",

 "os": "linux",

 "platform": "centos",

 "platform_family": "rhel",

 "platform_version": "7.4.1708",

 "processes": null,

 "network": {

 "interfaces": [

 {

 "name": "lo",

 "addresses": [

 "127.0.0.1/8",

 "::1/128"

]

 },

 {

 "name": "enp0s3",

 "mac": "08:00:27:11:ad:d2",

 "addresses": [

 "10.0.2.15/24",

JSON

 "fe80::26a5:54ec:cf0d:9704/64"

]

 },

 {

 "name": "enp0s8",

 "mac": "08:00:27:bc:be:60",

 "addresses": [

 "172.28.128.3/24",

 "fe80::a00:27ff:febc:be60/64"

]

 }

]

 },

 "arch": "amd64"

 },

 "subscriptions": [

 "entity:example-hostname",

 "staging"

],

 "last_seen": 1542667231,

 "deregister": false,

 "deregistration": {},

 "user": "agent",

 "redact": [

 "password",

 "passwd",

 "pass",

 "api_key",

 "api_token",

 "access_key",

 "secret_key",

 "private_key",

 "secret"

]

 }

}

Web UI confguration

COMMERCIAL FEATURE : Access web UI confguration in the packaged Sensu Go distribution.
For
more information, see Get started with commercial features.

Web UI confguration allows you to defne certain display options for the Sensu web UI, such as which
web UI theme to use, the number of items to list on each page, and which URLs and linked images to
expand.
You can defne a single custom web UI confguration to federate to all, some, or only one of
your clusters.

Web UI confguration specifcation

Top-level attributes

type

description Top-level attribute that specifes the resource type. For web UI
confguration, the type should always be GlobalConfg .

required Required for web UI confguration in wrapped-json or yaml format.

type String

example

api_version

description Top-level attribute that specifes the Sensu API group and version. For
web UI confguration in this version of Sensu, the api_version should

NOTE: Each cluster should have only one web confguration.

"type": "GlobalConfg"

always be web/v1 .

required Required for web UI confguration in wrapped-json or yaml format.

type String

example

metadata

description Top-level scope that contains the web UI confguration’s name and
created_by information.

required true

type Map of key-value pairs

example

spec

description Top-level map that includes web UI confguration spec attributes.

required Required for web UI confguration in wrapped-json or yaml format.

type Map of key-value pairs

example

"api_version": "web/v1"

"metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

}

"spec": {

 "always_show_local_cluster": false,

 "default_preferences": {

 "page_size": 50,

 "theme": "classic"

 },

Metadata attributes

name

description Name for the web UI confguration that is used internally by Sensu.

required true

type String

example

created_by

description Username of the Sensu user who created or last updated the web UI
confguration. Sensu automatically populates the created_by feld
when the web UI confguration is created or updated. The admin user,
cluster admins, and any user with access to the GlobalConfg resource
can create and update web UI confgurations.

required false

type String

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

 }

}

"name": "custom-web-ui"

example

Spec attributes

always_show_loca
l_cluster

description Use only in federated environments. Set to true to display the cluster
the user is currently connected to in the namespace switcher. To omit
local cluster details, set to false .

required false

type Boolean

default false

example

default_preference
s

description Global default page size and theme preferences for all users.

required false

type Map of key-value pairs

example

"created_by": "admin"

"always_show_local_cluster": false

"default_preferences": {

 "page_size": 50,

 "theme": "classic"

}

link_policy

description For labels or annotations that contain a URL, the policy for which
domains are valid and invalid targets for conversion to a link or an image.

required false

type Map of key-value pairs

example

Default preferences attributes

page_size

description The number of items users will see on each page.

required false

type Integer

default 25

example

theme

"link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

}

"page_size": 25

description The theme users will see.

required false

type String

default sensu

allowed values sensu , classic , uchiwa , tritanopia , and deuteranopia

example

Link policy attributes

allow_list

description If the list of URLs acts as an allow list, true . If the list of URLs acts as
a deny list, false . As an allow list, only matching URLs will be
expanded. As a deny list, matching URLs will not be expanded, but any
other URLs will be expanded.

required false

type Boolean

default false

example

NOTE: If an individual user’s settings confict with the web UI
confguration settings, Sensu will use the individual user’s settings.
For example, if a user’s system is set to dark mode and their web UI
settings are confgured to use their system settings, the user will see
dark mode in Sensu’s web UI, even if you set the theme to
classic in your web UI confguration.

"theme": "classic"

"allow_list": true

urls

description The list of URLs to use as an allow or deny list.

required false

type Array

example

Web UI confguration examples

In this web UI confguration example:

"urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

Details for the local cluster will not be displayed

Each page will list 50 items

The web UI will use the classic theme

Expanded links and images will be allowed for the listed URLs

type: GlobalConfg

api_version: web/v1

metadata:

 name: custom-web-ui

spec:

 always_show_local_cluster: false

 default_preferences:

 page_size: 50

 theme: classic

YML

 link_policy:

 allow_list: true

 urls:

 - https://example.com

 - steamapp://34234234

 - //google.com

 - //*.google.com

 - //bob.local

{

 "type": "GlobalConfg",

 "api_version": "web/v1",

 "metadata": {

 "name": "custom-web-ui",

 "created_by": "admin"

 },

 "spec": {

 "always_show_local_cluster": false,

 "default_preferences": {

 "page_size": 50,

 "theme": "classic"

 },

 "link_policy": {

 "allow_list": true,

 "urls": [

 "https://example.com",

 "steamapp://34234234",

 "//google.com",

 "//*.google.com",

 "//bob.local"

]

 }

 }

}

JSON

Learn Sensu

The Learn Sensu category includes tools to help you understand and start using Sensu, the industry-
leading observability pipeline for multi-cloud monitoring, consolidating monitoring tools, and flling
observability gaps at scale.

Glossary

If you’re new to Sensu, start with a basic review of terminology in the glossary of defnitions for
common Sensu terms.
The glossary includes links to relevant reference documentation for more in-
depth information.

Interactive tutorials

Discover what you can do with Sensu in our interactive tutorials, which you can use to learn Sensu
right in your browser.
The tutorials demonstrate how to deploy a Sensu stack, log in to the Sensu web
UI, create observability events, add Sensu assets and create event flters and handlers, and use
Sensu to send incident alerts to services like Slack and PagerDuty or to monitor a local Nginx service.

Live demo

Explore a live demo of the Sensu web UI: view the Entities page to see what Sensu is monitoring, the
Events page to see the latest observability events, and the Checks page to see active service and
metric checks.
The live demo also gives you a chance to try commands with sensuctl, the Sensu
command line tool.

Sensu sandbox

For further learning opportunities, download the Sensu sandbox.
Follow the sandbox lessons to build
your frst monitoring and observability workfow and collect Prometheus metrics with a Sensu check
plugin.

We also have a GitHub lesson that guides you through deploying a Sensu cluster and example
application into Kubernetes, plus a confguration that allows you to reuse Nagios-style monitoring
checks to monitor the example application with a Sensu sidecar.

https://github.com/sensu/sensu-k8s-quick-start#getting-started-with-sensu-go-on-kubernetes
https://github.com/sensu/sensu-k8s-quick-start#getting-started-with-sensu-go-on-kubernetes

Glossary of Sensu terms

Agent

A lightweight client that runs on the infrastructure components you want to monitor.
Agents self-register
with the backend, send keepalive messages, and execute monitoring checks.
Each agent belongs to
one or more subscriptions that determine which checks the agent runs.
An agent can run checks on the
entity it’s installed on or connect to a remote proxy entity.
Read more about the Sensu agent.

Asset

An executable that a check, handler, or mutator can specify as a dependency.
Assets must be a tar
archive (optionally gzipped) with scripts or executables within a bin folder.
At runtime, the backend or
agent installs required assets using the specifed URL.
Assets let you manage runtime dependencies
without using confguration management tools.
Read more about assets.

Backend

A fexible, scalable monitoring event pipeline.
The Sensu backend processes event data using flters,
mutators, and handlers.
It maintains confguration fles, stores recent event data, and schedules
monitoring checks.
You can interact with the backend using the API, command line, and web UI
interfaces.
Read more about the Sensu backend.

Check

A recurring check the agent runs to determine the state of a system component or collect metrics.
The
backend is responsible for storing check defnitions, scheduling checks, and processing event data.
Check defnitions specify the command to be executed, an interval for execution, one or more
subscriptions, and one or more handlers to process the resulting event data.
Read more about checks.

Entity

Infrastructure components that you want to monitor.
Each entity runs an agent that executes checks and
creates events.
Events can be tied to the entity where the agent runs or a proxy entity that the agent
checks remotely.
Read more about entities.

Event

A representation of the state of an infrastructure component at a point in time.
The Sensu backend uses
events to power the monitoring event pipeline.
Event data includes the result of a check or metric (or
both), the executing agent, and a timestamp.
Read more about events.

Event flter

Logical expressions that handlers evaluate before processing monitoring events.
Event flters can
instruct handlers to allow or deny matching events based on day, time, namespace, or any attribute in
the event data.
Read more about event flters.

Handler

A component of the monitoring event pipeline that acts on events.
Handlers can send monitoring event
data to an executable (or handler plugin), a TCP socket, or a UDP socket.
Read more about handlers.

Hook

A command the agent executes in response to a check result before creating a monitoring event.
Hooks
create context-rich events by gathering relevant information based on check status.
Read more about
hooks.

Mutator

An executable the backend runs prior to a handler to transform event data.
Read more about mutators.

Plugin

Executables designed to work with Sensu event data either as a check, mutator, or handler plugin.
You
can write your own check executables in Go, Ruby, Python, and more, or use one of more than 200
plugins shared by the Sensu community.
Read more about plugins.

Proxy entities

Components of your infrastructure that can’t run the agent locally (like a network switch or a website)
but still need to be monitored.
Agents create events with information about the proxy entity in place of
the local entity when running checks with a specifed proxy entity ID.
Read more about proxy entities.

Role-based access control (RBAC)

Sensu’s local user management system.
RBAC lets you manage users and permissions with
namespaces, users, roles, and role bindings.
Read more about RBAC.

Resources

Objects within Sensu that you can use to specify access permissions in Sensu roles and cluster roles.
Resources can be specifc to a namespace (like checks and handlers) or cluster-wide (like users and
cluster roles).
Read more about resources.

Sensuctl

The Sensu command line tool that lets you interact with the backend.
You can use sensuctl to create
checks, view events, create users, manage clusters, and more.
Read more about sensuctl.

Silencing

Entries that allow you to suppress execution of event handlers on an ad-hoc basis.
Use silencing to
schedule maintenance without being overloaded with alerts.
Read more about silencing.

Token

A placeholder in a check defnition that the agent replaces with local information before executing the
check.
Tokens let you fne-tune check attributes (like thresholds) on a per-entity level while reusing the
check defnition.
Read more about tokens.

Learn Sensu with interactive tutorials

Sensu is the industry-leading telemetry and service health-checking solution for multi-cloud monitoring
at scale.

Our interactive training tutorials help you get started with Sensu Go, using only your browser.
With these
tutorials, you can learn how to automate your monitoring workfows, gain deep visibility into systems
that are important to your business operations, get complete control over your alerts, and integrate
anywhere, including with the tools you’re already using.

Learn Sensu in 15 minutes

This interactive tutorial demonstrates how to:

Launch Learn Sensu in 15 minutes.

Up and running with Sensu Go

This interactive tutorial will help you get Sensu Go up and running from scratch, using only your
browser.
We’ve provisioned a CentOS 7 host for you, with an Nginx webserver already installed and
running.
When you complete this tutorial, your system will have both the Sensu backend and agent
running to monitor the local Nginx service.

Launch Up and running with Sensu Go.

Deploy a basic Sensu stack.

Log in to the Sensu web UI.

Create a monitoring event and use Sensu to send alerts based on the event to a Slack
channel.

Use a Sensu agent to automatically produce events, then store event data with InfuxDB and
visualize it with Grafana.

http://localhost:1313/sensu-go/5.20/learn/learn-in-15/
http://localhost:1313/sensu-go/5.20/learn/learn-in-15/
http://localhost:1313/sensu-go/5.20/learn/up-and-running/
http://localhost:1313/sensu-go/5.20/learn/up-and-running/

Send Sensu Go alerts to PagerDuty

When you complete this interactive tutorial, your Sensu Go backend will be confgured with a handler
that will send critical alerts to your PagerDuty account.
In this scenario, you will:

Launch Send Sensu Go alerts to PagerDuty.

Add a Sensu Nagios Foundation asset.

Add the PagerDuty asset and create a handler that uses your PagerDuty API key.

Send an alert for a Sensu Go event to PagerDuty.

http://localhost:1313/sensu-go/5.20/learn/sensu-pagerduty
http://localhost:1313/sensu-go/5.20/learn/sensu-pagerduty

Live demonstration of Sensu

See a live demo of the Sensu web UI.
Log in with username guest and password i<3sensu .

Explore the Entities page to see what Sensu is monitoring, the Events page to see the latest
monitoring events, and the Checks page to see active service and metric checks.

You can also use the demo to try out sensuctl, the Sensu command line tool.
First, install sensuctl on
your workstation. Then, confgure sensuctl to connect to the demo:

With sensuctl confgured, to see the latest monitoring events, run:

See the sensuctl quickstart to get started using sensuctl.

About the demo

The Caviar project shown in the demo monitors the Sensu docs site using a licensed Sensu cluster of
three backends.

sensuctl confgure

? Sensu Backend URL: https://caviar.tf.sensu.io:8080

? Username: guest

? Password: i<3sensu

? Namespace: default

? Preferred output format: tabular

sensuctl event list

https://caviar.tf.sensu.io:3000/
https://caviar.tf.sensu.io:3000/default/entities
https://caviar.tf.sensu.io:3000/default/events
https://caviar.tf.sensu.io:3000/default/checks
https://docs.sensu.io/

Sensu sandbox

Welcome to the Sensu sandbox! The sandbox is a great place to get started with Sensu and try out
new features.

Learn Sensu in the sandbox

Monitor containers and applications

Collect metrics

Upgrade from Sensu Core 1.x to Sensu Go

Download the Sensu sandbox and build your frst monitoring workfow

Deploy a Sensu Go cluster and example app with Kubernetes and monitor the app with Sensu

Collect Prometheus metrics with Sensu

Use the Sensu translator to translate check confgurations from Sensu Core 1.x to Sensu Go

https://github.com/sensu/sensu-k8s-quick-start
https://github.com/sensu/sandbox/tree/master/sensu-go/lesson_plans/check-upgrade/

Learn Sensu Go

In this tutorial, you’ll download the Sensu sandbox and create a monitoring workfow with Sensu.

Set up the sandbox

1. Install Vagrant and VirtualBox

2. Download the sandbox

Download from GitHub or clone the repository:

3. Start Vagrant

The Learn Sensu sandbox is a CentOS 7 virtual machine pre-installed with Sensu, InfuxDB, and
Grafana.
It’s intended for you to use as a learning tool — we do not recommend using it in a production
installation.
To install Sensu in production, use the installation guide instead.

The sandbox startup process takes about 5 minutes.

Download Vagrant

Download VirtualBox

git clone https://github.com/sensu/sandbox && cd sandbox/sensu-go

NOTE: If you’ve cloned the sandbox repository before, run cd sandbox/sensu-go and git
pull https://github.com/sensu/sandbox instead.

ENABLE_SENSU_SANDBOX_PORT_FORWARDING=1 vagrant up

NOTE: The sandbox confgures VirtualBox to forward TCP ports 3002 and 4002 from the sandbox

https://github.com/sensu/sandbox/archive/master.zip
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads/

4. SSH into the sandbox

Thanks for waiting! To start, shell into the sandbox:

You should be greeted with this prompt:

Lesson #1: Create a Sensu monitoring event

First, make sure everything is working correctly using the sensuctl command line tool.
Use sensuctl to
see that your Sensu backend instance has a single namespace, default , and two users: the default
admin user and the user created for a Sensu agent to use.

virtual machine (VM) to the localhost to make it easier for you to interact with the sandbox web UIs.
Web UI links provided in this tutorial assume port forwarding from the VM to the host is active.

vagrant ssh

[sensu_go_sandbox]$

To exit the sandbox, press CTRL + D .

To erase and restart the sandbox, run vagrant destroy and then vagrant up .

To reset the sandbox’s Sensu confguration to the beginning of this tutorial, run vagrant

provision .

NOTE: The sandbox pre-confgures sensuctl with the Sensu Go admin user, so you won’t have to
confgure sensuctl each time you spin up the sandbox to try out a new feature.
Before installing
sensuctl outside of the sandbox, read the frst time setup reference to learn how to confgure
sensuctl.

sensuctl namespace list

Sensu keeps track of monitored components as entities.
Start by using sensuctl to make sure Sensu
hasn’t connected to any entities yet:

Now you can start the Sensu agent to begin monitoring the sandbox:

Use sensuctl to see that Sensu is now monitoring the sandbox entity:

 Name
─────────

 default

sensuctl user list

 Username Groups Enabled
────────── ──────────────── ─────────

admin cluster-admins true

agent system:agents true

sensuctl entity list

 ID Class OS Subscriptions Last Seen
──── ─────── ──── ─────────────── ───────────

sudo systemctl start sensu-agent

sensuctl entity list

 ID Class OS Subscriptions Last Seen
────────────────── ─────── ─────── ─────────────────────────
───────────────────────────────

sensu-go-sandbox agent linux entity:sensu-go-sandbox 2019-01-24 21:29:06 +0000 UTC

Sensu agents send keepalive events to help you monitor agent status.
Use sensuctl to see the
keepalive events generated by the sandbox entity:

The sensu-go-sandbox keepalive event has status 0, which means the agent is in an OK state and can
communicate with the Sensu backend.

You can also see the event and the entity in the Sensu web UI.
Log in to the web UI with these pre-set
admin credentials: username admin and password P@ssw0rd! .

Lesson #2: Pipe keepalive events into Slack

Now that you know the sandbox is working properly, let’s get to the fun stuff: creating a workfow.
In this
lesson, you’ll create a workfow that sends keepalive alerts to Slack.

1. Get your Slack webhook URL

Create a Slack workspace (or use an existing workspace, if you’re already a Slack admin).

Then, visit YOUR-WORKSPACE-NAME.slack.com/services/new/incoming-webhook .
Follow the steps to
add the Incoming WebHooks integration and save your webhook.
Your webhook channel and URL will
be listed under Integration Settings — you’ll need both later in this lesson.

2. Register the Sensu Slack handler asset

sensuctl event list

 Entity Check Output Status Silenced Timestamp
────────────────── ───────────
──
──────── ────────── ───────────────────────────────

sensu-go-sandbox keepalive Keepalive last sent from sensu-go-sandbox at 2019-01-24 21:29:06 +0000 UTC 0 false

2019-01-24 21:29:06 +0000 UTC

NOTE: If you’d rather not create a Slack account, you can skip ahead to Lesson #3.

http://localhost:3002/
https://slack.com/get-started#create

Assets are shareable, reusable packages that make it easy to deploy Sensu plugins.
In this lesson, we’ll
use the Sensu Slack handler asset to power a slack handler.

Use sensuctl to register the Sensu Slack handler asset.

You should see a confrmation message from sensuctl.

The sensu-slack-handler asset is now ready to use with Sensu.
Use sensuctl to see the complete
asset defnition.

3. Create a Sensu Slack handler

Open the sensu-slack-handler.json handler defnition provided with the sandbox in your preferred
text editor.
Edit the defnition to include your Slack channel, webhook URL, and the sensu-slack-

handler asset.

sensuctl asset create sensu-slack-handler --url

"https://assets.bonsai.sensu.io/3149de09525d5e042a83edbb6eb46152b02b5a65/sensu-

slack-handler_1.0.3_linux_amd64.tar.gz" --sha512

"68720865127fbc7c2fe16ca4d7bbf2a187a2df703f4b4acae1c93e8a66556e9079e1270521999b58714

73e6c851f51b34097c54fdb8d18eedb7064df9019adc8"

Created

sensuctl asset info sensu-slack-handler --format yaml

PRO TIP: You can use resource defnitions to create and update resources (like assets) using
sensuctl create --fle flename.yaml . See the sensuctl docs for more information.

NOTE: If you aren’t sure how to open the handler and edit the defnition, try these Vi/Vim gist
instructions.

"env_vars": [

https://bonsai.sensu.io/assets/sensu/sensu-slack-handler/
https://bonsai.sensu.io/assets/sensu/sensu-slack-handler/
https://gist.github.com/hillaryfraley/838a046821171b1a37d0dafb16584518/
https://gist.github.com/hillaryfraley/838a046821171b1a37d0dafb16584518/

Now you can create a Slack handler named keepalive to process keepalive events.

Use sensuctl to see available event handlers — in this case, you’ll only see the keepalive handler
you just created.

Sensu monitoring events should begin arriving in your Slack channel, indicating that the sandbox entity
is in an OK state.

4. Filter keepalive events

Now that you’re generating Slack alerts, let’s reduce the potential for alert fatigue by adding a flter that
sends only warning, critical, and resolution alerts to Slack.

To accomplish this, you’ll interactively add the built-in is_incident event flter to the keepalive handler,
which will make sure you only receive alerts when the sandbox entity fails to send a keepalive event.

 "KEEPALIVE_SLACK_WEBHOOK=https://hooks.slack.com/services/AAA/BBB/CCC",

 "KEEPALIVE_SLACK_CHANNEL=#monitoring"

],

"runtime_assets": ["sensu-slack-handler"]

sensuctl create --fle sensu-slack-handler.json

sensuctl handler list

 Name Type Timeout Filters Mutator Execute

Environment Variables Assets
─────────── ────── ───────── ───────── ─────────
──

──────────────────────
──

────────────── ─────────────────────

 keepalive pipe 0 RUN:  /usr/local/bin/sensu-slack-handler -c "${KEEPALIVE_SLACK_CHANNEL}" -

w "${KEEPALIVE_SLACK_WEBHOOK}"

KEEPALIVE_SLACK_WEBHOOK=https://hooks.slack.com/services/AAA/BBB/CCC,KEEPALIVE_SLACK_CHANNEL

=#monitoring sensu-slack-handler

The frst prompt will be for environment variables.
Just press return to continue.
The second prompt is
for the flters selection — enter is_incident to apply the is_incident event flter.

For each of the mutator, timeout, type, runtime assets, and command prompts, just press return .

Use sensuctl to confrm that the keepalive handler now includes the is_incident event flter:

With the event flter in place, you should no longer receive messages in your Slack channel every time
the sandbox entity sends a keepalive event.

Let’s stop the agent and confrm that you receive the expected warning message.

sensuctl handler update keepalive

? Filters: is_incident

sensuctl handler info keepalive

=== keepalive

Name: keepalive

Type: pipe

Timeout: 0

Filters: is_incident

Mutator:

Execute: RUN:  sensu-slack-handler -c "${KEEPALIVE_SLACK_CHANNEL}" -w

"${KEEPALIVE_SLACK_WEBHOOK}"

Environment Variables: KEEPALIVE_SLACK_WEBHOOK=https://hooks.slack.com/services/AAA/BBB/CCC,

KEEPALIVE_SLACK_CHANNEL=#monitoring

Runtime Assets: sensu-slack-handler

sudo systemctl stop sensu-agent

After a couple minutes, you should see a warning message in your Slack channel informing you that
the sandbox entity is no longer sending keepalive events.

Start the agent to resolve the warning.

Lesson #3: Automate event production with the Sensu agent

So far, you’ve used the Sensu agent’s built-in keepalive feature, but in this lesson, you’ll create a
check that automatically produces workload-related events.
Instead of sending alerts to Slack, you’ll
store event data with InfuxDB and visualize it with Grafana.

1. Make sure the Sensu agent is running

2. Install Nginx and the Sensu HTTP Plugin

You’ll use the Sensu HTTP Plugin to monitor an Nginx server running on the sandbox.

First, install the EPEL release package:

Then, install and start Nginx:

Make sure it’s working:

sudo systemctl start sensu-agent

sudo systemctl restart sensu-agent

sudo yum install -y epel-release

sudo yum install -y nginx && sudo systemctl start nginx

curl -I http://localhost:80

https://www.influxdata.com/
https://grafana.com/
https://github.com/sensu-plugins/sensu-plugins-http/

Then install the Sensu HTTP Plugin:

You’ll use the metrics-curl.rb plugin.
Test its output with:

3. Create an InfuxDB pipeline

Now, let’s create the InfuxDB pipeline to store these metrics and visualize them with Grafana.
To create
a pipeline to send metric events to InfuxDB, start by registering the Sensu InfuxDB handler asset.

You should see a confrmation message from sensuctl.

The sensu-infuxdb-handler asset is now ready to use with Sensu.
Use sensuctl to see the complete

HTTP/1.1 200 OK

...

sudo sensu-install -p sensu-plugins-http

/opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u "http://localhost"

...

sensu-go-sandbox.curl_timings.http_code 200 1535670975

sensuctl asset create sensu-infuxdb-handler --url

"https://assets.bonsai.sensu.io/b28f8719a48aa8ea80c603f97e402975a98cea47/sensu-

infuxdb-handler_3.1.2_linux_amd64.tar.gz" --sha512

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9b

1257bb479676bc155b24e21bf93c722b812b0f15cb3bd"

Created

https://bonsai.sensu.io/assets/sensu/sensu-influxdb-handler/

asset defnition.

Open the infux-handler.json handler defnition provided with the sandbox, and edit the
runtime_assets attribute to include the sensu-infuxdb-handler asset.

Now you can use sensuctl to create the infux-db handler:

Use sensuctl to confrm that the handler was created successfully.

The infux-db handler should be listed.
If you completed lesson #2, you’ll also see the keepalive
handler.

4. Create a check to monitor Nginx

The curl_timings-check.json fle provided with the sandbox will create a service check that runs
the metrics-curl.rb check plugin every 10 seconds on all entities with the entity:sensu-go-
sandbox subscription and sends events to the InfuxDB pipeline.
The metrics-curl.rb plugin is
already included as the value of the command feld in curl_timings-check.json — you just need to
create the fle:

sensuctl asset info sensu-infuxdb-handler --format yaml

"runtime_assets": ["sensu-infuxdb-handler"]

sensuctl create --fle infux-handler.json

sensuctl handler list

sensuctl create --fle curl_timings-check.json

sensuctl check list

This check specifes a metrics handler and metric format.
In Sensu Go, metrics are a core element of
the data model: you can build pipelines to handle metrics separately from alerts.
This allows you to
customize your monitoring workfows to get better visibility and reduce alert fatigue.

After about 10 seconds, you can see the event produced by the entity:

Because the check defnition specifed a metric format of graphite_plaintext , the Sensu agent will
treat the output of the check command as Graphite-formatted metrics and translate them into a set of
Sensu-formatted metrics (not shown in the output).
These metrics are then sent to the InfuxDB handler,
which reads Sensu-formatted metrics and converts them to a format InfuxDB accepts.

 Name Command Interval Cron Timeout TTL Subscriptions

Handlers Assets Hooks Publish? Stdin? Metric Format Metric Handlers
──────────────
──
────────── ────── ───────── ───── ───────────────────────── ────────── ──────── ───────
────────── ──────── ──────────────────── ─────────────────

curl_timings /opt/sensu-plugins-ruby/embedded/bin/metrics-curl.rb -u "http://localhost" 10 0 0

entity:sensu-go-sandbox true false graphite_plaintext infux-db

sensuctl event info sensu-go-sandbox curl_timings --format json | jq .

...

 "history": [

 {

 "status": 0,

 "executed": 1556472457

 },

],

 "output": "sensu-go-sandbox.curl_timings.time_total 0.005 1556472657\n...",

 ...

 "output_metric_format": "graphite_plaintext",

 "output_metric_handlers": [

 "infux-db"

],

...

5. See the HTTP response code events for Nginx in Grafana.

Log in to Grafana with username: admin and password: admin .
You should see a graph of live HTTP
response codes for Nginx.

Now, if you turn Nginx off, you should see the impact in Grafana:

Start Nginx:

6. Automate disk usage monitoring for the sandbox

Now that you have an entity set up, you can add more checks.
For example, let’s say you want to
monitor disk usage on the sandbox.

First, install the plugin:

Test the plugin:

NOTE: Metric support isn’t limited to Graphite!
The Sensu agent can extract metrics in multiple line
protocol formats, including Nagios performance data.

sudo systemctl stop nginx

sudo systemctl start nginx

sudo sensu-install -p sensu-plugins-disk-checks

/opt/sensu-plugins-ruby/embedded/bin/metrics-disk-usage.rb

sensu-core-sandbox.disk_usage.root.used 2235 1534191189

sensu-core-sandbox.disk_usage.root.avail 39714 1534191189

...

http://localhost:4002/d/go01/sensu-go-sandbox/

Then create the check using sensuctl and the disk_usage-check.json fle included with the
sandbox, assigning it to the entity:sensu-go-sandbox subscription and the InfuxDB pipeline:

You don’t need to make any changes to disk_usage-check.json before running sensuctl create --

fle disk_usage-check.json .

You should see the check working on the web UI Entity page and via sensuctl:

Now, you should be able to see disk usage metrics for the sandbox in Grafana: reload your Grafana
tab to show the Sensu Go Sandbox Combined.

You made it! You’re ready for the next level of Sensu-ing.

Before you move on, take a moment to remove the virtual machine and resources installed during this
sandbox lesson.
Press CTRL + D to exit the sandbox. Then run:

Now you can continue exploring Sensu with a clean slate.
Here are some resources to help continue
your journey:

sensuctl create --fle disk_usage-check.json

sensuctl event list

vagrant destroy

Try another lesson in the Sensu sandbox

Install Sensu Go

Collect StatsD metrics

Create a read-only user

http://localhost:3002/#/entities/
http://localhost:4002/d/go02/sensu-go-sandbox-combined/
http://localhost:4002/d/go02/sensu-go-sandbox-combined/

Collect Prometheus metrics with Sensu

The Sensu Prometheus Collector is a check plugin that collects metrics from a Prometheus exporter or
the Prometheus query API.
This allows Sensu to route the collected metrics to one or more time series
databases, such as InfuxDB or Graphite.

The Prometheus ecosystem contains a number of actively maintained exporters, such as the node
exporter for reporting hardware and operating system metrics or Google’s cAdvisor exporter for
monitoring containers.
These exporters expose metrics that Sensu can collect and route to one or more
time series databases.
Sensu and Prometheus can run in parallel, complementing each other and
making use of environments where Prometheus is already deployed.

This guide uses CentOS 7 as the operating system with all components running on the same compute
resource.
Commands and steps may change for different distributions or if components are running on
different compute resources.

At the end of this guide, Prometheus will be scraping metrics.
The Sensu Prometheus Collector will then
query the Prometheus API as a Sensu check and send the metrics to an InfuxDB Sensu handler,
which will send metrics to an InfuxDB instance.
Finally, Grafana will query InfuxDB to display the
collected metrics.

Set up

Install and confgure Prometheus

Download and extract Prometheus:

wget https://github.com/prometheus/prometheus/releases/download/v2.6.0/prometheus-

2.6.0.linux-amd64.tar.gz

tar xvfz prometheus-*.tar.gz

cd prometheus-*

https://bonsai.sensu.io/assets/sensu/sensu-prometheus-collector/
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/prometheus/latest/querying/api/
https://github.com/prometheus/node_exporter/
https://github.com/prometheus/node_exporter/
https://github.com/google/cadvisor/

Replace the default prometheus.yml confguration fle with the following confguration:

Start Prometheus in the background:

Ensure Prometheus is running (your result may vary slightly from this example):

Install and confgure Sensu Go

Follow the RHEL/CentOS install instructions for the Sensu backend, the Sensu agent, and sensuctl.

Add an app_tier subscription to /etc/sensu/agent.yml :

Restart the Sensu agent to apply the confguration change:

global:

 scrape_interval: 15s

 external_labels:

 monitor: 'codelab-monitor'

scrape_confgs:

 - job_name: 'prometheus'

 scrape_interval: 5s

 static_confgs:

 - targets: ['localhost:9090']

nohup ./prometheus --confg.fle=prometheus.yml > prometheus.log 2>&1 &

ps -ef | grep "[p]rometheus"

vagrant 7647 3937 2 22:23 pts/0 00:00:00 ./prometheus --

confg.fle=prometheus.yml

subscriptions:

 - "app_tier"

Ensure Sensu services are running:

Install and confgure InfuxDB

Add an InfuxDB repo:

Install InfuxDB:

Open /etc/infuxdb/infuxdb.conf and uncomment the http API line:

Start InfuxDB:

sudo systemctl restart sensu-agent

systemctl status sensu-backend

systemctl status sensu-agent

echo "[infuxdb]

name = InfuxDB Repository - RHEL \$releasever

baseurl = https://repos.infuxdata.com/rhel/\$releasever/\$basearch/stable

enabled = 1

gpgcheck = 1

gpgkey = https://repos.infuxdata.com/infuxdb.key" | sudo tee

/etc/yum.repos.d/infuxdb.repo

sudo yum -y install infuxdb

[http]

 # Determines whether HTTP endpoint is enabled.

 enabled = true

Add the Sensu user and database:

Install and confgure Grafana

Install Grafana:

Change Grafana’s listen port so that it does not confict with the Sensu web UI:

Create a /etc/grafana/provisioning/datasources/infuxdb.yaml fle, and add an InfuxDB data
source:

sudo systemctl start infuxdb

infux -execute "CREATE DATABASE sensu"

infux -execute "CREATE USER sensu WITH PASSWORD 'sensu'"

infux -execute "GRANT ALL ON sensu TO sensu"

sudo yum install -y https://s3-us-west-2.amazonaws.com/grafana-

releases/release/grafana-5.1.4-1.x86_64.rpm

sudo sed -i 's/^;http_port = 3000/http_port = 4000/' /etc/grafana/grafana.ini

apiVersion: 1

deleteDatasources:

 - name: InfuxDB

 orgId: 1

datasources:

 - name: InfuxDB

 type: infuxdb

Start Grafana:

Create a Sensu InfuxDB pipeline

Create a Sensu InfuxDB handler asset

Put the following asset defnition in a fle called asset_infuxdb :

 access: proxy

 orgId: 1

 database: sensu

 user: grafana

 password: grafana

 url: http://localhost:8086

sudo systemctl start grafana-server

type: Asset

api_version: core/v2

metadata:

 name: sensu-infuxdb-handler

 namespace: default

spec:

 sha512:

612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9b1

257bb479676bc155b24e21bf93c722b812b0f15cb3bd

 url:

https://assets.bonsai.sensu.io/b28f8719a48aa8ea80c603f97e402975a98cea47/sensu-

infuxdb-handler_3.1.2_linux_amd64.tar.gz

YML

{

 "type": "Asset",

JSON

Create a Sensu handler

Put the following handler defnition in a fle called handler :

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-infuxdb-handler",

 "namespace": "default"

 },

 "spec": {

 "sha512":

"612c6ff9928841090c4d23bf20aaf7558e4eed8977a848cf9e2899bb13a13e7540bac2b63e324f39d9b

1257bb479676bc155b24e21bf93c722b812b0f15cb3bd",

 "url":

"https://assets.bonsai.sensu.io/b28f8719a48aa8ea80c603f97e402975a98cea47/sensu-

infuxdb-handler_3.1.2_linux_amd64.tar.gz"

 }

}

type: Handler

api_version: core/v2

metadata:

 name: infuxdb

 namespace: default

spec:

 command: "sensu-infuxdb-handler -a 'http://127.0.0.1:8086' -d sensu -u sensu -p

sensu"

 timeout: 10

 type: pipe

 runtime_assets:

 - sensu-infuxdb-handler

YML

{

 "type": "Handler",

 "api_version": "core/v2",

 "metadata": {

JSON

Use sensuctl to add the handler and the asset to Sensu:

Collect Prometheus metrics with Sensu

Create a Sensu Prometheus Collector asset

Put the following handler defnition in a fle called asset_prometheus :

 "name": "infuxdb",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-infuxdb-handler -a 'http://127.0.0.1:8086' -d sensu -u sensu -

p sensu",

 "timeout": 10,

 "type": "pipe",

 "runtime_assets": [

 "sensu-infuxdb-handler"

]

 }

}

PRO TIP: sensuctl create -f also accepts fles that contain multiple resources’ defnitions.

sensuctl create --fle handler --fle asset_infuxdb

type: Asset

api_version: core/v2

metadata:

 name: sensu-prometheus-collector

 namespace: default

spec:

 url:

YML

Add a Sensu check to complete the pipeline

Create the following check defnition in a fle called check :

https://assets.bonsai.sensu.io/ef812286f59de36a40e51178024b81c69666e1b7/sensu-

prometheus-collector_1.1.6_linux_amd64.tar.gz

 sha512:

a70056ca02662fbf2999460f6be93f174c7e09c5a8b12efc7cc42ce1ccb5570ee0f328a2dd8223f506df

3b5972f7f521728f7bdd6abf9f6ca2234d690aeb3808

{

 "type": "Asset",

 "api_version": "core/v2",

 "metadata": {

 "name": "sensu-prometheus-collector",

 "namespace": "default"

 },

 "spec": {

 "url":

"https://assets.bonsai.sensu.io/ef812286f59de36a40e51178024b81c69666e1b7/sensu-

prometheus-collector_1.1.6_linux_amd64.tar.gz",

 "sha512":

"a70056ca02662fbf2999460f6be93f174c7e09c5a8b12efc7cc42ce1ccb5570ee0f328a2dd8223f506d

f3b5972f7f521728f7bdd6abf9f6ca2234d690aeb3808"

 }

}

JSON

type: CheckConfg

api_version: core/v2

metadata:

 name: prometheus_metrics

 namespace: default

spec:

 command: "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-query

up"

 handlers:

YML

 - infuxdb

 interval: 10

 publish: true

 output_metric_format: infuxdb_line

 output_metric_handlers: []

 subscriptions:

 - app_tier

 timeout: 0

 runtime_assets:

 - sensu-prometheus-collector

{

 "type": "CheckConfg",

 "api_version": "core/v2",

 "metadata": {

 "name": "prometheus_metrics",

 "namespace": "default"

 },

 "spec": {

 "command": "sensu-prometheus-collector -prom-url http://localhost:9090 -prom-

query up",

 "handlers": [

 "infuxdb"

],

 "interval": 10,

 "publish": true,

 "output_metric_format": "infuxdb_line",

 "output_metric_handlers": [],

 "subscriptions": [

 "app_tier"

],

 "timeout": 0,

 "runtime_assets": [

 "sensu-prometheus-collector"

]

 }

}

JSON

Use sensuctl to add the check to Sensu:

Open the Sensu web UI to see the events generated by the prometheus_metrics check.
Visit
http://127.0.0.1:3000, and log in as the admin user (created during the initialization step when you
installed the Sensu backend).

You can also see the metric event data using sensuctl.

Visualize metrics with Grafana

Confgure a dashboard in Grafana

Download the Grafana dashboard confguration fle from the Sensu docs:

Using the downloaded fle, add the dashboard to Grafana with an API call:

sensuctl create --fle check --fle asset_prometheus

sensuctl event list

 Entity Check Output Status Silenced Timestamp
────────────── ────────────────────
── ────────
────────── ───────────────────────────────

sensu-centos keepalive Keepalive last sent from sensu-centos at 2019-02-12 01:01:37 +0000 UTC 0 false

2019-02-12 01:01:37 +0000 UTC

sensu-centos prometheus_metrics up,instance=localhost:9090,job=prometheus value=1 1549933306 0 false

2019-02-12 01:01:46 +0000 UTC

wget https://docs.sensu.io/sensu-go/latest/fles/up_or_down_dashboard.json

curl -XPOST -H 'Content-Type: application/json' -d@up_or_down_dashboard.json

HTTP://admin:admin@127.0.0.1:4000/api/dashboards/db

View metrics in Grafana

Confrm metrics in Grafana: login at http://127.0.0.1:4000.
Use admin for both username and
password.

Click Home in the upper left corner, then click the Up or Down Sample 2 dashboard.
You should see a
graph with initial metrics, similar to:

Next steps

You should now have a working set-up with Prometheus scraping metrics.
The Sensu Prometheus
Collector runs via a Sensu check and collects metrics from the Prometheus API.
The metrics are
handled by the InfuxDB handler, sent to InfuxDB, and visualized by a Grafana dashboard.

You can plug the Sensu Prometheus Collector into your Sensu ecosystem.
Use Prometheus to gather
metrics and use Sensu to send them to the proper fnal destination.
Prometheus has a comprehensive
list of additional exporters to pull in metrics.

https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/

	localhost
	Sensu Go
	Sensu Go release notes
	Get started with Sensu
	Supported platforms and distributions
	Get started with commercial features
	Operations
	Deploy Sensu
	Hardware requirements
	Install Sensu
	Deployment architecture for Sensu
	Configuration management
	Generate certificates for your Sensu installation
	Secure Sensu
	Run a Sensu cluster
	Multi-cluster visibility with federation
	Scale Sensu Go with Enterprise datastore
	Install Sensu plugins
	Control Access
	Configure Active Directory (AD) authentication to access Sensu
	Configure Lightweight Directory Access Protocol (LDAP) authentication to access Sensu
	Configure OpenID Connect 1.0 protocol (OIDC) authentication to access Sensu
	Use API keys to authenticate to Sensu
	Create a read-only user with role-based access control (RBAC)
	Maintain Sensu
	Upgrade Sensu
	Migrate from Sensu Core to Sensu Go
	Troubleshoot Sensu
	Monitor Sensu
	Log Sensu services with systemd
	Monitor Sensu with Sensu
	Manage Secrets
	Use secrets management in Sensu
	Guides
	Monitor server resources with checks
	Monitor external resources with proxy requests and entities
	Collect metrics with Sensu checks
	Augment event data with check hooks
	Aggregate metrics with the Sensu StatsD listener
	Populate metrics in InfluxDB with handlers
	Send Slack alerts with handlers
	Send email alerts with the Sensu Go Email Handler
	Create handler templates
	Install plugins with assets
	Reduce alert fatigue with filters
	Route alerts with filters
	Plan maintenance windows with silencing
	Sensuctl CLI
	Create and manage resources with sensuctl
	Back up and recover resources with sensuctl
	Filter responses with sensuctl
	Set environment variables with sensuctl
	Use sensuctl with Bonsai
	Web UI
	View and manage resources in the web UI
	Build filtered views in the web UI
	Configure the web UI
	API
	APIKeys API
	Assets API
	Authentication API
	Authentication providers API
	Checks API
	Cluster API
	Cluster role bindings API
	Cluster roles API
	Datastore API
	Entities API
	Events API
	Federation API
	Filters API
	Handlers API
	Health API
	Hooks API
	License management API
	Metrics API
	Mutators API
	Namespaces API
	Prune API
	Role bindings API
	Roles API
	Searches API
	Secrets API
	Silencing API
	Tessen API
	Users API
	Version API
	Web UI configuration API
	Reference
	Sensu agent
	Sensu backend
	API keys reference
	Assets
	Checks
	Datastore
	Entities
	Etcd replicators
	Events
	Filters
	Handlers
	Health
	Hooks
	License
	Mutators
	Role-based access control (RBAC) reference
	Searches
	Secrets
	Secrets providers
	Sensu query expressions
	Silencing
	Tessen
	Tokens
	Web UI configuration
	Learn Sensu
	Glossary of Sensu terms
	Learn Sensu with interactive tutorials
	Live demonstration of Sensu
	Sensu sandbox
	Learn Sensu Go
	Collect Prometheus metrics with Sensu

